
Application-Specific Customization of Parameterized
FPGA Soft-Core Processors

David Sheldon*, Rakesh Kumar†, Roman Lysecky‡, Frank Vahid*, Dean Tullsen†

*Department of Computer Science
and Engineering

University of California, Riverside
{dsheldon,vahid}@cs.ucr.edu

†Department of Computer Science
and Engineering

University of California, San Diego

{rakumar,tullsen}@cs.ucsd.edu

‡Department of Electrical and
Computer Engineering
University of Arizona

rlysecky@ece.arizona.edu

ABSTRACT
Soft-core microprocessors mapped onto field-programmable gate
arrays (FPGAs) represent an increasingly common embedded
software implementation option. Modern FPGA soft-cores are
parameterized to support application-specific customization,
wherein pre-defined units, such as a multiplication unit or
floating-point unit, may be included in the microprocessor
architecture to speed up software execution at the expense of
increased size. We introduce a methodology for fast application-
specific customization of a parameterized FPGA soft core, using
synthesis and execution to obtain size and performance data in
order to create a tool that can be used across a variety of tool
platforms and FPGA devices. As synthesizing a soft core takes
tens of minutes, developing heuristics that execute in an
acceptable time of an hour or two, yet find near-optimal results, is
a challenge. We consider two approaches, one using a traditional
CAD approach that does an initial characterization using synthesis
to create an abstract problem model and then explores the solution
space using a knapsack algorithm, and the other using a synthesis-
in-the-loop exploration approach. We compare approaches for a
variety of design constraints, on 11 EEMBC benchmarks, using
an actual Xilinx soft-core processor, and for two different
commercial Xilinx FPGA devices. Our results show that the
approaches can generate a customized configuration exhibiting
roughly 2x speedups over a base soft core, reaching within 4% of
optimal in about 1.5 hours, including complete synthesis of the
soft-core onto the FPGA, compared to over 11 hours for
exhaustive search. Our results also show that including synthesis-
in-the-loop, compared to a traditional CAD approach, improved
speedups by an average of 20% when size constraints were tight.
The approaches may also be applicable to soft-core processors
targeted to ASICs in addition to FPGAs.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: –
Microprocessor/microcomputer applications, Real-time and
embedded systems.

General Terms
Performance, Design, Experimentation.

Keywords
Tuning, customization, FPGA, soft-core processors,
parameterized platforms.

1. INTRODUCTION
Microprocessors on field-programmable gate array (FPGA) chips
are becoming an increasingly popular software implementation
platform, due to their coexistence on-chip with custom logic. Such
coexistence can reduce parts costs and board sizes, and can
improve system performance due to reduced communication
times between processor and FPGA. A hard-core processor is laid
out on the chip next to the FPGA’s configurable logic fabric
[2][4][18]. In contrast, a soft-core processor [3][17] is synthesized
onto the FPGA’s fabric, just like any other circuit. Compared to
hard-core microprocessors on some FPGA devices, soft-core
processors have the advantages of utilizing standard mass-
produced and hence lower-cost FPGA parts and of enabling a
custom number of microprocessors per FPGA (subject to size
constraints) – over 100 soft-core processors can fit on modern
high-end FPGAs. However, soft-core processors have the
disadvantages of reduced processor performance, higher power
consumption, and larger size.
While any microprocessor soft-core could conceivably be mapped
to an FPGA, FPGA vendors have in the past few years introduced
soft-core processors specifically targeted for FPGA
implementation. Such FPGA soft-cores have instruction sets,
arithmetic-logic units, register files, and other features specifically
tailored to efficiently use FPGA resources, or perhaps more
accurately, to avoid inefficient use of FPGA resources that may
occur when synthesizing a general soft-core processor to an
FPGA. The performance overhead of such soft-core processors on
FPGAs compared to general soft-core processors on ASICs
(application-specific integrated circuits) can thus be significantly
less than the overheads when comparing FPGA versus ASIC
implementations of general circuits.
A feature of FPGA soft-core processors is that of core
configuration by the user (the application developer) through the
setting of parameters. Configurable parameters may include
instantiating a cache (and specifying its size), or instantiating a
predefined datapath unit (like a multiplier or floating-point unit)
and an accompanying instruction that uses the instantiated unit.
Parameterized soft cores represent a different problem from that
of developing custom datapath units and accompanying custom
instructions, as done in application-specific instruction-set
processors (ASIPs) like the ASIC-oriented ASIPs [15] or FPGA-
oriented ASIPs [5], due to the “on/off” (or limited number of)
values of the parameters. Yiannacouras [20] showed, using Altera
FPGAs, that tuning a parameterized soft-core processor to an
application could yield significant performance/size

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

improvements and reduced overall size versus a processor tuned
to be best on average.

The contribution of this work is in developing effective
approaches for automatically customizing a parameterized soft-
core processor to an application. Presently, FPGA soft-core
processor users must manually determine the best core
configuration for a software application. Such manual
configuration either results in unduly long exploration times due
to evaluating too many configurations, or results in a sub-optimal
configuration. We consider two approaches, a traditional CAD
approach that maps to an abstract problem model and then solves
the problem thoroughly while relying on estimations, and a
synthesis-in-the-loop approach that uses actual synthesis and
execution during exploration but searches only a fraction of the
solution space. While our work’s motivation lies in soft cores for
FPGAs, our approaches may apply to ASICs also.

2. SOFT-CORE FRAMEWORK AND
EXPLORATION METHOD
We developed our methodology using a Xilinx MicroBlaze FPGA
soft-core processor [17], but the methodology would be applicable
to other FPGA soft-core frameworks. The Xilinx MicroBlaze,
referred to hereafter as MB, is a 32-bit soft-core processor
designed for efficient implementation on Xilinx FPGAs. The MB
is a single-issue in order execution processor. The MB can be
configured to instantiate any combination of the following five
components: multiplier, barrel shifter, divider, floating-point unit
(FPU), and data cache. The first four components are each
“on/off” type, either being instantiated or not instantiated, and
only one instance of each component type is allowed (due to the
MB being single-issue). The data cache, when instantiated, can be
2 Kbyte, 4 Kbyte, or 8 Kbyte, but we only consider 4 Kbytes in
this paper for simplicity. Furthermore, the MB supports two cache
types, an older basic cache, and a newer better performing
“MCH” cache, although we only consider the latter. We thus
consider 25=32 possible MB configurations. When any of the first
four components is instantiated, the MB includes a special
instruction that uses that component (e.g., a multiply instruction),
and the MB compiler generates code utilizing that special
instruction. We refer to a base MB as an MB with none of the five
extra components instantiated, and a full MB as an MB with all
five components instantiated.
Instantiating a component increases an MB’s size, but may
improve an application’s performance, depending on the
application. We define the task of customizing a MicroBlaze for a
particular software application as the task of instantiating a
particular combination of components, known as a configuration,
such that design goals, which may involve performance and/or
size, are best met for an application running on the customized
MB.
We measure performance as the time to execute an application
once from beginning to end (typically an embedded benchmark
application loops back to its beginning after the end). That time is
the number of clock cycles multiplied by the clock period,
referred to hereafter as the application runtime. We utilized Xilinx
ISE and EDK tools to determine the clock period by synthesizing
a configured MB onto a specific FPGA device. We measured the
number of clock cycles by executing an application on an MB
mapped to the FPGA device, with the application slightly
modified to communicate with a clock-cycle counting circuit.
The cycle counting circuit non-intrusively counts clocks cycles

while the application executes, and does not affect the
application’s performance.
A basic measure of a soft core’s size on an FPGA is the number of
utilized lookup tables (LUTs)1. However, a soft core may also
utilize hard-core FPGA resources, such as hard-core multipliers or
block RAMs. To be able to straightforwardly plot and compare
sizes of different soft-core configurations, we assign an equivalent
LUT value to hard-core resources. We did so by first measuring
the regular LUTs, hard-core multipliers, and block RAM utilized
in a full MB. We then combine the individual size metrics into a
single size metric representing equivalent LUTs. Figure 1 presents
the equations for calculating equivalent LUTs for a given
MicroBlaze configuration. Assuming each type of resource (LUT,
hard-core multiplier, or block RAM) is of equal importance,
Figure 2 lists the equivalent LUT values for each hardcore unit.
Then for a given configured MB, the equivalent LUTs,
LUTEquivalent, is the sum of the regular LUTs, LUTRegular, used for
logic to support datapath components, the equivalent LUTs for
hard-core multipliers, LUTEquivalent(Mult), and the equivalent LUTs
for block RAMs, LUTEquivalent(BRAM). The equivalent LUTs for the
utilized multipliers is equal to ratio of multipliers used, #MultUsed,
to multipliers in a full MB, #Multfull MB, multiplied by the number
of regular LUTs in a full MB, LUTfull MB. Likewise, the equivalent
LUT for the utilized block RAMs is equal to ratio of block RAM
used, sizeBRAMUsed, to block RAM in a full MB, sizeBRAMfull MB,
multiplied by the number of regular LUTs in a full MB, LUTfull MB.
Of course, a user can weigh regular LUTs, multipliers, or block
RAMs more heavily if that resource happens to be more valuable
to the user. We recently noted that another research group
working closely with Altera independently developed a similar
equivalent LUT concept for similar size comparison purposes
[20], thus lending confidence to the use of the equivalent LUT
size metric during soft-core exploration. All LUT data in this
paper represents equivalent LUTs. Interestingly, we recently
discovered that our equivalent LUT concept correlates almost
perfectly with Xilinx’s own equivalent gate concept.
Note that the equivalent LUT concept is essentially a cost function
that combines three terms by normalizing them and weighing

1 We originally utilized configurable logic blocks (CLBs) as a measure of

size, but MicroBlaze designers at Xilinx informed us that LUTs are a
more accurate and useful measure.

Figure 1: Equations for calculating Equivalent LUT value of a

configured MB.

MBfullLUTMBfullsizeBRAMUsedsizeBRAMBRAMEquivalentLUT
MBfullLUTMBfullMultUsedMultMultEquivalentLUT

BRAMEquivalentLUTMultEquivalentLUTRegularLUTEquivalentLUT

*)(

*/##)(

)()(

=

=

++=

/

3

Component Equiv LUT Count

LUT 1

MULT 18x18 569

BRAM 1328

Figure 2: Equivalent LUT values for hard-core units.

0

2

4

6

8

10

12

14

16

18

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

Size (Equivalent LUTs)

A
pp

lic
at

io
n

R
un

tim
e

(m
s)

Nothing
M ultiplier
Barrel Shifter
M ultiplier and Barrel Shifter
Divider
M ultiplier and Divider
Barrel Shifter and Divider
M ultiplier, Barrel Shifter and Divider
Floating Point Unit
M ultiplier and Floating Point Unit
Barrel Shifter and Floating Point Unit
M ultiplier, Barrel Shifter and Floating Point Unit
Divider and Floating Point Unit
M ultiplier, Divider and Floating Point Unit
Barrel Shifter, Divider and Floating Point Unit
M ultiplier, Barrel Shifter, Divider and Floating Point Unit
M CH Cache
M ultiplier and M CH cache
Barrel Shifter and M CH cache
M ultiplier, Barrel Shifter and M CH Cache
Divider and M CH Cache
M ultiplier, Divider and M CH Cache
Barrel Shifter, Divider and M CH Cache
M ultiplier, Barrel Shifter, Divider and M CH Cache
M CH Cache and Floating Point Unit
M ultiplier, M CH Cache and Floating Point Unit
Barrel Shifter, M CH Cache and Floating Point Unit
M ultiplier, Barrel Shifter, M CH Cache and Floating Point Unit
Divider, M CH Cache and Floating Point Unit
M ultiplier, Divider, M CH Cache and Floating Point Unit
Barrel Shifter, Divider, M CH Cache and Floating Point Unit
M ultiplier, Barrel Shifter, Divider, M CH Cache and Floating Point Unit

base

bs

mul+bs

mul+bs+cache

FPU

bs+cache

mul

them equally. Our approach is not strictly dependent on the
above-described cost function; other functions could be used,
including an approach where users specify the relative weights, or
where different normalization methods are used.
In our experiments, we considered 11 benchmarks essentially
selected at random from EEMBC [6], a benchmark suite intended
for embedded systems. We report data for all of the randomly
selected EEMBC benchmarks that we were able to compile and
execute on the Xilinx MicroBlaze. In addition, we also considered
an internally developed ray tracing application (raytrace) that is
predominantly a floating-point application.
For each benchmark, we utilized scripts to run our search
heuristics, where those scripts automatically performed FPGA
synthesis and executed the application whenever necessary. The
scripts execute on a computer connected to an FPGA development
board (an ML310 board in our case). While the use of synthesis
and execution may be viewed as a strength of our approach, it
may also be viewed as a limitation, as there may be situations
when a user wishes to explore but does not have a development
board. A different approach involving pre-characterized cores,
possibly combined with a soft-core simulation, might be
necessary in that case. Alternatively, there may be a situation
where an application cannot readily be run from scripts, such as
when the application’s execution requires human-generated
input/output. In this case, our search approach could be
supplemented with human interaction during the execution phases
of exploration.
Figure 3 demonstrates the benefits of customizing an FPGA soft-
core processor for one application. The figure presents the
application runtimes for the EEMBC benchmark aifir running on

each of the 32 possible MB configurations. Considering only the
Pareto-optimal configurations, the MB configurations have a 2X
variation in application runtime and a 2X variation in LUTs,
clearly demonstrating the benefits of configuring the MB to a
particular application and its performance and size constraints.
Figure 4 presents the performance speedups of performance-
optimal configured MB for all 12 benchmarks, as determined by
exhaustively examining all possible configurations for each
application. The optimal MB configuration on average has a 3.5x
speedup compared to a base MB and a maximum speedup of
11.1x for the application matmul. However, obtaining that data by
performing exhaustive exploration for this application required
approximately 15 minutes per configuration (with 99% of that
time spent on synthesis and with certain configurations requiring
more than 15 minutes), resulting in over eleven hours of
exploration tool runtime. Even for the relatively small number of

Figure 3: Size versus application runtime for all MicroBlaze configurations executing the aifir EEMBC benchmark, with all Pareto

points labeled. An additional labeled point (FPU) is highlighted to show the performance overhead of instantiating an
underutilized component, due to lengthening of the clock cycle.

0
1

aif
ir

Bas
eF

P01
bit

mnp bre
v

ca
nrd

r
g3

fax
g7

21
_p

s
idc

t
matm

ul
ray

tra
ce

tbl
oo

k
tts

prk AVG

2
3
4
5
6
7

Sp
ee

du
p

Base MB
Full MB
Optimal MB

11.1 11.1

Figure 4: Speedups for base (Base MB), full (Full MB), and
optimal (Optimal MB) MicroBlaze configurations.

configurable options we considered, exhaustively evaluating all
possible configurations is already quite prohibitive, as a core user
would need to re-evaluate all configurations anytime significant
changes, and potentially even small changes, are made to the
application, a common occurrence in a software design cycle.
Furthermore, we expect that the number of configurable options
will continue to increase for soft-core processors. As such, if the
configurability is doubled from five options to ten options, the
execution time for an exhaustive evaluation increases from
approximately 11 hours to 11 days.
We sought to develop methods that would execute in
approximately 1-2 hours – a tool runtime that we believe FPGA
designers will find reasonable during the optimization step of
design. Due to using synthesis during exploration, and because
synthesis takes on the order of tens of minutes, the key feature of
our developed heuristics must be that of executing only a few
synthesis runs such that total customization time is on the order of
1-2 hours.

3. SOFT-CORE CUSTOMIZATION FOR
APPLICATION RUNTIME
We consider the common goal of customizing an MB to minimize
a particular application’s runtime, with and without a size
constraint. Fast tuning of configurable hardware platforms has
been the subject of several recent research efforts. Most efforts
assume that hundreds or thousands of configurations can be
examined [1][7][9][10][11][13][14], but the 15 minute synthesis
time in the FPGA soft-core problem means that only about 5-15
synthesis runs can be conducted.

3.1 Traditional CAD Approach: 0-1 Knapsack
We first considered developing a traditional CAD approach to
tuning soft cores. The approach pre-characterizes the application
and soft core, maps the problem to an abstract (and inexact)
model, and then thoroughly solves the problem model.
We observed that the soft-core configuration problem could be
approximately cast to a 0-1 knapsack problem, wherein one seeks
to maximize the value of items placed in a knapsack having a
weight constraint, with each item having a value and a weight. In

the fractional knapsack problem, one can include any fraction of
items, while in the 0-1 knapsack problem, the only allowed
fractions are 0 or 1, meaning the items are indivisible. We
consider each optional MB component as an indivisible item. We
assign a component’s value to be the ratio of the speedup
increment that occurs when instantiating that component
compared to a base MB (e.g., a speedup of 1.4 has an increment
of 0.4), over the size increment compared to a base MB. Note that
the speedup increment for a component depends on the
application, but the size increment is application independent.
This cast is approximate, because speedup increments may not
always be strictly additive when multiple components are
instantiated. For example, component A may have an increment
of 0.4 and B of 0.3, but A and B together may only yield an
increment of 0.6, not 0.7. Likewise, size increments may not be
strictly additive.

Component Cache Floating
Point Divider Multiplier

Barrel Shifter 5.2 % 1.0 % 0.0 % 10.4 %

Multiplier 6.7 % 1.9 % 26.0 %

Divider 2.9 % 0.0 %

Floating Point 5.1 %

Figure 5: Average pairwise speedup-increment additive
inaccuracies for all pairs of benchmarks.

Figure 5 presents the inaccuracy of the additive assumption for all
pairs of components. The additive assumption holds well (near-
zero inaccuracy) for four pairs of components. Adding multiplier
and barrel shifter speedup increments yields 10% inaccuracy, due
to some shifts being achievable with a multiplier, and vice versa.
Adding multiplier and divider speedup increments yields 26%
inaccuracy.
A well-known optimal algorithm for solving the 0-1 knapsack
problem first sorts items by their value/weight ratio, and then
finds the optimal solutions using a dynamic programming
algorithm [16]. To execute that algorithm, we must first compute
the speedup increment (value) for each component. As that
speedup is application dependent, we first execute six
synthesis/executions, for the base MB, for the MB with a
multiplier only, for the MB with a barrel shifter only, with an FPU
only, with a divider only, and finally with only a cache. Figure 6
shows speedup increments, size increments, and their ratios, for
the aifir EEMBC benchmark application.
 The dynamic programming algorithm has what is known as a
“pseudo-polynomial” runtime complexity of O (n*W), where n is
the number of items, and W is the knapsack weight constraint.
This algorithm is known to be fast when W is a “small” integer,
with a magnitude of perhaps 10,000 – 1,000,000, and of course
when n is also small. Fortunately, W is indeed a small integer in
the case of our MB configuration problem (a full MB is only
12,000 equivalent LUTs) and n is of course small in our problem
(5 instantiatable units).
This approach applies six synthesis/execution runs when initially
determining the component speedup and size increments,
requiring about an hour, which dominates the approach’s runtime.
The inputs to the dynamic programming algorithm – n (number of
soft core parameters) and W (number of available LUTs) – can
each accommodate large increases before the 0-1 knapsack

Figure 6: Speedup increment, size increment, and their ratio, for each MB component for the aifir benchmark.

Speedup increment

-0.1
-0.05

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

Multiplier Barrel
Shifter

Floating
Point Unit

Divider MCH
Cache

S ize (e q u iv L U T s)

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

M u lt ip lie r B a rre l
S h ifte r

F lo a tin g
P o in t U n it

D iv id e r M C H
C a c he

1000*Speedup/Size

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

Multiplier Barrel
Shifter

Floating
Point Unit

Divider MCH
Cache

algorithm runtimes approach a non-negligible time (versus
synthesis) of tens of minutes. Even then, we have found that we
can “quantize” the knapsacks weights by dividing all weights by
10 to yield a 10x algorithm speedup with almost no degradation
in quality of results.

3.2 Synthesis-in-the-Loop Approach: Impact-
Ordered Trees

Casting the soft-core configuration problem to 0-1 knapsack
yields an approach with desired tool runtime and near-optimal
results. However, the approach makes an assumption that speedup
and size increments are additive, which is inaccurate for some
pairs of components. As demonstrated in the later experiments
section, those inaccuracies can result in sub-optimal solutions. We
thus sought to also develop an approach that did not rely on the
additive speedup increment assumption, but rather used
synthesis/execution during exploration – synthesis-in-the-loop –
while still executing just a few synthesis/execution runs.
We developed a greedy search method based on an approach
proven effective in other parameterized architecture configuration
research. The greedy method pre-determines the impact each
parameter individually has on design metrics, and then searches
the parameters in sequence, ordered from highest impact to
lowest. For example, Zhang [21] used that method for
customizing a highly configurable cache, where evaluating each
configuration took many minutes due to lengthy simulations, and
found near optimal results. We thus investigated such an impact-
ordered approach.
The first phase of the approach determines the impact of each
component. We can define impact simply as the speedup, but
through experimentation, we found that a better definition takes

the ratio of speedup/size, just as in the knapsack problem. Thus,
the first phase of the approach computes speedup increments, size
increments, and their ratio, requiring six synthesis and execution
runs, and resulting in the same data as in Figure 6. The second
phase considers the components in order of their impact. For the
current component, the approach instantiates the component,
synthesizes and executes, and determines the application’s
runtime and size. If instantiating the component improves runtime
and meets size constraints, the component is added; otherwise, it
is not. The approach then moves on to the next component.

Figure 7: Impact-ordered tree approach: (a) application-
specific impact-ordered tree for the aifir benchmark, (b) fixed

impact-ordered tree. Note that neither approach actually
generates the entire tree – both make a single descent to a leaf

node.

DividerBarrel shifter

Multiplier Barrel Shifter

Cache Multiplier

Divider FPU

FPU Cache

We refer to the above approach as an application-specific impact-
ordered tree approach. Essentially, if we envision the entire
solution space as a tree, as in Figure 7, the approach orders the
levels of the tree, and then descends into only one sub-tree at each
level, until reaching a single leaf node. The first phase orders the
tree’s levels, while the second phase makes a single descent. This
approach requires six synthesis/executions for phase one, and five
synthesis/executions for phase two, resulting in 11 total
synthesis/executions.

(a) (b)

We also investigated a variation of the above approach with the
goal of reducing the number of synthesis/execution runs, by pre-
determining average component impacts on a suite of typical
benchmarks, rather than determining impacts on a per-application
basis. The approach essentially moves phase one of the above
approach from the tool user to the tool developer, thus cutting out
six of the eleven synthesis/execution runs, leaving just five such
runs. We refer to this approach as a fixed-order impact-ordered
tree approach, because the impact ordering is fixed. Figure 8
shows the data averaged for all our benchmarks, with the
speedup/size data resulting in the impact ordering shown in Figure
7(b).

3.3 No Size Constraint
Each of our algorithms assumes the problem we are solving is
determining the best soft-core processor configuration given a
limited size constraint. Some design scenarios impose no size
constraint on the FPGA soft-core processor, instead seeking only
the minimum application runtime. In the absence of a size
constraint, one might assume minimal application runtime could
be achieved by simply instantiating a full MB. However, this
assumption is false, as was illustrated in Figure 4. Figure 4
presented the performance speedup for different MB
configurations: a base MB, a full MB, and an MB configured for
optimal application runtime (determine by exhaustive search) for
the corresponding application compared to the base MB
configuration. Notice for some applications that the full MB is
actually slower than the optimal. The reason is because as more
components are instantiated, the MB clock period may be
lengthened, due in part to longer delays necessary for the
increased wire routing within the larger MB. The point labeled

Figure 8: Speedup increment, size increment, and their ratio, for each MB component averaged across all 12 benchmarks.

Speedup

0
0.
0.

2
4

0.6
0.8

1
1.2
1.4
1.6
1.8

Multiplier Barrel
Shifter

FPU Divider Cache

Size (Equiv LUTs)

0

1000

2000

3000

4000

5000

6000

Multiplier Barrel
Shifter

FPU Divider Cache

Speedup/Size

0
1
2
3
4
5
6
7
8
9

Multiplier Barrel
Shifter

FPU Divider Cache

Figure 9: Average speedups obtained by the various exploration approaches, for: (a) no size constraint, (b) a fixed size constraint

set at 80% of the size of a full MB, (c) a per-application-tailored size constraint of 80% of the size of the optimal MB for that
application (as determined in (a)), all on a Virtex-II Pro device.

FPU in Figure 3 clearly illustrates the impact of longer delay
caused by adding an underutilized FPU component.
To handle the no size constraint situations, in either the 0-1
knapsack approach or the impact-ordered tree approaches, we
simply use a size constraint that is equal to (or larger) than the
size of a full MB.

4. APPLICATION RUNTIME
MINIMIZATION EXPERIMENTS
We implemented the knapsack, application-specific impact-
ordered tree, and fixed-order impact-ordered tree approaches as
scripts executing with Xilinx Platform Studio synthesis tools,
coupled with a Xilinx Virtex-II Pro FPGA development board
(ML310), for all 12 embedded benchmark applications. To
compare the approaches with optimal results, we also
implemented an exhaustive search approach that simply
performed synthesis/execution for all 32 possible soft-core
configurations.
Figure 9(a) presents the average speedups and tool runtimes for
each approach for the scenario of unconstrained size. Exhaustive
search requires over 700 minutes (11 hours) and finds average
speedups of 2.3. The knapsack approach finds near-optimal
solutions with a speedup of 2.2. Both impact-ordered tree
approaches find the optimal solution. The fixed impact-ordered
tree approach had the fastest runtime of 108 minutes. However,
the knapsack approach should actually have roughly the same
runtime, as both approaches synthesize about the same number of
configurations. One particular configuration examined by the
knapsack approach, namely a base MB with a barrel shifter alone,
happened to have an unusually long synthesis time. Such
anomalous synthesis runtimes are an artifact of the nature of
FPGA physical design heuristics. In general, one should assume
that the knapsack approach and the fixed impact-ordered tree
approach will have equally fast tool runtimes.
One might wonder whether any ordering of the tree levels in the
fixed impact-ordered tree approach would in fact yield the optimal
configuration. We thus implemented another heuristic using a
random ordering – barrel shifter, cache, FPU, divider, multiplier.
Figure 9(a) shows that this random impact-ordered tree approach
performs worse, though for the unconstrained size problem this
approach is actually somewhat competitive.
Figure 9(b) presents the average speedups and tool runtimes for
each approach for a fixed size constraint, chosen to be 80% of the
size of a full MB. We also obtained data for a 50% constraint,
with similar results (not shown). The plot again shows that the

impact-ordered tree approaches find optimal speedups (2.2), the
knapsack approach finds near-optimal solutions (2.0), and the
random impact-ordered tree approach is no longer competitive.
We sought to see how each approach would perform in a scenario
where the size constraint was tight enough to prohibit use of the
best performing MB for a given application. We thus created a
unique size constraint for each application. Figure 9(c) presents
the average speedups and tool runtimes for each approach with a
tailored size constraint being 80% of the best performing MB for
each particular application (as determined through exhaustive
search with no size constraint, and choosing the smallest among
equally performing configurations). We also obtained data for a
50% constraint, with similar results (not shown). While the fixed
and application-specific impact-ordered tree approaches find the
optimal, the knapsack heuristic performs very poorly for this size
constraint. We found that the reason for the knapsack’s poor
results is due to the inaccuracy of the additive speedup increment
assumption, which caused sub-optimal combinations of
components to be selected.
To further evaluate the effectiveness of the approaches, we re-
implemented the entire set of experiments for a Xilinx Spartan2
FPGA. Figure 10 presents the average speedups and tool runtimes
for each approach for the case of unconstrained size. Again, the
impact-ordered tree approaches are the best performing
approaches, but the approaches chose configurations that were
slightly below optimal on average. The application-specific
approach found the optimal configuration in 11 of 12 cases, with a
20% worsening in performance for only one application. The
fixed approach also resulted in a 20% worsening of performance
for that same application, along with a 10% worsening for another
application, but overall found the optimal configuration in 10 of
12 cases.
From this data, the fixed-order impact-ordered tree approach
seems preferable. Of course, one must consider that our fixed-
order was determined from the very same 12 benchmarks that we
then used to compare the approaches. To examine this issue, we
used six randomly selected benchmarks to define the fixed
ordering, and then applied the approaches on the other six
benchmarks only. The fixed impact-ordered tree approach again
found the optimal for the constraint situations of Figure 9(a), (b),
and (c), and even found the optimal for the situation of Figure 10.
(Interestingly, the knapsack approach appeared markedly worse
for that particular subset of six benchmarks). Of course, applying
a particular fixed order on a radically different benchmark may
yield worse results. Vendors might address that situation by
having different fixed orderings for different application domains

(a) (b) (c)

0

200

400

600

800

1 1.5 2 2.5

Speedup

To
ol

 R
un

 T
im

e
(m

)

0

200

400

600

800

1 1.5 2 2.5

Speedup

To
ol

 R
un

 T
im

e
(m

)

0

200

400

600

800

1 1.5 2 2.5

Speedup

To
ol

 R
un

 T
im

e
(m

)

Fixed order Impact-
ordered Tree

Application-Specific
Impact-ordered Tree

Random Impact-
ordered Tree

Exhaustive

Knapsack

0

4

8

12

16

20

0
20

00
40

00
60

00
80

00
10

00
0

Size (Equivalent LUTs)

A
pp

lic
at

io
n

R
un

tim
e

(m
s)

Nothing

Barrel Shifter

Multiplier and Barrel
Shifter
Barrel Shifter and MCH
cache
Multiplier, Barrel Shifter
and MCH Cache

0

50

100

150

200

250

300

1 1.2 1.4 1.6
Speedup

To
ol

 R
un

tim
e

(m
) Fixed order Impact-

ordered Tree
Application-Specific
Impact-ordered Tree
Random Impact-
ordered Tree
Exhaustive

Knapsack

Figure 11: Pareto Optimal points for aifir benchmark running
on the Virtex-II Pro FPGA Figure 10: Average speedups for the approaches on a Spartan2

FPGA.

(e.g., control, signal processing, etc.), allowing the user to select a
domain.
The application-specific impact-ordered tree approach is more
robust in the presence of new benchmarks, but at the expense of
about twice the tool runtime.

5. ADDITIONAL CONSIDERATIONS
5.1 Pareto Optimal Points Generation
Rather than minimizing application runtime (possibly with a size
constraint), a designer may instead wish to obtain a set of possible
design configurations that represent tradeoffs among application
runtime and size. The configurations that represent meaningful
tradeoffs – those for which no other configuration exists that is
better or equal in both runtime and size – are known as Pareto
points. For any reasonable design goal that combines performance
and area, the Pareto points represent the only configurations that
need to be considered. One approach to generating Pareto points
is to exhaustively generate points for all possible configurations,
and then remove all non-Pareto points. However, exhaustively
examining all possible configurations may be too slow.
We instead utilize a heuristic method proposed by Givargis et al.
[8] specifically for the purpose of finding Pareto points for
parameterized system-on-a-chip platforms with configurable
parameters in the cache, bus, and processor. That method
heuristically prunes the search space by first exhaustively finding
Pareto points for inter-dependent parameter subsets only, and then
by composing the sets of Pareto points into a single set using an
exact composition algorithm. The approach is heuristic because
defining inter-dependent parameter subsets is inexact –
parameters outside a particular subset may actually have some
small dependencies with those in the subset. Givargis showed
high accuracy, with search space pruning of over 99%.
We adopt this approach to our problem by defining inter-
dependency as having speedup overlap beyond some threshold –
in other words, as having a large speedup increment additive
inaccuracy (>10%) as was presented in Figure 5. From that data,
the barrel shifter and multiplier would be seen as inter-dependent,
as well as the multiplier and divider. Thus, all three of those
components form one inter-dependent subset. For the heuristic’s
first phase, we examine all component pairs for inter-dependency,
resulting in the inter-dependent component subsets. In the second
phase, we exhaustively evaluate all possible configurations of the
inter-dependent subsets, for which we would examine all eight
configurations of the three inter-dependent components. Note,
however, that seven of those eight configurations were already
examined in the first phase, and thus only one new configuration

(the one with all three components instantiated) needs to be
examined in the second phase for this inter-dependent subset. The
remaining components form their own subsets, and we examine
both configurations of each subset – again, both such
configurations have already been evaluated in the first phase.
The complexity of the first phase is O(n2), where n is the number
of components, but the complexity of the second phase is
exponential. While the overall complexity is exponential, in
practice the inter-dependent subset determination yields extensive
pruning. Palesi et al. [12] further extended this exploration
approach to provide faster execution by heuristically searching in
the second phase.
Figure 11 shows the Pareto points generated by the heuristic for
the aifir benchmark on the Virtex-II Pro FPGA. The heuristic
finds all but one of the Pareto points highlight in Figure 3. A core
user can choose a configuration from among the various Pareto-
optimal configurations to meet system constraints. For aifir, the
Pareto-optimal configurations range from a base MB, to a MB
with multiplier, barrel shifter, and cache that has a 2x performance
improvement but 4x size increase compared to the base MB.

5.2 Problem Variations
Our formulation considered only two-valued (“on/off”) soft core
parameters. Some parameters may have more than two possible
values, such as a cache component that may be instantiated in one
of several different sizes, or a multiplier that may be instantiated
in one of several different versions trading off size and
performance. We could extend the 0-1 knapsack to consider such
multi-valued parameters by considering each version of a
component as a separate component, and then using a disjunctive
knapsack formulation [19] that prohibits specific items from
appearing simultaneously in the knapsack (corresponding to
prohibiting two versions of the same component, such as
prohibiting two caches or two multipliers). We could extend the
impact-order tree approaches by adding more than just two
branches at the tree level corresponding to the multi-valued
parameter, and either exploring all parameter values at the level,
or heuristically exploring a few. Of course, multi-valued
parameters may increase runtimes.
Our formulation considered five components. One can expect the
number of soft-core parameters to increase beyond five. Figure 12
shows estimated tool runtimes for five to twelve two-valued
parameters. While the approaches are significantly faster than
exhaustive methods, the application-specific impact-ordered tree
approach’s runtime does increase to nearly 10 hours for twelve
parameters. In contrast, the fixed-order impact-ordered tree scales

well, requiring just less than 3 hours for twelve parameters. Of
course, the figure only shows runtime and not quality of results.
We intend to investigate approaches for multi-valued parameters,
and for more parameters, in future work.

6. CONCLUSIONS
We presented a methodology for automatically configuring FPGA
soft-core processors. We considered two approaches: a traditional
CAD approach, which pre-characterized applications, mapped to
an abstract problem model, and used a 0-1 knapsack algorithm
coupled with estimated size and performance values to optimally
search the (inexact) solution space; and a synthesis-in-the-loop
approach using impact-ordered tree search heuristics, which
search only a fraction of the solution space but are guided by
exact size and performance numbers. While the traditional CAD
approach yielded good results, its reliance on estimation led to
20% sub-optimal results when we imposed tight size constraints.
In contrast, the synthesis-in-the-loop approach yielded optimal or
near-optimal speedups in all considered situations, while having
competitive runtimes to the knapsack approach. The fixed-order
impact-ordered tree synthesis-in-the-loop heuristic yielded near-
optimal results in about 1.5 hours per application, but did poorly
on a few examples. The application-specific impact-ordered tree
approach demonstrated more robustness by yielding optimal or
near-optimal results for all examples, but with runtimes of about
200 minutes. The fixed-order impact-ordered tree is acceptable
due to good results with runtimes in our target of 1-2 hours, but
the application-specific impact-order tree approach would be
preferred if more runtime is available. Both heuristics should
therefore be made available to a designer. Future work includes
investigating soft cores with more parameters, and with more than
two values per parameter.

7. ACKNOWLEDGEMENTS
This research was supported in part by the National Science
Foundation (CCR-0203829) and by the Semiconductor Research

Corporation (2005-HJ-1331), and by hardware and software
donations by Xilinx.

0
100
200
300
400
500
600

5 6 7 8 9 10 11 12
Configurable Options

To
ol

 R
un

tim
e 700

800
900

1000

(m
)

Figure 12: Estimated tool run times for increasing number of
configurable soft-core processor options.

627357841 15683 3136739201960

Application-Specific Impact-ordered Tree Knapsack

ExhaustiveFixed order Impact-ordered Tree

8. REFERENCES
[1] Abraham, S. G., B. R. Rau. Efficient design space exploration in

PICO. International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), 2000.

[2] Altera Corp. Excalibur Embedded Processor. http://www.altera.com/
products/devices/excalibur/exc-index.html, 2005.

[3] Altera Corp. Nios II Processors. http://www.altera.com/products/
ip/processors/nios2/ni2-index.html, 2005.

[4] Atmel Corp. FPSLIC (AVR with FPGA).
http://www.atmel.com/products/FPSLIC/, 2005.

[5] Cong, J., Y. Fan, G. Han, Z. Zhang. Application-Specific Instruction
Generation for Configurable Processor Architectures, FPGA 2004.

[6] EEMBC. http://www.eembc.org/, 2005.
[7] Givargis, T., F. Vahid. Platune: A Tuning Framework for System-

on-a-Chip Platforms. IEEE Transactions on Computer Aided Design,
Vol. 21, No. 11, Nov. 2002, pp. 1317-1327.

[8] Givargis, T., F. Vahid, J. Henkel. System-level Exploration for
Pareto-optimal Configurations in Parameterized Systems-on-a-chip,
Intl. Conf. on Computer-Aided Design (ICCAD), 2001.

[9] Mishra, P., N. Dutt, and A. Nicolau. Functional Abstraction driven
Design Space Exploration of Heterogeneous Programmable
Architectures. International Symposium on System Synthesis, 2001.

[10] Mohanty, S., Prasanna, V. K., Neema, S., and Davis, J. Rapid design
space exploration of heterogeneous embedded systems using
symbolic search and multi-granular simulation. Joint Conference on
Languages, Compilers and Tools For Embedded Systems, 2002

[11] Palermo, G., C. Silvano, S. Valsecchi, V. Zaccaria. A System-Level
Methodology for Fast Multi-Objective Design Space Exploration.
Great Lakes Symposium on VLSI (GLVLSI), 2003.

[12] Palesi, M., T. Givargis. Multi-Objective Design Space Exploration
Using Genetic Algorithms. International Workshop on
Hardware/Software Codesign (CODES), 2002.

[13] Sherwood, T., Oskin, M., and Calder, B. Balancing design options
with Sherpa. 2004. International Conference on Compilers,
Architecture, and Synthesis For Embedded Systems (CASES), 2004.

[14] Szymanek, R. F. Catthoor, and K. Kuchcinski. Time-Energy Design
Space Exploration for Multi-Layer Memory Architectures. Design,
Automation and Test in Europe (DATE), 2004.

[15] Tensilica, Inc. The XPRES Compiler: Triple-Threat Solution to
Code Performance Challenges. http://www.tensilica.com/
pdf/XPRES-Triple-Threat_Solution.pdf, 2005.

[16] Toth, P. Dynamic Programming Algorithms for the Zero-One
Knapsack Problem. Computing 25, pp. 29-45, 1980.

[17] Xilinx, Inc. MicroBlaze Soft Processor Core. http://www.xilinx.com/
xlnx/xebiz/designResources/ip_product_details.jsp?key=micro_blaze
, 2005.

[18] Xilinx, Inc. Virtex-4 Platform FPGA. http://www.xilinx.com/
products/silicon_solutions/fpgas/virtex/virtex4/index.htm, 2005.

[19] Yamada, T., S. Kataoka and K. Watanabe. Heuristic and Exact
Algorithms for the Disjunctively Constrained Knapsack Problem.
Information Processing Society of Japan Journal, Vol. 43, No. 9
(2002), 2864-2870.

[20] Yiannacouras, P., J. G. Steffan, and J. Rose. Application-Specific
Customization of Soft Processor Microarchitecture. FPGA 2006.

[21] Zhang, C., F. Vahid and R. Lysecky. A Self-Tuning Cache
Architecture for Embedded Systems. ACM Transactions on
Embedded Computing Systems (TECS), Vol. 3, No. 2, May 2004

