
New Decompilation Techniques for Binary-level
 Co-processor Generation

Greg Stitt, Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
{gstitt, vahid}@cs.ucr.edu

http://www.cs.ucr.edu/{~gstitt, ~vahid}
*Also with the Center for Embedded Computer Systems, UC Irvine

Abstract—Existing ASIPs (application-specific instruction-set
processors) and compiler-based co-processor synthesis
approaches meet the increasing performance requirements of
embedded applications while consuming less power than high-
performance gigahertz microprocessors. However, existing
approaches place restrictions on software languages and
compilers. Binary-level co-processor generation has previously
been proposed as a complementary approach to reduce impact
on tool restrictions, supporting all languages and compilers, at
the cost of some decrease in performance. In a binary-level
approach, decompilation recovers much of the high-level
information, like loops and arrays, needed for effective
synthesis, and in many cases yields hardware similar to that of
a compiler-based approach. However, previous binary-level
approaches have not considered the effects of software
compiler optimizations on the resulting hardware. In this
paper, we introduce two new decompilation techniques,
strength promotion and loop rerolling, and show that they are
necessary to synthesize an efficient custom hardware co-
processor from a binary in the presence of software compiler
optimizations. In addition, unlike previous approaches, we
show the robustness of binary-level co-processor generation by
achieving order of magnitude speedups for binaries generated
for three different instruction sets, MIPS, ARM, and
MicroBlaze, using two different levels of compiler
optimizations.

I. INTRODUCTION
In order to meet the increasingly large performance and energy

requirements of embedded applications, designers often partition
critical software regions into custom hardware. The use of ASIPs
(application-specific instruction processors) [4][8] is a common
approach for partitioning, which tunes the instruction set of a
microprocessor to a particular application. Although ASIPs achieve
large performance benefits, the modification of a standard
instruction set eliminates the possibility of using standard
compilers, profilers, and simulators. Tensilica's Xtensa processor
[5] is an ASIP approach that causes less impact of tool flow by
automatically generating software development tools for the
modified instruction set, while achieving good performance,
including a speedup of 6.5 compared to a MIPS processor on
EEMBC benchmarks. Recently, Tensilica introduced the XPRES
compiler [16], which takes C/C++ code and automatically generates

a customized microprocessor, thus eliminating the need for a
designer to define new instructions manually. Stretch [14] has
introduced a similar approach that combines the Xtensa processor
with the Stretch Instruction Set Extension Fabric (ISEF), a
specialized configurable logic fabric that designers can use to
integrate new instructions into the Xtensa pipeline without having
to fabricate an application-specific integrated circuit.

Other partitioning approaches have reduced the impact on tool
flow by generating a co-processor, instead of modifying the
instruction set. Critical Blue [3] generates a very-large instruction-
word co-processor based on the software binary for an application.
In this approach, the customized coprocessor executes performance
critical regions of the application while the remaining regions of the
application execute on a standard microprocessor.

Although these previous approaches have lessened the impact
of tool flow integration, the approaches still impose some
restrictions on tool flow by requiring a specific language or specific
compiler. These restrictions may be undesirable to many software
designers who have well-established compilers and developing
environments. In order to further reduce tool flow restrictions at the
cost of decreased performance, we proposed hw/sw partitioning of
software binaries [13]. That binary-level approach partitioned a
software binary onto a platform with a microprocessor and field-
programmable gate array (FPGA), utilizing a limited form of
decompilation to recover high-level control structures for critical
kernels, and then synthesizing the kernels to hardware. By
partitioning after software compilation and linking, binary
partitioning supports all compilers and languages and possibly even
multiple languages linked together at the object level. In addition, a
binary-level approach supports the partitioning of library code and
hand-optimized assembly, which may be important for designers
using precompiled libraries – portions of code in embedded systems
often come in the form of object code from third-party vendors.
Mittal el al. [10] also utilized a similar approach for translating
digital signal processor binaries onto an FPGA, useful for example
to convert legacy code to an FPGA implementation. In [12], we
showed that by recovering arrays and memory access patterns in
addition to control structures, binary synthesis could often create
hardware with almost identical performance compared to hardware
generated from a compiler-based synthesis approach.

While binary-level partitioning may initially seem a sub-
optimal approach, dynamic binary-level translation methods do
represent a trend in modern processors, enabling binary portability
for execution on processors with very different architectures. In

This research was supported in part by the National Science
Foundation (CCR-0203829) and by the Semiconductor Research
Corporation (2005-HJ-1331).

Figure 1: An approach for synthesizing a custom co-processor to speedup software binaries, utilizing the new decompilation techniques loop rerolling and
strength promotion.

fact, recent work has even examined dynamic binary partitioning
[11]. Nevertheless, we acknowledge that source level methods
represent a superior technical solution in general. Binary level
methods instead represent a means for expanding the benefits of
partitioning-based co-processor design methods to a broader range
of software designers.

Previous binary-level approaches have not addressed the
problems associated with software compiler optimizations, which
may obscure the representation of the original code within the
binary, making decompilation more difficult. In this paper, we
improve upon previous approaches by introducing two new
decompilation techniques, strength promotion and loop rerolling, to
eliminate the problems caused by strength reduction and loop
unrolling. These new decompilation techniques result in speedups
of up to 2.9 compared to previous binary synthesis approaches. We
also show the robustness of binary-level co-processor generation by
applying our techniques to two levels of compiler optimizations for
three different instruction sets: MIPS, ARM, and MicroBlaze.
Previous techniques have only considered a single instruction set.

II. BINARY-LEVEL CO-PROCESSOR GENERATION
In our approach to co-processor generation, shown in Figure 1,

high-level software source code from any source language is first
compiled using any software compiler to object code and linked
with object files obtained from other means (assembly code or
library files) to create a software binary. The decompilation-based
co-processor generator then analyzes the software binary and
creates a custom co-processor to speedup critical regions of the
binary. The co-processor generator initially performs the new loop
rerolling technique to convert unrolled loops within the binary into
a non-unrolled representation. The co-processor generator then
utilizes existing decompilation techniques [2][12] to perform
control structure and array recovery. The co-processor generator
then applies the new strength promotion technique to further
recover high-level information needed to synthesize efficient
hardware in the presence of aggressive compiler optimizations. Co-
processor determination uses profiling and hw/sw estimation to
select performance-critical regions of the application for
implementation in the co-processor. We then use existing
behavioral synthesis techniques to convert all critical regions into a

custom hardware implementation. The binary updater modifies the
software binary to add instructions for communication with the
hardware. Finally, the co-processor generator combines the
updated binary and netlists into a bitstream that configures the
microprocessor and co-processor.

III. LOOP REROLLING
Loop unrolling is a common optimization that a software

compiler uses to reduce branch penalties and increase instruction
level parallelism. Loop unrolling can cause several problems for
binary-level synthesis approaches. One potential problem is that
loop unrolling can greatly reduce the usefulness of many profilers.
Most profilers specifically determine the execution time of loops by
monitoring branch instructions that have a small, negative target. If
a loop is completely unrolled, then these branch instructions do not
appear in the software binary. This problem may result in profiling
information that does not include some of the most critical regions
of an application.

Loop unrolling causes additional problems for binary-level
synthesis by resulting in large control/data flow graphs. Most
synthesis algorithms have super-linear complexity, which implies
that the large graphs created from unrolling can greatly increase the
execution time and memory requirements of binary-level synthesis.
For traditional synthesis, increased time and memory are not serious
problems, but for binary-level synthesis, this increase eliminates the
possibility of performing binary-level synthesis dynamically [11].
Even in the case where a synthesis tool would unroll the loops, the
amount of unrolling applied by the software compiler is unlikely to
match the amount of unrolling that would be applied by the
synthesis tool.

Also, previous binary synthesis techniques [12] have shown that
recovering loop structure is important for utilizing custom memory
structures, such as smart buffers [7], to support data reuse within the
FPGA. Smart buffers utilize memory access patterns to determine
an efficient structure for caching data needed by the FPGA,
effectively increasing the memory bandwidth, which is commonly
the main performance bottleneck [7]. When a loop is unrolled, the
memory access patterns are no longer explicit. To be able to utilize
smart buffers, loop rerolling recovers the memory access patterns
by recreating the loop structure.

Loop Rerolling

Profiling Hw/Sw
estimation

Co-Processor
Determination

Sw Executable (Binary)

Updated
Binaries

Hw Netlists

Hw Regions

Synthesis

Sw Regions

Binary
Updater

Any Compiler

Micro-
Processor

FPGA

Binary

Decompilation-Based
Co-Processor Generator

Libraries,
Assembly, and
Object Code

Any High-level
Language

Bitstream

Co-Processor

Control Structure and Array Recovery

Strength Promotion

Figure 2: Loop rerolling using suffix trees.

Ld => A
Add => B
St => C
Mov => D

Add r3, r3, 1 => B
Ld r0, b(0) => A
Add r1, r0, 1 => B
St a(0), r1 => C
Ld r0, b(1) => A
Add r1, r0, 1 => B
St a(1), r1 => C
Mov r4, r3 => D

x= x + 1
a[0] = b[0]+1
a[1] = b[1]+1
y = x

Add r3, r3, 1
Ld r0, b(0)
Add r1, r0, 1
St a(0), r1
Ld r0, b(1)
Add r1, r0, 1
St a(1), r1
Mov r4, r3

x = x + 1;
for (i=0; i < 2; i++)
 a[i]=b[i]+1;
y=x;

a) b)

Loop unrolling is also problematic for approaches that utilize
specialized loop buffers such as a loop cache or filter cache [6],
which store small loops to prevent fetching from a larger, higher-
power cache or memory. Unrolled loops are likely too large to fit in
these buffers, even if the software compiler only partially unrolls
the loop.

To fix the problems caused by loop unrolling in binary-level
synthesis, we perform loop rerolling. Whereas loop unrolling
replicates a loop body to increase the number of sequential
instructions within a software binary, loop rerolling detects these
replicated loop bodies and recreates a loop that is similar to the loop
in the original high-level source code. Note that loop rerolling will
never decrease performance of synthesized hardware because the
synthesis tool can always unroll the loops again. Although rerolling
and then unrolling loops may seem redundant, this process is
required to eliminate the problems caused by loop unrolling in a
software binary.

Our loop rerolling technique consists of two steps. The first
step of loop rerolling consists of analyzing the software binary and
identifying all unrolled loops. The second step of loop rerolling
consists of compacting the unrolled loops that were identified in the
previous step into a more concise representation consisting of a
single loop body that is equivalent to the behavior of all the unrolled
iterations.

A. Identifying unrolled loops
Identifying an unrolled loop in a software binary is similar to

the problem of finding consecutively repeated sequences of
instructions in the software binary. Each repeated sequence
represents a single iteration of the unrolled loop. Note that in the
case of aggressive compiler optimizations, an unrolled loop may not
contain the same instructions in all iterations. We discuss this
potential problem in section III.C.

The process of identifying unrolled loops is illustrated in Figure
2. The high-level function we use for this example is shown in
Figure 2 (a). This function consists of a simple for loop and two
separate expressions. During software compilation, the compiler
unrolls the loop into a representation similar to the code shown in
Figure 2 (b) by applying constant propogation to remove the
induction variable. Figure 2 (c) shows the code after the compiler
converts the function into assembly instructions. The compiler
converts each iteration of the loop into a series of three instructions,

consisting of a load instruction, an add instruction, and a store
instruction. Figure 2 (d) converts the entire assembly region into a
string representation by mapping each assembly instruction to a
character from an alphabet the size of the instruction set. Using the
string representation simplifies the search for consecutively
repeated sequences of instructions. Figure 2 (e) shows the resulting
string representation of the function from Figure 2 (a).

After obtaining the string representation of the function, we
identify all unrolled loops by determining all the repeated substrings
that occur at consecutive locations in the string. The time and space
complexity of exhaustively determining all substrings is O(n2). To
more efficiently determine repeated substrings, we use suffix trees.

A suffix tree is a Patricia tree that stores all possible suffixes of
a string. Each path from the root node to a leaf node represents a
unique suffix. Suffix trees allow for efficient pattern matching and
can also be constructed in linear time [15]. Figure 2 (f) shows the
corresponding suffix tree for the string in Figure 2 (e). Although
substrings are shown on the edges, we also refer to nodes as
representing the substring specified by the node’s incoming edge.

Every internal node of a suffix tree represents a substring that is
repeated at some point in the original string. We determine
consecutively occurring substrings by traversing the suffix tree and
checking adjacent nodes for the same substring. If two or more
adjacent nodes represent the same repeated substring, then the
concatenation of all these substrings represents an unrolled loop.

Once we have identified an unrolled loop, we determine the
total number of iterations from the number of matching internal
nodes. Figure 2 (f) highlights the two iterations of the loop from
Figure 2 (a). We determine the number of instructions per iteration
from the string length of each internal node. We determine the
beginning and ending address boundaries of the loop by annotating
each node of the suffix tree with instruction addresses from the
original function.

The previous steps identify regions that are potentially an
unrolled loop. Many of these regions may simply be instructions
that happened to repeat with some regularity. To eliminate non-
loop regions from consideration, we perform definition-use and use-
definition analysis on each iteration of the potential unrolled loop.
If the definition-use and use-definition chains are the same for each
iteration, then the region is likely to be an unrolled loop. After
definition-use analysis, we must also verify that there are no jump

abc c d b d) c)

abcabcd c abcd d abcd d

d abcd
Detected unrolled loop
2 unrolled iterations
Each iteration = abc

BABCABCD

f)

e)

instructions into the middle of the potential loop. If such a jump
exists, then the region is not an unrolled loop.

The example shown in Figure 2 assumed that the loop was
completely unrolled. In many cases, compilers only partially unroll
a loop. To handle partially unrolled loops, we apply our unrolled
loop identification technique to every loop found during the control
structure recovery step shown in Figure 1.

Although a compiler will typically only unroll the innermost
loop of a nested loop structure, we can identify the nesting order of
unrolled loops in a straightforward manner after we have
determined each individual unrolled loop. To determine the nesting
order, we examine the address boundaries of each loop. If a loop is
completely contained within another loop, then the loop is an inner
loop. The control structure recovery step in Figure 1 recovers the
nesting order of partially unrolled loops.

B. Compacting loop iterations
After identifying an unrolled loop, we can compact the unrolled

iterations into a smaller loop body that closely represents the loop in
the original high-level description.

To compact unrolled loop iterations we first determine the
relationship of constants in each unrolled iteration. In most cases of
unrolling, a loop induction variable becomes a constant with value
equal to the current unrolled iteration. After performing constant
propogation, the compiler converts many of the original expressions
into constants. In order to reroll a loop, we must determine the
original expressions. We limit this determination to constants that
have a linear relationship with a loop induction variable. We could
detect other relationships, but the linear relationship allows us to
detect the majority of loops. For nested loops, we must also detect
row-major ordering calculations. We detect such calculations using
techniques from [12]. Although these techniques do not guarantee
the detection of row-major-ordering, we have successfully detected
row-major-ordering calculation for all of our tested examples.

For completely unrolled loops, once we have determined the
relationships of constants, we create an induction variable for the
rerolled loop and replace each constant value with an expression
that calculates the constant value using the induction variable. We
can then create a compacted loop body that replaces all of the
unrolled iterations.

For partially unrolled loops, we must determine the existing
induction variables and any calculations that use the induction
variables. We can then eliminate the expressions that are part of
unrolled iterations. Finally, we adjust either the exit condition or
the code that updates the induction variables. If the induction
variable is changed for each iteration of the unrolled loop, then we
adjust the exit condition. If the exit condition is modified for the
unrolled loop, then we change the amount that the induction
variable is updated by.

C. Limitations
A limitation of our loop rerolling technique is that in some

situations, not all iterations of an unrolled loop will contain the
same instructions. Different iterations of an unrolled loop
commonly contain different instructions after the compiler applies
constant propogation on the loop’s induction variables. The first
iteration of a loop will typically have different instructions because
the compiler will be able to perform optimizations based on the
induction variable having a value of zero. For example, if the code
performs a multiplication using the induction variable, the compiler
might replace a multiplication instruction with a move using an

immediate value of zero. In our experiments, typically only the first
two iterations of an unrolled loop use different instructions. In
cases where the initial iterations are different, loop rerolling rerolls
the remainder of the unrolled iterations.

IV. STRENGTH PROMOTION
Strength reduction is the process of converting an expensive

operation into a series of less expensive operations. The most
common use of strength reduction is the conversion of
multiplications by a constant value into equivalent shifts. For
example: a*8 could be converted to a << 3, thereby eliminating the
expensive multiplication. Strength reduction is more beneficial
when the operation being reduced has a constant input that is a
power of two. If the constant is not a power of two then add
operations are required. For example: a*11 would be converted to
(a << 3) + (a << 1) + a.

Synthesis tools need to analyze the available hardware
resources before performing strength reduction. In most cases, a
synthesis tool performs strength reduction because multipliers
typically have long latencies, resulting in a slower clock frequency,
and require large amounts of area. Therefore, a series of shift and
add operations is likely to be faster than a multiply operation.
However, there are situations where using shift/add operations
results in decreased performance. For resource-constrained
synthesis, the extra add operations created from strength reduction
may exhaust all existing adder resources, causing the cycle latency
from scheduling to be increased. In a situation where adders are
exhausted and multipliers are available, the synthesis tool should
not perform strength reduction, and instead should use the available
multipliers to increase parallelism. Even if the synthesis being
performed is not resource-constrained, strength reduction is not
always beneficial. Strength reduction may greatly increase the area
by creating unnecessary adders, resulting in hardware that will not
fit within the targeted FPGA. In addition, the clock speed may
suffer due to the difficulty of routing large FPGA designs. These
issues with strength reduction imply that a synthesis tool must
decide to perform strength reduction based on the available
resources of the target platform and the current size of the design.

A drawback to previous binary-level synthesis approaches is
that the software compiler forces the synthesis tool into a particular
implementation, whereas giving the synthesis tool a choice would
result in better hardware. This problem occurs because the software
compiler makes optimization decisions based on the architecture of
the target microprocessor. However, the microprocessor’s
architecture may be completely different from the target
architecture of the synthesis tool.

To give the synthesis tool the choice of whether or not to
perform strength reduction, a binary-level synthesis tool must first
detect occurrences of strength reduction and then “promote” these
operations back to the more expensive representation. We refer to
this process as strength promotion. Note that strength promotion
will never hurt the performance of an application because the
synthesis tool can always convert the promoted operation back into
the reduced form. Strength promotion may even promote shift/add
operations that were never multiplications in the original code. This
type of promotion may actually improve performance even further
by giving the synthesis tool more options for synthesis.

Figure 3 illustrates the benefits of strength promotion for the
binary-level synthesis of a 4-tap FIR (finite-impulse-response)
filter, assuming resource constraints of 2 adders and 2 multipliers.
Figure 3 (a) shows the unoptimized data flow graph for the FIR
filter. Figure 3 (b) shows the data flow graph for the filter after

Figure 3: Several implementations of a FIR filter, assuming resource constraints of 2 adders and 2 multipliers. a) an unoptimized FIR filter, b) a FIR filter with
strength-reduced multiplications, c) a FIR filter after “promoting” 2 strength-reduced multiplications.

a) B[i] 10 B[i+1] 18 B[i+2] 34 B[i+3] 66

software compilation, and the corresponding scheduling during
synthesis. In this example, the software compiler has performed
strength reduction on the multiplication operations, converting them
to equivalent shift/add operations. Figure 3 (c) shows the data flow
graph and corresponding schedule for the same data flow graph as
shown in Figure 3 (b) after promoting two of the shift/add
operations back to multiplications. Note that after performing
strength promotion, we are able to achieve a scheduling that is one
cycle faster. The data flow graph in Figure 3 (b) requires an extra
cycle because the four add operations at the top level of the data
flow graph require two separate cycles, due to the availability of
only two adders. The strength-promoted graph in Figure 3 (c) is
able to schedule these corresponding operations to the same cycle
because of the availability of the two multipliers.

We perform strength promotion by traversing the data flow
graph in search of subgraphs that match the pattern “input <<
const_amount” or “input*const_amount1 + input*const_amount2”.
These patterns are common implementations of strength-reduced
multiplications. When these patterns are found, the corresponding
subgraphs are replaced with semantically equivalent subgraphs for
the expressions “input * 2const_amount” or “(const_amount1 +
const_amount2) * input”, respectively. The algorithm continues in
this manner until no more changes can be made to the data flow
graph.

V. EXPERIMENTAL RESULTS

A. Experimental setup
In our experiments, we use benchmarks from Powerstone [9],

EEMBC, and our own benchmark suite. The Powerstone examples
include: crc (cyclic redundancy check), des (data encryption
standard), summin (handwriting recognition), and brev (bit
reversal). The EEMBC examples include: BITMNP01 (bit
manipulation), IDCTRN01 (inverse discrete cosine transform),
PNTRCH01 (pointer chasing), AIFIRF01 (FIR filter), AIFFTR01
(fast fourier transform), rotate (90 degree image rotation), and
IIRFLT01 (IIR filter). For our own benchmark suite, we chose

examples not provided by other suites. Our benchmarks include a
5-tap FIR filter, a beamformer, and a viterbi decoder. All examples
were compiled with gcc using –O1 optimizations. In section D, we
also tested binaries generated using –O3 optimizations.

Our target architecture is a hypothetical platform consisting of a
microprocessor and FPGA on a single chip. Although a wide
variety of microprocessor/FPGA platforms are commercially
available, such as the Triscend E5/A7, the Xilinx Virtex II Pro, and
the Altera Excalibur, we use a hypothetical platform to more easily
evaluate the benefits of our approach on different platforms. To
evaluate a wide variety of different potential platforms, we include
experiments in section D for three different microprocessors,
including a MIPS, ARM, and MicroBlaze. We use the MicroBlaze
to show that our approach can also be applied to platforms with
only an FPGA. The FPGA used in all experiments is the Xilinx
Virtex II Pro. The communication model used by the
microprocessor and FPGA consists of shared memory and memory-
mapped registers within the FPGA. The microprocessor can
communicate with the FPGA by writing/reading the memory-
mapped registers. The communication model allows the FPGA to
read from memory either through the data cache or by using a
DMA. The communication model maintains data coherency by
requiring mutually exclusive execution for the microprocessor and
FPGA. When writing to memory, the FPGA writes through the
cache to prevent the microprocessor from reading stale values after
resuming execution.

To generate hardware for each example, we developed binary-
level tools that implement the approach shown in section II. The
tools consist of approximately 30,000 lines of C code. The output
of the tools is register transfer level VHDL code. We then generate
a netlist for the FPGA using Xilinx ISE.

We determine the performance of the custom hardware co-
processor, including the communication between the
microprocessor and co-processor, using VHDL simulation. We
determine hardware clock frequency from Xilinx ISE after
placement and routing.

*

+
++

<< <<

B[i+1] 4 B[i+1] 1

+
<< <<

B[i] 3 B[i] 1

+
<< <<

B[i+2] 5 B[i+2] 1

+
<< <<

B[i+3] 6 B[i+3] 1

+

* * *
++

+

A[i]

A[i]

+
<< <<

B[i+3] 6 B[i+3] 1

+
<< <<

B[i+2] 5 B[i+2] 1

*

B[i] 10

*

B[i+1]

+

18

+
+

A[i]

Cycle 1
Cycle 3

Cycle 4

Cycle 2

Cycle 1

Cycle 2
Cycle 3

Total Cycles = 4

b)

Promoted Operations c)

Total Cycles = 3

B. Loop rerolling
Table 1 shows profiling results, both with and without rerolling,

assuming that the software compiler unrolled the most frequent loop
in the application. %Time is the percentage of execution time,
determined by the profiler, that was spent in the most frequent loop.
Speedup is the corresponding ideal speedup from implementing this
loop in hardware, assuming the hardware executes in zero time.
The No Rerolling columns represent profiling done without
rerolling. The Rerolling columns represent profiling results after
we performed rerolling.

Without loop rerolling, the profiler detects that the most
frequent loop uses an average of 10.8% of execution time, resulting
in a maximum possible speedup of 1.1. On average, the profiling
results with loop rerolling show that the most frequent loop is
actually responsible for 80.8% of execution time, corresponding to
an ideal speedup of 13.1. The large difference in results is caused
by the failure of the profiler to identify the most frequent loop after
that loop is unrolled. Therefore, without rerolling, the profiler
actually detects the second most frequent loop as being the most
frequent loop. Of course, most profilers also provide percentages of
execution time for functions. In this case, the execution time for an
unrolled loop would be shown as part of a function. However, this
function might contain other regions that are not appropriate for
hardware implementation, which makes loop rerolling necessary to
obtain efficient hardware. For all of these examples, the most
frequent loop that we unrolled is likely to be unrolled by any
compiler because each loop has a small loop body and small
constant bounds.

Table 2 compares the synthesized hardware performance of the
most frequent loop of each example, both with and without loop
rerolling. CyclesNoRerolling is the number of cycles required to
execute the synthesized hardware for the unrolled loop without
rerolling. CyclesRerolling is the number of cycles required to execute
the synthesized hardware after we have performed loop rerolling on
the unrolled loop. Speedup is the performance improvement of the
hardware synthesized from a rerolled loop compared the
performance of the hardware synthesized without rerolling. We
compare performances in terms of clock cycles because for all
examples, Xilinx ISE achieved the same clock frequency for both
the unrolled and rerolled loop representations. Loop rerolling
resulted in an average speedup of 1.6. For the beamformer
example, loop rerolling resulted in a large speedup of 2.9. All of
the performance improvements were the result of using smart
buffers [7] to reuse data within the FPGA, which was made possible
by using loop rerolling to recover the loop structure. For several
examples, loop rerolling achieved no speedup. These examples
exhibited no potential data reuse, which eliminated the possibility of
using smart buffers. If we had utilized other loop-based synthesis
optimizations, speedups from loop rerolling would likely be much

greater. The area for both the unrolled and rerolled examples was
almost identical. The reason for the similar area requirements is
that the binary-level synthesis tool unrolled all the loops that we
rerolled.

Table 1: Profiling results showing the percentage of execution time
spent in the most frequent loop of each example both without and with

loop rerolling.

Example %Time Speedup %Time Speedup
AIFIRF01 4.9% 1.1 91.2% 11.4
AIFFTR01 10.9% 1.1 55.4% 2.2
rotate 1.2% 1.0 97.6% 41.7
bitmnp01 35.2% 1.5 53.7% 2.2
IIRFLT01 9.7% 1.1 83.6% 6.1
beamformer 5.2% 1.1 94.7% 18.9
viterbi 8.4% 1.1 89.2% 9.3
Average 10.8% 1.1 80.8% 13.1

No Rerolling Rerolling

Table 2: Performance improvements when using loop rerolling.

Example CyclesNoRerolling CyclesRerolling Speedup
AIFIRF01 28326358 18884239 1.5
AIFFTR01 27720000 27720000 1.0
rotate 112000 112000 1.0
bitmnp01 23619014 23619014 1.0
IIRFLT01 2100000 1020000 2.1
beamformer 1251000 435000 2.9
viterbi 1460000 980000 1.5
Average: 12084053 10395750 1.6

C. Strength promotion
In our experiments for strength promotion, we synthesized a 5-

tap FIR filter under a variety of resource constraints. By using
different resource constraints, we were able to see the effects of
strength promotion on a variety of different configurable
architectures. We present results with constraints on the number of
adders and multipliers, ranging from 5 to 20.

In addition to using multiple resource constraints, we also
present results using different constant values as inputs to the
multiplications. As a constant moves farther from a power of two,
more adders are required for strength reduction, and performing
strength promotion becomes more important. We present results
using constants that require 0, 1, 2, or 3 adders to perform a
strength-reduced multiplication.

Table 3 illustrates the benefits of performing strength
promotion during resource-constrained binary-level synthesis.
Adders specifies the constraint on the number of adders when
performing synthesis. Multipliers specifies the constraint on the
number of multipliers when performing synthesis. AddersSR
specifies the amount of adders that are required to perform the
strength-reduced multiplication for the current example. We vary
this value by changing the constants used as inputs to the
multipliers. Clock specifies the clock frequency in megahertz of the
synthesized hardware, obtained after placement and routing.
Latency is the number of clock cycles needed for the synthesized
hardware to execute to completion. Time is the actual execution
time of the synthesized hardware. LUTs is the number of lookup
tables used within the FPGA. Speedup is the corresponding
speedup achieved when using strength promotion.

Using strength promotion greatly reduced the latency of the
hardware to an average of 16 cycles, compared to almost 31 cycles
without strength promotion. The average clock frequency when
using strength promotion was 192 MHz compared to 226 MHz
when not performing strength promotion. The clock frequency is
slower for strength promotion because the hardware generated
using strength promotion utilizes multipliers, which typically have
much longer latencies than adders. However, overall execution
time of the hardware generated using strength promotion was
approximately 1.5 times faster. In general, the hardware using
strength promotion achieves a larger speedup as the number of
adders required by strength reduction increases. When the constant
values for multiplication were powers of two (AddersSR = 0), both
sets of hardware had identical performance because strength
promotion converted the strength-reduced code back into
multiplication operations, which was strength-reduced again by the
synthesis tool after the synthesis tool determined that there would
be no benefit from using multipliers. In terms of overall FPGA

Table 3: Comparison of resource-constrained binary-level synthesis of a 5-tap FIR filter without and with strength promotion, for a variety of different
constant inputs.

Adders Multipliers Adders Clock Latency Time LUTs Clock Latency Time LUTs Speedup
No Strength Promotion Strength Promotion

Ta

resou
requi
multi
simil
const

I
perfo
wher
terms
1.08
exam
resul
reduc
30 m
wher
Note
the h
clock
adder
amou
resul

D.
i
T

gener
prom
MIPS
with
SR

5 5 0 228 20 8.77 2912 228 20 8.77 2912 1.00
10 10 0 234 12 5.13 2930 234 12 5.13 2930 1.00
15 15 0 236 8 3.39 3376 236 8 3.39 3376 1.00
20 20 0 236 8 3.39 3376 236 8 3.39 3376 1.00
5 5 1 221 47 21.27 2840 176 29 16.48 2838 1.29

10 10 1 221 25 11.31 2872 178 17 9.55 2860 1.18
15 15 1 225 18 8.00 2898 180 13 7.22 2880 1.11
20 20 1 229 14 6.11 2924 181 11 6.08 2912 1.01
5 5 2 225 68 30.22 2856 176 29 16.48 2838 1.83

10 10 2 225 36 16.00 2890 178 17 9.55 2860 1.68
15 15 2 227 25 11.01 2924 180 13 7.22 2880 1.52
20 20 2 221 20 9.05 2958 181 11 6.08 2912 1.49
5 5 3 221 87 39.37 2840 176 29 16.48 2838 2.39

10 10 3 221 46 20.81 2874 178 17 9.55 2860 2.18
15 15 3 221 32 14.48 2908 180 13 7.22 2880 2.00
20 20 3 221 25 11.31 2936 181 11 6.08 2912 1.86

Average: 226 31 13.73 2957 192 16 8.67 2942 1.47

ble 4: Comparison of latency-constrained binary-level synthesis of a 5-tap FIR filter without and with strength promotion, for a variety of different
constant inputs.

rces, the hardware generated using strength promotion
red more area because this hardware utilized the dedicated
pliers. In terms of LUTs, both approaches required very
ar area, which is to be expected due to the same adder
raints.

n addition to the resource-constrained experiments, we also
rmed latency-constrained experiments, shown in Table 4,
e we attempted to achieve the smallest possible latency in
 of clock cycles. Strength promotion achieved a speedup of
and reduced the number of LUTs from 3466 to 3106. For the
ples where strength reduction required zero or one adders, the
ts were identical because the synthesis tool reapplied strength
tion on the promoted operations. Strength promotion required
ultipliers to achieve a latency of four cycles for the examples
e more than one adder was necessary for strength reduction.
 that in contrast to the resource-constrained synthesis results,
ardware using strength promotion was able to achieve a faster
. The reason for the faster clock is that because the number of
s wasn’t constrained, the strength-reduced code used a larger
nt of configurable logic blocks, making routing more difficult,

ting in a longer critical path.

Results for different optimization levels and different
nstruction sets
o show the robustness of our binary-level co-processor
ation approach when using loop rerolling and strength
otion, we tested examples on three different instruction sets:
, ARM, and MicroBlaze. We also used binaries generated
two different levels of compiler optimizations: –O1 and –O3.

The –O1 flag informs gcc to apply a low-level of optimizations.
The –O3 flag informs gcc to apply aggressive optimizations.

To evaluate software performance of each application we use an
instruction set simulator for each microprocessor. For MIPS and
ARM, we use versions of SimpleScalar [1] ported to these
instructions sets. The MIPS results are actually based on the PISA
instruction set, which is a superset of the MIPS instruction set. We
determine MicroBlaze software performance using the simulator in
Xilinx Platform Studio. For all experiments, the MIPS and ARM
use a clock frequency of 200 MHz and the MicroBlaze uses a 150
MHz clock.

Table 5 shows execution times and speedups of our approach
for a MIPS, ARM, and MicroBlaze using binaries generated using
the –O1 and –O3 optimization levels. Sw is the execution time of
the example when running in software on the specified
microprocessor. Hw/Sw is the execution time of the example after
applying our approach to generate a custom co-processor to
speedup the software. All execution times are normalized to the
execution time of software compiled with –O1 optimizations. S is
the speedup from using the co-processor, compared to software
compiled with –O1 optimizations. Our approach achieved
significant speedups for all three microprocessors, averaging over
an order of magnitude on each instruction set. In addition, note that
in most cases when using aggressive optimizations (–O3), the
resulting execution time is similar or better than when performed on
binaries with less optimization. These results imply that when
using loop rerolling and strength promotion, aggressive software
compiler optimizations may not negatively impact binary synthesis.
Several of the examples did experience a slight increase in
execution time when using aggressive optimizations. However, the

AddersSR Clock Latency Time LUTs Clock Latency Time LUTs Speedup

0 223 4 1.79 2940 223 4 1.79 2940 1.00
1 169 4 2.37 3432 169 4 2.37 3432 1.00
2 132 4 3.03 3556 153 4 2.61 3026 1.16
3 131 4 3.05 3936 153 4 2.61 3026 1.17

Average: 164 4 2.56 3466 175 4 2.35 3106 1.08

No Strength Promotion Strength Promotion

increase is typically insignificant because large speedups were still
obtained compared to software execution. Note that for the ARM
experiments, the performance of software was actually slower in
many cases when using –O3 optimizations. However, despite the
slower software the performance of the co-processor system
generated from –O3 was similar to –O1. The co-processor achieved
the largest speedups for the MicroBlaze, mainly due to the fact that
the MicroBlaze is a slower microprocessor with a higher CPI and
slower clock. The geometric mean is included in the table because
of several outliers in terms of speedup. We omit results for summin
and PNTRCH01 on the MicroBlaze because we could not get them
to simulate correctly in software.

Table 5: A comparison of execution times for software and software with custom co-processor for several microprocessors and several levels of optimization.
(Sw is the execution time of software execution. Hw/Sw is the execution time with a customized co-processor, and S is the speedup when using the co-processor

compared to –O1 software. All execution times are normalized to the execution time of –O1 software.)

Example Sw Hw/Sw S Sw Hw/Sw S Sw Hw/Sw S Sw Hw/Sw S Sw Hw/Sw S Sw Hw/Sw S
FIR Filter 1.000 0.089 11.2 0.923 0.070 14.2 1.000 0.085 11.8 0.999 0.084 11.9 1.000 0.040 25.3 0.549 0.015 68.4
Beamformer 1.000 0.074 13.5 0.853 0.071 14.0 1.000 0.149 6.7 1.018 0.172 5.8 1.000 0.031 32.3 0.647 0.032 31.4
Viterbi 1.000 0.136 7.4 0.891 0.152 6.6 1.000 0.131 7.6 0.957 0.126 7.9 1.000 0.060 16.7 0.765 0.017 59.0
Crc 1.000 0.030 33.8 0.967 0.019 53.6 1.000 0.020 49.5 1.105 0.007 134.8 1.000 0.012 80.3 0.995 0.011 88.6
Des 1.000 0.275 3.6 0.990 0.310 3.2 1.000 0.360 2.8 1.028 0.401 2.5 1.000 0.205 4.9 0.998 0.218 4.6
Summin 1.000 0.111 9.0 0.899 0.145 6.9 1.000 0.183 5.5 0.684 0.128 7.8 n/a n/a n/a n/a n/a n/a
Brev 1.000 0.120 8.3 0.976 0.129 7.7 1.000 0.156 6.4 1.476 0.153 6.5 1.000 0.011 90.2 0.951 0.009 106.5
BITMNP01 1.000 0.114 8.8 0.985 0.113 8.8 1.000 0.188 5.3 0.988 0.186 5.4 1.000 0.112 8.9 0.999 0.115 8.7
IDCTRN01 1.000 0.323 3.1 0.975 0.323 3.1 1.000 0.230 4.4 1.005 0.230 4.3 1.000 0.258 3.9 0.885 0.150 6.7
PNTRCH01 1.000 0.196 5.1 0.945 0.196 5.1 1.000 0.325 3.1 0.963 0.313 3.2 n/a n/a n/a n/a n/a n/a
Average: 1.000 0.147 10.4 0.940 0.153 12.3 1.000 0.183 10.3 1.022 0.180 19.0 1.000 0.091 32.8 0.849 0.071 46.7
Geo.Mean: 1.000 0.124 8.4 0.939 0.122 8.7 1.000 0.150 7.0 1.008 0.134 8.3 1.000 0.053 19.0 0.831 0.037 27.4

O1 O3
MIPS

O1 O1 O3
ARM MIcroBlaze

O3

REFERENCES
[1] D. Burger and T.M. Austin. The SimpleScalar Tool Set, Version 2.0.

University of Wisconsin-Madison Computer Sciences Department
Technical Report #1342. June, 1997.

[2] C. Cifuentes, M. Van Emmerik, D.Ung, D. Simon, T. Waddington.
Preliminary Experiences with the Use of the UQBT Binary
Translation Framework. Proceedings of the Workshop on Binary
Translation, Newport Beach, USA, October 1999.

[3] CriticalBlue. http://www.criticalblue.com.
[4] J. Fisher. Customized Instruction-Sets for Embedded Processors.

Design Automation Conference (DAC) 1999. pg. 253-257.
The average area required for the co-processors generated from

the MIPS binaries was 26,109 gates for the –O1 binaries and 33,574
for the –O3 binaries. For the ARM, 34,553 gates were required for
the –O1 binaries and 34,712 were required for the –O3 binaries.
The MicroBlaze co-processor required similar area of 34,791 gates
for the –O1 binaries and 38,458 gates for the –O3 binaries. The
ARM and MicroBlaze co-processors required more area because of
unneeded instruction side effects that our decompilation and
synthesis tools were unable to optimize away. The average clock
frequencies for the MIPS co-processors were 121 MHz and 112
MHz, for –O1 and –O3. For the ARM co-processors, the average
clock frequency for both –O1 and –O3 was 111 MHz. For the
MicroBlaze, both –O1 and –O3 co-processors had an average clock
frequency of 121 MHz.

[5] R. Gonzalez, R.E. Xtensa: A Configurable and Extensible Processor.
IEEE Micro, pp. 60-70, 2000.

[6] A. Gordon-Ross, S. Cotterell, F. Vahid. Exploiting Fixed Programs in
Embedded Systems: A Loop Cache Example. IEEE Computer
Architecture Letters, Vol I, January 2002.

[7] Z. Guo, A. B. Buyukkurt and W. Najjar. Input Data Reuse In
Compiling Window Operations Onto Reconfigurable Hardware, Proc.
ACM Symp. On Languages, Compilers and Tools for Embedded
Systems (LCTES 2004), Washington DC, June 2004.

[8] K. Kucukcakar. An ASIP Design Methodology for Embedded
Systems. International Symposium on Hardware/Software Codesign,
May 1999.

[9] A. Malik, B. Moyer., and D. Cermak. 2000. A low power unified
cache architecture providing power and performance flexibility. In
Proceedings of the International Symposium on Low Power
Electronics and Design.

VI. CONCLUSIONS
Previous binary-level co-processor generation techniques have

achieved results competitive with high-level compiler-based
approaches. However, no previous technique has accounted for
potential software compiler optimizations that may obscure the
binary, making decompilation more difficult. In this paper, we
improved previous binary-level co-processor generation techniques
by introducing two new decompilation techniques: strength
promotion and loop rerolling. These new techniques, used in
conjunction with existing decompilation methods, significantly
improved the quality of the synthesized co-processor when using a
binary generated with aggressive software compiler optimizations.
Also, whereas previous approaches have been limited to a particular
microprocessor, we show the robustness of a binary-level co-
processor generation by synthesizing efficient co-processors for a
MIPS, ARM, and MicroBlaze microprocessor, using binaries
generated with two different optimization levels.

[10] G. Mittal, D. Zaretsky, X. Tang and P. Banerjee. Automatic
Translation of Software Binaries onto FPGAs. Design Automation
Conference (DAC) 2004. June 2004.

[11] G. Stitt, R. Lysecky, F. Vahid. Dynamic Hardware/Software
Partitioning: A First Approach. IEEE/ACM 40th Design Automation
Conference (DAC), June 2003.

[12] G. Stitt, Z. Guo, F. Vahid, W. Najjar. Techniques for Synthesizing
Binaries to an Advanced Register/Memory Structure International
Symposium on Field Programmable Gate Arrays (FPGA) 2005. pp.
118-124.

[13] G. Stitt and F. Vahid. Hardware/Software Partitioning of Software
Binaries. IEEE/ACM International Conference on Computer Aided
Design, November 2002.

[14] Stretch, Inc. http://www.stretchinc.com.
[15] E. Ukkonen. On-line construction of suffix trees. Algorithmica,

14(3):249-260, September 1995.
[16] XPRES Compiler. http://www.tensilica.com/html/xpres.html.

	Introduction
	Binary-level Co-processor Generation
	Loop Rerolling
	Identifying unrolled loops
	Compacting loop iterations
	Limitations

	Strength Promotion
	Experimental Results
	Experimental setup
	Loop rerolling
	Strength promotion
	Results for different optimization levels and different inst

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

