
 

System-level Exploration for Pareto-optimal 
Configurations in Parameterized Systems-on-a-chip

Abstract 

In this work, we provide a technique for efficiently exploring the 
configuration space of a parameterized system-on-a-chip (SOC) 
architecture to find all Pareto-optimal configurations. These 
configurations represent the range of meaningful power and 
performance tradeoffs that are obtainable by adjusting parameter 
values for a fixed application mapped onto the SOC architecture. Our 
approach extensively prunes the potentially large configuration space 
by taking advantage of parameter dependencies. We have successfully 
incorporated our technique into the parameterized SOC tuning 
environment (Platune) and applied it to a number of applications. 
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1. Introduction 
The growing demand for portable embedded computing devices is 
leading to new system-on-a-chip (SOC) architectures intended for 
embedded systems. Such SOC architectures must be general enough 
to be used across several different applications, in order to be 
economically viable, leading to recent attention to parameterized SOC 
architectures. Different applications often have very different power 
and performance requirements. Therefore, these parameterized SOC 
architectures must be optimally configured to meet varied power and 
performance requirements of a large class of applications. 

A typical SOC architecture will have numerous cores, including a 
processor core, one or more caches, numerous on-chip buses, on-chip 
memory, and a large number of peripheral cores that provide 
application specific functionality such as data encoding, decoding and 
communication. Each of these SOC cores is likely to be 
parameterized, enabling a designer to tune a core’s settings for a 
specific application that is to be mapped on the SOC architecture. For 
example, the on-chip buses may be configured to optimally use bus-
invert 0 coding for low power, or the caches may be configured to use 
a greater or lesser degree of associativity for increased performance 
[2]. An assignment of a value to each of these parameters will impact 
the overall performance and power consumption of the SOC 
architecture. However, such impacts are highly dependent on the 

particular application running on the SOC. Therefore, a designer must 
have a method for finding a feasible set of parameter values, referred 
to as a configuration of the SOC, that meets the specification 
requirements. We outline an exploration approach that efficiently 
searches the entire configuration space and outputs Pareto-optimal 
configurations, thus providing the designer with only the interesting 
configurations that result in a tradeoff between power and 
performance. 

Our exploration algorithm fits in an SOC design flow as follows. 
As depicted in Figure 1, the SOC provider provides a parameterized 
architecture in HDL or configurable IC format along with all the 
traditional development tools such as compilers, debuggers, 
emulators, etc. In addition, the SOC provider provides a system-level 
tuning environment. This tuning environment enables the SOC user to 
search the parameter space of the SOC and find a configuration that 
meets power and performance requirements of the target application. 
This tuning environment is the focus of this work. 

The remainder of this paper is organized as follows. In Section 2, 
we describe some related work. In Section 3, we state the 
parameterized SOC exploration problem and outline our approach for 
solving it. In Section 4, we give some experimental results. In Section 
5, we state our conclusions. 

2. Previous Work 
Much previous work has focused on power evaluation of SOC 
architectures at various levels of abstraction. Circuit-level approaches 
simulate the circuit at the transistor level while monitoring supply 
current [3][4]. Logic-level, or gate-level, approaches simulate a gate-
level design, and calculate power by considering switching activity of 
nodes in the design [5][6], executing orders of magnitude faster than 
circuit-level approaches at the expense of some accuracy. RTL 
(register-transfer level) power evaluation operates at an even higher-
level of abstraction, modeling power consumption of more abstract 
circuit components, such as adders and multipliers etc. Simulation is 
performed at the RT-level and power is obtained by using these power 
models, also known as macro-models. The approach taken here can be 
divided into two categories, macro-modeling using table-lookup 
techniques and analytical modeling [7]. Lookup-tables and the 
coefficients of the analytical models are often derived from the gate-
level circuit structure or lower-level power evaluation and simulation. 
RTL power evaluation, in some publications such as [8], is shown to 
be accurate to within 5% of actual power consumption. Behavioral-
level approaches seek to estimate power of a behavioral HDL 
description before a synthesized design is obtained. An abstract notion 
of physical capacitance and switching activity is used. Switching is 
estimated using entropy from circuit input to circuit output by 
quadratic or exponential degradation [9][10]. 
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Work has been done to evaluate power consumption of a 
particular type of core, like microprocessors. One approach, 
instruction-level power modeling, is proposed by [11]. Given a 
program execution trace, energy is computed as the sum of the energy 
consumed by each instruction that is executed, circuit state energy 
consumed when a particular instruction is followed by another, and 
energy consumed by other effects such as stalls and cache misses. 
This approach is sped up in [12], by deriving a shorter program trace 
that results in equal power dissipation when compared to the original 
trace. In [13] a mathematical generic power model for 32-bit 
microprocessors is proposed. The approach classifies the instruction 
set into classes, like branches. The model has been applied to various 
32-bit processors. Other researchers have focused on fast system-level 
models for cache, memory and bus power consumption [14][15], 
consisting mostly of simulators coupled with equations that compute 
power consumption as a function of usage/traffic and core parameters. 
Further approaches aim at estimating the power consumption of whole 
embedded systems. In [16], a cycle-accurate power simulation tool, for 
an embedded system using a strong ARM architecture as CPU, is 
introduced. The reported results are accurate within 5% compared to 
measurements conducted on a hardware board. A trace-based 
approach deploying a mix of analytical models (for instruction cache, 
data cache and main memory) and ISSs (instruction set simulators) is 
introduced in [17]. 

A closely related methodology to ours, named SPADE (System 
level Performance Analysis and Design space Exploration), is 
proposed by [18]. That work defines a general scheme for the design 
of programmable architectures, referred to as the Y-chart. Target 
applications are mapped onto the architecture, and their performance 
is analyzed to obtain performance numbers. (The architecture, 
applications and performance numbers represent the dimensions 
along the Y shaped chart, hence the name Y-chart.) After analysis, the 
architecture or applications are tuned and the process is repeated until 
a desired system is obtained. In this model, the tuning process is 
driven manually by the designer. In our work, we outline an approach 
to automate the exploration, for a restricted range of architectures. 

Previous work has focused on techniques that quickly and 
accurately simulate SOC architectures in order to obtain power and 
performance metrics. Our technique combines this work with an 
approach for efficiently exploring the configuration space of SOC 
architectures by pruning configurations that are guaranteed to be 
inferior to others already evaluated. 

3. Target SOC 
Our parameterized system-on-a-chip architecture is depicted in Figure 
2. The architecture consists of the following. A MIPS R3000 
processor and instruction and data caches communicate over two 
processor-local buses. The on-chip memory is connected to the two 
caches via another bus. Universal Asynchronous Receiver and 
Transmitter (UART) and DCT CODEC cores are connected to the 
peripheral bus, which is bridged to the processor’s data bus. Most of 
the cores in this architecture are statically configurable. The MIPS can 
be set to run at 5 different voltage/frequencies. Caches can be set to 
use different associativity, line-size and total size. Each of the four 
busses can be configured with a different data and/or address bus 
width and one of binary, gray or bus-invert encoding. The UART 
core’s transmitter and/or receiver buffer sizes can each be set to one 
of 5 different sizes. The DCT CODEC core’s pixel resolution can be 
set to one of 10 or 12 bits.  

To evaluate power and performance of a particular application 
running on our target SOC, the tuning environment utilizes an 
available power and performance measuring approach such as in-
circuit emulation, gate-level simulation, RTL simulation or a system-
level behavior approach. We have used our platform-tuning 
environment (Platune) which is a system-level behavior approach, as 
described next.  

The evaluation environment, called Platune, is an executable 
model of the target architecture that is depicted in Figure 2. This 
simulation model is augmented with power models to allow for 
measuring the average power consumption of the chip while running 
an application. Platune can be broken down into two components, 
namely, the simulator module and power analyzer module. A detailed 
description of these components can be found in [19] and a brief 
summary is given here.  

Platune is a tightly coupled collection of event driven cycle 
accurate simulation models of its various components, namely, 
processor, cache, memory, busses and peripheral cores. The processor 
simulator maintains detailed statistics on its internal activity, e.g., 
fetches, stalls, instruction execution frequency, register file access, 
floating-point activity, etc. Such statistics is used in a post simulation 

Figure 1: SOC design flow. 

 

 

Figure 2: Target SOC. 
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analysis to compute power and performance metrics. The cache 
simulator of Platune is a fully parameterized element that operates on 
a stream of memory references that is output from the processor. In 
addition to the standard cache metrics, such as number of misses, the 
Platune cache simulator maintains additional activity statistics, e.g., 
number of tag comparisons, word-line activity and bit-line activity, 
etc. that is later used for power computation. Like the cache 
simulator, the bus simulator in Platune also operates on a stream of 
data and memory references that are generated by the processor, cache 
and memory modules and accumulates bus wire bit toggle statistics 
that are later used for power computation. Peripherals are handled in 
a scheme similar to that of the processor core. 

The second component of Platune, the power model and 
analyzers, operate on the statistics that are gathered during 
simulation, as described here. For the processor an instruction based 
power modeling approach is used [11]. For caches, first a structured  
(physical) model is deduced based on the cache parameter settings 
and technology feature size. This allows for estimation of bit-line, 
word-line, comparator, storage transistors, and address decoding logic 
capacitive loads. Then, switching activity from the simulation phase is 
applied to obtain average power consumption of the cache. Similarly 
for each bus segment, a rough layout is inferred that is based on the 
chip technology, chip area, bus widths, and relative size of the various 
cores, in order to obtain the average bus capacitance. Then, switching 
activity from the simulation phase is applied to obtain average power 
consumption of various buses. 

The entire Platune environment is integrated into a single GUI 
application and comes with a C compiler as well as a small runtime 
kernel for use by the application that is being simulated. Overall 
accuracy of Platune is experimentally shown to be 5% to 15% of gate-
level measurements [19]. 

4. Approach Overview 
We will next state the problem and outline our solution. Our solution 
will be given by first looking at an exhaustive method. Then we state 
the key observation that makes our approach more efficient, followed 
by the actual modeling and solution of the problem.  

4.1 Problem Formulation 
We are given a system-on-a-chip architecture composed of numerous 
interconnected parameterized computational, communication and 
memory elements. We enumerate each of these parameters as P1, P2, 
P3 … Pn. Each of these parameters can be assigned a value from a 
finite set of values. A complete assignment of values to all the 
parameters is a configuration. The problem is to efficiently compute, 
with the aid of a system-level model, the Pareto-optimal 
configurations, with respect to power and performance, for a fixed 
application executing on the SOC. In our problem, a configuration is 
Pareto-optimal if no other configuration has better power as well as 
performance. 

4.2 An Exhaustive Solution 
An exhaustive solution to this problem can be achieved as follows. 
Power and performance are evaluated for all configurations. 
Configurations are sorted by non-increasing execution time 
(performance). Then, in the sorted order, a walk through the space is 
performed while all configurations that result in power consumption 
above the minimum seen thus far are eliminated. The remaining 
configurations are Pareto-optimal. The algorithm is given in Figure 3. 

The problem with this approach is that the configuration space is 
likely to be very large, making the approach impractical in many 
cases. The exhaustive approach is practical when applied to a small 
subset of the solution space consisting of one or two varying 
parameters while all others held constant. 

Fortunately, we have found that many parameters in an SOC 
have little dependency among each other. Two parameters are 
dependent if changing the value of one of them impacts the optimal 
parameter value of the other. For example, it may be that the 
associativity and line size parameters of the instruction cache are 
dependent. However, the associativity parameter of the instruction 
cache and the line size parameter of the data cache are independent. 

Figure 3: Exhaustive Pareto-optimal computation. 

 

Figure 4: Target SOC dependency graph. 

 

 

list compute_Pareto_configurations(space s) { 

   list all, pareto; 

   float min_power = 1e100; /* infinity */ 

   for each configuration c in space s { 

      simulate_SOC(c); all.push(c); 

   } 

   all.sort( /* key is execution time */ ); 

   while( !all.empty() ) { 

      c = all.pop(); 

      if( c.power < min_power ) { 

         min_power = c.power; pareto.push(c); 

      } 

   } 

   return pareto; 

} 
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Our approach takes advantage of such independence of parameters to 
prune the configuration space. 

4.3 Parameter Dependency Model 
Since our approach takes advantage of dependencies of parameters on 
each other, we need a model to formally capture the dependencies. 
We use a graph model. In our graph, nodes represent parameters and 
directed edges represent dependencies. 

An edge from node (parameter) A to node (parameter) B 
indicates that the Pareto-optimal configurations of B should be 
calculated only after the Pareto-optimal configurations of A are 
computed. More generally, a path from A to B indicates that the 
Pareto-optimal configurations of B should be calculated once the 
Pareto-optimal configurations of all the nodes from A to B, residing on 
the path, are calculated, in that order. Meanwhile, all other 
parameters can be fixed to some arbitrary value. If there is an edge 
from A to B and an edge from B to A, then the Pareto-optimal 
configurations of parameters A and B must be calculated 
simultaneously. More generally, a path from A to B and back to A, 
which forms a cycle, indicates that the Pareto-optimal configurations 
of all the parameters on the cycle need to be calculated 
simultaneously. During that calculation, all other parameters not on 
the path can be temporally fixed to some arbitrary value. The Pareto-
optimal configurations of an isolated node can be computed by 
temporally setting all other parameters to some arbitrary value. 

The complete dependency graph of our target SOC of Figure 2 is 
given in Figure 4. We assume the designer of the SOC architecture 
determines the dependencies among the parameters. Often these 
dependencies follow from the structure of the SOC. For example, 
given an optimal configuration of the instruction cache, one can tune 
the data cache parameters without effecting the optimality of the 
instruction cache, since the optimally performing instruction cache 
will maximize instruction cache hit rate and no data cache 
configuration can have an effect on the instruction cache. In our graph, 
there are no edges going from B, C, or D to E, F, or G, stating that the 

instruction cache and data cache are independent. If the designer 
cannot establish the dependency of two or more parameters, than he 
or she should conservatively assume that they are dependent. In future 
work, we plan to automate this dependency determination. 

4.4 Exploration Algorithm 
Given a dependency graph, our algorithm works as shown in Figure 5. 
The algorithm can be broken down into two parts. The first part 
performs a local search for Pareto-optimal configurations. The second 
part iteratively expands the local search to discover global Pareto-
optimal configurations. More specifically, the first part performs a 
clustering of dependent nodes in our dependency graph and finds 
Pareto-optimal configurations within each cluster. The second part of 
the algorithm joins pairs of the clusters at a time and finds Pareto-
optimal configurations within them until all the clusters have been 
combined. 

The first part of our algorithm is to cluster together dependent 
nodes in the graph. This is the same problem as finding strongly 
connected components1 of a graph and is shown in Figure 6, as 
performed on our sample dependency graph of Figure 4. Here, a depth 
first search of the graph can be used to accomplish this. In addition, if 
two clusters are connected (but not strongly), then they are 
topologically ordered. Here, each cluster represents a sub-space of the 
configurations of the SOC architecture. We use our exhaustive 
algorithm for calculating Pareto-optimal configurations, in topological 
order, for each of the clusters. Then, we restrict possible 
configurations of that cluster to the Pareto-optimal configurations 
only. This pruning is justified since if a configuration is not Pareto-
optimal within a cluster, it cannot be part of a Pareto-optimal 
configuration for the entire configuration space. Conversely, if a 
configuration is Pareto-optimal within a cluster, it may or may not be 
Pareto-optimal given the entire configuration space, and thus must 
remain. 

                                                             
1 A strongly connected component of a graph is a maximal set of 

nodes such that for any pair of nodes, u and v, in the set, we have a 
path from u to v and from v to u. 

Figure 5: Exploration algorithm. 

 

 

Figure 6: Initial clustering (part 1 of our algorithm) of the 
dependency graph. 

 
list explore_Pareto_optimal_configurations(graph g) { 

   list sub_graphs = compute_connected_components(g); 

   list pareto; 

   // part 1 

   for each graph g in sub_graphs { 

      pareto=compute_Pareto_configurations(g.space) 

      eliminate configs. in g.space not in pareto; 

   } 

   // part 2 

   while( !sub_graphs.size() != 1 ) { 

      g1 = sub_graphs.pop_front(); 

      g2 = sub_graphs.pop_front(); 

      g = g1 union g2; 

      sub_graphs.push_back(g); 

      pareto=compute_Pareto_configurations(g.space); 

      eliminate configs. in g.space not in pareto; 

   } 

   return g.space; 
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Our exhaustive approach applied to clusters is usually feasible 
since these clusters represent only a small sub-space of the total 
configuration space. Nevertheless, heuristics such as probabilistic 
exploration techniques can be used to search within a cluster when 
the exhaustive method is too time-consuming. 

The second part of our algorithm combines a pair of clusters into 
a single cluster and computes Pareto-optimal configurations within it. 
Then, it limits the space of this new cluster to the Pareto-optimal 
configurations only. This procedure is repeated until all the original 
clusters have been merged into pairs. Then we repeat the process until 
at the end a single cluster remains. The Pareto-optimal configurations 
within this last cluster represent Pareto-optimal configurations of the 
entire configuration space. This sequence of clustering, applied to our 
target SOC example, is depicted in Figure 7. 

The time complexity of our algorithm is bounded by 
O((K+log(K)) * 2N/K), where K denotes the number of clusters and N 
denotes the number of parameters. Here, the 2N/K factor bounds the 
running time of the exhaustive computations of the Pareto-optimal 
points. The K in the first factor is a bound on the number of times that 
the first part of the algorithm loops, while the log(K) is a bound on the 
number of times the second part of the algorithm loops. In the worst 
case, when K=1 (all parameters are dependent,) the running time is 
exponential, namely 2N. In the best case, when K=N (all parameters 
are independent,) the running time is linear, namely N. For most 
practical cases, the running time will be closer to the best case since 
the factor 2N/K will decrease very rapidly as K increases. 

We have outlined an exploration approach that uses a parameter 
dependency model to efficiently explore a large configuration space 
and returns the Pareto-optimal configurations. Note that the approach 
is exact and is not a heuristic. 

5. Experiments 
We have augmented our platform-tuning environment (Platune), 
described above, with the exploration algorithm outlined in this 
paper. Then, we explored the configuration space for 6 application 
programs, 4 different technologies, and 3 different clock-tree 
distribution networks, representing 72 different examples. For 
briefness, we give the results for one of the applications. 

The application is named “JPEG” and implements a JPEG 
compression algorithm using the on-chip DCT CODEC core to 
perform the forward DCT transform. Quantization and Huffman 
encoding is performed via software running on the MIPS processor 
core of our architecture. A raw image is input and a compressed JPEG 
image is output using the on-chip UART core. Each simulation run 
processed a black and white picture, depicting earth from outer space, 
of size 32 by 32 pixels. We simulated both a version of the SOC that 
used power models for an older technology (0.25 micrometer) and a 
version that used power models for a newer technology (0.08 
micrometer). 

Our simulation and exploration speed results are as follows. 
Each simulation executed 8272 MIPS processor instructions. Our 
simulation model’s throughput was measured to be 134,000 processor 
instructions per second, running on an 800 MHz Pentium III 
processor. The time to explore and find Pareto-optimal configurations 
for the newer technology was 5.7 minutes, during which our algorithm 
returned 77 Pareto-optimal configurations, and simulated 2474 
distinct configurations. The time to explore and find Pareto-optimal 
configurations for the older technology was 25 minutes, during which 
our algorithm returned 141 Pareto-optimal configurations and 
simulated 9774 distinct configurations. The total number of 
configurations that where possible was over 1014. Among the 72 
different examples, we achieved an average pruning ratio of nearly 
99.999997%. 

The Pareto-optimal configurations of the JPEG example for the 
two technologies are presented in Figure 8. The performance varies by 

Figure 7: Cluster merging (part 2 of our algorithm). 

 

Figure 8: Pareto-optimal configurations of the JPEG example. 
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a factor of 8.11 for the new technology and 10.5 for the old 
technology. The power range varied by a factor of 3.02 for the new 
technology and 7.51 for the old technology. The energy range varied 
by a factor of 4.12 for the new technology and 2.96 for the old 
technology. The energy tradeoffs are given in Figure 9. In the new 
technology, the lowest energy is 0.0541 Joules. 

Our exploration of the JPEG example revealed all the 
configurations of interest to a designer for two different technologies. 
The results for the JPEG example are summarized in Table 1. The 
Pareto-optimal configurations were obtained in a reasonable amount 
of time at the system-level. 

6. Conclusions 
We have presented an approach for efficiently finding all Pareto-
optimal configurations of a parameterized SOC architecture. Our 
approach relies on our knowledge about the dependencies, in terms of 
execution time and power, among parameters of the SOC. We use a 
directed graph to capture these dependencies and give an algorithm to 
search the configuration space, incrementally, and prune inferior 
configurations. Our experiments with a JPEG example mapped onto 
our target SOC architecture demonstrate the feasibility of the 
approach. Future work includes automating the determination of 
dependencies, and introducing new parameters. 
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Figure 9: Energy tradeoffs of the JPEG example. 
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