70 ) IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. \4, NO. 1, MARCH 1996

System Design Methodologies:
Aiming at the 100 h Design Cycle
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Frank Vahid, Member, IEEE, and Peter Fung, Member, IEEE

Abstract— As methodologies and tools for chip-level design ma-
ture, design effort becomes focused on increasingly higher levels
of abstraction. We present a tutorial on a design methodelogy for
chip and system design and present a test case that justifies the
future goal of a 100 h design cycle.

I. INTRODUCTION

ITH the increasing acceptance of automation of the
lower-level design tasks, designers are increasingly

focusing their efforts at the more abstract stages of the.

system-design process. The system functionality can best be
understood during the earlier design steps, before design effort
has been expended on implementation details. By focusing at
these higher levels of abstraction, the designer can make a
more significant impact on the quality of the end-product than
by focusing at lower levels. This is the primary reason why
the early phases of the design process have become so crucial
in system design.

As a design progresses from concept to manufacturing, it
goes through several levels of abstractions. At each abstraction
level, different design views are created in-different design
representations. In this section, we will present common
design representations and examine how they vary from one
abstraction level to another.

A. Design Representations

The different representations of a design differ in the
type of information they convey. The three most frequently
used representations are those that emphasize the behavioral,
structural and physical aspects of the product.

A behavioral representation treats the design simply as a
black box, while specifying its behavior as a function of its
input values and expired time. In other words, a behavioral
representation describes the system’s functionality, but tells
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Fig. 1. Design representation and abstraction levels.

us nothing about its implementation; it defines how the black
box would respond to any combination of input values, but
omits any indications about how we would design that box.

A structural representation, by contrast, begins to answer
some of these questions, as it serves to define the black box in
terms of a set of components and their connections. In other
words, this representation focuses on specifying the product’s
implementation, and even though the functionality of the black
box can be derived from its interconnected components, the
structural representation does not describe the functionality
explicitly. - _

A physical representation carries the implementation of
the design one step further by specifying the physical charac-
teristics of the components described in the structural représen-
tation. For instance, a physical representation' would provide
the dimensions and location of each component, as well as
the physical characteristics of the connections between them.
Thus, while the structural representation provides the design’s
connectivity, the physical representation describes the spatial
relationships among these interconnected components, describ-
ing the weight, size, heat dissipation, power consumption and
position of each input or output pin in the manufactured design. -

In general, the process of designing a system proceeds
from a behavioral representation to a structural representation
and finally to a physical representation, gaining technology-
specific implementation details along the way. While we need
these details of the implementation in order to manufacture
the product, they tend to obscure the system’s functionality,
thereby impeding the designer in his or her attempt to ensure
that the system functions correctly. Consider, for example, a
simple system which can add or multiply two 32 b numbers.
The behavioral representation would simply consist of two
equations: 0 := @ + b and o := @ x b. The structural
representation, however, consists of several interconnected
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registers, arithmetic units, and multiplexers, which could make
the system’s functionality difficult to discern, especially if
the number of components is very large or if a particular
component’s functionality is only partially used: Thus, if we
are to focus on the increasingly crucial problem of functional
correctness, then we must recognize that designers will be
more successful and create better products when working
with behavioral representations as opposed to working with
structural or physical representations.

B. Levels of Abstraction

Each of the three types of design representations discussed
in the previous section lends itself to several different levels
of abstraction, or granularity. The different levels can be
distinguished from each other on the basis of the types of
objects they use, which fall into four categories: transistors,
gates, registers and processor components. These different
levels of abstraction are summarized in relation to each type
of representation in Fig. 1.

At the transistor level, the main components are transistors,
resistors and capacitors. These objects can be combined to
form analog and digital circuits that satisfy a given func-
tionality. On this level, functionality is usually described by
a set of differential equations or by some form of current-
voltage relationships. Finally, a physical representation of
such a circuit, called a cell, would consist of transistor-level
components and the wires connecting them. Such cells often
are defined in terms of their component layouts.

On the gate level, the main components are combinational
logic gates and flip-flops that perform Boolean operations
and act as basic memory elements. These gates and flip-
flops can be grouped and placed on a silicon wafer in. order
to form arithmetic and storage modules. These modules can
be described behaviorally by logic equations and finite-state
machine diagrams.

The main components on the register level (RT) are arith-
metic and storage units (such as adders, comparators, multipli-
ers, counters, registers, register-files, data buffers, and queues).
Each of these RT components is a physical object, having
fixed dimensions, a fixed propagation time, and fixed positions
for its primary input and output pins on the boundary of the
module. Register-level components are used in the design of
microchips, which can be described by flowcharts, instruction
sets, generalized finite-state machines or state tables.

Finally, the highest level of abstraction is called the pro-
cessor level where the basic components are processors,
memories, controllers, interfaces and custom microchips called
application-specific integrated circuits (ASIC’s). One or more
of these components can be placed and soldered on a pnnted-
circuit board (PCB), and interconnected by wires that are
printed on the board surface. In order to reduce the dimensions
of the board, a silicon substrate may be used to connect
the microchips, instead of using the PCB’s, in which case
the package would be called a multichip module (MCM).
The systems composed of processor-level components can
be described behaviorally in several different ways, as a
natural language description, as an executable specification in

a hardware description language, or finally, as algorithms or
programs in a programming language.

It is important to keep in mind the fact that designers can
only focus their efforts on the level at which the system is
comprehensible to them. This level is generally the one where
the number of objects is relatively small. For example, a
designer might comprehend a system consisting of 10 Boolean
equations, but certainly not one of 10000 equations. In the
latter case, he would have to keep moving to higher levels of
abstraction until he reaches the point where the system can
be represented by a manageable number of objects, such as
by a few algorithms. At the lower levels of abstraction, the
system can be managed only when we divide it into small
pieces and distribute it among a number of designers, or
when we use automated tools that are able to manage the
complexity. Fortunately, as new design tools emerge at the
lower levels, designers are free to focus on the higher levels,
where decisions tend to impact quality much more heavily
than at lower levels.

II. DESIGN METHODOLOGIES

In the previous section we presented the various levels of
abstraction that every electronic system will go through as
the design process evolves from conceptualization to manu-
facturing. The set of specific tasks in this design process, the
particular order in which they are to be executed and a set of
CAD tools to be used during the execution of each task forms
a design methodology. The design methodologies that will be
discussed in this paper are shown graphically in Fig. 2.

We will now briefly discuss two design methodologies that
are predominant in industrial environments today.

A. Capture and Simulate Methodology

For the last 25 years, the majority of ASIC and system
houses used a design process that was based on a capture-and-
simulate design methodology. In this methodology, one starts
with a specific set of requirements for the product, usually sup-
plied by the marketing departments. Since these requirements
do not contain any information about the implementation of the
product, a small team of chief architects would then produce
a rough block diagram of the chip architecture, that would
serve as a preliminary, albeit incomplete, specification. In
some cases, this initial block diagram would be refined further
before being given to a team of logic and layout designers
whose task is to convert each functional block into a logic
or circuit schematic that will finally be captured by schematic
capture tools, and simulated to verify its functionality, timing
and fault coverage. This captured schematic can also be used
to drive the physical design tools for the placement and routing
of gates in gate-array technologies, or it can be used in custom
technologies to map gates into standard or custom cells before
placement and routing.

B. Describe and Synthesize Methodology

The acceptance of logic synthesis in the last few years as an
integral part of the design process has led to an evolutionary
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Fig. 2. Design methodologies: the dotted lines show the iteration loop.

change in design methodology, where the capture-and-simulate
approach is steadily giving way to a describe-and-synthesize
methodology. The advantage of this new methodology is that it
allows us to describe a design in a purely behavioral form, void
of any technology-specific implementation details; specifically,
we can describe the design using Boolean equations and
finite-state machine diagrams. In this methodology, the design
structure is generated by automatic synthesis using CAD tools,
instead of by manual design, since manual design is very
tedious for all but trivial circuits.

The describe-and-synthesize methodology can be applied
on several levels of abstraction. On the gate level, functional
and control units could be synthesized using logic synthesis.
For example, functional units such as ALU’s, comparators,

- and multipliers, can be described by Boolean equations, and

, are traditionally synthesized in two phases. In the first phase,
called logic minimization, the number of “and” and “or”
operators (or, equivalently, the number of literals) in the
Boolean equations are minimized while simultaneously sat-
isfying cost and time constraints. In the second phase; called
technology mapping, these minimized Boolean equations are
then implemented using the logic gates from the given gate
library in a selected technology. A comprehensive survey of

- logic synthesis techniques may be found in [1].

The control units, on the other hand, would be defined
by finite-state machine diagrams, and then also synthesized
in two phases. In the first phase, called state minimization,
the number of states is minimized and a binary encoding
assigned to each state so that the cost of implementing the
next-state and output function will be reduced. In the second
phase, the next-state and output functions defined by the
Boolean equations are optimized through logic minimization
and technology mapping, as described above.

On the register level, the microchips, which represent pro-
cessors, memories and ASIC’s, can be synthesized using
behavioral (or high-level) synthesis techniques. The structure
of these microchips consists of the functional, storage and

control units that have been predesigned and stored in a
register-level library. The behavior of these microchips can
be described by means of programs, algorithms, flowcharts,
dataflow graphs, instruction sets or by generalized finite-state
machines, in which each state can perform arbitrarily complex
computations.

We transform such a behavioral description into a structural
one by applying three major synthesis tasks: allocation, sched-
uling and binding. The purpose of allocation is to determine
the number of register-level components or resources that are
required for the implementation. In other words, it determines
the number of functional units, the operations executed by
each unit, the number of pipeline stages, and the delay for
each operation, as well as the cost and size of each unit. The
allocation task must also determine the number of storage
units, such as registers, register files, queues, and memories
that are needed. In addition to the size and cost of each storage
unit, the allocation task determines: the number of ports and
the access time for each storage unit. Finally, allocation has to
also determine the number, size, protocol, and delay of each
bus in the system, and the various options for connecting the
functional and storage units to these buses.

Once resources have been allocated, the task of scheduling
is intended to partition the behavioral description . into time
intervals, called control steps. During each control step, which
is usually one clock-cycle long, data will be transferred from
one register to another, and if necessary transformed by a
functional unit during the transfer. All the register transfers in
each control step are executed concurrently. The performance
of the design (measured in total number of control steps) is
roughly proportional to the number of available resources in
each control step. .

It is important to note that the scheduling task determines
the operations that are executed in each control step, but it does
not assign them to particular register-level components. This
job is performed by the binding task, which assigns variables
to storage units, operations to functional units, and ensures
that a communication path or bus is assigned for each transfer
of data between the storage units and the functional units. An
introduction to high-level synthesis concepts can be found in
f21. :

By using logic and behavioral synthesis, the describe-
and-synthesize methodology allows designers to describe a
microchip’s functionality with a behavioral description (that
is void of any structure, engineering or technological informa-
tion), and then synthesize a structural description consisting of .
register-transfer level (RTL) components. These RTL compo-
nents can later be synthesized into gate-level components.

After the successful introduction of logic and behavioral
synthesis tools, system designers and the CAD community
alike are questioning whether the describe-and-synthesize
methodology can be expanded to apply to complete systems,
including software and hardware design. In other words, there
is a possibility that productivity gains might be even higher if
we continue this trend beyond chip-level design, and focus on
even higher levels of abstraction. In the next section, we will
describe the requirements and the essential issues for such a
system-level methodology.
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III. THE SPECIFY, EXPLORE AND REFINE METHODOLOGY

System design is the task of mapping the system’s function-
ality to a set of system components such that design constraints
on parameters such as monetary cost, performance, and power
are satisfied. Example system components include standard
processors and microcontrollers, memories, buses, and custom
ASIC’s.

In the software domain, there exist several well-established -

design methodologies [3] for designing large software systems.
Structured Analysis [4] relies on data flow diagrams to
represent the organization of the software. Each node in the
diagram represents a subtask performed by the software, and
the arrows between the nodes represent the flow of data
between the various subtasks. Structured Design [5] attempts
to reduce complexity by dividing a large program into a set
of independent modules and provides measures for minimizing
the data references across modules. A “structure chart” is used
to represent the modules in the system and the calls between
them. Techniques such as Flowcharts, State Transition Dia-
grams, and Jackson Diagrams provide graphical notations for
representing iteration, branching and sequencing in software
specifications. For applications such as database design where
the organization of the data outweighs all other aspects of the
design, Entity relationship diagrams [6] have been employed
to represent entities (a unique type of data that possesses one or
more specific attributes) and relationships (a “fact” relevant to
its entities) between them. Object Oriented Programming
reduces complexity by allowing “objects” (an object is an
encapsulation of data and functions that operate on the data)
to be grouped together into a hierarchy of classes, allowing
an object to inherit common characteristics from the class, as
oppoéed to specifying them for each object individually.

For hardware design, design methodologies are not well
established at higher levels of abstractions that deal with the
design of entire systems. Every design organization has its own
methodology for the design of large systems. These method-
ologies typically involve informal techniques that may vary
from one group to another, even within the same organization.
Traditionally, system design starts off with the chief archi-
tects creating informal block diagrams (representing system
components), from which a specification is written after some
preliminary design has been performed. The design decisions
that lead to this block diagram, however, are usually based on a
given designer’s personal experience, rather than on a thorough
exploration of all the possible algorithmic, architectural, and
technological alternatives. Furthermore, these block diagrams
are usually created without a full understanding of the system’s
functionality. This kind of delay in defining the system’s
functionality often results in a design cycle that is longer than
necessary, since inconsistencies that are discovered late in the
process require time-consuming design iterations.

In order to address the problems outlined above, we propose
a Specify-Explore-Refine (SER) methodology for system
design. In the specify phase of the SER methodology, the
systems’s functionality is captured using an executable speci-
fication language. The explore phase consists of an evaluation
of different mappings of the system functionality to different
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system components, with a view to satisfy design constraints.
Finally, in the refine phase, the specification is updated to
reflect the decisions made during the exploration phase.

The result of the SER methodology is a set of interconnected
system components, each with its own functional specification.
Each component can then be concurrently implemented. A
standard component (such as a microprocessor) requires soft-
ware compilation of the functional specification into machine
code, whereas custom components require synthesis of the
specification into register-transfer structure. The first task is
accomplished with standard compilers while the second one
uses behavioral and logic synthesis.

We now describe each of the three stages of the SER
methodology individually. :

A. System Specification

As mentioned above, the traditional “back-of-the-envelope”
design approach deals with system functionality in an ad-hoc
manner in that the specification of each system component
is written after system design has already been performed.
It would be preferable to devote more effort to specifying
the system’s functionality in the earliest stage of the process,
before any design decisions have been made, since such
early effort could lead to large overall savings. Specifically,
there are great advantages to be derived by working with
a specification, particularly an executable specification, since
this would not only capture the product’s functionality, but
can also be used by marketing departments to study the
competitiveness of the product in the marketplace. In addition,
an executable specification can serve as documentation during
all steps of the design process, especially insofar as it fosters
concurrent engineering, by clearly -defining the functionality
and the interface for the various subsystems assigned to
various members of the design team. Furthermore, any change
in any of these subsystems would be easy to incorporate,
and its impact on other parts of the system could be rapidly
evaluated. An executable specification is also amenable to the
automatic verification of different design properties, as well
as the functionality of the system. In addition, an executable
specification has the advantage of enabling automation during
design exploration and design synthesis. Finally, an executable
specification can also continue to serve as a starting point for
all the product upgrades that occur during the life-time of the
product, as well as supporting product maintenance.

The selection of a language for writing these specifications
emerges as one of the main issues in a system methodology.
Such a language must be easy to capture, to understand,
and to use for interfacing with CAD tools. It must also be
able to capture all the system’s characteristics and allow
the easy ‘synthesis of their implementations. Finally, such a
language should be able to model these systems and their
implementations in a manner that is readable and complete,
without being overbearing to the designer. Many languages
have been used for executable specification, including VHDL
[71, Verilog [26], HardwareC [8], [9], CSP (Communicating
Sequential Processes) [10], Statecharts [11], SDL (Speci-
fication and Description Language) [12], Silage [13], and
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Fig. 3. Language support for conceptual model characteristics of embedded
. systems.

Esterel [14]. Such languages are used to capture common
conceptual models such as finite-state machines (FSM), FSM’s
with complex expressions, hierarchical and concurrent FSM’s,
dataflow diagrams, Petri-nets, and communicating sequential
processes. Unfortunately, these conceptual models are not
adequate for concisely describing all the characteristics of a
class of systems referred to as embedded systems.

An embedded system is typically designed to perform a set
of functions as part of a larger system and constantly responds
to external events and interrupts in real time. We modeled
several embedded systems including a bus controller, a robot
arm-tracking system, an MPEG decoder, an image process-
ing system, fuzzy-logic controllers, a microwave-transmitter
controller, a medical volume-measuring system, a telephone
answering machine, an interactive TV processor, an aircraft
collision avoidance system, and an ethernet co-processor. The
following five characteristics were common to the models
of all the above systems: state-transitions, hierarchical se-
quential and concurrent behavior decomposition, exceptions,
behavioral completion and algorithmic computations specified
with programming constructs. Fig. 3 lists the embedded sys-
tem characteristics that are supported by each of the above
languages. It is clear from the figure that none of these
languages and their underlying model are by themselves
sufficient to model embedded systems concisely and precisely.
To overcome this limitation, a model called program-state
machines can be used.

1) Program-State Machines: Program-state machines
(PSM) [15] are essentially a combination of the hierarchical
finite-state machine and programming language paradigms.
A system is specified as a hierarchy of program-states,
where each program-state represents a mode of computation
and may include standard programming declarations such as
variables, types, and subroutines. At any given time only a
subset of program-states are active, i.e., are actively carrying
out their computations. A single root program-state represents
the entire system and is always active.

A program-state may either be a composite program-state
or a leaf program-state. A composite program-state may be
hierarchically decomposed either into a set of concurrent
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Fig. 4. Program-state machine model of a simple computer system.

program-substates (all program-substates are active when the
program-state is active), or into a set of sequential program-
substates (only one of the program-substates is active at a
time when the program-state is active). Fig. 4 shows the
program state machine for a simple computer system. CPU
and CLK_GEN are concurrent program-substates of SYSTEM,
while RESET and ACTIVE are sequential program-substates
of CPU. A sequentially decomposed program-state contains
a set of transition arcs to represent the sequencing between
the program-substates. There are two types of transition arcs.
A trapsition-on-completion arc (TOC) is traversed when
the source program-substate has completed its computation
and the associated arc condition evaluates to true (e.g., the
transition from RESET to ACTIVE originating in a bold dot).
A transition-immediately arc (TI) is traversed immediately
when the arc condition becomes true, regardless of whether
or not the source program-substate has completed its com-
putation (e.g., the transition labeled rising(RESET_IN) from
ACTIVE to RESET, originating at the boundary of ACTIVE).
A leaf program-state (e.g., FETCH) is at the bottom of the
behavioral hierarchy and has its computation described using
programming language statements.

The PSM model supports all embedded-system charac-
teristics in an elegant manner. In addition; as the system
is refined, the programming constructs .can be used to de-
scribe portions destined for software implementation while
the state-transitions describe portions destined for hardware
implementation, all with a single uniform representation that
eliminates the need for multiple languages. Since no language
currently exists that supports all the PSM characteristics, we
developed a- VHDL front-end language called SpecCharts [16].

Our subsequent system-design methodology -is not strictly
dependent on use of SpecCharts. Other languages may be
used to capture the PSM model, with some extra effort.
However, SpecCharts is in closest accord with SER system-
design methodology, and yields the most concise and readable
specifications.

B. Design Exploration

Our approach to system design consists of three well-defined
tasks on three classes of functional objects. Thése tasks are
summarized in Fig. 5.

The three classes of functional objects that comprise any ex-
ecutable specification are variables, behaviors, and channels.
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Variables .store data, behaviors transform data, and channels
transfer data between behaviors. Equivalent VHDL constructs
that illustrate these three classes of functional objects are listed
in the specification column in the figure. In our terminology,
a behavior is a nontrivial algorithmic-level computation that
together with other behaviors describe all system actions (iden-
tical to the “task” concept described in [17]). It corresponds
to a block of statements in the specification such as a loop
body, procedure, or process.

As an illustration of the three classes of functional objects
in a specification consider Fig. 6 which shows a partial Spec-
Chart description of an audio/video (A/V) controller. The AV
controller receives a stream of audio and video streams over
the AV_IN channel, stores them temporarily in memories and
when instructed by a controller, performs some computations
on the samples and outputs the audio and video sample on the
two distinct channels AUDIO_QUT and VIDEO_OUT. The
AV controller consists of a hierarchy of behaviors of which
only the top three levels are shown in Fig. 6. At the top
most level, we have the behavior SYSTEM. This behavior
has four array variables: AUDI and AUD2 to store audio
samples, VID to store video samples and CMD which stores
the set of stream manipulation commands. The AUDIO_UNIT
and VIDEO_UNIT detect, capture, store and generate audio
and video samples respectively. The CONTROLLER fetches
instructions from the CMD memory and issues appropriate
instructions to the AUDIO_UNIT and VIDEO_UNIT.

For each of these objects, there are three tasks to be
performed in the SER methodology: allocation, partitioning,
and refinement. Allocation adds system components to the
design. There are three classes of system components that
can be allocated. One class of system components consists
of memories, such as RAM’s, ROM’s, register-files, and
registers. Memories are used for storing scalar and array
variables. Another class of components consists of standard
processors and microcontrollers as well as custom ASIC
“processors”. These standard/custom processors are used to
implement behaviors. A third class of “component” consists
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of physical buses. Buses are used to implement groups of
communication channels.

The designer may specify appropriate constraints or param-
eters that are required to define each allocated component.
For example, processors are defined by their instruction sets
and the execution speed for each instruction; memories are
defined by their sizes, read/write protocols and access times;
ASIC’s are defined by their sizes in terms of gates (gate
arrays) or number of transistors (custom design), propagation
delays for gates or transistors, package size, and allowed
power consumption, among other things. Buses are defined
by the number of data/control lines, the protocol used and its
bandwidth.

For the A/V controller, the designer has allocated six system
components shown in Fig. 7—a processor PI, two chips
Chipl, Chip2, and three memories M1, M2, M3. For each of
the allocated components, the designer will have specified the -
appropriate characteristics.

Once the components have been allocated and constrained,
the functional objects in the specification are then parti-
tioned into the allocated software and hardware components.
Variables are mapped to memories, behaviors are mapped
to standard/custom processors, and channels are mapped to
buses. Each mapping is many to one. Standard partitioning
algorithms, such as clustering or simulated annealing, can
be applied. Various closeness criteria [15] can be used to
determine which objects should be clustered together. For
behaviors, common criteria include interconnection, commu-
nication, sequentiality, and hardware sharability. For variables
and channels, common criteria include sequential access, com-
mon accessors, and width similarity.

Depending on the constraints specified for the system,
different portions of the design may be partitioned to be even-
tually implemented as software or hardware. The software part
of the system can be further subdivided into two or more parts,
each running on a separate processor. For example, a host
processor could perform the slower system functions while
one or more coprocessors could be executing the faster data
transformations. Similarly, the hardware part of the system
may be partitioned into one or more ASIC’s.

One mapping of the functional objects in the A/V controller
specification to the allocated system components is shown in
Fig. 7. For example, the CONTROLLER behavior was not time
critical and was thus mapped to a software implementation
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on processor PI1. The AUDIO_UNIT and VIDEO_UNIT were
mapped to chips ChipI and Chip2 respectively. Since the two
arrays (i.e. AUDI and AUD2) used for storing audic samples
are accessed sequentially, they can be mapped to the same
memory (M) without any performance degradation of the the
behavior AUDIO_UNIT.

Since each different allocation of system components and
‘each different partition will produce one candidate system im-
plementation, evaluation of these various options will require
designers to estimate quality metrics such as performance,
cost, power consumption, testing and packaging costs for
each implementation. Each set of estimated quality metrics
is compared to the given requirements and the candidate
implementation that satisfies the requirements optimally is
selected. Thus, design exploration from the specification in
the SER methodology will allow designers to find the most
cost-effective solutions.

C. Spéciﬁcation Refinement

System partitioning in the SER methodology causes a
regrouping of the objects in the specification. Once the best
solution has been found, the specification will need to be
refined to reflect the allocation and partitioning decisions, such
that the different objects in the specification are moved to
the appropriate components, and communication is maintained
between the separated pieces. For example, many variables in
: the description may be moved into one partition and grouped
onto a single memory, or a single behavioral description may
be split across multiple chips. It is necessary to add behaviors
to the individual chips to maintain correct functionality for
the given allocation and partitioning. In our first example,
since many variables are stored in the same memory, address
translation must be introduced for each memory access. In
.the second example, where behaviors are split among chips,
additional interface descriptions must be intreduced into both
the chips to maintain correct communication. These sets of
tasks are called refinement.

Refinement migrates the design from a pure functional
specification toward a structural implementation. Successive
refinement steps generate a sequence of models, each with
more structural detail than the previous one. For example,
at the system level, ‘a structural description might define the
chips ‘and buses of a system. Each chip may be refined
functionally to consist of a set of behaviors or processes.
Behavioral synthesis is a refinement step that will produce a
RT-level structural netlist to implement each process. Each
RT component (e.g., adders, etc.) may have a behavioral
description of its functionality associated with it. Thus, each
refinement step results in a progression of detail which is
added to the specification. Refinement does not change the
functionality, it simply adds details of the implementation to
the system model.

In the SER methodology, refinement adds new behaviors
to maintain the correct functionality for a given allocation
and partitioning. Variables partitioned among memories re-
quire memory address translation. Behaviors separated among
components must be modified to maintain correct communica-
tion. Channels mapped to buses require interface synthesis to

N VIDEO_OUT
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Fig. 8. System specification after refinement.

determine communication protocols, and arbiter synthesis to
resolve any simultaneous bus requests. A refined specification
is then generated consisting of a set of interconnected system-
components, the functionality of each of which is completely
specified.

After such refinement, the specification will reflect the
product architecture (as did the block diagram created by
the chief architect in the traditional approach), with all the
system components and the communications among them well
defined. Each component has its own specification, which
can then be compiled by a standard compiler in the case
of computations assigned to the processors, or synthesized
with behavioral and logic synthesis tools in the case of
computations assigned to custom ASIC’s. There are, of course,
differences between the refined specification and the architect’s
block diagram. First, in that the refined specification has been
obtained only after a thorough and organized exploration of
the solution space; and second, in that the refined specification,
being derived formally from the original specifications, is
far more likely to be consistent, eliminating the need for
expensive, time-consuming design iterations.

Fig. 8 shows the refined specification of the A/V controller.
There are three memory components, which implement the
variables in the specification. Hardware for the AUDIO_UNIT
and VIDEOG_UNIT is designed manually or by applying hard-
ware synthesis tools on the audio and video chip specifications.
The CONTROLLER behavior is now represented by software
specification. This is compiled by a software compiler to
execute on processor PI. Finally, the three memories, the
two synthesize hardware chips, and the processor are all
connected together and assembled on a board. Thus, the
entire A/V controller design is structured to exploit concurrent
engineering and consequently, reduce the time to market.

IV. Fuzzy LoGIC CONTROLLER

‘In order to demonstrate the advéntages of using the higher
abstraction levels, we selected an industrial design used in
consumer and industrial electronic applications. The particular
application that we used was a fuzzy logic based temperature
controller. Our goal was to specify the design at the system
level and synthesize the entire design into a set of FPGA’s.
Another important goal was to gauge the approximate time re-



GAISKI et al.: SYSTEM DESIGN METHODOLOGIES

NLT  Z1 PLI NS2 22 PS2 NS3 PL3
1) it hotand dry then hi_ac
LAV B A VARTE 2) 1 cold and wet then lo_ac n_ao
Temp Humidity AC control

@ () ©

Fuzzification Fule 1 \l Morge

(@

Fig. 9. Fuzzy Controller: (a) front-end fuzzy sets, (b) rules, (c) back-end
fuzzy sets, and (d) operation of fuzzy controller.

Defuzzification

quired for the complete design process from conceptualization
to implementation.

In this section we provide the details of the fuzzy logic
controller. We then discuss the fuzzy logic design experiment
and the tradeoffs that were achieved in each stage of the SER
design process. )

A. Fuzzy Logic Controller: Basic Principles

The basic idea in fuzzy logic [18] is that everyday crisp

values such as “temperature is 25 C” can be expressed as
having a membership value in fuzzy sets such as “temperature
is 0.9 hot” and “temperature is 0.01 cold,” where hot and cold
are fuzzy sets and the values 0.9 and 0.01 represent the degree
of membership in the respective sets.

A fuzzy logic controller incorporates three databases. Front-
end fuzzy sets or membership functions determine to what
degree an input fact belongs to them. Each input variable has
its own set of membership functions. A rule base governs the
behavior of the fuzzy controller. Typically, these rules are in
the form of if..then statements such as "if NL1 and NL2 then
PS3", where NL1 and NL2 represent degree of membership in
the membership functions, and PS3 represents the strength of
the output control. Back-end fuzzy sets determine the value
of the outputs of the fuzzy controller based on the degree to
which the various rules were satisfied. For an air-conditioning
system control application, Fig. 9(a), (b), and (c) show the
front-end fuzzy sets for two variables temp and humidity, two
rules, and the back-end fuzzy sets for an air-conditioning fuzzy
logic controller respectively.

The operations of the fuzzy controller are summarized
in Fig. 9(d). Briefly, the fuzzy controller [19] performs the
following functions.

1) Fuzzification converts the crisp input values for the
variables into a fuzzy membership value. The operations
involved in this step include many table lookups and
comparisons.

2) Rule Application applies all the rules and produces
a fuzzy output membership value. The operations in
this step include truncation and convolution of the
membership functions.
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3) Defuzzification converts the fuzzy output membership
values produced by the rules. The operations here in-
clude computing the centroid of the back end member-
ship functions.

B. Design Specification

As explained earlier, for the first step of the SER method-
ology we needed a VHDL based specification mechanism
that supported behavioral hierarchy and concurrency. We used
the SpecCharts language [16] for design specification since it
satisfied all our requirements. The level at which the design
is captured in SpecCharts is very close to the designers
conceptualization of the design. Besides, the language is a
front-end for VHDL-based specifications and thus, provides a
path to subsequent simulation and synthesis tools. In addition it
directly supports behavioral hierarchy and state-machine based

control flow.

The design specification consisted of five behaviors ex-
pressed using VHDL process statements. Four of these pro-
cesses modeled the rules (R1---R4) in the system. The fifth
behavior modeled the defuzzification function (i.e., centroid
computation).

During specification, it was not clear whether to evaluate the
four rules sequentially or concurrently. We decided to explore
both these options and estimate the size and performance
for each of these options during system design. Hence we
wrote two different specifications of the design. In the first
specification, we created a hierarchical state, in which the four
rules were executed sequentially. In the second specification,
we created a similar hierarchical state, but the four rules were
executed concurrently. With SpecCharts it took less than 10
min to specify these two hierarchical descriptions from the
leaf behaviors.

Since SpecCharts can be easily translated to VHDL, we
were able to simulate both the sequential and the parallel
specifications using a commercial VHDL simulator. It took
us about three days to write both these specifications. The
total lines of SpecChart code for the specification was about
300 lines.

C. System Design

Specsyn [20], a system design and exploration tool based
on the SER methodology, was used to explore various archi-
tectures by partitioning the design into several chips. Since
our goal was a final mapping onto FPGA’s, the system
components that were allocated for partitioning purposes were
only FPGA’s.

Many FPGA allocations were tried during system design.
For each allocation provided to it, Specsyn partitioned the
entire behavior into the allocated units such that the per-
formance was optimal. In fact, Specsyn evaluates hundreds
of different partitions in a few minutes, before deriving the
most efficient partition. Specsyn contains built-in performance
and cost estimators, that provide quick and accurate on-the-fly
estimates of these quality metrics. These estimates drive the
optimization process during partitioning [21].



SpecCharts Input

3days
__________________________________ -l
SpecSyn I 2days
Partitioned
Description

RTL
Description’

Exemplar
{Logic Synth)

FPGA
Netiist

NeoCAD
(Place/Routs)

............................ >l
Back Annotated Digital
FPGA Netlist Simulator, 2days

FPGA Programming
Pattern

Fig. 10. Fuzzy controller—design steps.

Crisp Output
Values
Compute
Centroid
| rﬂ Ll{ l
Evaluate Evaluate Evaluate Evaluate
Rule 1 Rule 2 Rule 3 Ruie 4

Crisp tnput
Values

Fig. 11. Partitioning results.

For example, Specsyn’s performance estimation feature was
used to compare both the sequential and the concurrent rule
evaluation styles. Partitioning and performance estimation
not only revealed that the parallel algorithm is faster and
requires more area than the sequential one, but also how
this tradeoff impacts the overall system performance of the
fuzzy controller (the true design criteria). The performance and
cost estimators allowed a rapid comparison between the two
alternatives. Due to constraints on the overall performance,
a concurrent implementation was selected for the four rules
in the fuzzy logic controller. The automated estimators allow
such decisions to be made in a matter of minutes instead of a
few days or even weeks required by a manual investigation.

With a couple of days experimentation, we derived the best
partition for the design. The refined design at the system-
level (shown in Fig. 11) consists of five major blocks, with
appropriate interface protocols introduced between them for
communication.

Thus, at the end of the system-level exploration phase of
the SER methodology, the objects in the original specification
were partitioned into five chips. A VHDL behavioral descrip-
tion was generated for each of the five chips and simulated to

/

extity chide is e
port  10: ininteger; fi: ininteger; golk: inbit; exec: inbit; S

done: outbit; inirOm: inbit; addrOm: In integer; R

datarOm: in bv7; initrRu0: in bit; datatrRuQ: in bv7; Vi

addrrRu0: ininteger;  testdoutrOm: out bv7; 4

testrOm: inblt; testaddnOm: ininteger; testirRuO: in bit;

: ininteger; 0: out bv7);

end choe;
architecture chOa of chOe is
type MembRuleAr is array (integer range <>) of bv7;
type MembFunctAr is array (integer range <>) of bv7;
signal rom: MembRuleArr(383 downto 0);
signal lrl/=lu0: MembFunctAm(127 downto 0);

begin
PO: process
variable if1,itr, ir0mir: integer;
variable romf0, rOmf1, rOmtr, truncVal, temptr: bv7;

if exec ="1' then
done <='0%; ift := 128+f1; rOMTO := FOM(fO); romf1 := rOm(H);
if rOmf0 < rOmf1 then truncVal := romf0; else truncval := romf1; end if;
itr:=0;
while itr < 128 loop
frOmtr = itr+256; romtr := rOm(iromtr);
if truncVal < rOmtr then temptr := truncVal; else temptr := 1Omir; end if;
rRuOfitr); itr := itr+1; )
end loop;
done <="1";
eisif initrom ="1"  then rOm(addirOm} <= datarOm
elsf initrRu0 ="1" then trRub(addrirRuO) <= datatrRu0;
elsif testrOm ='1"  then testdoutrOm <= rom{testaddrOm);
elsif testiyRu0 = "1’ then <= 0;
end if;
end procsss PO;
end chda;

Fig. 12. Rule description in VHDL.

verify the partitioning and the interfaces synthesized between
the chips.

D. Architectural Design

Behavioral descriptions for each of the five chips were
obtained after system design. In Fig. 12 we show fragments
of the generated VHDL behavior for a single rule evaluation

(EVAL_R1). We used VSS (VDHL Synthesis System) [22]

for further exploration and refinement of the design at the mi-
croarchitecture level and synthesis of the RTL structure. VSS
performs scheduling, allocation, binding and array variable
mapping and produces the RTL design. Components required
during synthesis are obtained from the Genus library [23],
which is a library of parametrized RTL components.

By varying the amount of allocated resources;, we were
able to explore a wide range of area—delay tradeoffs at the
architectural level. We list some of the exploration scenarios
that were attempted with the VSS system.

a) We tried different allocations of functional units. The
performance of the design did not improve with more
functional units, because this description (shown -in
Fig. 12) does not contain many parallelizable operations.

b) We changed the type of functional unit resources. Instead
of providing a separate adder and a separate comparator
we allocated a single ALU which can perform both
these operations. This changed the design characteristic.
Although the number of states required increased be-
cause of fewer resources, the utilization of the allocated
components increased substantially.

¢) Since the fuzzy logic control is ‘a2 memory intensive
application, changes in the allocation of memory .re-
sources drastically affected the final design. By in-
creasing the number of ports in the memory we were
able to significantly improve the performance. We also

.
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allocated slower and faster memories to consider the
impact of memory access time on the overall design.
We finally fixed the number of ports and the access time
to correspond to the values in the Xilinx FPGA’s.

d) We selected a 100 ns clock for the design, since most
of the functional unit delays in the FPGA library was
in the order of 30-40 ns, and data accesses were in the
order of 60 ns.

Since VSS uses fast algorithms for scheduling, variable
merging and binding, it was able to produce the architectural
design for a given allocation within a minute. Thus we
were able to synthesize and verify almost about 10 different
allocations in less than a day.

The output produced by VSS is fully simulatable. However,
the amount of VHDL code is quite large since the details are
at the RT level. The VHDL code for each of the FPGA’s
was about 2500 lines, and the total lines of VHDL for
all the FPGA’s was over 10000 lines. However, this code
was directly simulated on a commercial simulator to verify
correctness of the synthesized design.

E. Technology Adaptation

The RTL VHDL output from BdA was the input for
commercially available logic synthesis tools which produce
gate-level schematics from the RT level. We used the logic
synthesis tool from Exemplar for synthesizing the gate level
design. The target synthesis .architecture were the Xilinx
FPGA'’s. A few minor modifications in the VHDL description
of some of the GENUS components was necessary, in order
to enable the logic synthesis tool to.incorporate technology
specific macros or semi-custom cells for complex components
such as fast adders and memories into logic synthesis. These
macros or cells greatly enhanced the performance of the
system when compared to synthesizing the complex functions
directly.

The technology-dependent schematic was the input for
place and route tools, the final piece of the design puzzle.
A commercial tool from NeoCAD was used for placement
and routing of the FPGA’s. The role of these tools are
well known. After place and route a backannotated circuit
schematic was generated for final digital simulation. The
digital simulation incorporated timing delays due to logic
components and routing delays. This provides final verification
before proceeding to actual silicon. The total time spent in the
final phase of the design process was about five days.

However, during the final digital simulation of the back
annotated design it was found that the wire delays were very
large (almost 75 ns), making it impossible to satisfy the clock
constraint of 100 ns. Thus a second iteration through the design
process was necessary.

F. Second Design Iteration

The design was resynthesized with a clock cycle of 200
ns. In Fig. 13, we show some of the synthesis characteristics
for one of the FPGA’s (EVAL_R1). The final design occupied
360 CLB’s in the FPGA. The clock constraint of 200 ns was
achieved after placement and routing of the FPGA. The total
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Num Lines of SpecChart Code 50 lines
DESIGN | Lines of VHDL after SpecChart | 100 ines
.| Lines of VHDL after VSS 2500 lines
FPGA type Xilinx 4000
COST Number of CLBs 360
Number of Gates 9K
Clock Cycle Constraint 200 ns
CLOCK | Clock Cycle After VSS 70ns
Clock Cycle After NeoCAD 145 ns
Performance Constraint 200 us
PERF Perf. Estimated by SpecSyn 165 us
Perf. Achieved by VSS 155 us
Perf. after NeoCAD 180 us

Fig. 13. Results: EVAL_R1.

time required to evaluate each rule was 180 us. The design
(shown in Fig. 14) produced during the second iteration was
able to run through the simulation successfully.

Since the synthesis process was rerun from the VSS level
onwards, another nine days of work was required before
the chip passed through the test vectors. In the future, the
quality of the area and delay estimation tools have to be
improved to avoid this second iteration of the design. The
final implementation, consisting of five Xilinx 4010 FPGA’s
on an Aptix GP4 field programmable circuit board (FPCB),
performed correctly under the performance constraint clock
speed of 200 ns. '

V. CONCLUSIONS

In this paper we have reviewed system and chip level
methodologies. We have illustrated the power of these method-
ologies with an industrial design, that was a) specified at the
highest levels of abstractions, b) synthesized at the system
level; c) further synthesized at the RT level, and finally d)
implemented with FPGA’s using commercial tools.

The design quality resulting from our 100 h methodology
is comparable to manual designs. In one experiment, we
compared number of transistors of a manual design with that
resulting from using the SER approach with SpecCharts as
the input fanguage. The example chosen was the telephone
answering machine [15]. An English specification was given
to two designers. One designer took a manual approach to
design where the datapath was first created by hand and the
controlling state machine described using Berkeley’s KISS
format, on which the Mustang [24] and MIS [25] synthesis
tools was applied to generate the controller logic. The other
designer specified the system with SpecCharts, flattened the
hierarchy automatically and translated the flattened SpecCharts
to VHDL automatically. From the VHDL the designer then
created a datapath and controlling state machine manually

“(but automatable with existing commercial synthesis tools),

and applied the Mustang and MIS synthesis tools to generate
the controller logic. The results of creating the design using
the two approaches is shown in Fig. 15. The important thing
to note is that the number of transistors in the final design
obtained by the SpecCharts designer is not greater than that
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Seript playback completed,
Initialization completed,
Copyright 1991-1993 by MeoCAD Inc, #11 rights reserved,
ERIC Foundryd,0 - ready for input,,

A —————

Fig. 14. Placement and routing results: EVAL_RI1.

obtained by the manual designer. In this case, the number
is actually fewer, resulting from fewer control states. The
manual designer had to keep the state machine readable since
it was the functional specification of the system and hence
had to be modified as functional errors and omissions were
detected. Keeping the state machine readable prevented him
from sharing many states. Conversely, SpecCharts was the
functional specification for the other designer, so readability
of the state machine was not an issue. The designer used
an algorithm to convert SpecCharts to a state machine that
resulted in many shared states.

Since the designer deals with higher levels of abstraction,
the SER approach allows a large design space to be explored
by quickly changing some of the exploration parameters.
For example, numerous partitionings at the system level and
numerous microarchifectures were quickly designed (in a few
minutes). Providing hooks to VHDL allowed verification of
the designs at each of the abstraction levels using simulation.

Designed from Designed from

Design attribute English SpecCharts
control transistors 3130 2630
datapath transistors 2277 2251
total transistors 5407 4881
total pins 38 38

Fig. 15. Design quality from SpecCharts versus English specifications.

The advantage of the 100 h methodology is that it promises
significant improvements in productivity, since precise specifi-
cation, automatic exploration and refinement would help us to
avoid long design cycles with many iterations. Such a method-
ology would only require designers to select technology,
to allocate components and to specify requirements, before
exploring automatically hundreds of design alternatives in a
single day and then refining the specification by adding more
structural detail as architectural and technological decisions
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are made. This process can be repeated until designers reach a
completely structural description containing components at the
proper level of abstraction, defined by the available component
library.

The presented methodology achieves these. productivity

gains in three ways.

1) Less Design Time: The methodology requires the entire
system to be captured using a specification language
before system design is performed. Partitioning, estima-
tion, allocation and refinement tools can be developed
to operate on the specification and automate the system
design process, significantly reducing the overall design
time. ‘

2) Better Designs: Built-in estimators provide the designer
with rapid feedback after each system design task. The
designer has the capability of interactively exploring a
larger design space rapidly which will lead to faster,
cheaper and smaller designs.

3) Less Redesign Time: Requiring the designer to capture
the conceptual view using a specification language and
then subsequently refining the specification by apply-
ing system design tools, creates very comprehensive
documentation. The various design decisions made dur-
ing system design can be easily comprehended in any
subsequent redesign effort.

Our test case demonstrates clearly that it is possible to
achieve a total design cycle time of 100 h, which makes this
methodology extremely useful in cases where designs have
to be delivered within a few weeks. To meet this demand,
the design process must migrate to higher abstraction levels,
where the amount of detail is at a minimum.
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