
A Quantitative Analysis of the Speedup Factors of FPGAs
over Processors

Zhi Guo
Electrical Engineering

University of California Riverside

Walid Najjar Frank Vahid
Computer Science and Engineering

University of California Riverside

Kees Vissers
University of California Berkeley

ABSTRACT
The speedup over a microprocessor that can be achieved
by implementing some programs on an FPGA has been
extensively reported. This paper presents an analysis, both
quantitative and qualitative, at the architecture level of
the components of this speedup. Obviously, the spatial
parallelism that can be exploited on the FPGA is a big
component. By itself, however, it does not account for the
whole speedup.

In this paper we experimentally analyze the remaining
components of the speedup. We compare the performance
of image processing application programs executing in
hardware on a Xilinx Virtex E2000 FPGA to that on three
general-purpose processor platforms: MIPS, Pentium III
and VLIW. The question we set out to answer is what is the
inherent advantage of a hardware implementation over a
von Neumann platform. On the one hand, the clock
frequency of general-purpose processors is about 20 times
that of typical FPGA implementations. On the other hand,
the iteration level parallelism on the FPGA is one to two
orders of magnitude that on the CPUs. In addition to these
two factors, we identify the efficiency advantage of FPGAs
as an important factor and show that it ranges from 6 to 47
on our test benchmarks. We also identify some of the
components of this factor: the streaming of data from
memory, the overlap of control and data flow and the
elimination of some instruction on the FPGA. The results
provide a deeper understanding of the tradeoff between
system complexity and performance when designing
Configurable SoC as well as designing software for CSoC.
They also help understand the one to two orders of
magnitude in speedup of FPGAs over CPU after
accounting for clock frequencies.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and

Design Aids; C.3 [Special-purpose and Application-based
Systems]: Signal processing systems; J.6 [Computer-aided
Engineering]: Computer-aided design (CAD)

General Terms
Measurement, Performance, Experimentation, Languages

Keywords
RECONFIGURABLE COMPUTING, FPGA, VHDL,
PERFORMANCE, ANALYSIS

1. INTRODUCTION
The speedup over a traditional CPU that can be achieved by
implementing a computation as a circuit on an FPGA has
been reported many times in the technical literature. The
objective of this paper is NOT to report yet another
speedup. Rather, it is to present an analysis, both
quantitative and qualitative, of the components of this
speedup at the architecture level. Parallelism is the most
notorious of these factors: Large FPGAs allow the user to
implement multiple copies of the same computation by
unrolling or strip-mining loops. Typical applications that are
mapped onto FPGAs, such as signal, image and video
processing applications, involve complex computations on
a large volume of streaming data. Such applications can
benefit tremendously from on-chip parallelism. However, the
parallelism by itself does not account for the whole speed-
up which is often much larger. Furthermore, when we factor
into this equation the ratio of clock frequencies, the speed-
up appears to be even larger when counted in number of
clock cycles.

The last few years has seen the introduction of a
number of Configurable System-on-a-Chip (CSoC) platforms
that combine one or more CPU cores, an FPGA -based
reconfigurable fabric, as well as memory blocks on a single
chip. These amazing computing devices have the flexibility
of software yet can approach computing speeds of custom
hardware. The earliest example is that of the Triscend [12]
E5 followed by the Triscend A7, the Xilinx [13] Virtex II Pro,
and the Altera [14] Excalibur. The capabilities of these
platforms span a wide range. At the low end, the Triscend
A7 consists of a 60 MHz ARM CPU with about 20,000
programmable gates. At the high end, the Xilinx Virtex II Pro

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA ’04, February 22-24, 2004, Monterey, California, USA.
Copyright 2004 ACM 1-58113-829-6/04/0002…$5.00.

walid najjar
Proc. ACM/IEEE Conf. on Field Programmable Gate Array (FPGA), Monterey, CA, Feb. 2004

2VP125 consists of about 10 million gates, four PowerPC 405
CPUs each running at 400 MHz, 10 Mbits of BlockRAM, 556
18x18-bit multipliers and 3.125 Gbps off-chip bandwidth.
Paradoxically, the same advances in process technology
that made CSoCs a reality have made it less economically
feasible to develop large-scale ASICs. Mask costs alone are
about $1 million in today's technologies, and are expected to
double or triple with every new technology node.

FPGAs, whose capacities have become truly massive,
have been shown to achieve huge speedups over
microprocessors for a wide variety of applications
[1][3][16][17][18][19]. Recently, BDTI [15] reported that an
Altera Stratix EP1S20-6 could accommodate more than 60
times the channel capacity of a Motorola MSC8101 DSP
running at 300 MHz.

With the introduction of these platforms, it is now
feasible to combine on a same chip the two styles of
computations: temporal, on the CPU, and spatial, on the
reconfigurable fabric. CSoCs are therefore ideal platforms
for embedded applications that combine both control and
data intensive computations. Image and video processing
applications, among many others, fall into this category.

The objective of this study is a quantitative evaluation of
the various factors that contribute to the speedup achieved
by FPGA implementations over traditional, and less
traditional, CPUs. We believe that a better understanding of
these issues can be of great help for current and future
applications of CSoC, for the design of more efficient
configurable fabrics and in general for a more targeted
hardware/software codesign of embedded systems.

Ours is not an exhaustive analysis – we have limited
ourselves, for convenience, to only one FPGA -based
reconfigurable platform, the Xilinx Virtex architecture, and to
one type of application: data parallel compute intensive
programs drawn from image processing applications. It is
well known that the clock speeds that can be realized on
FPGA platforms fall well behind the ones that are customary
on microprocessors, even low cost microprocessors
intended for large volume embedded applications. A typical
embedded CPU runs at a frequency 6 to 15 times that of a
typical FPGA implementation.

DeHon [10] compares the computational densities that
can be obtained on CPUs, FPGAs and ASICs. He shows
that while the computational density on FPGAs is lower
than ASICs, it is still much larger than what is achieved on a
CPU. Of course, FPGAs, compared with ASICs, have the
advantage of being programmable.

The rest of this paper is organized as follows. In
Section 2, we describe the benchmarks used as well their
implementation on a CSoC. Section 3 reports on the
comparison with three general-purpose processors: MIPS,

Pentium III and a VLIW machine. Section 4 gives an in-
depth analysis of the factors accounting for the
performance difference. Section 5 provides conclusions.

2. CSOC IMPLEMENTATION
In this section, we describe the three benchmarks used and
their implementation on the reconfigurable platform.

A reconfigurable computing system usually consists of
a number of reconfigurable devices with local memory chips
and a bus to the host microprocessor if any. We use as our
platform the Annapolis Microsystems WILDSTAR board
[8]. The WILDSTAR board has three Xilinx Virtex
XCV2000E FPGA chips, synchronous SRAM as local
memory, and connects with the host by a PCI bus (Moll and
Shand [11] measured the performance of the interface
between a reconfigurable computing platform and its host,
particularly on the PCI bus.). Standard VHDL modules can
be used to design the interfaces to access and control the
on-board components. Each of the FPGAs has an
equivalent of two million programmable gates. In all
applications, we have used only one FPGA. A schematic of
our platform is shown in Figure 1.

2.1 The Benchmarks
We have selected, intentionally, benchmarks from video
and image processing applications. These types of
programs are computationally intensive and therefore favor
an FPGA-based implementation. Control flow intensive
applications would obviously favor CPU-based platforms.
Our objective is an analysis of the “why” and “how” of the
FPGA advantage over CPU platforms on compute intensive
applications.

We have used three image processing benchmarks:

• Prewitt: an edge detection algorithm.

• Wavelet transform: used in the JPEG 2000 image
compression standard.

Figure 1: Schematic of the WildStar board

PE 1 PE 0 PE 2

Memory
card

Memory
card Left

MEM

Left
MEM

Right
MEM Memory

card
Memory

card

PCI

Right
MEM

• Max filter: computes the maximum pixel in a window of
an image.

2.1.1 Prewitt
Prewitt edge detection is a common algorithm in the image
processing area. An n×n mask window slides over an 8-bit
image. For each window, a convolution is computed with
both an n×n vertical mask and an n×n horizontal mask. The
result is the geometric average of these two values. The
algorithm is described in the following equations, where n is
3.

•

−

−
−

=

333231

232221

131211

101

101
101

PPP

PPP
PPP

mask vert
 (1)

•

 −−−
=

333231

232221

131211

111
000
111

PPP
PPP
PPP

mask hort (2)

22
horzvertoutput maskmaskpixel += (3)

Obviously, we don’t have to do array multiplications. We
only need to do 3 subtractions and 2 additions per mask to
compute the convolutions. The geometric average consists
of two multiplications, one addition and one square root
operation. The implementation of the square root operation
is based on the pipelined scheme described in [2]. The
pipeline of the entire calculation consists of 12 stages and is
shown in Figure 2. The square root pipeline accounts for
eight stages, with one subtraction in each stage. The total
computations for every output pixel consist of 19
additions/subtractions plus two multiplications.

2.1.2 Wavelet
The wavelet transform algorithm we have used is based on
a 5×5 sliding window with a 2-pixel step in both the
horizontal and vertical directions. The calculations are
shown in Equations (4) and (5), where d0 and d01 are the
outputs for every column of five pixels (P11 to P15). So for
five columns, we get 5 d0 and 5 d01. Then both the columns
of d0 and d01 are calculated using the same equations again.
Therefore, each 5×5 window generates 4 output pixels.
Since the window is sliding in a 2-pixel step both in
horizontal and vertical directions, we still get one output
pixel per input pixel on average.

()

()

•−−=

•−−=

15

14

13

1

13

12

11

0

121

121

p
p
p

d

p
p
p

d

 (4)

3)(1001 >>+= ddd (5)

2.1.3 Maximum Filter
The maximum filter program is similar to the window in
Prewitt edge detection. A 3×3 window slides over an image.
The maximum value of the 9 pixels is the output pixel of the
current window.

On the WildStar board, the data bus between the FPGA and
memory is 64 bits wide, which allows the fetching of eight
pixels in parallel.

In both the Prewitt edge detection and the maximum
filter cases, eight windows are computed simultaneously,
which means that eight pipelined iterations, as shown in
Figure 2, are mapped on the FPGA.

In the wavelet transform case, four windows are
computed concurrently. Each window generates four 8-bit
data items every two clock cycles. Therefore all three
circuits achieve an output of eight pixels per cycle. Notice
that none of these applications has loop carried data
dependencies.

As with most image and video processing applications,
all three benchmarks rely on sliding windows over an image.
This implies every pixel value is used by more than one
iteration. For example, every column of output in Prewitt
edge detection, which has eight pixels, depends on both the
present eight rows of input data and the last two rows of
input data of the previous eight rows. We store the last two
pixels of each 64-bit input in a configurable dual-ported
memory on the FPGA. Therefore no pixel has to be read
twice from memory and we get eight output pixels every

Window generator

-
P13 P11

-
P23 P21

-
P33 P31

+

+

-
P31 P11

-
P32 P12

-
P33 P13

+

+

x x

+

Square root
pipeline

input

output

 Figure 2: Pipelined architecture of Prewitt edge detection

cycle. Furthermore, all the on-chip memory access can be
done within one clock cycle. Therefore, we achieve
seamless connection between memory access and execution
benefiting from the device’s distributed memory and post-
fabrication programmability characteristic.

Table 1: Hardware performance of the FPGA

Freq.

(MHz)

Number of
clock cycles

Cycles/output
pixel

Ops/pixel

Prewitt 33.3 131072 0.125 61

Wavelet 35.8 130944 0.125 15.75

Max filter 41.2 131072 0.125 8

For the FPGA platform we use the Xilinx Virtex
XCV2000E FPGA chip. The VHDL codes are synthesized by
Synplify 7.0 [4] and compiled using the place-and-route
tools of Xilinx Project Navigator 4.1i [5].

The statistics for all the benchmarks are shown in Table
1. The input image size is 1024×1024 for each application.
Each application has the same throughput: eight pixels per
cycle. Note that the data is given per output pixels. Even
though the input image is the same size, the number of
output pixels depends on the filer size: 3x3 for Prewitt and
Max Filter and 5x5 for Wavelet.

3. PROCESSOR PLATFORMS
We compare the same benchmarks written in C on the
following general-purpose platforms: MIPS, Pentium III and
VLIW. In all three cases we assume a perfect cache to factor
out the effects of cache misses. We also make the input
data set size large enough to ensure that the effects of other
computations are negligible.

For the MIPS processor we use the Simplescalar
simulator [6]. We generate the timing statistics using
Simplescalar out-of-order simulation.

We use the VTune Performance Analyzer 7.0 [7] from
Intel to evaluate the performance of the code running on a
Pentium III. VTune collects data of the entire system with a
very low intrusion level. We make sure that the target
application program has over 99.5% of the processor
resources, while other services, including operating system
and VTune itself, use the rest. The programs are compiled
using the Microsoft Visual C++ compiler.

For the VLIW platform we use the VEX compiler and
simulator system from HP Labs1. The scalability of the VEX

1 VEX (VLIW Example) is a VLIW compiler and simulator with a

configurable machine model developed at HP Labs, Cambridge
MA. It is not yet publicly available.

ISA enables users to change the number of clusters,
functional units, registers and memory ports. We use the
following configuration in the VEX system: four clusters
(which is the maximum) with four ALUs, two multipliers and
three memory units per cluster. Using a pragma in the
source code, the loops are unrolled four times.

Table 2: Statistic information of the three applications on
MIPS with perfect cache

Instructions
executed

Clock cycles CPI
Instr/
pixel

Prewitt 550125282 261121454 0.476 527

Wavelet 205502954 101263275 0.455 198

Max filter 390267442 171050813 0.438 374

Table 3 - Statistic information of the three applications on
Pentium III

Instructions
executed

Clock cycles CPI Instr/pixel

Prewitt 394475180 327414400 0.83 378

Wavelet 123136713 221030400 1.79 118

Max filter 219726901 236865600 1.08 210

Table 4 - Statistic information of the three applications on
VLIW with perfect cache

Instructions
executed

Clock
cycles

CPI Instr/pixel

Prewitt 112015182 75722263 0.676 107

Wavelet 61350478 49877939 0.813 59.0

Max filter 57607148 81226079 1.41 55.2

Table 2, Table 3 and Table 4 show the execution
statistics of the three applications on the MIPS processor,
the Pentium III processor and the VLIW, respectively.

4. ANALYSIS OF SPEEDUP FACTORS
The clock frequency is obviously a very important factor in
comparing the performance of microprocessors and FPGA -
based implementations. Typical embedded microprocessors
have frequencies ranging from 100 to 600 MHz whereas
many FPGAs are rated for clock frequencies in the 30 to 100
MHz range. Most typical applications that are mapped onto
FPGAs achieve frequencies ranging from 30 to 60 MHz as
shown in Table 1. The clock frequency alone, therefore,
accounts for a factor ranging from 3 to 10 in favor of
microprocessors. However, the speedup in terms of clock
cycles, as shown in Table 5, ranges from 381 to 2498. This

leads us to conclude that after accounting for the clock
frequency difference, the FPGA implementations are one to
two orders of magnitude faster than the CPUs.

The objective of our analysis is to identify and quantify
the parameters that determine this speedup. We will
therefore not consider the clock frequency issue any further
in our discussion.

Table 5: Speedup of FPGA implementation in clock cycles

Table 6: Iteration level parallelism for all four platforms

Table 6 gives the iteration level parallelism for all four
platforms. The remainder of this section is an analysis of the
components of this speedup.

4.1 The Factors of the Speedup
In this section we present an analysis of the factors that
contribute to the speedup. The type of applications that we
are interested in consist of a loop nest that accounts for a
very large percentage of the computation. We will therefore
focus the analysis on this loop nest ignoring the remainder
of the computation. Equation (6) gives the definition of total
number of clock cycles on a general-purpose processor for
a given computing task, where

iteratInstr = Total number of instructions per iteration.

iteratN = Total number of outer iterations, in our case

the number of pixels in the output image.

CPI = Average number of clock cycles per instruction.

CPINInstrCycle iteratiteratCPU ××= (6)

Some of the instructions in a loop iteration are directly
related to the pixel operations while others are “support”
instructions. These instructions are used to load/store the
data in memory, to manipulate the program counter (PC) to
make sure the computation to be carried out in a correct
sequence. Thus, we can divide the total number of
instruction per iteration iteratInstr into two parts, shown in

Equation (7),

operatspptiterat InstrInstrInstr += (7)

where operatInstr is the number of instructions that carry out

the calculation directly, and spptInstr is the number of

support instructions.

Each loop in the FPGA yields one output pixel every
clock cycle. Equation (8) gives the total number of clock
cycles to perform the same calculation in the FPGA,

iterat

iterat
FPGA P

N
Cycle = (8)

where iteratP is the number of parallel loops in the FPGA,

listed in Table 6. We define the FPGA overall speedup over
general-purpose processor in Equation (9).

FPGA

CPU
overall Cycle

Cycle
Speedup = (9)

If we substitute Equation (6), (7) and (8) into Equation
(9), we can get Equation (10)

iteratoperatsppt

iteratiterat

iterat

iterat

iteratiterat
overall

PCPIInstrInstr
PCPIInstr

P
N

CPINInstr
Speedup

××+=
××=

××
=

)()

 (10)

We can see that the overall speedup can be divided
into three factors: iteration level parallelism ratio (iteratP),

CPI, and the summation in the parentheses. In order to make
the speedup analysis more clear, we define the instruction
efficiency in Equation (11), which is the percentage of the
pixel operations to support instructions.

operatsppt

operat

iterat

operat

InstrInstr

Instr

Instr

Instr
Efficiency

+
=

=

 (11)

For convenience, we define the reciprocal of instruction
efficiency as instruction inefficiency in Equation (12)

operat

operatsppt

operat

iterat

Instr

InstrInstr

Instr
Instr

cyInefficien

+
=

=

 (12)

 Substituting Equation (12) into Equation (10) yields
Equation (13).

CPIcyInefficienInstrPSpeedup operatiteratoverall ×××= (13)

We have three factors in Equation (13):

 Prewitt Edge
Detection

Wavelet
Transform

Maximum
Filter

MIPS 1992 773 1305

Pentium 2498 1688 1807

VLIW 578 381 620

 FPGA MIPS Pentium III VLIW

ItLP 8 1 1 4

1. iteratP is the iteration level parallelism ratio,

2. operatInstr is usually greater than the number of

operations of one loop in FPGA since the implementation of
some instructions, such as a shift, in FPGA doesn’t take
any clock cycle. operatInstr ’s lower bound is the number of

operations of one loop in FPGA

3. cyInefficien reflects the fact that CPUs has to

execute a number of support instructions to carry-out the
computation.

We will discuss these three factors in the following
subsections.

4.2 Iteration Parallelism
One immediate advantage of FPGAs is the ability to run
several concurrent iterations on the hardware. In all three
programs, eight pixels are fed into the circuit and eight
output pixels are retrieved every cycle. Note that the
memory data bus is 64-bits wide, which results in eight
pixels per memory access. For all three benchmarks, the
iteration level parallelism on the FPGA is eight. On the MIPS
and Pentium it is one, and it is four on the VEX. These
values are summarized in Table 6.

Table 7 shows the FPGA speedup when the iteration
level parallelism advantage is factored out. One can observe
that the speedup over all the platforms and on all the
benchmarks is now within the same order of magnitude.

Table 7: Speedup of FPGA factoring out iteration level
parallelism

Prewitt Edge

Detection
Wavelet

Transform
Maximum

Filter

MIPS 249 96.7 163

Pentium 312 210 226

VLIW 289 190 310

4.3 The Number of Necessary Operations
As mentioned above, the number of arithmetic and logic
operations per pixel running on a CPU for a given
computing task is greater than that on a FPGA for the same
task. Instructions such as shift, or a multiplication by a
power of two do not take any cycle time in hardware. Bit
extracting takes a group of instructions in CPUs, while is
implemented only by wires, and of course, doesn’t take any
clock cycles.

In Table 8 we can see that for Maximum Filter, both the
FPGA and the CPU have the same number of operations per
pixel because the only effective arithmetic operation in
these two architectures is comparison. However, for Prewitt

Edge Detection, the FPGA saves many operations, which
are all shift operation that are used to do square root.

Table 8 - ALU Operations/pixels of CPUs and FPGAs

Prewitt Edge

Detection
Wavelet

Transform
Maximum

Filter

CPU 61 15.75 8

FPGA 21 10.5 8

4.4 The Efficiency Advantage
Table 2, Table 3 and Table 4 show the numbers of executed
instructions for each benchmark on the three CPUs. The
output image sizes are known, so that we can get the
numbers of executed instructions for each iteration and list
in the third column of Table 9. The second row of Table 8
lists the numbers of ALU operations/pixel on CPUs per
iteration. The numbers of support instructions per iteration
are listed in the forth column of Table 9. By using Equation
(12), the instruction inefficiencies are listed in the last
column of Table 9.

Table 9 - The Instruction Inefficiency

The most fundamental difference between a general-
purpose processor and a reconfigurable computer is that
the former time-multiplexes the operation of the entire task
on one datapath while the later can be programmed to
perform the same operation repeatedly on a stream of data.
In the latter, we build a hardwired datapath, plus distributed
memory if needed, to carry out just one computing task
efficiently. Special interconnections define the order of the
operations on the data stream. No data item needs to be re-
read from memory since configurable data storage can be
customized for each data path separately.

Below is a summary of the factors that cumulatively
form the instruction efficiency associated with the von
Neumann model as compared to an FPGA implementation:

• Sequential execution. The von Neumann model is
inherently sequential. Extracting parallelism, at compile

Benchmarks CPU Instr./pixel
Support

instr./pixel
Inefficiency

Factor
MIPS 527 466 8.64

Pentium III 378 317 6.19
Prewitt Edge

Detection
VLIW 428 367 7.02

MIPS 198 180 12.5

Pentium III 118 102 7.51 Wavelet
Transform

VLIW 236 175 15.0

MIPS 374 366 46.7

Pentium III 210 202 26.3 Maximum
Filter

VLIW 221 160 27.6

time or run-time, involves a substantial overhead.
Pipelining is an example of an architecture mechanism
that exploits instruction level parallelism at run-time. It
suffers from pipeline stalls and delays when
instructions are dependent.

• Control flow. In the von Neumann model, the control
flow and dataflow instructions are embedded in the
same program and executed sequentially. In the
hardware implementation, the two “mechanisms” are
separate. Instructions such as branches and jumps are
not implemented on the FPGA. Instead, all branches of
a control path are implemented and the correct outcome
selected (i.e., “if conversion”).

• Large temporary storage can be implemented on the
FPGA. This storage can be used dynamically and
selectively without having a large impact on the clock
cycle time. This provides powerful support to
implement a very large degree of parallelism,
specifically iteration level parallelism.

4.4.1 An Example: Square Root

Figure 3 shows the assembly code of square root
subroutine loop body in the Prewitt edge detection on a
MIPS processor. This loop is the dominant loop of the
entire calculation task. It is invoked once per pixel and
iterates eight times for each invocation. There are 11
arithmetic instructions in the loop body, while only one (the
addu – underlined in the figure) corresponds to the
hardware operator we employ in one pipeline stage to carry
out the same square root algorithm. As we mentioned
above, each square root stage has only one
subtraction/addition operator. In fact, it does have two OR

operators, but the operators are combined with other
circuits and are done with the subtraction/addition together
within one clock cycle. The algorithm also needs five shift
operators per stage. Reconfigurable device gets them for
free using wires, while as shown in Figure 3, a general-
purpose processor requires a number of shift instructions.
Note also that the MIPS code must use arithmetic
instructions to update the loop counter, while the FPGA
implementation can accomplish that in parallel. Most of the
rest are memory load and store instructions, which are used
to store and upgrade the current calculation status since the
operators for one or one group of data are sequenced in
time. We also have a number of branch instructions in
Figure 3. Beside the clock cycles these instructions take,
they also partly account for pipeline bubbles.

Notice that all these overhead instructions are in the
major loop of the executable, which is expensive.

4.5 Memory Accesses
Memory accesses are amongst the most notorious
overhead operations on CPUs. Reducing the total number
of memory accesses always has a positive impact on
performance and energy consumption. FPGAs allow the
user to configure on-chip storage at will and customize it for
each loop. In particular, this storage can be used to
efficiently reduce the number of memory accessing by
reusing data.

Table 10 shows the numbers of the load and store
operations used to calculate one output pixel on each of the
four platforms. Note that for the three CPUs the compiler
optimization levels were set at the highest available level.

Table 10 - Prewitt loads and store per output pixel on the
four platforms

FPGA reads and writes eight pixels from/to memory in
parallel since the data bus is 64-bit and the pixel is 8-bit in
our implementation. For the max filter code, which is the
simplest code, all three CPUs have the same accesses: nine
pixels read for each pixel written.

The communication between storage units and
function units is always one of the most important effects of

 FPGA MIPS

Pentium
III

VLIW

Load 0.125 8 13 8 Prewitt

Store 0.125 1 7 1

Load 0.125 12 14 8.75 Wavelet

Store 0.125 7 7 1

Load 0.125 9 9 9 Max

Store 0.125 1 1 1

lw $v0[2],0($s8[30])

addiu $v1[3],$v0[2],-1

addu $v0[2],$zero[0],$v1[3]

sw $v0[2],0($s8[30])

addiu $v1[3],$zero[0],-1

bne$v0[2],$v1[3],00400280
<sq_root+90>

j 00400370 <sq_root+180>

lw $v0[2],4($s8[30])

sll $v1[3],$v0[2],0x1

sw $v1[3],8($s8[30])

lw $v0[2],16($s8[30])

sll $v1[3],$v0[2],0x2

sw $v1[3],20($s8[30])

lw $v1[3],8($s8[30])

sll $v0[2],$v1[3],0x1

ori $v1[3],$v0[2],1

lw $v1[3],0($s8[30])

sll $v0[2],$v1[3],0x1

lw $v1[3],12($s8[30])

srlv $v0[2],$v1[3],$v0[2]

lw $v1[3],24($s8[30])

sltu $v0[2],$v0[2],$v1[3]

bne$v0[2],$zero[0],004003
48 <sq_root+158>

lw $v0[2],8($s8[30])

ori $v1[3],$v0[2],1

sw $v1[3],4($s8[30])

lw $v0[2],24($s8[30])

sw $v0[2],16($s8[30])

j 00400368 <sq_root+178>

lw $v0[2],8($s8[30])

sw $v0[2],4($s8[30])

lw $v0[2],20($s8[30])

sw $v0[2],16($s8[30])

Figure 3: Assembly code, in MIPS, of square root

computation performance. The analysis above shows the
importance of loop level data reuse.

From Table 10 we can see that an extensive
optimization of data reuse on the FPGA can impact the
number of memory accesses by a factor ranging from 64 to
112 compared with hand optimized VHDL implementation on
FPGA. Even if we factor out the difference between FPGA’s
bit-precision and CPUs’ word-precision, which is eight for
these three benchmarks, loop level reuse still can reduce
memory accesses by 8 to 14 time in our benchmarks.

4.6 Comparing the Speedup Factors
In this section we compare the contribution of the important
factors to the speedup. The two that constitute the
advantage of the FPGA implementation are the iteration
level parallelism and the instruction efficiency they are
listed in Table 11. We can see that, in our implementations,
instruction efficiencies are comparable to iteration level
parallelism for Prewitt Edge Detection and Wavelet
Transform. For Maximum Filter, the efficiency is much more
significant than iteration parallelism because this benchmark
has relative simple calculation and relatively high control
density. In the FPGA implementation, the latency of control
operations is hidden.

Table 11 - The Efficiency Factor Compared with the Iteration
Level Parallelism Factor

The goal of the speedup analysis is to guide the design of
reconfigurable systems. This is particularly relevant for
configurable systems -on-a-chip (CSoC) where the designer
has the option of a software or hardware implementation.
The analysis in this section exposes the following
observations as related to Equation 13:

1. The iteration level parallelism is one of the
speedup factors. It is limited only by device area
and the available I/O or memory bandwidths.

2. Instruction efficiency is another important factor
that reflects the architectural difference between
FPGA and CPU. This factor is even more important
in simple codes (maximum filter) than it is in
complex ones (Prewitt and wavelet).

3. Hiding the latency of the supporting operations in
parallel with pipelined calculation maximizes the
instruction efficiency. If iteration level parallelism
is limited by I/O bandwidth, trading area for
instruction efficiency is worthwhile. For example,
memory accesses ought to be done in parallel with
the necessary ALU operations when possible.

4. The streaming of data from memory or I/O to the
datapath on the FPGA is a very big advantage that
eliminates a large number of support instructions.

5. CONCLUSION
In this paper, we analyzed three image-processing
applications (Prewitt edge detection, wavelet transform, and
maximum filter) implemented both on an FPGA -based
reconfigurable platform and on general-purpose processor
platforms (MIPS, Pentium III and VLIW). The objective of
our analysis was to identify and quantify the factors that
contribute to the speedup achieved on the FPGA over the
processors, and to guide the design and implementation of
reconfigurable systeams. We show that in spite of the clock
cycle advantage of CPUs the instruction efficiency of the
FPGA is an important factor. This factor ranges from 6 to 47
on our benchmarks. The instruction efficiency factor can be
considered the inherent advantage of FPGAs over the von
Neumann model architectures and affect reconfigurable
computing systems' performance dramatically. We also
show that FPGA implementations are very efficient in term
of loading and storing data to/from memory or I/O. This is a
result of the streaming computation that is usually
implemented. We believe that this quantitative analysis will
help shed some light on the 20 to 100 speedup factors that
can be achieved by FPGA implementations over general-
purpose processors.

6. REFERENCE
[1] J. Villarreal, D. Suresh, G. Stitt, F. Vahid and W. Najjar.

Improving Software Performance with Configurable
Logic, Kluwer Journal on Design Automation of
Embedded Systems, November 2002, Volume 7, Issue 4,
pp.325 -339.

[2] Y. Li and W. Chu. A New Non-Restoring Square Root
Algorithm and Its VLSI Implementations. ICCD’96,
International Conference on Computer Design,
Austin, Texas, October 7 - 9, 1996.

Benchmarks CPU

Iteration
level

parallelism
ratio

Inefficiency
Factor

MIPS 8 8.64

Pentium III 8 6.19
Prewitt Edge

Detection
VLIW 2 7.02
MIPS 8 12.5

Pentium III 8 7.51 Wavelet
Transform

VLIW 2 15.0
MIPS 8 46.7

Pentium III 8 26.3 Maximum
Filter

VLIW 2 27.6

[3] J. Frigo, M. Gokhale and D. Lavenier. Evaluation of the
Streams -C C-to-FPGA Compiler: An Applications
Perspective. 9th ACM International Symposium on
Field-Programmable Gate Arrays, Monterey,
California, February 2001.

[4] http://www.synplicity.com/

[5] http://www.xilinx.com/

[6] http://www.simplescalar.com/

[7] http://www.intel.com/software/products/vtune/

[8] Annapolis Microsystems Inc. WILDSTAR hardware
Reference Manual. (http://www.annapmicro.com)

[9] W. Böhm, R. Beveridge, B. Draper, C. Ross, M.
Chawathe, and W. Najjar. Compiling ATR probing
codes for execution on FPGA hardware. IEEE
Symposium on Field-Programmable Custom
Computing Machines, Napa Valley, California, April 21-
24, 2002.

[10] A. DeHon, The Density Advantage of Configurable
Computing, Computer, vol.33.No.4, April 2000, IEEE
Computer.

[11] L. Moll and M. Shand, Systems performance
measurement on PCI Pamette, In FPGAs for Custom
Computing Machines (FCCM'97), April 1997

[12] Triscend Corporation: http://www.triscend.com/

[13] Xilinx, Inc. http://www.xilinx.com/

[14] Altera Corporation. http://www.altera.com/

[15] Berkeley Design Technology, Inc. (BDTI):
http://www.bdti.com/

[16] G. Stitt, R. Lysecky and F. Vahid. Dynamic
Hardware/Software Partitioning: A First Approach.
Design Automation Conference (DAC’03), Anaheim,
California, June 2003.

[17] J. Hauser, J. Wawrzynek. Garp: a MIPS processor with a
reconfigurable coprocessor. IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM’97), pages 12-21, Napa Valley, California, April
1997.

[18] G. Brebner. Single-Chip Gigabit Mixed-Version IP
Router on Virtex-II Pro, 10th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM'02), Napa, California, September 2002.

[19] F. Cardells -Tormo, J. Valls -Coquillat, V. Almenar-Terre,
and V. Torres-Carot. Efficient FPGA -based QPSK
Demodulation Loops: Application to the DVB
Standard, 12th International Conference on Field
Programmable Logic and Applications (FPL’02),
Montpellier, France, September 2002.

