
A Code Refinement Methodology for Performance-
Improved Synthesis from C

Greg Stitt, Frank Vahid*, Walid Najjar
Department of Computer Science and Engineering

University of California, Riverside
{gstitt, vahid, najjar}@cs.ucr.edu

http://www.cs.ucr.edu/{~gstitt, ~vahid, ~najjar}
*Also with the Center for Embedded Computer Systems, UC Irvine

ABSTRACT
Although many recent advances have been made in hardware
synthesis techniques from software programming languages such
as C, the performance of synthesized hardware commonly suffers
due to the use of C constructs and coding practices that are not
appropriate for hardware. Most previous approaches to addressing
this problem require drastic changes to coding practice. We
present an approach that instead requires only minimal changes
but yields significant speedups. In this approach, a software
developer initially writes C code as they normally would, and
then applies simple refinement guidelines to only the
performance-critical code regions, which are the regions most
likely to be synthesized to hardware. Alternatively, if a designer
is aware of performance-critical parts of the application, the
guidelines could be followed during development. In this study,
we analyze dozens of embedded benchmarks to determine the
most common C coding practices that limit hardware
performance, and introduce coding guidelines to make the code
more amenable to synthesis. Those guidelines typically require
minimal coding effort, generally consisting of less than ten lines
of code for each guideline. The guidelines typically represent
modifications that require designer knowledge, making the
guidelines difficult or impossible for synthesis tools to automate.
We apply these guidelines to six benchmarks, resulting in average
speedups of 3.5x compared to synthesis from the original code
with a negligible software size and performance overhead.

Categories and Subject Descriptors
B.5.2 [Register-Transfer Level Implementation]: Design Aids
– automatic synthesis, hardware description languages.

General Terms
Performance, Design.

Keywords
Synthesis, hardware/software partitioning, coding guidelines,
code refinement, embedded systems, FPGA, compilation.

1. INTRODUCTION
Numerous research and commercial efforts deal with synthesis
and hardware/software partitioning of high-level code to allow a
designer to specify an application using a single high-level
representation, as opposed to specifying hardware regions using
HDLs (hardware description languages). Although register-
transfer level specification using HDLs is appropriate for
designers concerned with obtaining maximum performance, high-
level synthesis is a complementary approach that trades off
hardware performance for reduced design time. Several
approaches introduced new HDLs with C-like syntax, such as
HardwareC [9], HandelC [13], and SystemC [6]. Other
approaches introduced new software-programming languages to
be used with synthesis, such as NapaC [4], Streams-C [7], and
SA-C [1]. Several synthesis tools, such as ROCCC [12], SPARK
[5], and CatapultC [2], have attempted to synthesize standard C
onto FPGAs.
Although advances have been made in synthesis from software
code, many software constructs remain inappropriate for existing
synthesis techniques. For example, many synthesis tools do not
effectively support pointers [5][15] due to alias problems and the
difficulty of scheduling irregular memory access patterns.
Function pointers, global variables, and recursion are also
problematic for synthesis.
One potential solution to the problems with synthesis from
software code is for a software developer to simply not use
problematic constructs. However, this approach is unlikely to be
widely accepted by many developers because many of these
constructs are useful for software development. In addition, these
problematic constructs are widely used in existing code that may
be adapted for synthesis. Furthermore, a software developer may
not even be certain that his/her code will have portions
synthesized to hardware in FPGAs.
Many previous works have solved these problems by introducing
C-based languages [1][6][7][9][13] that eliminate problematic
constructs, typically yielding more parallelism and faster
hardware. Although these languages are good technical solutions,
they have the disadvantage of using non-standard software code.
In this paper, we instead focus on refining C coding practices to
improve synthesis from standard C, at the possible cost of
decreased performance compared to C-based HDLs. If software
developers have flexibility in how they can write code, and need
only perform minimal changes to create fast hardware, synthesis
from software code may gain wider acceptance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

In this study, we analyzed C-code benchmarks in light of
synthesis concerns to identify common coding practices that are

Original Code

problematic in hardware. Based on this analysis, we developed
guidelines for refining critical regions of C code to improve the
quality of synthesized hardware. To use these guidelines, a
software developer would have the flexibility to write the
application using all C constructs and would then refine
performance critical regions using the guidelines. Alternatively, a
designer with knowledge of performance-critical parts of an
application could follow the guidelines during development. The
main advantage of this approach is that the performance critical
regions typically consist of approximately only 10% of the code,
corresponding to the well-known 90-10 rule. Therefore, only a
small percentage of the code would have to be refined.
Furthermore, the guidelines typically consist of simple rewrites
that require minimal designer effort, generally taking minutes per
guideline. We focus on code refinements for the C language due
to the language’s popularity. Some of our refinements are C-
specific, while others are applicable to other software languages.
One potential problem with a guideline-based refinement
approach is that in some cases software developers may write one
software application that later gets mapped to different
architectures, which may or may not contain FPGAs. Even on
architectures with FPGA, hardware/software partitioning may
select different functions for hardware implementation based on
available FPGA resources. Therefore, in some situations, the
refined regions may not be mapped to hardware. Due to the
differences in spatial and temporal computing, the code that is
refined for hardware implementation could potentially have a
software performance overhead. We therefore analyze this
software overhead and present a methodology that provides a
good tradeoff between improved hardware performance and
software performance overhead.
Theoretically, one could argue that the need for coding guidelines
could be obviated by improved synthesis optimizations. However,
most of the guidelines we propose require designer knowledge
that cannot reasonably be expected to be extracted from the code
by a synthesis tool. Therefore, we claim that these guidelines are
complementary to improved synthesis optimizations.
Nevertheless, we discuss the possibility and hurdles of automating
each guideline during synthesis.

The refinement guidelines are not meant to be exhaustive, but are
instead a solution to commonly occurring problems in standard
embedded systems benchmark code. Analysis of other
applications, especially from different domains, may yield new
guidelines.
To our knowledge, coding guidelines for high-level synthesis
have been limited to avoiding pointer operations and recursion
[5][15]. Many previous works have presented coding guidelines
for register transfer-level synthesis [3], but those guidelines do
not apply to high-level synthesis.

2. CODING GUIDELINES
This section describes each of the proposed coding guidelines.
Each subsection discusses the problem in C that the guideline
solves and how the guideline solves the problem. The potential
software overhead of each guideline is also discussed along with
the possibility of automating the guideline in a synthesis tool. We
initially proposed the guidelines presented in sections 2.7 to 2.10
in other work [17] to improve the performance of an h.264
decoder synthesized from C code. In this paper, we evaluate the
performance improvements of those previous guidelines on
multiple applications, consider their software overhead, and
incorporate them in a refinement methodology.

2.1 Conversion to Constants (CC)
Constant folding is a standard synthesis optimization that
improves hardware performance by evaluating constant
expressions at compile time. In addition to constant folding,
constants can also improve hardware by enabling use of on-chip
memory, which increases memory bandwidth by reducing
accesses to main memory. From our benchmark analysis, we have
found that in many cases, software developers do not use
constants appropriately, eliminating these potential performance
improvements. In many cases, scalars and arrays that are actually
constant are not specified as constants in the C code.
The refinement guideline conversion to constants explicitly
informs the synthesis tool that an array or scalar is constant. In the
simplest case, the refinement consists simply of adding the
keyword const to the arrays or individual variables that are

Refined Code

int coef[100];
void initCoef() {
 // initialize coefficients
}
void fir(const int array[100]) {
 // fir filter using array of coefficients
}
void constWrapper(const int array[100]) {
 // other code
 fir(array);
}
void f() {
 initCoef();
 constWrapper(coef);
}

int coef[100];
void initCoef() {
 // initialize coef
}
void fir() {
 // fir filter using coef
}
void f() {
 initCoef()
 // other code
 fir();
}

coef is made
constant for all
functions within
constWrapper() –
synthesis can apply
constant folding,
and array can be
stored in on-chip
memory

coef can’t be specified as
constant because values
are determined at runtime –
prevents constant folding
and storage in on-chip
memory

(b) (a)

Figure 1: Conversion to constants of an array of coefficients. a) Original code that initializes an array of coefficients for a
FIR filter. These coefficients are actually constants but cannot be specified as constants because they are determined at
runtime. b) After initializing the array of constants, the wrapper function specifies from that point on that the array is

constant, allowing the synthesis tool to perform constant folding in the fir() function, and for the array to be stored in on-
chip memory.

constants. This simple refinement has no software performance
overhead but potentially yields large hardware performance
improvement.
In many situations, simply adding the keyword const to an array
of constants is not possible because the software developer
initializes the array at runtime using an initialization function.
Software developers commonly use initialization functions when
manually specifying a large number of constants is too time-
consuming, such as for lookup tables of sine values. Such arrays
are still essentially constant, but cannot be declared using the
keyword const. We extend the conversion of constants refinement
guideline to handle such cases. The refinement involves adding a
wrapper function that takes as a parameter a const array. After the
initialization code for the constant array, the software developer
adds code that passes the array to the new wrapper function,
which a synthesis tool can then recognize as constant for all
functions contained within the wrapper function. In the worst
case, the wrapper function would replace the body of main().
However, in most situations, the wrapper function can be isolated
to a small section of code that uses the array.
To maximize the benefit of this guideline, a software developer
should avoid using pointers to a constant array because a
synthesis tool may not be able to statically determine the value of
the pointer. Thus, even though the pointer may point to a constant
value, the synthesis tool is unlikely to know what that constant
value is until runtime and will not be able to apply constant
folding.
Figure 1 shows an example of conversion to constants. Figure 1
(a) shows the unmodified code for an FIR filter that uses an array
of coefficients, which is initialized and then never modified. A
synthesis tool is unlikely to know that this array is not modified
because of aliases (not shown in figure). Figure 1(b) shows the
refined code after applying the conversion to constants guideline.
The wrapper function constWrapper() with the constant array
parameter specifies that the coef array is actually constant. The
synthesis tool can now prefetch the coef array if necessary and
can also potentially apply constant folding within the fir()
function.

Automation: A synthesis tool could potentially automate
conversion to constants for simple examples, by performing
definition-use analysis on scalars and arrays. However, in the
general case, the guideline cannot be automated because the
presence of pointer operations may complicate data flow analysis,
or even make such analysis impossible.

Overhead: The software overhead of conversion to constants
when using a wrapper function consists of the extra instructions
needed to call the wrapper function and to pass the address of the
array parameter to any additional functions.

2.2 Conversion to Explicit Data Flow (CEDF)
The common use of global variables causes problems for
synthesis. In cases of task-level parallelism, scheduling accesses
to global variables can be difficult. Even without task-level
parallelism, global variables may make complicated global alias
and data flow analysis necessary, which may result in long
compilation runtimes and in some cases is impossible.
The guideline conversion to explicit data flow eliminates
problems caused by global variables. This guideline consists of

replacing accesses to a global variable with extra parameter
passing for functions that access the global variable. This
parameter passing is beneficial for synthesis because the global
data flow is explicit. Such explicit data flow may result in large
hardware parallelism increases because a simpler data flow
analysis may show that multiple functions do not have any
dependencies.

Automation: In general, conversion to explicit data flow cannot
be automated because of pointers that may alias a global variable.
Although alias analysis may be able to handle simple cases,
designer knowledge is typically required to specify the lack of
aliases.

Overhead: The software overhead of conversion to explicit data
flow consists of the extra instructions required for the additional
parameter passing. Typically, this overhead is small unless the
code uses large amounts of global variables.

2.3 Conversion to Fixed Point (CF)
The inefficiency of floating point operations in configurable logic
is widely known. Therefore, an obvious optimization is to convert
floating-point operations to fixed point, resulting in significant
area and performance improvements.
The conversion to fixed point guideline can yield further
improvements when paired with the other guidelines. For
example, when combining conversion to fixed point with
conversion to constants, a synthesis tool can generally perform
optimizations such as constant folding for the fixed-point
operations, which would not have been as beneficial for floating
point operations.

Automation: Although in some cases a synthesis tool could
automate conversion to fixed point [14], determining the required
amount of precision is difficult.

Overhead: Conversion to fixed point typically has no software
overhead and in most cases will improve software performance by
replacing floating-point instructions with much faster integer
instructions. However, this improvement is obtained by trading
off higher precision in floating point.

2.4 Conversion to Explicit Memory Accesses
(CEMA)
Software developers commonly use pointer operations as a
substitute for array indices, to save lines of code, or in some cases
to improve code performance. Although these pointer operations
correspond to array accesses, a synthesis tool may not be able to
determine the memory access patterns.
Conversion to explicit memory accesses makes array accesses
explicit by replacing uses of pointers with array indices when
possible. Such array use enables the synthesis tool to more easily
determine memory access patterns, which allows data to be
prefetched and also eases alias analysis.

Automation: A synthesis tool is unlikely to be able to automate
conversion to explicit memory accesses, because the tool would
have to determine memory access patterns, which is difficult or
impossible in the presence of pointer operations.

Overhead: The software overhead of conversion to explicit
memory accesses is generally small. In some situations, use of
pointer operations may slightly improve performance, but many
compilers convert array accesses to pointers automatically.

2.5 Constant Input Enumeration (CIE)
In many situations, software developers write high-level functions
that are intended to be as general as possible. For example, h.264
supports multiple block sizes. Therefore, a single function in an
h.264 decoder is likely to take the block size as a parameter. This
coding practice makes the software code concise and readable,
but may limit the performance of synthesized hardware. For
example, if the bounds of a loop are parameters to a function and
those parameters’ possible values are not determined by the
synthesis tool, then the loop will not be unrolled because the
bounds are not known statically.
Constant input enumeration helps solve this problem. In many
cases, a parameter has a small set of possible values. A software
developer can enumerate all possible input values for a particular
parameter using the enum type. The advantage to this guideline is
that the synthesis tool knows all possible values of the parameter
and can create specialized versions of the function for each
possible value.

Automation: In certain situations, a synthesis tool may be able to
automate this guideline by determining all possible values for a
parameter, or by performing partial evaluation. However, in
general, statically determining the possible values is difficult, and
is therefore unlikely to be added to a synthesis tool.

Overhead: Input enumeration has no software overhead and can
sometimes improve software performance when the compiler can
create specialized functions for each input value.
One potential disadvantage to this guideline is that if there are
many parameters that use a small number of possible values, then
refining the code may require a large number of enums. However,
in most situations, we have found that only several enums are
necessary. Also, a software developer could potentially break this
guideline by casting an integer variable as an enumerated type.
That coding practice should be avoided because the synthesis tool
can no longer determine all possible values of a parameter used in
such a way.

2.6 Loop Rerolling (LR)
In some situations, software developers manually unroll a loop
several times to expose concurrency. While this practice may
seem unusual due to unrolling being a well-known compiler
transformation, not all compilers unroll loops – hence, we have
observed that manual unrolling is a widespread practice. Manual
unrolling may improve software performance, but may result in
extra area overhead, especially when synthesis is not resource
constrained, in addition to greatly increasing synthesis execution
times. The loop rerolling refinement fixes the problems with
manual loop unrolling, converting the loop back into a non-
unrolled representation. Loop rerolling has a software
performance overhead only if the compiler fails to unroll.

Automation: Loop rerolling has been automated in previous
approaches [16] and could be added to a synthesis tool. However,
because rerolling requires minimal effort by the software
developer, we propose loop rerolling as a guideline to ensure
good results on any synthesis tool.

2.7 Conversion to Explicit Control Flow
(CECF)
Synthesis tools can rarely statically analyze control flow in the
presence of function pointers because the target of a function call
using a function pointer is not known until runtime. To fix this
problem, we applied conversion to explicit control flow to
eliminate function pointers from critical regions of code. This
guideline works by replacing a function call using a function
pointer with a series of if-else statements, where the body of each
if statement is an explicit call to one of the possible targets of the
function pointer.

Automation: Compilers and synthesis tools can potentially
automate this guideline by tracking targets of function pointers
through control-flow analysis. However, control-flow analysis
techniques are only likely to work under simple situations because
in the general case, statically determining all possible targets of a
function pointer is impossible [15].

Overhead: The software overhead of conversion to explicit
control flow consists of the extra instructions required to
implement the if statements. Using input enumeration or function
specialization, which is discussed in section 2.8, can reduce this
overhead.

2.8 Function Specialization (FS)
In [17], we proposed function specialization as a guideline for
writing C for synthesis. Function specialization is applied when a
parameter to a function has a frequent value, which can then be
treated as a constant and optimized. This guideline is similar to
input enumeration, except that instead of only having to support a
small set of inputs, function specialization optimizes a function
for a particular input value but still supports any possible input.

Automation: Function specialization can be automated by
performing profiling to determine values for each parameter.
Although profiling is common to determine execution time of
each function, profiling to determine possible values for each
parameter is much less common. Also, for large applications, the
amount of data that has to be profiled is large. However, the
software developer may be aware of several common values.
Therefore, we include function specialization as a guideline to
make this approach applicable to the majority of software and
synthesis tool flows.

Overhead: Function specialization has a software overhead
consisting of extra instructions to determine which function to call
at runtime. However, if applied to a frequent input value, function
specialization typically improves software execution in addition
to hardware execution.

2.9 Algorithmic Specialization (AS)
Algorithmic specialization replaces a software algorithm with an
algorithm that is more appropriate for hardware, possibly
achieving order of magnitude improvements. However, the
software overhead of algorithmic specialization is potentially
large because this guideline replaces a software efficient
algorithm with a less efficient algorithm. Applying this guideline
requires more consideration than the other guidelines, which is
discussed further in section 3.

Automation: Algorithmic specialization cannot be automated by
a synthesis tool because no tool is currently able to replace one

algorithm with another without using a higher-level specification
such as intrinsics.

2.10 Pass-By-Value Return (PVR)
Main memory bandwidth is commonly the main performance
bottleneck for synthesized hardware. In many situations, loops
can potentially be unrolled and parallelized, but because data
cannot be delivered fast enough the parallelism is wasted. To
eliminate this problem, synthesis will prefetch the required data
and store the data in on-chip memory to increase memory
bandwidth. However, the common use of pointers in C code
makes the determination of when to prefetch data without
violating dependencies difficult. An example of this problem is
shown in Figure 2(a). In this example, an array is passed to
function f() which is then used by function g(). Theoretically, the
data in the array can be preteched immediately upon execution of
f(). However, because pointers are passed to f(), the values in the
array may be modified through these pointers.
In many cases, a software developer may know that aliases do not
exist. In this situation, a software developer can apply pass-by-
value return for arrays by declaring a local array within the
calling function and manually copying all data from the array
parameter into the local array. The local array is then used for all
computation. The advantage of this guideline is that the local
array eliminates all aliasing problems because the pointer
parameters cannot possibly alias the local array.
Figure 2(b) shows the example from Figure 2(a) after applying
pass-by-value return. The refined code immediately copies data
from array into localArray at the beginning of function f().
Synthesis can now prefetch data starting at this point so that the
data is available when g() is called. After execution of g(), the
data is copied back from localArray into array. These copying
operations are eliminated during synthesis and are simply used to
eliminate aliases.

Automation: This guideline is unlikely to be automated because
most synthesis tools cannot perform the alias analysis necessary
to guarantee that the array can be prefetched. Of course, improved
alias analysis could eliminate the need for this guideline.
However, global alias analysis is difficult and in the general case
is impossible [15].

Overhead: Pass-by-value return can potentially have a large
software overhead if the amount of data in the copied array is
large. However, in many situations these arrays will be small,
such as in DSP code that operates on small blocks of data. Also,

in many situations the overhead of copying data can be amortized
over many functions that use the same data.
As an alternative to pass-by-value return, a designer could use a
compiler directive to specify the non-existence of aliases.
However, this practice makes code compiler-specific, reducing
the portability of the code.

3. REFINEMENT METHODOLOGY
Although the proposed coding guidelines may greatly improve
hardware performance, the guidelines may introduce software
performance overhead if the refined regions are not implemented
in hardware. In addition, the guidelines must be manually applied
to the code, which could potentially greatly increase design time
if applied to too many regions. We therefore propose a
methodology for applying the guidelines that seeks to minimize
the effort and overhead.
To develop the methodology, we analyzed benchmarks to
determine which guidelines were applicable and how the
guidelines would best be applied. We found that for most
examples, most speedup could be obtained by only rewriting a
small number of performance critical regions, corresponding to
the well-known 90-10 rule. Rewriting those regions is generally a
simple task and can yield large performance improvements.
Exceptions exist, such as the h.264 decoder from [17], which
spent 90% of execution time in more than 50 functions. However,
for most benchmarks we observed, refining just a few critical
regions results in large performance improvements. In addition,
most of the guidelines take only several minutes to implement.
The exceptions are conversion-to-fixed point, which may require
modifying a large section of code, and algorithmic specialization,
which may be difficult to perform in the absence of a well-known
hardware algorithm.
Figure 3 illustrates the proposed methodology for refining C code
for synthesis. The first step of the methodology is to profile the
application to determine critical regions where the majority of
execution time is spent. The next step is to select the most critical
region, generally a function or loop, to which to apply the
guidelines. To optimize a function or loop, the guidelines may
have to be applied to the containing function, or possibly even to
an earlier function. The next step is to apply conversion to
constants, conversion to fixed point, conversion to explicit data
flow, conversion to explicit control flow, conversion to explicit
memory accesses, constant input enumeration, function
specialization, and loop rerolling, but only if these guidelines are

 Original Code Refined Code

void f(int *a, int *b, int array[16]) {
 … // unrelated computation
 g(array);
 … // unrelated computation
}
int g(int array[16]) {
 // computation done on array
}

void f(int *a, int *b, int array[16]) {
 int localArray[16];
 memcpy(localArray,array,16*sizeof(int));
 … // unrelated computation
 g(localArray);
 … // unrelated computation
 memcpy(array, localArray,16*sizeof(int));
}
int g(int array[16]) {
 // computation done on array
}

Local array
guarantees
that a and b
do not alias
the array –
allows array
to be
prefetched for
g()

Array cannot be
prefetched for use in
g() because accesses
to a or b may change
array

(a) (b)

Figure 2: Pass-by-value return for arrays. a) The array used in function g() cannot be prefetched during f() because the
pointers a and b may modify elements of the array. b) Copying the array into a local array guarantees that a and b are

not aliases, allowing the array to be prefetched into on-chip memory before execution of g().

 applicable for the application. Although this step may seem to
require a large amount of designer effort, in most cases, only two
or three of these guidelines are applicable. Also, in almost all
cases, the software overhead of these guidelines is small, allowing
them to be safely applied without impacting software
performance. Before implementing pass-by-value return, the
software developer first needs to determine the software
overhead. To determine the overhead, the developer analyzes the
critical region to determine the data used by the region. If aliases
prevent prefetching of data for the critical region and the
overhead of copying the data in software is acceptable (which
may have to be determined by profiling), then the software
developer should implement pass-by-value return for the data.
The next step of the methodology is to consider whether or not to
perform algorithmic specialization. If an appropriate hardware
algorithm exists for the current critical region and the
performance of the hardware algorithm is sufficient in software
(which also may have to be determined with profiling), then the
software developer should perform algorithmic specialization. In
the next step, the software developer selects another critical
region and repeats the same steps until the most critical regions
are rewritten.

Profile Profile

Of course, if an entire application is to be synthesized or if the
designer can select synthesized functions, then software overhead
can be ignored and these guidelines can be applied to as many
regions as possible.
As an added note, to achieve the performance benefits of the
guidelines that deal with improving data prefetching, a software
developer should apply the guideline as far before the data is
needed as possible to guarantee that there is sufficient time to
prefetch the data. This may not always be possible, based on the
dependencies of the code.

4. EXPERIMENTS
To evaluate the coding guidelines, we applied the guidelines to
six benchmarks, using the methodology described in section 3.
G3fax is a group 3 fax decode benchmark. Mpeg2 is an mpeg2
decoder. Jpeg is a jpeg decoder. Brev performs a bit reversal of
each element from an array. Fir is a finite impulse response filter.
Crc performs a cyclic redundancy check. G3fax, brev, fir, and crc
are from the Powerstone [11] benchmark suite. Mpeg2 and jpeg
are from the MediaBench [10] benchmark suite. We selected
these benchmarks because they are representative of high-level
applications, such as DSP code and bit manipulation code, which
are commonly synthesized.
For all examples, we measured software performance using the
SimpleScalar simulator, ported to the ARM instruction set. Each
example was compiled using gcc with –O1 optimizations.
We selected regions to synthesize to hardware by utilizing a
greedy hardware/software partitioning heuristic. The heuristic
first sorts each function and loop based on the percentage of
execution time. The heuristic then selects regions for hardware
implementation in sorted order until area is exhausted. We could
of course have utilized existing hardware/software partitioning
techniques [8], but for the selected examples, the greedy heuristic
achieves similar results.
To synthesize hardware, we considered using existing C-level
synthesis tools [5], but because of the variety and relative
immaturity of these tools, we developed our own behavioral

synthesis tools to have more control over the synthesized
hardware, and then performed standard behavioral synthesis
optimizations manually to prevent the benefits of the guidelines
from being exaggerated – our goal was to make the hardware
synthesized from the original code as fast as possible. To perform
synthesis, we developed a parser to convert the code into a
control/data flow graph representation. The tool then performed
data flow analysis to determine potential parallelism. Next, we
applied standard synthesis optimization techniques such as loop
unrolling, strength reduction, constant propagation, tree-height
reduction, etc. After optimizing the control/data flow graph, the
synthesis tool applied as-soon-as-possible scheduling to obtain the
lowest cycle latency for the control/data flow graph. Whenever
possible, we prefetched data from main memory into on-chip
memory to increase memory bandwidth. After scheduling each
operation, the synthesis tool created a controller and datapath, at
which point we could determine the cycle latency for each region.
We were able to manually optimize the control/data flow graph
because we only had to analyze a small number of regions and
those regions generally only consisted of a few dozen lines of
code.
The target architecture in our experiments was a
microprocessor/FPGA platform having an ARM9 microprocessor
running at 200 MHz and a Xilinx Virtex II FPGA running at 100
MHz. Communication between the FPGA and ARM9 was
implemented using shared memory. The FPGA accessed memory
using a DMA.
Figure 4 shows the speedup of a C-based hardware/software
solution compared to a software-only solution both without and
with the coding guidelines. Without the coding guidelines, the
speedups typically ranged from 1x (no speedup) to 2x, though

no

Apply CC, CF, CEMA, CEDF, CECF, FS, LR

Apply AS

Apply PVR

Determine Critical Region

Apply CC, CF, CEMA, CIE, CEDF, CECF, FS, LR

Apply PVR

Determine Critical Region

Is overhead of
copying array
acceptable?

Repeat until
performance
constraints
are met

yes

Does suitable hw
algorithm exist and have

acceptable sw
performance ?

no

yes

Apply AS

Figure 3: Methodology for applying coding guidelines to
achieve hardware performance improvements while

minimizing software overhead.

573 842

0

5

10

15

20

g3fax mpeg2 jpeg brev fir crc

Sw
Hw/sw with original code
Hw/sw with guidelines

Figure 4: Speedups of hardware/software solution compared to

software both without and with coding guidelines.
brev and crc yielded speedups of 573x and 8.5x. With the
guidelines, the speedups were significantly larger. The speedup of
g3fax increased from approximately 2x to 16x. The speedup of
mpeg2 increased from 1x to 3.4x. The speedup of fir and jpeg
increased from 1x to 4x and 1.6x, respectively. Even though brev
and crc already achieved significant speedups, the guidelines
increased these speedups even further to 842x for brev and 16.7x
for crc. On average, the guidelines resulted in a partitioned
system that was 3.5x faster than the partitioned system created
from the original code.
Figure 5 shows the overall software performance and size
overhead (in % of lines of C code) from applying the guidelines
for each example. For g3fax and mpeg2, there was a small 4%-5%
software performance overhead. For jpeg, the guidelines caused
almost no overhead. For brev, fir, and crc, the software
performance actually improved because of function
specialization. The size overhead ranged from almost no overhead
for mpeg2 and jpeg, to 28% for crc, and –47% for brev. Crc
experienced a large increase because the original code only
consisted of 143 lines of code, to which we added 40 lines. Brev
actually was smaller after being refined, because the use of a
specialized algorithm was more concise than the original code.
On average, the guidelines required only 23 lines of additional
code.
Applying these guidelines took approximately between one and
two hours for each example. Most of the guidelines required little
analysis of the code. Pass-by-value return, conversion to fixed
point, and algorithmic specialization required the most time.
We attempted to determine the contribution to overall speedup for
each individual guideline. However, we found that in many cases
each individual guideline provided no speedup, but when
combined with other guidelines resulted in a large speedup. For
g3fax, we applied conversion to constants to convert several
global variables whose values never changed into constants.
Because these variables were used as bounds for a critical loop,
after also applying pass-by-value return, these guidelines allowed
for the loop to be unrolled, resulting in increased speedups of 3.6x
compared to 2x without the guidelines. We also applied
conversion to explicit data flow to eliminate other global
variables, and algorithmic specialization to optimize the reading
of a bit, increasing the speedup to 16x.

For mpeg2, we applied conversion to fixed point, conversion to
constants for an array of IDCT coefficients, and pass-by-value
return so that the hardware could prefetch blocks to be decoded.
These three guidelines allowed synthesis to unroll critical loops
that were part of the IDCT code, resulting in a speedup increase
from 1x to 3.4x. Without either conversion to constants or pass-
by-value return, the speedup would have been 2.3x. Without
conversion to fixed point, there would have been no speedup.

-88% -47%
-30%

-20%

-10%

0%

10%

20%

30%

g3
fa

x

m
pe

g2

jp
eg

br
ev fir cr
c

Performance Overhead

Size Overhead

Figure 5: Software performance and size overhead of the code
refinement guidelines, when hardware/software partitioning is
not performed. In several cases, software performance and size

improved and are shown as negative overhead.

For jpeg, we applied conversion to constants, conversion to
explicit memory accesses, conversion to explicit control flow,
function specialization, and pass-by-value return. These
guidelines allowed us to parallelize much of the IDCT and
dequantization code in the JPEG decoder, resulting in a speedup
increase from 1.1x to 1.6x. Without any of these guidelines, the
hardware would have achieved a speedup of 1.1x. The lack of a
larger speedup was caused by other critical functions that could
not be synthesized to efficient hardware, suggesting that other
guidelines may be necessary.
For brev, we applied loop rerolling to eliminate manual unrolling
that had been performed. We also performed algorithmic
specialization to perform a bit reversal using a series of logic
operations. In this case, algorithmic specialization resulted in an
increased speedup of 842x compared to 573x, and also improved
software performance by 88%. Loop rerolling did not have an
effect on performance because we completely unrolled the loop
during synthesis. However, in other situations, loop rerolling
could result in a speedup of over 2x [16].
For fir, we applied conversion to constants for an array of filter
coefficients, conversion to fixed point, conversion to explicit
memory accesses, and function specialization, which were all
necessary in order to unroll a critical loop within the FIR filter,
resulting in a speedup increase from 1x to 4x.
For crc, we applied conversion to constants and input
enumeration, which allowed for synthesis to unroll a loop and to
create a specialized version of the most critical function, resulting
in an increase in speedup from 8.6x to 16.7x. Without input
enumeration the speedup was 14.6x. Without conversion to
constants, the speedup was 12.2x. We also considered applying
algorithmic specialization so that we could perform the crc using

xor operations. Algorithmic specialization did slightly increase
the overall speedup to 19x compared to 16.7x, but had a software
overhead of over 6000%. By following the methodology in
section 3, we decided to exclude algorithmic specialization.

5. CONCLUSIONS
Although synthesis from C code has made many advances, the
use of standard software constructs and coding styles commonly
results in inefficient hardware. To deal with this problem, we
proposed a code refinement approach that requires little design
effort and results in minimal software overhead. In this approach,
the designer first profiles the code to determine critical regions,
and then applies simple refinement guidelines to make those
regions more amenable to hardware synthesis tools. Those critical
regions generally correspond to a small number of loops, which
can be rewritten in 1-2 hours, resulting in hardware/software
partitioned applications that ran 3.5x faster than when partitioning
was done on the original unrefined code.
Due to the common use of hardware-inappropriate C code, one
may wonder if more appropriate languages should be utilized
instead of applying coding guidelines. While new languages will
certainly provide better technical results, the widespread use of C
code in embedded systems suggests that a C-based synthesis
approach is likely to be widely accepted even with worse
hardware performance. The proposed refinement approach helps
reduce this performance difference with minimal designer effort.
Although the refinement approach does require the design time
overhead of modifying the code, for many designers this overhead
is likely much less than the overhead of learning new languages.

6. ACKNOWLEDGMENTS
This research was supported in part by the National Science
Foundation (CCR-0203829) and by the Semiconductor Research
Corporation (2005-HJ-1331).

7. REFERENCES
[1] Böhm, W., Hammes, J., Draper, B., Chawathe, M., Ross, C.,

Rinker, R., and Najjar, W. Mapping a single assignment
programming language to reconfigurable systems. The
Journal of Supercomputing, Vol. 21, 2002, 117-130.

[2] CatapultC. http://www.mentor.com/products/c-based_design/
[3] Coding guidelines for datapath synthesis.

www.synopsys.com/products/designware/
dwtb/articles/coding_guidelines/coding_guidelines.html

[4] Gokhale, M.B. and Stone, J.M. NAPA C: compiling for a
hybrid RISC/FPGA architecture. In proceedings of IEEE
symposium on FPGAs for custom computing machines
(FCCM), 1998, 126-135.

[5] Gupta, S., Dutt, N., Gupta, R., and Nicolau, A. SPARK: a
high-level synthesis framework for applying parallelizing
compiler transformations. In proceeding of international
conference on VLSI Design, 2003, 461-466.

[6] Fin, A., Fummi, F., and Signoretto, M. SystemC: a
homogenous environment to test embedded systems. In
proceedings of the international symposium on
hardware/software codesign (CODES), 2001, 17-22.

[7] Frigo, J., Gokhale, M., and Lavenier, D. Evaluation of the
streams-C C-to-FPGA compiler: an applications perspective.
In proceedings of the international symposium on field
programmable gate arrays (FPGA), 2001, 134-140.

[8] Kalavade, A. and Lee, E. A global criticality/local phase
driven algorithm for the constrained hardware/software
partitioning problem. In proceedings of the international
symposium on hardware/software codesign (CODES), 1994,
42-48.

[9] Ku, D. and DeMicheli, G. HardwareC -- a language for
hardware design (version 2.0). Technical Report: CSL-TR-
90-419, Stanford University, 1990.

[10] Lee, C., Potkonjak, M., and Mangione-Smith, W.
MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems. In proceedings of
international symposium on microarchitecture (MICRO),
1997, 330-335.

[11] Malik, A., Moyer, B., and Cermak, D. A low power unified
cache architecture providing power and performance
flexibility. In proceedings of international symposium on low
power electronics and design (ISLPED), 2000, 241-243.

[12] Najjar, W., Böhm, W., Draper, B., Hammes, J., Rinker, R.,
Beveridge, R., Chawathe, M., and Ross, C. From algorithms
to hardware – a high-level language abstraction for
reconfigurable computing. IEEE Computer, Vol. 36,
Issue 8, August 2003, 63-69.

[13] OXFORD Hardware Compilation Group, The Handel
language, Technical Report, Oxford University, 1997.

[14] Roy, S. and Banerjee, P. High-level techniques for signal
processing: an algorithm for converting floating-point
computations to fixed-point in MATLAB based FPGA
design. In proceedings of the design automation conference
(DAC), 2004.

[15] Séméria, L. and De Micheli, G. SpC: synthesis of pointers in
C. In proceedings of the international conference on
computer-aided design (ICCAD), 1998, 8-12.

[16] Stitt, G. and Vahid, F. New decompilation techniques for
binary-level co-processor generation. In proceedings of the
international conference on computer-aided design
(ICCAD), 2005.

[17] Stitt, G., Vahid, F., McGregor, G., and Einloth, B.
Hardware/software partitioning of software binaries: a case
study of h.264 decode. In proceedings of international
conference on hardware/software codesign and system
synthesis (CODES/ISSS), 2005, 285-290.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

