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Abstract—Existing ASIPs (application-specific instruction-set 
processors) and compiler-based co-processor synthesis 
approaches meet the increasing performance requirements of 
embedded applications while consuming less power than high-
performance gigahertz microprocessors.  However, existing 
approaches place restrictions on software languages and 
compilers.  Binary-level co-processor generation has previously 
been proposed as a complementary approach to reduce impact 
on tool restrictions, supporting all languages and compilers, at 
the cost of some decrease in performance.  In a binary-level 
approach, decompilation recovers much of the high-level 
information, like loops and arrays, needed for effective 
synthesis, and in many cases yields hardware similar to that of 
a compiler-based approach.  However, previous binary-level 
approaches have not considered the effects of software 
compiler optimizations on the resulting hardware.  In this 
paper, we introduce two new decompilation techniques, 
strength promotion and loop rerolling, and show that they are 
necessary to synthesize an efficient custom hardware co-
processor from a binary in the presence of software compiler 
optimizations.  In addition, unlike previous approaches, we 
show the robustness of binary-level co-processor generation by 
achieving order of magnitude speedups for binaries generated 
for three different instruction sets, MIPS, ARM, and 
MicroBlaze, using two different levels of compiler 
optimizations. 

I. INTRODUCTION 
In order to meet the increasingly large performance and energy 

requirements of embedded applications, designers often partition 
critical software regions into custom hardware.  The use of ASIPs 
(application-specific instruction processors) [4][8] is a common 
approach for partitioning, which tunes the instruction set of a 
microprocessor to a particular application.  Although ASIPs achieve 
large performance benefits, the modification of a standard 
instruction set eliminates the possibility of using standard 
compilers, profilers, and simulators.  Tensilica's Xtensa processor 
[5] is an ASIP approach that causes less impact of tool flow by 
automatically generating software development tools for the 
modified instruction set, while achieving good performance, 
including a speedup of 6.5 compared to a MIPS processor on 
EEMBC benchmarks.  Recently, Tensilica introduced the XPRES 
compiler [16], which takes C/C++ code and automatically generates 

a customized microprocessor, thus eliminating the need for a 
designer to define new instructions manually.  Stretch [14] has 
introduced a similar approach that combines the Xtensa processor 
with the Stretch Instruction Set Extension Fabric (ISEF), a 
specialized configurable logic fabric that designers can use to 
integrate new instructions into the Xtensa pipeline without having 
to fabricate an application-specific integrated circuit.   

Other partitioning approaches have reduced the impact on tool 
flow by generating a co-processor, instead of modifying the 
instruction set.  Critical Blue [3] generates a very-large instruction-
word co-processor based on the software binary for an application.  
In this approach, the customized coprocessor executes performance 
critical regions of the application while the remaining regions of the 
application execute on a standard microprocessor.   

Although these previous approaches have lessened the impact 
of tool flow integration, the approaches still impose some 
restrictions on tool flow by requiring a specific language or specific 
compiler.  These restrictions may be undesirable to many software 
designers who have well-established compilers and developing 
environments.  In order to further reduce tool flow restrictions at the 
cost of decreased performance, we proposed hw/sw partitioning of 
software binaries [13].  That binary-level approach partitioned a 
software binary onto a platform with a microprocessor and field-
programmable gate array (FPGA), utilizing a limited form of 
decompilation to recover high-level control structures for critical 
kernels, and then synthesizing the kernels to hardware.  By 
partitioning after software compilation and linking, binary 
partitioning supports all compilers and languages and possibly even 
multiple languages linked together at the object level.  In addition, a 
binary-level approach supports the partitioning of library code and 
hand-optimized assembly, which may be important for designers 
using precompiled libraries – portions of code in embedded systems 
often come in the form of object code from third-party vendors.  
Mittal el al. [10] also utilized a similar approach for translating 
digital signal processor binaries onto an FPGA, useful for example 
to convert legacy code to an FPGA implementation.  In [12], we 
showed that by recovering arrays and memory access patterns in 
addition to control structures, binary synthesis could often create 
hardware with almost identical performance compared to hardware 
generated from a compiler-based synthesis approach. 

While binary-level partitioning may initially seem a sub-
optimal approach, dynamic binary-level translation methods do 
represent a trend in modern processors, enabling binary portability 
for execution on processors with very different architectures. In 
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Figure 1: An approach for synthesizing a custom co-processor to speedup software binaries, utilizing the new decompilation techniques loop rerolling and 
strength promotion. 

fact, recent work has even examined dynamic binary partitioning 
[11]. Nevertheless, we acknowledge that source level methods 
represent a superior technical solution in general. Binary level 
methods instead represent a means for expanding the benefits of 
partitioning-based co-processor design methods to a broader range 
of software designers.  

Previous binary-level approaches have not addressed the 
problems associated with software compiler optimizations, which 
may obscure the representation of the original code within the 
binary, making decompilation more difficult.  In this paper, we 
improve upon previous approaches by introducing two new 
decompilation techniques, strength promotion and loop rerolling, to 
eliminate the problems caused by strength reduction and loop 
unrolling.  These new decompilation techniques result in speedups 
of up to 2.9 compared to previous binary synthesis approaches.  We 
also show the robustness of binary-level co-processor generation by 
applying our techniques to two levels of compiler optimizations for 
three different instruction sets: MIPS, ARM, and MicroBlaze.  
Previous techniques have only considered a single instruction set.  

II. BINARY-LEVEL CO-PROCESSOR GENERATION 
In our approach to co-processor generation, shown in Figure 1, 

high-level software source code from any source language is first 
compiled using any software compiler to object code and linked 
with object files obtained from other means (assembly code or 
library files) to create a software binary.  The decompilation-based 
co-processor generator then analyzes the software binary and 
creates a custom co-processor to speedup critical regions of the 
binary.  The co-processor generator initially performs the new loop 
rerolling technique to convert unrolled loops within the binary into 
a non-unrolled representation.   The co-processor generator then 
utilizes existing decompilation techniques [2][12] to perform 
control structure and array recovery.  The co-processor generator 
then applies the new strength promotion technique to further 
recover high-level information needed to synthesize efficient 
hardware in the presence of aggressive compiler optimizations.  Co-
processor determination uses profiling and hw/sw estimation to 
select performance-critical regions of the application for 
implementation in the co-processor.   We then use existing 
behavioral synthesis techniques to convert all critical regions into a 

custom hardware implementation.  The binary updater modifies the 
software binary to add instructions for communication with the 
hardware.  Finally, the co-processor generator combines the 
updated binary and netlists into a bitstream that configures the 
microprocessor and co-processor.  

III. LOOP REROLLING 
Loop unrolling is a common optimization that a software 

compiler uses to reduce branch penalties and increase instruction 
level parallelism.  Loop unrolling can cause several problems for 
binary-level synthesis approaches.  One potential problem is that 
loop unrolling can greatly reduce the usefulness of many profilers.  
Most profilers specifically determine the execution time of loops by 
monitoring branch instructions that have a small, negative target.  If 
a loop is completely unrolled, then these branch instructions do not 
appear in the software binary.  This problem may result in profiling 
information that does not include some of the most critical regions 
of an application. 

Loop unrolling causes additional problems for binary-level 
synthesis by resulting in large control/data flow graphs.  Most 
synthesis algorithms have super-linear complexity, which implies 
that the large graphs created from unrolling can greatly increase the 
execution time and memory requirements of binary-level synthesis.  
For traditional synthesis, increased time and memory are not serious 
problems, but for binary-level synthesis, this increase eliminates the 
possibility of performing binary-level synthesis dynamically [11].  
Even in the case where a synthesis tool would unroll the loops, the 
amount of unrolling applied by the software compiler is unlikely to 
match the amount of unrolling that would be applied by the 
synthesis tool.   

Also, previous binary synthesis techniques [12] have shown that 
recovering loop structure is important for utilizing custom memory 
structures, such as smart buffers [7], to support data reuse within the 
FPGA.  Smart buffers utilize memory access patterns to determine 
an efficient structure for caching data needed by the FPGA, 
effectively increasing the memory bandwidth, which is commonly 
the main performance bottleneck [7].  When a loop is unrolled, the 
memory access patterns are no longer explicit.  To be able to utilize 
smart buffers, loop rerolling recovers the memory access patterns 
by recreating the loop structure.   
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Figure 2: Loop rerolling using suffix trees. 

Ld => A 
Add => B 
St => C 
Mov => D 

Add r3, r3, 1 => B 
Ld r0, b(0) => A 
Add r1, r0, 1 => B 
St a(0), r1 => C 
Ld r0, b(1) => A 
Add r1, r0, 1 => B 
St a(1), r1 => C 
Mov r4, r3 => D

x= x + 1 
a[0] = b[0]+1 
a[1] = b[1]+1 
y = x 

Add r3, r3, 1 
Ld r0, b(0) 
Add r1, r0, 1 
St a(0), r1 
Ld r0, b(1) 
Add r1, r0, 1 
St a(1), r1 
Mov r4, r3

x = x + 1; 
for (i=0; i < 2; i++)  
  a[i]=b[i]+1; 
y=x; 

a) b) 

Loop unrolling is also problematic for approaches that utilize 
specialized loop buffers such as a loop cache or filter cache [6], 
which store small loops to prevent fetching from a larger, higher-
power cache or memory.  Unrolled loops are likely too large to fit in 
these buffers, even if the software compiler only partially unrolls 
the loop. 

To fix the problems caused by loop unrolling in binary-level 
synthesis, we perform loop rerolling.  Whereas loop unrolling 
replicates a loop body to increase the number of sequential 
instructions within a software binary, loop rerolling detects these 
replicated loop bodies and recreates a loop that is similar to the loop 
in the original high-level source code.  Note that loop rerolling will 
never decrease performance of synthesized hardware because the 
synthesis tool can always unroll the loops again.  Although rerolling 
and then unrolling loops may seem redundant, this process is 
required to eliminate the problems caused by loop unrolling in a 
software binary. 

Our loop rerolling technique consists of two steps.  The first 
step of loop rerolling consists of analyzing the software binary and 
identifying all unrolled loops.  The second step of loop rerolling 
consists of compacting the unrolled loops that were identified in the 
previous step into a more concise representation consisting of a 
single loop body that is equivalent to the behavior of all the unrolled 
iterations. 

A. Identifying unrolled loops 
Identifying an unrolled loop in a software binary is similar to 

the problem of finding consecutively repeated sequences of 
instructions in the software binary.  Each repeated sequence 
represents a single iteration of the unrolled loop.  Note that in the 
case of aggressive compiler optimizations, an unrolled loop may not 
contain the same instructions in all iterations.  We discuss this 
potential problem in section III.C. 

The process of identifying unrolled loops is illustrated in Figure 
2.  The high-level function we use for this example is shown in 
Figure 2 (a).  This function consists of a simple for loop and two 
separate expressions.  During software compilation, the compiler 
unrolls the loop into a representation similar to the code shown in 
Figure 2 (b) by applying constant propogation to remove the 
induction variable.  Figure 2 (c) shows the code after the compiler 
converts the function into assembly instructions.  The compiler 
converts each iteration of the loop into a series of three instructions, 

consisting of a load instruction, an add instruction, and a store 
instruction.  Figure 2 (d) converts the entire assembly region into a 
string representation by mapping each assembly instruction to a 
character from an alphabet the size of the instruction set.  Using the 
string representation simplifies the search for consecutively 
repeated sequences of instructions.  Figure 2 (e) shows the resulting 
string representation of the function from Figure 2 (a). 

After obtaining the string representation of the function, we 
identify all unrolled loops by determining all the repeated substrings 
that occur at consecutive locations in the string.  The time and space 
complexity of exhaustively determining all substrings is O(n2).  To 
more efficiently determine repeated substrings, we use suffix trees.  

A suffix tree is a Patricia tree that stores all possible suffixes of 
a string.  Each path from the root node to a leaf node represents a 
unique suffix.  Suffix trees allow for efficient pattern matching and 
can also be constructed in linear time [15].  Figure 2 (f) shows the 
corresponding suffix tree for the string in Figure 2 (e).  Although 
substrings are shown on the edges, we also refer to nodes as 
representing the substring specified by the node’s incoming edge. 

Every internal node of a suffix tree represents a substring that is 
repeated at some point in the original string.  We determine 
consecutively occurring substrings by traversing the suffix tree and 
checking adjacent nodes for the same substring.  If two or more 
adjacent nodes represent the same repeated substring, then the 
concatenation of all these substrings represents an unrolled loop. 

Once we have identified an unrolled loop, we determine the 
total number of iterations from the number of matching internal 
nodes.  Figure 2 (f) highlights the two iterations of the loop from 
Figure 2 (a).  We determine the number of instructions per iteration 
from the string length of each internal node.  We determine the 
beginning and ending address boundaries of the loop by annotating 
each node of the suffix tree with instruction addresses from the 
original function.  

The previous steps identify regions that are potentially an 
unrolled loop.  Many of these regions may simply be instructions 
that happened to repeat with some regularity.  To eliminate non-
loop regions from consideration, we perform definition-use and use-
definition analysis on each iteration of the potential unrolled loop.  
If the definition-use and use-definition chains are the same for each 
iteration, then the region is likely to be an unrolled loop.   After 
definition-use analysis, we must also verify that there are no jump 
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instructions into the middle of the potential loop.  If such a jump 
exists, then the region is not an unrolled loop.   

The example shown in Figure 2 assumed that the loop was 
completely unrolled.  In many cases, compilers only partially unroll 
a loop.  To handle partially unrolled loops, we apply our unrolled 
loop identification technique to every loop found during the control 
structure recovery step shown in Figure 1.  

Although a compiler will typically only unroll the innermost 
loop of a nested loop structure, we can identify the nesting order of 
unrolled loops in a straightforward manner after we have 
determined each individual unrolled loop.  To determine the nesting 
order, we examine the address boundaries of each loop.  If a loop is 
completely contained within another loop, then the loop is an inner 
loop.  The control structure recovery step in Figure 1 recovers the 
nesting order of partially unrolled loops. 

B. Compacting loop iterations 
After identifying an unrolled loop, we can compact the unrolled 

iterations into a smaller loop body that closely represents the loop in 
the original high-level description.   

To compact unrolled loop iterations we first determine the 
relationship of constants in each unrolled iteration.  In most cases of 
unrolling, a loop induction variable becomes a constant with value 
equal to the current unrolled iteration.  After performing constant 
propogation, the compiler converts many of the original expressions 
into constants.  In order to reroll a loop, we must determine the 
original expressions.  We limit this determination to constants that 
have a linear relationship with a loop induction variable.  We could 
detect other relationships, but the linear relationship allows us to 
detect the majority of loops.  For nested loops, we must also detect 
row-major ordering calculations.  We detect such calculations using 
techniques from [12].  Although these techniques do not guarantee 
the detection of row-major-ordering, we have successfully detected 
row-major-ordering calculation for all of our tested examples. 

For completely unrolled loops, once we have determined the 
relationships of constants, we create an induction variable for the 
rerolled loop and replace each constant value with an expression 
that calculates the constant value using the induction variable.  We 
can then create a compacted loop body that replaces all of the 
unrolled iterations. 

For partially unrolled loops, we must determine the existing 
induction variables and any calculations that use the induction 
variables.  We can then eliminate the expressions that are part of 
unrolled iterations.  Finally, we adjust either the exit condition or 
the code that updates the induction variables.  If the induction 
variable is changed for each iteration of the unrolled loop, then we 
adjust the exit condition.  If the exit condition is modified for the 
unrolled loop, then we change the amount that the induction 
variable is updated by. 

C. Limitations 
A limitation of our loop rerolling technique is that in some 

situations, not all iterations of an unrolled loop will contain the 
same instructions.  Different iterations of an unrolled loop 
commonly contain different instructions after the compiler applies 
constant propogation on the loop’s induction variables.  The first 
iteration of a loop will typically have different instructions because 
the compiler will be able to perform optimizations based on the 
induction variable having a value of zero.  For example, if the code 
performs a multiplication using the induction variable, the compiler 
might replace a multiplication instruction with a move using an 

immediate value of zero.  In our experiments, typically only the first 
two iterations of an unrolled loop use different instructions.  In 
cases where the initial iterations are different, loop rerolling rerolls 
the remainder of the unrolled iterations. 

IV. STRENGTH PROMOTION 
Strength reduction is the process of converting an expensive 

operation into a series of less expensive operations.  The most 
common use of strength reduction is the conversion of 
multiplications by a constant value into equivalent shifts.  For 
example: a*8 could be converted to a << 3, thereby eliminating the 
expensive multiplication.  Strength reduction is more beneficial 
when the operation being reduced has a constant input that is a 
power of two.  If the constant is not a power of two then add 
operations are required.  For example: a*11 would be converted to 
(a << 3) + (a << 1) + a.   

Synthesis tools need to analyze the available hardware 
resources before performing strength reduction.  In most cases, a 
synthesis tool performs strength reduction because multipliers 
typically have long latencies, resulting in a slower clock frequency, 
and require large amounts of area.  Therefore, a series of shift and 
add operations is likely to be faster than a multiply operation.  
However, there are situations where using shift/add operations 
results in decreased performance.  For resource-constrained 
synthesis, the extra add operations created from strength reduction 
may exhaust all existing adder resources, causing the cycle latency 
from scheduling to be increased.  In a situation where adders are 
exhausted and multipliers are available, the synthesis tool should 
not perform strength reduction, and instead should use the available 
multipliers to increase parallelism.  Even if the synthesis being 
performed is not resource-constrained, strength reduction is not 
always beneficial.  Strength reduction may greatly increase the area 
by creating unnecessary adders, resulting in hardware that will not 
fit within the targeted FPGA.  In addition, the clock speed may 
suffer due to the difficulty of routing large FPGA designs.  These 
issues with strength reduction imply that a synthesis tool must 
decide to perform strength reduction based on the available 
resources of the target platform and the current size of the design. 

A drawback to previous binary-level synthesis approaches is 
that the software compiler forces the synthesis tool into a particular 
implementation, whereas giving the synthesis tool a choice would 
result in better hardware.  This problem occurs because the software 
compiler makes optimization decisions based on the architecture of 
the target microprocessor.  However, the microprocessor’s 
architecture may be completely different from the target 
architecture of the synthesis tool.   

To give the synthesis tool the choice of whether or not to 
perform strength reduction, a binary-level synthesis tool must first 
detect occurrences of strength reduction and then “promote” these 
operations back to the more expensive representation.  We refer to 
this process as strength promotion.  Note that strength promotion 
will never hurt the performance of an application because the 
synthesis tool can always convert the promoted operation back into 
the reduced form.  Strength promotion may even promote shift/add 
operations that were never multiplications in the original code.  This 
type of promotion may actually improve performance even further 
by giving the synthesis tool more options for synthesis. 

Figure 3 illustrates the benefits of strength promotion for the 
binary-level synthesis of a 4-tap FIR (finite-impulse-response) 
filter, assuming resource constraints of 2 adders and 2 multipliers.  
Figure 3 (a) shows the unoptimized data flow graph for the FIR 
filter.  Figure 3 (b) shows the data flow graph for the filter after 



Figure 3: Several implementations of a FIR filter, assuming resource constraints of 2 adders and 2 multipliers.  a) an unoptimized FIR filter, b) a FIR filter with 
strength-reduced multiplications, c) a FIR filter after “promoting” 2 strength-reduced multiplications. 

a) B[i] 10 B[i+1] 18 B[i+2] 34 B[i+3] 66 

software compilation, and the corresponding scheduling during 
synthesis.  In this example, the software compiler has performed 
strength reduction on the multiplication operations, converting them 
to equivalent shift/add operations.  Figure 3 (c) shows the data flow 
graph and corresponding schedule for the same data flow graph as 
shown in Figure 3 (b) after promoting two of the shift/add 
operations back to multiplications.  Note that after performing 
strength promotion, we are able to achieve a scheduling that is one 
cycle faster.  The data flow graph in Figure 3 (b) requires an extra 
cycle because the four add operations at the top level of the data 
flow graph require two separate cycles, due to the availability of 
only two adders.  The strength-promoted graph in Figure 3 (c) is 
able to schedule these corresponding operations to the same cycle 
because of the availability of the two multipliers. 

We perform strength promotion by traversing the data flow 
graph in search of subgraphs that match the pattern “input << 
const_amount” or  “input*const_amount1 + input*const_amount2”.  
These patterns are common implementations of strength-reduced 
multiplications.  When these patterns are found, the corresponding 
subgraphs are replaced with semantically equivalent subgraphs for 
the expressions “input * 2const_amount” or “(const_amount1 + 
const_amount2) * input”, respectively.  The algorithm continues in 
this manner until no more changes can be made to the data flow 
graph. 

V. EXPERIMENTAL RESULTS 

A. Experimental setup 
In our experiments, we use benchmarks from Powerstone [9], 

EEMBC, and our own benchmark suite.  The Powerstone examples 
include: crc (cyclic redundancy check), des (data encryption 
standard), summin (handwriting recognition), and brev (bit 
reversal).  The EEMBC examples include: BITMNP01 (bit 
manipulation), IDCTRN01 (inverse discrete cosine transform), 
PNTRCH01 (pointer chasing), AIFIRF01 (FIR filter), AIFFTR01 
(fast fourier transform), rotate (90 degree image rotation), and 
IIRFLT01 (IIR filter).  For our own benchmark suite, we chose 

examples not provided by other suites.  Our benchmarks include a 
5-tap FIR filter, a beamformer, and a viterbi decoder.  All examples 
were compiled with gcc using –O1 optimizations.  In section D, we 
also tested binaries generated using –O3 optimizations. 

Our target architecture is a hypothetical platform consisting of a 
microprocessor and FPGA on a single chip.  Although a wide 
variety of microprocessor/FPGA platforms are commercially 
available, such as the Triscend E5/A7, the Xilinx Virtex II Pro, and 
the Altera Excalibur, we use a hypothetical platform to more easily 
evaluate the benefits of our approach on different platforms.  To 
evaluate a wide variety of different potential platforms, we include 
experiments in section D for three different microprocessors, 
including a MIPS, ARM, and MicroBlaze.  We use the MicroBlaze 
to show that our approach can also be applied to platforms with 
only an FPGA.  The FPGA used in all experiments is the Xilinx 
Virtex II Pro.  The communication model used by the 
microprocessor and FPGA consists of shared memory and memory-
mapped registers within the FPGA. The microprocessor can 
communicate with the FPGA by writing/reading the memory-
mapped registers.  The communication model allows the FPGA to 
read from memory either through the data cache or by using a 
DMA.  The communication model maintains data coherency by 
requiring mutually exclusive execution for the microprocessor and 
FPGA.  When writing to memory, the FPGA writes through the 
cache to prevent the microprocessor from reading stale values after 
resuming execution.     

To generate hardware for each example, we developed binary-
level tools that implement the approach shown in section II.  The 
tools consist of approximately 30,000 lines of C code.  The output 
of the tools is register transfer level VHDL code.  We then generate 
a netlist for the FPGA using Xilinx ISE. 

We determine the performance of the custom hardware co-
processor, including the communication between the 
microprocessor and co-processor, using VHDL simulation. We 
determine hardware clock frequency from Xilinx ISE after 
placement and routing. 
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B. Loop rerolling 
Table 1 shows profiling results, both with and without rerolling, 

assuming that the software compiler unrolled the most frequent loop 
in the application.  %Time is the percentage of execution time, 
determined by the profiler, that was spent in the most frequent loop.  
Speedup is the corresponding ideal speedup from implementing this 
loop in hardware, assuming the hardware executes in zero time.   
The No Rerolling columns represent profiling done without 
rerolling.  The Rerolling columns represent profiling results after 
we performed rerolling. 

Without loop rerolling, the profiler detects that the most 
frequent loop uses an average of 10.8% of execution time, resulting 
in a maximum possible speedup of 1.1.  On average, the profiling 
results with loop rerolling show that the most frequent loop is 
actually responsible for 80.8% of execution time, corresponding to 
an ideal speedup of 13.1.  The large difference in results is caused 
by the failure of the profiler to identify the most frequent loop after 
that loop is unrolled.  Therefore, without rerolling, the profiler 
actually detects the second most frequent loop as being the most 
frequent loop.  Of course, most profilers also provide percentages of 
execution time for functions.  In this case, the execution time for an 
unrolled loop would be shown as part of a function.  However, this 
function might contain other regions that are not appropriate for 
hardware implementation, which makes loop rerolling necessary to 
obtain efficient hardware.  For all of these examples, the most 
frequent loop that we unrolled is likely to be unrolled by any 
compiler because each loop has a small loop body and small 
constant bounds. 

Table 2 compares the synthesized hardware performance of the 
most frequent loop of each example, both with and without loop 
rerolling.  CyclesNoRerolling is the number of cycles required to 
execute the synthesized hardware for the unrolled loop without 
rerolling.  CyclesRerolling is the number of cycles required to execute 
the synthesized hardware after we have performed loop rerolling on 
the unrolled loop.  Speedup is the performance improvement of the 
hardware synthesized from a rerolled loop compared the 
performance of the hardware synthesized without rerolling.  We 
compare performances in terms of clock cycles because for all 
examples, Xilinx ISE achieved the same clock frequency for both 
the unrolled and rerolled loop representations.  Loop rerolling 
resulted in an average speedup of 1.6.  For the beamformer 
example, loop rerolling resulted in a large speedup of 2.9.  All of 
the performance improvements were the result of using smart 
buffers [7] to reuse data within the FPGA, which was made possible 
by using loop rerolling to recover the loop structure.  For several 
examples, loop rerolling achieved no speedup.  These examples 
exhibited no potential data reuse, which eliminated the possibility of 
using smart buffers.  If we had utilized other loop-based synthesis 
optimizations, speedups from loop rerolling would likely be much 

greater.  The area for both the unrolled and rerolled examples was 
almost identical.  The reason for the similar area requirements is 
that the binary-level synthesis tool unrolled all the loops that we 
rerolled. 

Table 1: Profiling results showing the percentage of execution time 
spent in the most frequent loop of each example both without and with 

loop rerolling. 

Example %Time Speedup %Time Speedup
AIFIRF01 4.9% 1.1 91.2% 11.4
AIFFTR01 10.9% 1.1 55.4% 2.2
rotate 1.2% 1.0 97.6% 41.7
bitmnp01 35.2% 1.5 53.7% 2.2
IIRFLT01 9.7% 1.1 83.6% 6.1
beamformer 5.2% 1.1 94.7% 18.9
viterbi 8.4% 1.1 89.2% 9.3
Average 10.8% 1.1 80.8% 13.1

No Rerolling Rerolling

 

Table 2: Performance improvements when using loop rerolling.

Example CyclesNoRerolling CyclesRerolling Speedup
AIFIRF01 28326358 18884239 1.5
AIFFTR01 27720000 27720000 1.0
rotate 112000 112000 1.0
bitmnp01 23619014 23619014 1.0
IIRFLT01 2100000 1020000 2.1
beamformer 1251000 435000 2.9
viterbi 1460000 980000 1.5
Average: 12084053 10395750 1.6  

C. Strength promotion 
In our experiments for strength promotion, we synthesized a 5-

tap FIR filter under a variety of resource constraints.  By using 
different resource constraints, we were able to see the effects of 
strength promotion on a variety of different configurable 
architectures.  We present results with constraints on the number of 
adders and multipliers, ranging from 5 to 20. 

In addition to using multiple resource constraints, we also 
present results using different constant values as inputs to the 
multiplications.  As a constant moves farther from a power of two, 
more adders are required for strength reduction, and performing 
strength promotion becomes more important.  We present results 
using constants that require 0, 1, 2, or 3 adders to perform a 
strength-reduced multiplication. 

Table 3 illustrates the benefits of performing strength 
promotion during resource-constrained binary-level synthesis.   
Adders specifies the constraint on the number of adders when 
performing synthesis.  Multipliers specifies the constraint on the 
number of multipliers when performing synthesis. AddersSR 
specifies the amount of adders that are required to perform the 
strength-reduced multiplication for the current example.  We vary 
this value by changing the constants used as inputs to the 
multipliers.  Clock specifies the clock frequency in megahertz of the 
synthesized hardware, obtained after placement and routing.  
Latency is the number of clock cycles needed for the synthesized 
hardware to execute to completion.  Time is the actual execution 
time of the synthesized hardware.  LUTs is the number of lookup 
tables used within the FPGA.  Speedup is the corresponding 
speedup achieved when using strength promotion. 

Using strength promotion greatly reduced the latency of the 
hardware to an average of 16 cycles, compared to almost 31 cycles 
without strength promotion.  The average clock frequency when 
using strength promotion was 192 MHz compared to 226 MHz 
when not performing strength promotion.  The clock frequency is 
slower for strength promotion because the hardware generated 
using strength promotion utilizes multipliers, which typically have 
much longer latencies than adders.  However, overall execution 
time of the hardware generated using strength promotion was 
approximately 1.5 times faster.  In general, the hardware using 
strength promotion achieves a larger speedup as the number of 
adders required by strength reduction increases.  When the constant 
values for multiplication were powers of two (AddersSR = 0), both 
sets of hardware had identical performance because strength 
promotion converted the strength-reduced code back into 
multiplication operations, which was strength-reduced again by the 
synthesis tool after the synthesis tool determined that there would 
be no benefit from using multipliers.  In terms of overall FPGA 



Table 3: Comparison of resource-constrained binary-level synthesis of a 5-tap FIR filter without and with strength promotion, for a variety of different 
constant inputs. 

Adders Multipliers Adders Clock Latency Time LUTs Clock Latency Time LUTs Speedup
No Strength Promotion Strength Promotion
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SR

5 5 0 228 20 8.77 2912 228 20 8.77 2912 1.00
10 10 0 234 12 5.13 2930 234 12 5.13 2930 1.00
15 15 0 236 8 3.39 3376 236 8 3.39 3376 1.00
20 20 0 236 8 3.39 3376 236 8 3.39 3376 1.00
5 5 1 221 47 21.27 2840 176 29 16.48 2838 1.29

10 10 1 221 25 11.31 2872 178 17 9.55 2860 1.18
15 15 1 225 18 8.00 2898 180 13 7.22 2880 1.11
20 20 1 229 14 6.11 2924 181 11 6.08 2912 1.01
5 5 2 225 68 30.22 2856 176 29 16.48 2838 1.83

10 10 2 225 36 16.00 2890 178 17 9.55 2860 1.68
15 15 2 227 25 11.01 2924 180 13 7.22 2880 1.52
20 20 2 221 20 9.05 2958 181 11 6.08 2912 1.49
5 5 3 221 87 39.37 2840 176 29 16.48 2838 2.39

10 10 3 221 46 20.81 2874 178 17 9.55 2860 2.18
15 15 3 221 32 14.48 2908 180 13 7.22 2880 2.00
20 20 3 221 25 11.31 2936 181 11 6.08 2912 1.86

Average: 226 31 13.73 2957 192 16 8.67 2942 1.47

ble 4: Comparison of latency-constrained binary-level synthesis of a 5-tap FIR filter without and with strength promotion, for a variety of different 
constant inputs.  

rces, the hardware generated using strength promotion 
red more area because this hardware utilized the dedicated 
pliers.  In terms of LUTs, both approaches required very 
ar area, which is to be expected due to the same adder 
raints.   

n addition to the resource-constrained experiments, we also 
rmed latency-constrained experiments, shown in Table 4, 
e we attempted to achieve the smallest possible latency in 
 of clock cycles.  Strength promotion achieved a speedup of 
and reduced the number of LUTs from 3466 to 3106.   For the 
ples where strength reduction required zero or one adders, the 
ts were identical because the synthesis tool reapplied strength 
tion on the promoted operations.  Strength promotion required 
ultipliers to achieve a latency of four cycles for the examples 
e more than one adder was necessary for strength reduction.  
 that in contrast to the resource-constrained synthesis results, 
ardware using strength promotion was able to achieve a faster 
.  The reason for the faster clock is that because the number of 
s wasn’t constrained, the strength-reduced code used a larger 
nt of configurable logic blocks, making routing more difficult, 

ting in a longer critical path. 

Results for different optimization levels and different 
nstruction sets 
o show the robustness of our binary-level co-processor 
ation approach when using loop rerolling and strength 
otion, we tested examples on three different instruction sets: 
, ARM, and MicroBlaze.  We also used binaries generated 
two different levels of compiler optimizations: –O1 and –O3.  

The –O1 flag informs gcc to apply a low-level of optimizations.  
The –O3 flag informs gcc to apply aggressive optimizations. 

To evaluate software performance of each application we use an 
instruction set simulator for each microprocessor.  For MIPS and 
ARM, we use versions of SimpleScalar [1] ported to these 
instructions sets.  The MIPS results are actually based on the PISA 
instruction set, which is a superset of the MIPS instruction set.  We 
determine MicroBlaze software performance using the simulator in 
Xilinx Platform Studio.   For all experiments, the MIPS and ARM 
use a clock frequency of 200 MHz and the MicroBlaze uses a 150 
MHz clock. 

Table 5 shows execution times and speedups of our approach 
for a MIPS, ARM, and MicroBlaze using binaries generated using 
the –O1 and –O3 optimization levels.  Sw is the execution time of 
the example when running in software on the specified 
microprocessor.  Hw/Sw is the execution time of the example after 
applying our approach to generate a custom co-processor to 
speedup the software.  All execution times are normalized to the 
execution time of software compiled with –O1 optimizations. S is 
the speedup from using the co-processor, compared to software 
compiled with –O1 optimizations. Our approach achieved 
significant speedups for all three microprocessors, averaging over 
an order of magnitude on each instruction set.  In addition, note that 
in most cases when using aggressive optimizations (–O3), the 
resulting execution time is similar or better than when performed on 
binaries with less optimization.  These results imply that when 
using loop rerolling and strength promotion, aggressive software 
compiler optimizations may not negatively impact binary synthesis.  
Several of the examples did experience a slight increase in 
execution time when using aggressive optimizations.  However, the 

 
AddersSR Clock Latency Time LUTs Clock Latency Time LUTs Speedup

0 223 4 1.79 2940 223 4 1.79 2940 1.00
1 169 4 2.37 3432 169 4 2.37 3432 1.00
2 132 4 3.03 3556 153 4 2.61 3026 1.16
3 131 4 3.05 3936 153 4 2.61 3026 1.17

Average: 164 4 2.56 3466 175 4 2.35 3106 1.08

No Strength Promotion Strength Promotion



increase is typically insignificant because large speedups were still 
obtained compared to software execution.  Note that for the ARM 
experiments, the performance of software was actually slower in 
many cases when using –O3 optimizations.  However, despite the 
slower software the performance of the co-processor system 
generated from –O3 was similar to –O1.  The co-processor achieved 
the largest speedups for the MicroBlaze, mainly due to the fact that 
the MicroBlaze is a slower microprocessor with a higher CPI and 
slower clock.  The geometric mean is included in the table because 
of several outliers in terms of speedup.  We omit results for summin 
and PNTRCH01 on the MicroBlaze because we could not get them 
to simulate correctly in software.  

Table 5: A comparison of execution times for software and software with custom co-processor for several microprocessors and several levels of optimization.  
(Sw is the execution time of software execution.  Hw/Sw is the execution time with a customized co-processor, and S is the speedup when using the co-processor 

compared to –O1 software.  All execution times are normalized to the execution time of –O1 software.) 

Example Sw Hw/Sw S Sw Hw/Sw S Sw Hw/Sw S Sw Hw/Sw S Sw Hw/Sw S Sw Hw/Sw S
FIR Filter 1.000 0.089 11.2 0.923 0.070 14.2 1.000 0.085 11.8 0.999 0.084 11.9 1.000 0.040 25.3 0.549 0.015 68.4
Beamformer 1.000 0.074 13.5 0.853 0.071 14.0 1.000 0.149 6.7 1.018 0.172 5.8 1.000 0.031 32.3 0.647 0.032 31.4
Viterbi 1.000 0.136 7.4 0.891 0.152 6.6 1.000 0.131 7.6 0.957 0.126 7.9 1.000 0.060 16.7 0.765 0.017 59.0
Crc 1.000 0.030 33.8 0.967 0.019 53.6 1.000 0.020 49.5 1.105 0.007 134.8 1.000 0.012 80.3 0.995 0.011 88.6
Des 1.000 0.275 3.6 0.990 0.310 3.2 1.000 0.360 2.8 1.028 0.401 2.5 1.000 0.205 4.9 0.998 0.218 4.6
Summin 1.000 0.111 9.0 0.899 0.145 6.9 1.000 0.183 5.5 0.684 0.128 7.8 n/a n/a n/a n/a n/a n/a
Brev 1.000 0.120 8.3 0.976 0.129 7.7 1.000 0.156 6.4 1.476 0.153 6.5 1.000 0.011 90.2 0.951 0.009 106.5
BITMNP01 1.000 0.114 8.8 0.985 0.113 8.8 1.000 0.188 5.3 0.988 0.186 5.4 1.000 0.112 8.9 0.999 0.115 8.7
IDCTRN01 1.000 0.323 3.1 0.975 0.323 3.1 1.000 0.230 4.4 1.005 0.230 4.3 1.000 0.258 3.9 0.885 0.150 6.7
PNTRCH01 1.000 0.196 5.1 0.945 0.196 5.1 1.000 0.325 3.1 0.963 0.313 3.2 n/a n/a n/a n/a n/a n/a
Average: 1.000 0.147 10.4 0.940 0.153 12.3 1.000 0.183 10.3 1.022 0.180 19.0 1.000 0.091 32.8 0.849 0.071 46.7
Geo.Mean: 1.000 0.124 8.4 0.939 0.122 8.7 1.000 0.150 7.0 1.008 0.134 8.3 1.000 0.053 19.0 0.831 0.037 27.4

O1 O3
MIPS

O1 O1 O3
ARM MIcroBlaze

O3
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