

System-level Exploration for Pareto-optimal
Configurations in Parameterized Systems-on-a-chip

Abstract

In this work, we provide a technique for efficiently exploring the
configuration space of a parameterized system-on-a-chip (SOC)
architecture to find all Pareto-optimal configurations. These
configurations represent the range of meaningful power and
performance tradeoffs that are obtainable by adjusting parameter
values for a fixed application mapped onto the SOC architecture. Our
approach extensively prunes the potentially large configuration space
by taking advantage of parameter dependencies. We have successfully
incorporated our technique into the parameterized SOC tuning
environment (Platune) and applied it to a number of applications.

Keywords

System-on-a-chip, parameterized architectures, configurable
platforms, embedded systems, system-level exploration, low-power
system design, platform tuning.

1. Introduction
The growing demand for portable embedded computing devices is
leading to new system-on-a-chip (SOC) architectures intended for
embedded systems. Such SOC architectures must be general enough
to be used across several different applications, in order to be
economically viable, leading to recent attention to parameterized SOC
architectures. Different applications often have very different power
and performance requirements. Therefore, these parameterized SOC
architectures must be optimally configured to meet varied power and
performance requirements of a large class of applications.

A typical SOC architecture will have numerous cores, including a
processor core, one or more caches, numerous on-chip buses, on-chip
memory, and a large number of peripheral cores that provide
application specific functionality such as data encoding, decoding and
communication. Each of these SOC cores is likely to be
parameterized, enabling a designer to tune a core’s settings for a
specific application that is to be mapped on the SOC architecture. For
example, the on-chip buses may be configured to optimally use bus-
invert 0 coding for low power, or the caches may be configured to use
a greater or lesser degree of associativity for increased performance
[2]. An assignment of a value to each of these parameters will impact
the overall performance and power consumption of the SOC
architecture. However, such impacts are highly dependent on the

particular application running on the SOC. Therefore, a designer must
have a method for finding a feasible set of parameter values, referred
to as a configuration of the SOC, that meets the specification
requirements. We outline an exploration approach that efficiently
searches the entire configuration space and outputs Pareto-optimal
configurations, thus providing the designer with only the interesting
configurations that result in a tradeoff between power and
performance.

Our exploration algorithm fits in an SOC design flow as follows.
As depicted in Figure 1, the SOC provider provides a parameterized
architecture in HDL or configurable IC format along with all the
traditional development tools such as compilers, debuggers,
emulators, etc. In addition, the SOC provider provides a system-level
tuning environment. This tuning environment enables the SOC user to
search the parameter space of the SOC and find a configuration that
meets power and performance requirements of the target application.
This tuning environment is the focus of this work.

The remainder of this paper is organized as follows. In Section 2,
we describe some related work. In Section 3, we state the
parameterized SOC exploration problem and outline our approach for
solving it. In Section 4, we give some experimental results. In Section
5, we state our conclusions.

2. Previous Work
Much previous work has focused on power evaluation of SOC
architectures at various levels of abstraction. Circuit-level approaches
simulate the circuit at the transistor level while monitoring supply
current [3][4]. Logic-level, or gate-level, approaches simulate a gate-
level design, and calculate power by considering switching activity of
nodes in the design [5][6], executing orders of magnitude faster than
circuit-level approaches at the expense of some accuracy. RTL
(register-transfer level) power evaluation operates at an even higher-
level of abstraction, modeling power consumption of more abstract
circuit components, such as adders and multipliers etc. Simulation is
performed at the RT-level and power is obtained by using these power
models, also known as macro-models. The approach taken here can be
divided into two categories, macro-modeling using table-lookup
techniques and analytical modeling [7]. Lookup-tables and the
coefficients of the analytical models are often derived from the gate-
level circuit structure or lower-level power evaluation and simulation.
RTL power evaluation, in some publications such as [8], is shown to
be accurate to within 5% of actual power consumption. Behavioral-
level approaches seek to estimate power of a behavioral HDL
description before a synthesized design is obtained. An abstract notion
of physical capacitance and switching activity is used. Switching is
estimated using entropy from circuit input to circuit output by
quadratic or exponential degradation [9][10].

Tony Givargis
Center for Embedded Computer Systems
University of California, Irvine, CA 92697

givargis@cecs.uci.edu

Jörg Henkel
C&C Research Laboratories, NEC USA

4 Independence Way, Princeton, NJ 08540
henkel@ccrl.nj.nec.com

Frank Vahid
Department of Computer Science & Engineering

University of California, Riverside, CA 92521
vahid@cs.ucr.edu

Also with the Center for Embedded Computer Systems at UC
Irvine

Work has been done to evaluate power consumption of a
particular type of core, like microprocessors. One approach,
instruction-level power modeling, is proposed by [11]. Given a
program execution trace, energy is computed as the sum of the energy
consumed by each instruction that is executed, circuit state energy
consumed when a particular instruction is followed by another, and
energy consumed by other effects such as stalls and cache misses.
This approach is sped up in [12], by deriving a shorter program trace
that results in equal power dissipation when compared to the original
trace. In [13] a mathematical generic power model for 32-bit
microprocessors is proposed. The approach classifies the instruction
set into classes, like branches. The model has been applied to various
32-bit processors. Other researchers have focused on fast system-level
models for cache, memory and bus power consumption [14][15],
consisting mostly of simulators coupled with equations that compute
power consumption as a function of usage/traffic and core parameters.
Further approaches aim at estimating the power consumption of whole
embedded systems. In [16], a cycle-accurate power simulation tool, for
an embedded system using a strong ARM architecture as CPU, is
introduced. The reported results are accurate within 5% compared to
measurements conducted on a hardware board. A trace-based
approach deploying a mix of analytical models (for instruction cache,
data cache and main memory) and ISSs (instruction set simulators) is
introduced in [17].

A closely related methodology to ours, named SPADE (System
level Performance Analysis and Design space Exploration), is
proposed by [18]. That work defines a general scheme for the design
of programmable architectures, referred to as the Y-chart. Target
applications are mapped onto the architecture, and their performance
is analyzed to obtain performance numbers. (The architecture,
applications and performance numbers represent the dimensions
along the Y shaped chart, hence the name Y-chart.) After analysis, the
architecture or applications are tuned and the process is repeated until
a desired system is obtained. In this model, the tuning process is
driven manually by the designer. In our work, we outline an approach
to automate the exploration, for a restricted range of architectures.

Previous work has focused on techniques that quickly and
accurately simulate SOC architectures in order to obtain power and
performance metrics. Our technique combines this work with an
approach for efficiently exploring the configuration space of SOC
architectures by pruning configurations that are guaranteed to be
inferior to others already evaluated.

3. Target SOC
Our parameterized system-on-a-chip architecture is depicted in Figure
2. The architecture consists of the following. A MIPS R3000
processor and instruction and data caches communicate over two
processor-local buses. The on-chip memory is connected to the two
caches via another bus. Universal Asynchronous Receiver and
Transmitter (UART) and DCT CODEC cores are connected to the
peripheral bus, which is bridged to the processor’s data bus. Most of
the cores in this architecture are statically configurable. The MIPS can
be set to run at 5 different voltage/frequencies. Caches can be set to
use different associativity, line-size and total size. Each of the four
busses can be configured with a different data and/or address bus
width and one of binary, gray or bus-invert encoding. The UART
core’s transmitter and/or receiver buffer sizes can each be set to one
of 5 different sizes. The DCT CODEC core’s pixel resolution can be
set to one of 10 or 12 bits.

To evaluate power and performance of a particular application
running on our target SOC, the tuning environment utilizes an
available power and performance measuring approach such as in-
circuit emulation, gate-level simulation, RTL simulation or a system-
level behavior approach. We have used our platform-tuning
environment (Platune) which is a system-level behavior approach, as
described next.

The evaluation environment, called Platune, is an executable
model of the target architecture that is depicted in Figure 2. This
simulation model is augmented with power models to allow for
measuring the average power consumption of the chip while running
an application. Platune can be broken down into two components,
namely, the simulator module and power analyzer module. A detailed
description of these components can be found in [19] and a brief
summary is given here.

Platune is a tightly coupled collection of event driven cycle
accurate simulation models of its various components, namely,
processor, cache, memory, busses and peripheral cores. The processor
simulator maintains detailed statistics on its internal activity, e.g.,
fetches, stalls, instruction execution frequency, register file access,
floating-point activity, etc. Such statistics is used in a post simulation

Figure 1: SOC design flow.

Figure 2: Target SOC.

Platform developer provides:

Platform user:

+and/or

HDL

SOC

+Development
environment

Tuning
environment

Appl. Develops
Application

Tunes
Application

Config.

and/or

HDL

SOC

I$

MEM

BRIDGE

UART

Peripheral Bus

DCT CODEC

MIPS

D$

CPU-D$ Bus

I/D$-MEM Bus

CPU-I$ Bus

analysis to compute power and performance metrics. The cache
simulator of Platune is a fully parameterized element that operates on
a stream of memory references that is output from the processor. In
addition to the standard cache metrics, such as number of misses, the
Platune cache simulator maintains additional activity statistics, e.g.,
number of tag comparisons, word-line activity and bit-line activity,
etc. that is later used for power computation. Like the cache
simulator, the bus simulator in Platune also operates on a stream of
data and memory references that are generated by the processor, cache
and memory modules and accumulates bus wire bit toggle statistics
that are later used for power computation. Peripherals are handled in
a scheme similar to that of the processor core.

The second component of Platune, the power model and
analyzers, operate on the statistics that are gathered during
simulation, as described here. For the processor an instruction based
power modeling approach is used [11]. For caches, first a structured
(physical) model is deduced based on the cache parameter settings
and technology feature size. This allows for estimation of bit-line,
word-line, comparator, storage transistors, and address decoding logic
capacitive loads. Then, switching activity from the simulation phase is
applied to obtain average power consumption of the cache. Similarly
for each bus segment, a rough layout is inferred that is based on the
chip technology, chip area, bus widths, and relative size of the various
cores, in order to obtain the average bus capacitance. Then, switching
activity from the simulation phase is applied to obtain average power
consumption of various buses.

The entire Platune environment is integrated into a single GUI
application and comes with a C compiler as well as a small runtime
kernel for use by the application that is being simulated. Overall
accuracy of Platune is experimentally shown to be 5% to 15% of gate-
level measurements [19].

4. Approach Overview
We will next state the problem and outline our solution. Our solution
will be given by first looking at an exhaustive method. Then we state
the key observation that makes our approach more efficient, followed
by the actual modeling and solution of the problem.

4.1 Problem Formulation
We are given a system-on-a-chip architecture composed of numerous
interconnected parameterized computational, communication and
memory elements. We enumerate each of these parameters as P1, P2,
P3 … Pn. Each of these parameters can be assigned a value from a
finite set of values. A complete assignment of values to all the
parameters is a configuration. The problem is to efficiently compute,
with the aid of a system-level model, the Pareto-optimal
configurations, with respect to power and performance, for a fixed
application executing on the SOC. In our problem, a configuration is
Pareto-optimal if no other configuration has better power as well as
performance.

4.2 An Exhaustive Solution
An exhaustive solution to this problem can be achieved as follows.
Power and performance are evaluated for all configurations.
Configurations are sorted by non-increasing execution time
(performance). Then, in the sorted order, a walk through the space is
performed while all configurations that result in power consumption
above the minimum seen thus far are eliminated. The remaining
configurations are Pareto-optimal. The algorithm is given in Figure 3.

The problem with this approach is that the configuration space is
likely to be very large, making the approach impractical in many
cases. The exhaustive approach is practical when applied to a small
subset of the solution space consisting of one or two varying
parameters while all others held constant.

Fortunately, we have found that many parameters in an SOC
have little dependency among each other. Two parameters are
dependent if changing the value of one of them impacts the optimal
parameter value of the other. For example, it may be that the
associativity and line size parameters of the instruction cache are
dependent. However, the associativity parameter of the instruction
cache and the line size parameter of the data cache are independent.

Figure 3: Exhaustive Pareto-optimal computation.

Figure 4: Target SOC dependency graph.

list compute_Pareto_configurations(space s) {

 list all, pareto;

 float min_power = 1e100; /* infinity */

 for each configuration c in space s {

 simulate_SOC(c); all.push(c);

 }

 all.sort(/* key is execution time */);

 while(!all.empty()) {

 c = all.pop();

 if(c.power < min_power) {

 min_power = c.power; pareto.push(c);

 }

 }

 return pareto;

}

A

B

C

D

J K

E

F

G

H I

N O

L M

R S

P Q

V W

T U

X

Y
Z

 A B,C,D E,F,
G

H,I,J,
K

L,M,
N,O

P,Q,
R,S

T,U,
V,W

X,Y Z

C
o
r
e

C
P
U

I$ D$ CPU-
I$
Bus

CPU-
D$
Bus

I/D$-
MEM
Bus

Perip
heral
Bus

UART DCT
CODE
C

P
a
r
a
m

V Size
line
assoc

Size
line
assoc

D/A-
width
code

D/A-
width
code

D/A-
width
code

D/A-
width
code

T/R-
Buff
size

Pixel-
Resl.

Our approach takes advantage of such independence of parameters to
prune the configuration space.

4.3 Parameter Dependency Model
Since our approach takes advantage of dependencies of parameters on
each other, we need a model to formally capture the dependencies.
We use a graph model. In our graph, nodes represent parameters and
directed edges represent dependencies.

An edge from node (parameter) A to node (parameter) B
indicates that the Pareto-optimal configurations of B should be
calculated only after the Pareto-optimal configurations of A are
computed. More generally, a path from A to B indicates that the
Pareto-optimal configurations of B should be calculated once the
Pareto-optimal configurations of all the nodes from A to B, residing on
the path, are calculated, in that order. Meanwhile, all other
parameters can be fixed to some arbitrary value. If there is an edge
from A to B and an edge from B to A, then the Pareto-optimal
configurations of parameters A and B must be calculated
simultaneously. More generally, a path from A to B and back to A,
which forms a cycle, indicates that the Pareto-optimal configurations
of all the parameters on the cycle need to be calculated
simultaneously. During that calculation, all other parameters not on
the path can be temporally fixed to some arbitrary value. The Pareto-
optimal configurations of an isolated node can be computed by
temporally setting all other parameters to some arbitrary value.

The complete dependency graph of our target SOC of Figure 2 is
given in Figure 4. We assume the designer of the SOC architecture
determines the dependencies among the parameters. Often these
dependencies follow from the structure of the SOC. For example,
given an optimal configuration of the instruction cache, one can tune
the data cache parameters without effecting the optimality of the
instruction cache, since the optimally performing instruction cache
will maximize instruction cache hit rate and no data cache
configuration can have an effect on the instruction cache. In our graph,
there are no edges going from B, C, or D to E, F, or G, stating that the

instruction cache and data cache are independent. If the designer
cannot establish the dependency of two or more parameters, than he
or she should conservatively assume that they are dependent. In future
work, we plan to automate this dependency determination.

4.4 Exploration Algorithm
Given a dependency graph, our algorithm works as shown in Figure 5.
The algorithm can be broken down into two parts. The first part
performs a local search for Pareto-optimal configurations. The second
part iteratively expands the local search to discover global Pareto-
optimal configurations. More specifically, the first part performs a
clustering of dependent nodes in our dependency graph and finds
Pareto-optimal configurations within each cluster. The second part of
the algorithm joins pairs of the clusters at a time and finds Pareto-
optimal configurations within them until all the clusters have been
combined.

The first part of our algorithm is to cluster together dependent
nodes in the graph. This is the same problem as finding strongly
connected components1 of a graph and is shown in Figure 6, as
performed on our sample dependency graph of Figure 4. Here, a depth
first search of the graph can be used to accomplish this. In addition, if
two clusters are connected (but not strongly), then they are
topologically ordered. Here, each cluster represents a sub-space of the
configurations of the SOC architecture. We use our exhaustive
algorithm for calculating Pareto-optimal configurations, in topological
order, for each of the clusters. Then, we restrict possible
configurations of that cluster to the Pareto-optimal configurations
only. This pruning is justified since if a configuration is not Pareto-
optimal within a cluster, it cannot be part of a Pareto-optimal
configuration for the entire configuration space. Conversely, if a
configuration is Pareto-optimal within a cluster, it may or may not be
Pareto-optimal given the entire configuration space, and thus must
remain.

1 A strongly connected component of a graph is a maximal set of

nodes such that for any pair of nodes, u and v, in the set, we have a
path from u to v and from v to u.

Figure 5: Exploration algorithm.

Figure 6: Initial clustering (part 1 of our algorithm) of the
dependency graph.

list explore_Pareto_optimal_configurations(graph g) {

 list sub_graphs = compute_connected_components(g);

 list pareto;

 // part 1

 for each graph g in sub_graphs {

 pareto=compute_Pareto_configurations(g.space)

 eliminate configs. in g.space not in pareto;

 }

 // part 2

 while(!sub_graphs.size() != 1) {

 g1 = sub_graphs.pop_front();

 g2 = sub_graphs.pop_front();

 g = g1 union g2;

 sub_graphs.push_back(g);

 pareto=compute_Pareto_configurations(g.space);

 eliminate configs. in g.space not in pareto;

 }

 return g.space;

}

A

B

C

D

J K

E

F

G

H I

N O

L M

R S

P Q

V W

T U

X

Y
Z

Our exhaustive approach applied to clusters is usually feasible
since these clusters represent only a small sub-space of the total
configuration space. Nevertheless, heuristics such as probabilistic
exploration techniques can be used to search within a cluster when
the exhaustive method is too time-consuming.

The second part of our algorithm combines a pair of clusters into
a single cluster and computes Pareto-optimal configurations within it.
Then, it limits the space of this new cluster to the Pareto-optimal
configurations only. This procedure is repeated until all the original
clusters have been merged into pairs. Then we repeat the process until
at the end a single cluster remains. The Pareto-optimal configurations
within this last cluster represent Pareto-optimal configurations of the
entire configuration space. This sequence of clustering, applied to our
target SOC example, is depicted in Figure 7.

The time complexity of our algorithm is bounded by
O((K+log(K)) * 2N/K), where K denotes the number of clusters and N
denotes the number of parameters. Here, the 2N/K factor bounds the
running time of the exhaustive computations of the Pareto-optimal
points. The K in the first factor is a bound on the number of times that
the first part of the algorithm loops, while the log(K) is a bound on the
number of times the second part of the algorithm loops. In the worst
case, when K=1 (all parameters are dependent,) the running time is
exponential, namely 2N. In the best case, when K=N (all parameters
are independent,) the running time is linear, namely N. For most
practical cases, the running time will be closer to the best case since
the factor 2N/K will decrease very rapidly as K increases.

We have outlined an exploration approach that uses a parameter
dependency model to efficiently explore a large configuration space
and returns the Pareto-optimal configurations. Note that the approach
is exact and is not a heuristic.

5. Experiments
We have augmented our platform-tuning environment (Platune),
described above, with the exploration algorithm outlined in this
paper. Then, we explored the configuration space for 6 application
programs, 4 different technologies, and 3 different clock-tree
distribution networks, representing 72 different examples. For
briefness, we give the results for one of the applications.

The application is named “JPEG” and implements a JPEG
compression algorithm using the on-chip DCT CODEC core to
perform the forward DCT transform. Quantization and Huffman
encoding is performed via software running on the MIPS processor
core of our architecture. A raw image is input and a compressed JPEG
image is output using the on-chip UART core. Each simulation run
processed a black and white picture, depicting earth from outer space,
of size 32 by 32 pixels. We simulated both a version of the SOC that
used power models for an older technology (0.25 micrometer) and a
version that used power models for a newer technology (0.08
micrometer).

Our simulation and exploration speed results are as follows.
Each simulation executed 8272 MIPS processor instructions. Our
simulation model’s throughput was measured to be 134,000 processor
instructions per second, running on an 800 MHz Pentium III
processor. The time to explore and find Pareto-optimal configurations
for the newer technology was 5.7 minutes, during which our algorithm
returned 77 Pareto-optimal configurations, and simulated 2474
distinct configurations. The time to explore and find Pareto-optimal
configurations for the older technology was 25 minutes, during which
our algorithm returned 141 Pareto-optimal configurations and
simulated 9774 distinct configurations. The total number of
configurations that where possible was over 1014. Among the 72
different examples, we achieved an average pruning ratio of nearly
99.999997%.

The Pareto-optimal configurations of the JPEG example for the
two technologies are presented in Figure 8. The performance varies by

Figure 7: Cluster merging (part 2 of our algorithm).

Figure 8: Pareto-optimal configurations of the JPEG example.

Table 1: Summary of experimental results.

Technology(
micron)

Expl. Time
(min)

Configs.
Visited

Pareto-opt.
configs.

.08 5.7 2474 77

.25 25 9774 141

Technology
(micron)

Exe. Time
Tradeoff

Power
Tradeoff

Energy
Tradeoff

.08 8.11 times 3.02 times 4.12 times

.25 10.5 times 7.51 times 2.96 times

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000

Execution Time (us)

P
o

w
er

 (
u

W
)

New Tech.

Old Tech.

A,H,I B,C,D,E,F
,G

J,K,T,U

L,M,P,Q N,O,V,W
X,Y,R,S

Z

A,H,I,B,C
,D,E,F,G

J,K,T,U
,Z

L,M,P,Q,N
,O,V,W

X,Y,R,
S

A,H,I,B,C,D,E,F,G,J
,K,T,U,Z

L,M,P,Q,N,O,V,W,
X,Y,R,S

A,H,I,B,C,D,E,F,G,J,K,T,U,Z,L,M,P,Q,N,O,V,
W,X,Y,R,S

a factor of 8.11 for the new technology and 10.5 for the old
technology. The power range varied by a factor of 3.02 for the new
technology and 7.51 for the old technology. The energy range varied
by a factor of 4.12 for the new technology and 2.96 for the old
technology. The energy tradeoffs are given in Figure 9. In the new
technology, the lowest energy is 0.0541 Joules.

Our exploration of the JPEG example revealed all the
configurations of interest to a designer for two different technologies.
The results for the JPEG example are summarized in Table 1. The
Pareto-optimal configurations were obtained in a reasonable amount
of time at the system-level.

6. Conclusions
We have presented an approach for efficiently finding all Pareto-
optimal configurations of a parameterized SOC architecture. Our
approach relies on our knowledge about the dependencies, in terms of
execution time and power, among parameters of the SOC. We use a
directed graph to capture these dependencies and give an algorithm to
search the configuration space, incrementally, and prune inferior
configurations. Our experiments with a JPEG example mapped onto
our target SOC architecture demonstrate the feasibility of the
approach. Future work includes automating the determination of
dependencies, and introducing new parameters.

7. Acknowledgement
This work was supported by the National Science Foundation (CCR-
9811164), (CCR-9876006), a Design Automation Conference
Graduate Scholarship, and NEC USA.

8. References
[1] M.R. Stan, Wayne P. Burleson,

Bus-Invert Coding for Low Power I/O, IEEE Transactions on
VLSI, March 1995.

[2] A. Malik, B. Moyer, D. Cermak. A Programmable Unified Cache
Architecture for Embedded Applications. International
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, November 2000.

[3] S.M. Kang. Accurate Simulation of Power Dissipation in VLSI
Circuits. IEEE Journal of Solid-State Circuits, vol. CS21, no. 5,
pp. 889-891, October 1986.

[4] G.Y Yacoub, W.H. Ku. An Accurate Simulation Technique for
Short-Circuit Power Dissipation Based on Current Component
Isolation. IEEE International Symposium on Circuits and
Systems, pp. 1157-1161, 1989.

[5] R. Tjarnstorm. Power Dissipation Estimate by Switch Level
Simulation. IEEE symposium on Circuits and Systems, pp. 881-
884, 1989.

[6] T.H. Krodel. PowerPlay - Fast Dynamic Power Evaluation Based
on Logic Simulation. IEEE International Conference on
Computer Aided Design, pp. 96-100, Oct. 1991.

[7] A. Raghunathan, S. Dey, N.K. Jha. Register-transfer level
evaluation techniques for switching activity and power
consumption. International Conference on CAD Aided Design,
pp. 158-165, 1996.

[8] E. Macii, M. Pedram. High-Level Power Modeling, Evaluation,
and Optimization. IEEE Transactions on Computer Aided Design
of Integrated Circuits and Systems, vol. 17, no. 11, November
1998.

[9] D. Marculescu, R. Marculescu, M. Pedram. Information
Theoretic Measures for Power Analysis. IEEE Transactions on
Computer Aided Design, vol. 15, no. 6, pp. 599-610, 1996.

[10] M. Nemani, F. Najm. Toward a High Level Power Evaluation
Capability. IEEE Transactions on Computer Aided Design, vol.
15, no. 6, pp. 588-598, 1996.

[11] V. Tiwari, S. Malik, A. Wolfe. Power Analysis of Embedded
Software: A First Step Toward Sofware Power Minimization.
IEEE Transactions on VLSI Systems, vol. 2, no. 4, pp. 437-445,
1994.

[12] C.T. Hsieh, M. Pedram, H. Mehta, F. Rastgar. Profile Driven
Program Synthesis for Evaluation of System Power Dissipation.
Design Automation Conference, June 1997.

[13] C. Barndolese, W. Fornaciari, F. Salice, D. Sciuto. Energy
Evaluation for 32-bit Microprocessor. International Workshop on
Hardware/Software Co-Design, 2000.

[14] R.J. Evans, P.D. Franzon. Energy Consumption Modeling and
Optimization for SRAMs, IEEE Journal of Solid-State Circuits,
Vol. 30, No. 5, pp. 571-579, 1995.

[15] T.D. Givargis, J. Henkel, F. Vahid. Interface and Cache Power
Exploration for Core Based Embedded System Design.
International Conference on Computer Aided Design, November
1999.

[16] T. Simunic, L. Benini, G. De Micheli. Cycle-accurate Evaluation
of Energy Consumption in Embedded Systems. Design
Automation Conference, pp. 876-872, 1999.

[17] Y. Li, J. Henkel. A Framework for Estimating and Minimizing
Energy Dissipation of Embedded HW/SW Systems. Design
Automation Conference, pp. 188-193, 1998.

[18] P. Lieverse, P. van der Wolf, E. Deprettere, K. Vissers. A
Mtehodology for Architecture Exploration of Heterogeneous
Signal Processing Systems. IEEE Workshop on Signal Processing
Systems, Taipei, October 1999.

[19] T.D. Givargis, F. Vahid, J. Henkel. Instruction based System-
level Power Evaluation of System-on-a-chip Peripheral Cores.
International Symposium on System Synthesis, September 2000.

Figure 9: Energy tradeoffs of the JPEG example.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000

Execution Time (us)

E
n

er
g

y
(u

J)

New Tech.

Old Tech.

