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ABSTRACT 
Although many recent advances have been made in hardware 
synthesis techniques from software programming languages such 
as C, the performance of synthesized hardware commonly suffers 
due to the use of C constructs and coding practices that are not 
appropriate for hardware. Most previous approaches to addressing 
this problem require drastic changes to coding practice. We 
present an approach that instead requires only minimal changes 
but yields significant speedups. In this approach, a software 
developer initially writes C code as they normally would, and 
then applies simple refinement guidelines to only the 
performance-critical code regions, which are the regions most 
likely to be synthesized to hardware. Alternatively, if a designer 
is aware of performance-critical parts of the application, the 
guidelines could be followed during development. In this study, 
we analyze dozens of embedded benchmarks to determine the 
most common C coding practices that limit hardware 
performance, and introduce coding guidelines to make the code 
more amenable to synthesis. Those guidelines typically require 
minimal coding effort, generally consisting of less than ten lines 
of code for each guideline. The guidelines typically represent 
modifications that require designer knowledge, making the 
guidelines difficult or impossible for synthesis tools to automate. 
We apply these guidelines to six benchmarks, resulting in average 
speedups of 3.5x compared to synthesis from the original code 
with a negligible software size and performance overhead. 

Categories and Subject Descriptors 
B.5.2 [Register-Transfer Level Implementation]: Design Aids 
– automatic synthesis, hardware description languages. 

General Terms 
Performance, Design. 

Keywords 
Synthesis, hardware/software partitioning, coding guidelines, 
code refinement, embedded systems, FPGA, compilation. 

1. INTRODUCTION 
Numerous research and commercial efforts deal with synthesis 
and hardware/software partitioning of high-level code to allow a 
designer to specify an application using a single high-level 
representation, as opposed to specifying hardware regions using 
HDLs (hardware description languages). Although register-
transfer level specification using HDLs is appropriate for 
designers concerned with obtaining maximum performance, high-
level synthesis is a complementary approach that trades off 
hardware performance for reduced design time. Several 
approaches introduced new HDLs with C-like syntax, such as 
HardwareC [9], HandelC [13], and SystemC [6]. Other 
approaches introduced new software-programming languages to 
be used with synthesis, such as NapaC [4], Streams-C [7], and 
SA-C [1]. Several synthesis tools, such as ROCCC [12], SPARK 
[5], and CatapultC [2], have attempted to synthesize standard C 
onto FPGAs.  
Although advances have been made in synthesis from software 
code, many software constructs remain inappropriate for existing 
synthesis techniques. For example, many synthesis tools do not 
effectively support pointers [5][15] due to alias problems and the 
difficulty of scheduling irregular memory access patterns. 
Function pointers, global variables, and recursion are also 
problematic for synthesis. 
One potential solution to the problems with synthesis from 
software code is for a software developer to simply not use 
problematic constructs. However, this approach is unlikely to be 
widely accepted by many developers because many of these 
constructs are useful for software development. In addition, these 
problematic constructs are widely used in existing code that may 
be adapted for synthesis. Furthermore, a software developer may 
not even be certain that his/her code will have portions 
synthesized to hardware in FPGAs.  
Many previous works have solved these problems by introducing 
C-based languages [1][6][7][9][13] that eliminate problematic 
constructs, typically yielding more parallelism and faster 
hardware. Although these languages are good technical solutions, 
they have the disadvantage of using non-standard software code. 
In this paper, we instead focus on refining C coding practices to 
improve synthesis from standard C, at the possible cost of 
decreased performance compared to C-based HDLs. If software 
developers have flexibility in how they can write code, and need 
only perform minimal changes to create fast hardware, synthesis 
from software code may gain wider acceptance.  
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In this study, we analyzed C-code benchmarks in light of 
synthesis concerns to identify common coding practices that are 
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problematic in hardware. Based on this analysis, we developed 
guidelines for refining critical regions of C code to improve the 
quality of synthesized hardware. To use these guidelines, a 
software developer would have the flexibility to write the 
application using all C constructs and would then refine 
performance critical regions using the guidelines. Alternatively, a 
designer with knowledge of performance-critical parts of an 
application could follow the guidelines during development. The 
main advantage of this approach is that the performance critical 
regions typically consist of approximately only 10% of the code, 
corresponding to the well-known 90-10 rule. Therefore, only a 
small percentage of the code would have to be refined. 
Furthermore, the guidelines typically consist of simple rewrites 
that require minimal designer effort, generally taking minutes per 
guideline. We focus on code refinements for the C language due 
to the language’s popularity. Some of our refinements are C-
specific, while others are applicable to other software languages. 
One potential problem with a guideline-based refinement 
approach is that in some cases software developers may write one 
software application that later gets mapped to different 
architectures, which may or may not contain FPGAs. Even on 
architectures with FPGA, hardware/software partitioning may 
select different functions for hardware implementation based on 
available FPGA resources. Therefore, in some situations, the 
refined regions may not be mapped to hardware. Due to the 
differences in spatial and temporal computing, the code that is 
refined for hardware implementation could potentially have a 
software performance overhead. We therefore analyze this 
software overhead and present a methodology that provides a 
good tradeoff between improved hardware performance and 
software performance overhead. 
Theoretically, one could argue that the need for coding guidelines 
could be obviated by improved synthesis optimizations. However, 
most of the guidelines we propose require designer knowledge 
that cannot reasonably be expected to be extracted from the code 
by a synthesis tool. Therefore, we claim that these guidelines are 
complementary to improved synthesis optimizations. 
Nevertheless, we discuss the possibility and hurdles of automating 
each guideline during synthesis.  

The refinement guidelines are not meant to be exhaustive, but are 
instead a solution to commonly occurring problems in standard 
embedded systems benchmark code. Analysis of other 
applications, especially from different domains, may yield new 
guidelines. 
To our knowledge, coding guidelines for high-level synthesis 
have been limited to avoiding pointer operations and recursion 
[5][15]. Many previous works have presented coding guidelines 
for register transfer-level synthesis [3], but those guidelines do 
not apply to high-level synthesis. 

2. CODING GUIDELINES 
This section describes each of the proposed coding guidelines. 
Each subsection discusses the problem in C that the guideline 
solves and how the guideline solves the problem. The potential 
software overhead of each guideline is also discussed along with 
the possibility of automating the guideline in a synthesis tool.  We 
initially proposed the guidelines presented in sections 2.7 to 2.10 
in other work [17] to improve the performance of an h.264 
decoder synthesized from C code. In this paper, we evaluate the 
performance improvements of those previous guidelines on 
multiple applications, consider their software overhead, and 
incorporate them in a refinement methodology.  

2.1 Conversion to Constants (CC) 
Constant folding is a standard synthesis optimization that 
improves hardware performance by evaluating constant 
expressions at compile time. In addition to constant folding, 
constants can also improve hardware by enabling use of on-chip 
memory, which increases memory bandwidth by reducing 
accesses to main memory. From our benchmark analysis, we have 
found that in many cases, software developers do not use 
constants appropriately, eliminating these potential performance 
improvements. In many cases, scalars and arrays that are actually 
constant are not specified as constants in the C code.  
The refinement guideline conversion to constants explicitly 
informs the synthesis tool that an array or scalar is constant. In the 
simplest case, the refinement consists simply of adding the 
keyword const to the arrays or individual variables that are 
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int coef[100]; 
void initCoef() { 
   // initialize coefficients 
} 
void fir(const int array[100]) { 
   // fir filter using array of coefficients 
}  
void constWrapper(const int array[100]) { 
   // other code 
   fir(array); 
} 
void f() { 
   initCoef(); 
   constWrapper(coef); 
} 

int coef[100]; 
void initCoef() { 
   // initialize coef 
} 
void fir() { 
   // fir filter using coef 
}  
void f() { 
   initCoef() 
   // other code 
   fir(); 
} 

coef is  made 
constant for all 
functions within 
constWrapper() – 
synthesis can apply 
constant folding, 
and array can be 
stored in on-chip 
memory 

coef can’t be specified as 
constant because values 
are determined at runtime –
prevents constant folding 
and storage in on-chip 
memory 

(b) (a) 

Figure 1: Conversion to constants of an array of coefficients.  a) Original code that initializes an array of coefficients for a 
FIR filter.  These coefficients are actually constants but cannot be specified as constants because they are determined at 
runtime.  b) After initializing the array of constants, the wrapper function specifies from that point on that the array is 

constant, allowing the synthesis tool to perform constant folding in the fir() function, and for the array to be stored in on-
chip memory. 



constants. This simple refinement has no software performance 
overhead but potentially yields large hardware performance 
improvement. 
In many situations, simply adding the keyword const to an array 
of constants is not possible because the software developer 
initializes the array at runtime using an initialization function. 
Software developers commonly use initialization functions when 
manually specifying a large number of constants is too time-
consuming, such as for lookup tables of sine values. Such arrays 
are still essentially constant, but cannot be declared using the 
keyword const. We extend the conversion of constants refinement 
guideline to handle such cases. The refinement involves adding a 
wrapper function that takes as a parameter a const array. After the 
initialization code for the constant array, the software developer 
adds code that passes the array to the new wrapper function, 
which a synthesis tool can then recognize as constant for all 
functions contained within the wrapper function. In the worst 
case, the wrapper function would replace the body of main(). 
However, in most situations, the wrapper function can be isolated 
to a small section of code that uses the array. 
To maximize the benefit of this guideline, a software developer 
should avoid using pointers to a constant array because a 
synthesis tool may not be able to statically determine the value of 
the pointer. Thus, even though the pointer may point to a constant 
value, the synthesis tool is unlikely to know what that constant 
value is until runtime and will not be able to apply constant 
folding. 
Figure 1 shows an example of conversion to constants. Figure 1 
(a) shows the unmodified code for an FIR filter that uses an array 
of coefficients, which is initialized and then never modified. A 
synthesis tool is unlikely to know that this array is not modified 
because of aliases (not shown in figure). Figure 1(b) shows the 
refined code after applying the conversion to constants guideline. 
The wrapper function constWrapper() with the constant array 
parameter specifies that the coef array is actually constant. The 
synthesis tool can now prefetch the coef array if necessary and 
can also potentially apply constant folding within the fir() 
function. 

Automation: A synthesis tool could potentially automate 
conversion to constants for simple examples, by performing 
definition-use analysis on scalars and arrays. However, in the 
general case, the guideline cannot be automated because the 
presence of pointer operations may complicate data flow analysis, 
or even make such analysis impossible.  

Overhead: The software overhead of conversion to constants 
when using a wrapper function consists of the extra instructions 
needed to call the wrapper function and to pass the address of the 
array parameter to any additional functions. 

2.2 Conversion to Explicit Data Flow (CEDF) 
The common use of global variables causes problems for 
synthesis. In cases of task-level parallelism, scheduling accesses 
to global variables can be difficult. Even without task-level 
parallelism, global variables may make complicated global alias 
and data flow analysis necessary, which may result in long 
compilation runtimes and in some cases is impossible.  
The guideline conversion to explicit data flow eliminates 
problems caused by global variables. This guideline consists of 

replacing accesses to a global variable with extra parameter 
passing for functions that access the global variable. This 
parameter passing is beneficial for synthesis because the global 
data flow is explicit. Such explicit data flow may result in large 
hardware parallelism increases because a simpler data flow 
analysis may show that multiple functions do not have any 
dependencies. 

Automation: In general, conversion to explicit data flow cannot 
be automated because of pointers that may alias a global variable. 
Although alias analysis may be able to handle simple cases, 
designer knowledge is typically required to specify the lack of 
aliases. 

Overhead: The software overhead of conversion to explicit data 
flow consists of the extra instructions required for the additional 
parameter passing. Typically, this overhead is small unless the 
code uses large amounts of global variables. 

2.3 Conversion to Fixed Point (CF) 
The inefficiency of floating point operations in configurable logic 
is widely known. Therefore, an obvious optimization is to convert 
floating-point operations to fixed point, resulting in significant 
area and performance improvements. 
The conversion to fixed point guideline can yield further 
improvements when paired with the other guidelines. For 
example, when combining conversion to fixed point with 
conversion to constants, a synthesis tool can generally perform 
optimizations such as constant folding for the fixed-point 
operations, which would not have been as beneficial for floating 
point operations. 

Automation: Although in some cases a synthesis tool could 
automate conversion to fixed point [14], determining the required 
amount of precision is difficult. 

Overhead: Conversion to fixed point typically has no software 
overhead and in most cases will improve software performance by 
replacing floating-point instructions with much faster integer 
instructions. However, this improvement is obtained by trading 
off higher precision in floating point.  

2.4 Conversion to Explicit Memory Accesses 
(CEMA) 
Software developers commonly use pointer operations as a 
substitute for array indices, to save lines of code, or in some cases 
to improve code performance. Although these pointer operations 
correspond to array accesses, a synthesis tool may not be able to 
determine the memory access patterns. 
Conversion to explicit memory accesses makes array accesses 
explicit by replacing uses of pointers with array indices when 
possible. Such array use enables the synthesis tool to more easily 
determine memory access patterns, which allows data to be 
prefetched and also eases alias analysis. 

Automation: A synthesis tool is unlikely to be able to automate 
conversion to explicit memory accesses, because the tool would 
have to determine memory access patterns, which is difficult or 
impossible in the presence of pointer operations. 

Overhead: The software overhead of conversion to explicit 
memory accesses is generally small. In some situations, use of 
pointer operations may slightly improve performance, but many 
compilers convert array accesses to pointers automatically. 



2.5 Constant Input Enumeration (CIE) 
In many situations, software developers write high-level functions 
that are intended to be as general as possible. For example, h.264 
supports multiple block sizes.  Therefore, a single function in an 
h.264 decoder is likely to take the block size as a parameter. This 
coding practice makes the software code concise and readable, 
but may limit the performance of synthesized hardware. For 
example, if the bounds of a loop are parameters to a function and 
those parameters’ possible values are not determined by the 
synthesis tool, then the loop will not be unrolled because the 
bounds are not known statically. 
Constant input enumeration helps solve this problem. In many 
cases, a parameter has a small set of possible values. A software 
developer can enumerate all possible input values for a particular 
parameter using the enum type. The advantage to this guideline is 
that the synthesis tool knows all possible values of the parameter 
and can create specialized versions of the function for each 
possible value. 

Automation: In certain situations, a synthesis tool may be able to 
automate this guideline by determining all possible values for a 
parameter, or by performing partial evaluation. However, in 
general, statically determining the possible values is difficult, and 
is therefore unlikely to be added to a synthesis tool. 

Overhead: Input enumeration has no software overhead and can 
sometimes improve software performance when the compiler can 
create specialized functions for each input value. 
One potential disadvantage to this guideline is that if there are 
many parameters that use a small number of possible values, then 
refining the code may require a large number of enums. However, 
in most situations, we have found that only several enums are 
necessary. Also, a software developer could potentially break this 
guideline by casting an integer variable as an enumerated type. 
That coding practice should be avoided because the synthesis tool 
can no longer determine all possible values of a parameter used in 
such a way. 

2.6 Loop Rerolling (LR) 
In some situations, software developers manually unroll a loop 
several times to expose concurrency. While this practice may 
seem unusual due to unrolling being a well-known compiler 
transformation, not all compilers unroll loops – hence, we have 
observed that manual unrolling is a widespread practice. Manual 
unrolling may improve software performance, but may result in 
extra area overhead, especially when synthesis is not resource 
constrained, in addition to greatly increasing synthesis execution 
times. The loop rerolling refinement fixes the problems with 
manual loop unrolling, converting the loop back into a non-
unrolled representation. Loop rerolling has a software 
performance overhead only if the compiler fails to unroll. 

Automation: Loop rerolling has been automated in previous 
approaches [16] and could be added to a synthesis tool. However, 
because rerolling requires minimal effort by the software 
developer, we propose loop rerolling as a guideline to ensure 
good results on any synthesis tool. 

2.7 Conversion to Explicit Control Flow 
(CECF) 
Synthesis tools can rarely statically analyze control flow in the 
presence of function pointers because the target of a function call 
using a function pointer is not known until runtime. To fix this 
problem, we applied conversion to explicit control flow to 
eliminate function pointers from critical regions of code. This 
guideline works by replacing a function call using a function 
pointer with a series of if-else statements, where the body of each 
if statement is an explicit call to one of the possible targets of the 
function pointer. 

Automation: Compilers and synthesis tools can potentially 
automate this guideline by tracking targets of function pointers 
through control-flow analysis. However, control-flow analysis 
techniques are only likely to work under simple situations because 
in the general case, statically determining all possible targets of a 
function pointer is impossible [15].  

Overhead: The software overhead of conversion to explicit 
control flow consists of the extra instructions required to 
implement the if statements. Using input enumeration or function 
specialization, which is discussed in section 2.8, can reduce this 
overhead. 

2.8 Function Specialization (FS) 
In [17], we proposed function specialization as a guideline for 
writing C for synthesis. Function specialization is applied when a 
parameter to a function has a frequent value, which can then be 
treated as a constant and optimized. This guideline is similar to 
input enumeration, except that instead of only having to support a 
small set of inputs, function specialization optimizes a function 
for a particular input value but still supports any possible input. 

Automation: Function specialization can be automated by 
performing profiling to determine values for each parameter. 
Although profiling is common to determine execution time of 
each function, profiling to determine possible values for each 
parameter is much less common. Also, for large applications, the 
amount of data that has to be profiled is large. However, the 
software developer may be aware of several common values. 
Therefore, we include function specialization as a guideline to 
make this approach applicable to the majority of software and 
synthesis tool flows. 

Overhead: Function specialization has a software overhead 
consisting of extra instructions to determine which function to call 
at runtime. However, if applied to a frequent input value, function 
specialization typically improves software execution in addition 
to hardware execution. 

2.9 Algorithmic Specialization (AS) 
Algorithmic specialization replaces a software algorithm with an 
algorithm that is more appropriate for hardware, possibly 
achieving order of magnitude improvements. However, the 
software overhead of algorithmic specialization is potentially 
large because this guideline replaces a software efficient 
algorithm with a less efficient algorithm. Applying this guideline 
requires more consideration than the other guidelines, which is 
discussed further in section 3. 

Automation: Algorithmic specialization cannot be automated by 
a synthesis tool because no tool is currently able to replace one 



algorithm with another without using a higher-level specification 
such as intrinsics. 

2.10 Pass-By-Value Return (PVR) 
Main memory bandwidth is commonly the main performance 
bottleneck for synthesized hardware. In many situations, loops 
can potentially be unrolled and parallelized, but because data 
cannot be delivered fast enough the parallelism is wasted. To 
eliminate this problem, synthesis will prefetch the required data 
and store the data in on-chip memory to increase memory 
bandwidth. However, the common use of pointers in C code 
makes the determination of when to prefetch data without 
violating dependencies difficult. An example of this problem is 
shown in Figure 2(a). In this example, an array is passed to 
function f() which is then used by function g().  Theoretically, the 
data in the array can be preteched immediately upon execution of 
f(). However, because pointers are passed to f(), the values in the 
array may be modified through these pointers.  
In many cases, a software developer may know that aliases do not 
exist. In this situation, a software developer can apply pass-by-
value return for arrays by declaring a local array within the 
calling function and manually copying all data from the array 
parameter into the local array. The local array is then used for all 
computation. The advantage of this guideline is that the local 
array eliminates all aliasing problems because the pointer 
parameters cannot possibly alias the local array. 
Figure 2(b) shows the example from Figure 2(a) after applying 
pass-by-value return. The refined code immediately copies data 
from array into localArray at the beginning of function f(). 
Synthesis can now prefetch data starting at this point so that the 
data is available when g() is called. After execution of g(), the 
data is copied back from localArray into array. These copying 
operations are eliminated during synthesis and are simply used to 
eliminate aliases. 

Automation: This guideline is unlikely to be automated because 
most synthesis tools cannot perform the alias analysis necessary 
to guarantee that the array can be prefetched. Of course, improved 
alias analysis could eliminate the need for this guideline. 
However, global alias analysis is difficult and in the general case 
is impossible [15]. 

Overhead: Pass-by-value return can potentially have a large 
software overhead if the amount of data in the copied array is 
large. However, in many situations these arrays will be small, 
such as in DSP code that operates on small blocks of data. Also, 

in many situations the overhead of copying data can be amortized 
over many functions that use the same data. 
As an alternative to pass-by-value return, a designer could use a 
compiler directive to specify the non-existence of aliases. 
However, this practice makes code compiler-specific, reducing 
the portability of the code. 

3. REFINEMENT METHODOLOGY 
Although the proposed coding guidelines may greatly improve 
hardware performance, the guidelines may introduce software 
performance overhead if the refined regions are not implemented 
in hardware. In addition, the guidelines must be manually applied 
to the code, which could potentially greatly increase design time 
if applied to too many regions. We therefore propose a 
methodology for applying the guidelines that seeks to minimize 
the effort and overhead.  
To develop the methodology, we analyzed benchmarks to 
determine which guidelines were applicable and how the 
guidelines would best be applied. We found that for most 
examples, most speedup could be obtained by only rewriting a 
small number of performance critical regions, corresponding to 
the well-known 90-10 rule. Rewriting those regions is generally a 
simple task and can yield large performance improvements. 
Exceptions exist, such as the h.264 decoder from [17], which 
spent 90% of execution time in more than 50 functions. However, 
for most benchmarks we observed, refining just a few critical 
regions results in large performance improvements. In addition, 
most of the guidelines take only several minutes to implement. 
The exceptions are conversion-to-fixed point, which may require 
modifying a large section of code, and algorithmic specialization, 
which may be difficult to perform in the absence of a well-known 
hardware algorithm. 
Figure 3 illustrates the proposed methodology for refining C code 
for synthesis. The first step of the methodology is to profile the 
application to determine critical regions where the majority of 
execution time is spent. The next step is to select the most critical 
region, generally a function or loop, to which to apply the 
guidelines. To optimize a function or loop, the guidelines may 
have to be applied to the containing function, or possibly even to 
an earlier function. The next step is to apply conversion to 
constants, conversion to fixed point, conversion to explicit data 
flow, conversion to explicit control flow, conversion to explicit 
memory accesses, constant input enumeration, function 
specialization, and loop rerolling, but only if these guidelines are 

  Original Code Refined Code 

void f(int *a, int *b, int array[16]) { 
   … // unrelated computation 
   g(array); 
   … // unrelated computation 
}  
int g(int array[16]) { 
    // computation done on array 
} 

void f(int *a, int *b, int array[16]) { 
   int localArray[16]; 
   memcpy(localArray,array,16*sizeof(int)); 
   … // unrelated computation 
   g(localArray); 
   … // unrelated computation 
   memcpy(array, localArray,16*sizeof(int)); 
}  
int g(int array[16]) { 
    // computation done on array 
} 

Local array 
guarantees 
that a and b 
do not alias 
the array – 
allows array 
to be 
prefetched for 
g() 

Array cannot be 
prefetched for use in 
g() because accesses 
to a or b may change 
array 

(a) (b) 

Figure 2: Pass-by-value return for arrays.  a) The array used in function g() cannot be prefetched during f() because the 
pointers a and b may modify elements of the array.  b) Copying the array into a local array guarantees that a and b are 

not aliases, allowing the array to be prefetched into on-chip memory before execution of g().   



  applicable for the application. Although this step may seem to 
require a large amount of designer effort, in most cases, only two 
or three of these guidelines are applicable. Also, in almost all 
cases, the software overhead of these guidelines is small, allowing 
them to be safely applied without impacting software 
performance. Before implementing pass-by-value return, the 
software developer first needs to determine the software 
overhead. To determine the overhead, the developer analyzes the 
critical region to determine the data used by the region. If aliases 
prevent prefetching of data for the critical region and the 
overhead of copying the data in software is acceptable (which 
may have to be determined by profiling), then the software 
developer should implement pass-by-value return for the data. 
The next step of the methodology is to consider whether or not to 
perform algorithmic specialization. If an appropriate hardware 
algorithm exists for the current critical region and the 
performance of the hardware algorithm is sufficient in software 
(which also may have to be determined with profiling), then the 
software developer should perform algorithmic specialization. In 
the next step, the software developer selects another critical 
region and repeats the same steps until the most critical regions 
are rewritten.  

Profile Profile 

Of course, if an entire application is to be synthesized or if the 
designer can select synthesized functions, then software overhead 
can be ignored and these guidelines can be applied to as many 
regions as possible. 
As an added note, to achieve the performance benefits of the 
guidelines that deal with improving data prefetching, a software 
developer should apply the guideline as far before the data is 
needed as possible to guarantee that there is sufficient time to 
prefetch the data. This may not always be possible, based on the 
dependencies of the code. 

4. EXPERIMENTS 
To evaluate the coding guidelines, we applied the guidelines to 
six benchmarks, using the methodology described in section 3. 
G3fax is a group 3 fax decode benchmark. Mpeg2 is an mpeg2 
decoder. Jpeg is a jpeg decoder. Brev performs a bit reversal of 
each element from an array. Fir is a finite impulse response filter. 
Crc performs a cyclic redundancy check. G3fax, brev, fir, and crc 
are from the Powerstone [11] benchmark suite. Mpeg2 and jpeg 
are from the MediaBench [10] benchmark suite. We selected 
these benchmarks because they are representative of high-level 
applications, such as DSP code and bit manipulation code, which 
are commonly synthesized. 
For all examples, we measured software performance using the 
SimpleScalar simulator, ported to the ARM instruction set. Each 
example was compiled using gcc with –O1 optimizations. 
We selected regions to synthesize to hardware by utilizing a 
greedy hardware/software partitioning heuristic. The heuristic 
first sorts each function and loop based on the percentage of 
execution time. The heuristic then selects regions for hardware 
implementation in sorted order until area is exhausted. We could 
of course have utilized existing hardware/software partitioning 
techniques [8], but for the selected examples, the greedy heuristic 
achieves similar results. 
To synthesize hardware, we considered using existing C-level 
synthesis tools [5], but because of the variety and relative 
immaturity of these tools, we developed our own behavioral 

synthesis tools to have more control over the synthesized 
hardware, and then performed standard behavioral synthesis 
optimizations manually to prevent the benefits of the guidelines 
from being exaggerated – our goal was to make the hardware 
synthesized from the original code as fast as possible. To perform 
synthesis, we developed a parser to convert the code into a 
control/data flow graph representation. The tool then performed 
data flow analysis to determine potential parallelism. Next, we 
applied standard synthesis optimization techniques such as loop 
unrolling, strength reduction, constant propagation, tree-height 
reduction, etc. After optimizing the control/data flow graph, the 
synthesis tool applied as-soon-as-possible scheduling to obtain the 
lowest cycle latency for the control/data flow graph. Whenever 
possible, we prefetched data from main memory into on-chip 
memory to increase memory bandwidth. After scheduling each 
operation, the synthesis tool created a controller and datapath, at 
which point we could determine the cycle latency for each region. 
We were able to manually optimize the control/data flow graph 
because we only had to analyze a small number of regions and 
those regions generally only consisted of a few dozen lines of 
code. 
The target architecture in our experiments was a 
microprocessor/FPGA platform having an ARM9 microprocessor 
running at 200 MHz and a Xilinx Virtex II FPGA running at 100 
MHz. Communication between the FPGA and ARM9 was 
implemented using shared memory. The FPGA accessed memory 
using a DMA. 
Figure 4 shows the speedup of a C-based hardware/software 
solution compared to a software-only solution both without and 
with the coding guidelines. Without the coding guidelines, the 
speedups typically ranged from 1x (no speedup) to 2x, though 

no 

Apply CC, CF, CEMA, CEDF, CECF, FS, LR 

Apply AS 

Apply PVR 

Determine Critical Region 

Apply CC, CF, CEMA, CIE, CEDF, CECF, FS, LR

Apply PVR 

Determine Critical Region 

Is overhead of 
copying array 
acceptable? 

Repeat until 
performance 
constraints 
are met 

yes 

Does suitable hw 
algorithm exist and have 

acceptable sw 
performance ? 

no

yes 

Apply AS 

Figure 3: Methodology for applying coding guidelines to 
achieve hardware performance improvements while 

minimizing software overhead.
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Figure 4: Speedups of hardware/software solution compared to 

software both without and with coding guidelines. 
brev and crc yielded speedups of 573x and 8.5x. With the 
guidelines, the speedups were significantly larger. The speedup of 
g3fax increased from approximately 2x to 16x. The speedup of 
mpeg2 increased from 1x to 3.4x. The speedup of fir and jpeg 
increased from 1x to 4x and 1.6x, respectively. Even though brev 
and crc already achieved significant speedups, the guidelines 
increased these speedups even further to 842x for brev and 16.7x 
for crc. On average, the guidelines resulted in a partitioned 
system that was 3.5x faster than the partitioned system created 
from the original code.  
Figure 5 shows the overall software performance and size 
overhead (in % of lines of C code) from applying the guidelines 
for each example. For g3fax and mpeg2, there was a small 4%-5% 
software performance overhead. For jpeg, the guidelines caused 
almost no overhead. For brev, fir, and crc, the software 
performance actually improved because of function 
specialization. The size overhead ranged from almost no overhead 
for mpeg2 and jpeg, to 28% for crc, and –47% for brev. Crc 
experienced a large increase because the original code only 
consisted of 143 lines of code, to which we added 40 lines. Brev 
actually was smaller after being refined, because the use of a 
specialized algorithm was more concise than the original code. 
On average, the guidelines required only 23 lines of additional 
code. 
Applying these guidelines took approximately between one and 
two hours for each example. Most of the guidelines required little 
analysis of the code. Pass-by-value return, conversion to fixed 
point, and algorithmic specialization required the most time. 
We attempted to determine the contribution to overall speedup for 
each individual guideline. However, we found that in many cases 
each individual guideline provided no speedup, but when 
combined with other guidelines resulted in a large speedup. For 
g3fax, we applied conversion to constants to convert several 
global variables whose values never changed into constants. 
Because these variables were used as bounds for a critical loop, 
after also applying pass-by-value return, these guidelines allowed 
for the loop to be unrolled, resulting in increased speedups of 3.6x 
compared to 2x without the guidelines. We also applied 
conversion to explicit data flow to eliminate other global 
variables, and algorithmic specialization to optimize the reading 
of a bit, increasing the speedup to 16x.  

For mpeg2, we applied conversion to fixed point, conversion to 
constants for an array of IDCT coefficients, and pass-by-value 
return so that the hardware could prefetch blocks to be decoded. 
These three guidelines allowed synthesis to unroll critical loops 
that were part of the IDCT code, resulting in a speedup increase 
from 1x to 3.4x. Without either conversion to constants or pass-
by-value return, the speedup would have been 2.3x. Without 
conversion to fixed point, there would have been no speedup. 
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Figure 5: Software performance and size overhead of the code 
refinement guidelines, when hardware/software partitioning is 
not performed. In several cases, software performance and size 

improved and are shown as negative overhead. 

For jpeg, we applied conversion to constants, conversion to 
explicit memory accesses, conversion to explicit control flow, 
function specialization, and pass-by-value return. These 
guidelines allowed us to parallelize much of the IDCT and 
dequantization code in the JPEG decoder, resulting in a speedup 
increase from 1.1x to 1.6x. Without any of these guidelines, the 
hardware would have achieved a speedup of 1.1x. The lack of a 
larger speedup was caused by other critical functions that could 
not be synthesized to efficient hardware, suggesting that other 
guidelines may be necessary.  
For brev, we applied loop rerolling to eliminate manual unrolling 
that had been performed. We also performed algorithmic 
specialization to perform a bit reversal using a series of logic 
operations. In this case, algorithmic specialization resulted in an 
increased speedup of 842x compared to 573x, and also improved 
software performance by 88%. Loop rerolling did not have an 
effect on performance because we completely unrolled the loop 
during synthesis. However, in other situations, loop rerolling 
could result in a speedup of over 2x [16].  
For fir, we applied conversion to constants for an array of filter 
coefficients, conversion to fixed point, conversion to explicit 
memory accesses, and function specialization, which were all 
necessary in order to unroll a critical loop within the FIR filter, 
resulting in a speedup increase from 1x to 4x.  
For crc, we applied conversion to constants and input 
enumeration, which allowed for synthesis to unroll a loop and to 
create a specialized version of the most critical function, resulting 
in an increase in speedup from 8.6x to 16.7x. Without input 
enumeration the speedup was 14.6x. Without conversion to 
constants, the speedup was 12.2x. We also considered applying 
algorithmic specialization so that we could perform the crc using 



xor operations. Algorithmic specialization did slightly increase 
the overall speedup to 19x compared to 16.7x, but had a software 
overhead of over 6000%. By following the methodology in 
section 3, we decided to exclude algorithmic specialization. 

5. CONCLUSIONS 
Although synthesis from C code has made many advances, the 
use of standard software constructs and coding styles commonly 
results in inefficient hardware. To deal with this problem, we 
proposed a code refinement approach that requires little design 
effort and results in minimal software overhead. In this approach, 
the designer first profiles the code to determine critical regions, 
and then applies simple refinement guidelines to make those 
regions more amenable to hardware synthesis tools. Those critical 
regions generally correspond to a small number of loops, which 
can be rewritten in 1-2 hours, resulting in hardware/software 
partitioned applications that ran 3.5x faster than when partitioning 
was done on the original unrefined code.  
Due to the common use of hardware-inappropriate C code, one 
may wonder if more appropriate languages should be utilized 
instead of applying coding guidelines. While new languages will 
certainly provide better technical results, the widespread use of C 
code in embedded systems suggests that a C-based synthesis 
approach is likely to be widely accepted even with worse 
hardware performance. The proposed refinement approach helps 
reduce this performance difference with minimal designer effort. 
Although the refinement approach does require the design time 
overhead of modifying the code, for many designers this overhead 
is likely much less than the overhead of learning new languages. 
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