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Abstract
Just-in-time (JIT) compilation has been used in many applications 
to enable standard software binaries to execute on different 
underlying processor architectures. We previously introduced the 
concept of a standard hardware binary, using a just-in-time 
compiler to compile the hardware binary to a field-programmable 
gate array (FPGA). Our JIT compiler includes lean versions of 
technology mapping, placement, and routing algorithms, of which 
routing is the most computationally and memory expensive step. 
As FPGAs continue to increase in size, a JIT FPGA compiler 
must be capable of efficiently mapping increasingly larger 
hardware circuits. In this paper, we analyze the scalability of our 
lean on-chip router, the Riverside On-Chip Router (ROCR), for 
routing increasingly large hardware circuits. We demonstrate 
that ROCR scales well in terms of execution time, memory usage 
and circuit quality, and we compare the scalability of ROCR to 
the well known Versatile Place and Route (VPR) timing-driven 
routing algorithm, comparing to both their standard routing 
algorithm and their fast routing algorithm. Our results show that 
on average ROCR executes 3 times faster using 18 times less 
memory than VPR. ROCR requires only 1% more routing 
resources, while creating a critical path 30% longer VPR’s 
standard timing-driven router. Furthermore, for the largest 
hardware circuit, ROCR executes 3 times faster using 14 times 
less memory, and results in a critical path 2.6% shorter than 
VPR’s fast timing-driven router. 

Keywords 
Place and route, just-in-time (JIT) compilation, hardware/software 
partitioning, FPGA, configurable logic, platforms, system-on-a-
chip, dynamic optimization, codesign, warp processors, standard 
hardware binary. 

1. Introduction 
Just-in-time (JIT) compilation for FPGAs enables the 
development of a standard hardware binary as well as new 
technologies such as warp processing [19]. Standard hardware 
binaries would provide portability, allowing designers to use a 
single hardware netlist to configure a multitude of different 
FPGAs with different underlying architectures. An FPGA 
supporting JIT compilation would be capable of mapping the 
standard hardware binary to the FPGA’s configurable logic while 
optimizing the hardware design for that FPGA. 

In software design, just-in-time compilation provides 
powerful benefits. JIT compilation involves downloading a 
software binary format onto a chip, and then dynamically and 
transparently re-compiling that binary to the instruction set of the 
particular processor on that chip. The main benefit is that of 

binary portability – standard tools can be used to create a binary, 
and that same binary can be downloaded onto many different 
platforms. Modern x86 processors, including Intel’s Pentium and 
Transmeta’s Crusoe and Effecion processors, incorporate 
localized JIT compilation wherein x86 binaries are dynamically 
translated to and optimized for the chip’s underlying RISC or 
VLIW instruction set [12][20].  

Related to such a JIT compilation is dynamic transparent 
recompiling of a binary from one architecture to another, such as 
compiling x86 binaries to an Alpha architecture. Another form of 
JIT compilation involves distributing software as Java bytecode, 
which is then JIT compiled to a processor’s native instruction set 
for improved performance compared to the execution on a Java 
Virtual Machine [13]. A related benefit of JIT compilation is that 
of dynamic optimization, wherein software hotspots are detected 
and dynamically recompiled for performance optimization 
[4][11]. 

As FPGAs continue to find their way alongside 
microprocessors into more end-products, such as TV set-top 
boxes, digital cameras, network routers, medical equipment, etc., 
the concept of a “binary” changes from that of a microprocessor 
program, to a more general concept of the configuration bits for a 
chip, possibly providing the configuration for an FPGA, a 
software program, or both. Ideally, a designer could create a 
standard binary for an FPGA and then map that standard binary to 
any of multiple FPGA architectures. Unfortunately, there 
presently does not exist the concept of a “standard” binary for 
FPGAs. Netlist formats are specific to a particular FPGA 
architecture, and FPGA architectures vary significantly.  

Consider the example of a TV set-top box. Cable TV 
companies often transparently upgrade software within such 
boxes, by downloading new binaries. This works even though 
newer boxes may contain more advanced versions of the 
microprocessor, since newer processors often support older 
binaries or the binary can be JIT compiled to the different 
processor. Yet, such boxes increasingly rely on FPGAs for video 
processing, and so ideally we could download new binaries for 
the FPGAs as well, either to add new features or to fix bugs. 
However, newer boxes may contain newer or different FPGA 
architectures. Incorporating a JIT compiler within the FPGAs, a 
standard hardware binary could be transmitted and JIT compiled 
to the different FPGAs. 

JIT compilation for FPGAs is also useful, in fact essential, for 
warp processors that perform dynamic hardware/software 
partitioning. Warp processors dynamically optimize an executing 
binary by moving software kernels to on-chip configurable logic, 
resulting in better performance and lower energy consumption 
[16][19]. At the heart of warp processors, a JIT compiler is 
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required to implement the synthesized hardware circuits onto the 
on-chip configurable logic fabric. 

In designing warp processors and developing JIT FPGA 
compilation tools for standard hardware binaries, we previously 
developed a configurable logic fabric specifically designed to 
facilitate the development of a JIT FPGA compiler [15]. 
Furthermore, we developed a JIT FPGA compiler that performs 
technology mapping, placement, and routing [17][19].  

Rapid increases in IC transistor capacities are enabling the 
design and use of increasingly larger FPGAs.  A JIT compilation 
tool must be able to scale well to these larger FPGAs and larger 
hardware circuits. Furthermore, within a JIT compiler, as well as 
desktop-based FPGA CAD tools, routing is the most 
computationally intensive task, requiring larger memory resources 
and longer execution times than both technology mapping and 
placement algorithms. Hence, ensuring the scalability of the 
routing algorithm used within the JIT FPGA compilation tool is 
our first priority. In this paper, we present a study of the 
scalability of routing within a JIT FPGA compilation framework, 
comparing the scalability of our Riverside On-Chip Router 
(ROCR) algorithm with the Versatile Place and Route’s (VPR) 
timing-driven router. We compare the scalability of our on-chip 
router and VPR in terms of execution time, memory usage, and 
circuit quality.  

2. Just-in-Time FPGA Compilation 
2.1 Configurable Logic Fabric 
While many configurable logic architectures are currently 
available, traditional FPGAs are not well suited for JIT 
compilation. Traditional FPGAs are typically designed to handle 
an extremely wide variety of designs and are frequently used to 
prototype ASIC circuits. To support these vastly different designs, 
FPGA vendors, such as Xilinx [21] and Altera [1], design FPGAs 
with complex configurable logic blocks (CLBs), possibly 
containing varying sizes and number of lookup tables (LUTs), 
embedded memory cells, large routing resources, large 
input/output resources, etc. Traditional FPGA architectures are 
beneficial in terms of creating fast and compact designs, but such 
complexity requires complex technology mapping and complex 
place and route tools, which are not targeted for very fast or lean 
execution.

While most existing FPGAs are not designed with the goal of 
enabling extremely fast CAD tools, the Programmable Logic and 
Switch Matrix (Plasma) architecture was specifically designed to 
allow automatic routing of the entire configurable logic in three 

seconds [2]. To achieve such fast routing, the Plasma configurable 
logic architecture was designed with extremely large hierarchical 
routing resources. The plentiful routing resources enabled fast 
CAD tools for routing a circuit. However, the Plasma architecture 
requires a very large silicon area, which limits the applications in 
which using the Plasma architecture is feasible. Additionally, the 
routing tools were designed for fast execution time, but likely still 
require very large memory usage to achieve such fast routing, as 
is the case with existing FPGA routing algorithms.

We previously developed a simple configurable logic fabric 
(SCLF) specifically designed to enable the development of a lean 
JIT compiler for FPGA. Figure 1(a) shows a version of our SCLF, 
extended from that in [15] to support sequential logic by 
incorporating sequential elements within the CLBs. Our SCLF 
consists of an array of configurable logic blocks (CLBs) 
surrounded by switch matrices (SM) for routing between CLBs. 
Each CLB is directly connected to a single switch matrix to which 
all inputs and outputs of the CLB can be connected. Our SCLF 
handles routing between CLBs using the switch matrices, which 
can route signals in one of four directions to an adjacent SM 
(represented as solid lines in the figure) or to a SM two rows 
apart vertically or two columns apart horizontally (represented as 
dashed lines).

Figure 1(b) shows our configurable logic block architecture. 
Each CLB consists of two 3-input 2-output LUTs and four flip-
flops optionally connected to each of the four outputs. Choosing 
the proper size for the CLBs is important, as the size of the CLB 
directly impacts area resources and delays within our configurable 
logic fabric [18]. Our CLB design provides a reasonable trade-off 
between area and delay while allowing us to simplify our 
technology mapping and placement algorithms.  

Finally, Figure 1(c) shows our switch matrix architecture. 
Each switch matrix is connected using short channels for routing 
between adjacent switch matrices and long channels for routing 
between every other switch matrix. Routing through the switch 
matrix can only connect a wire from one side with a given 
channel to another wire on the same channel but a different side 
of the switch matrix. Additionally, each short channel is paired 
with a long channel and can be connected together within the 
switch matrix (indicated as a circle where two channels intersect)
allowing nets to be routed using short and long connections. 
Designing the switch matrix in this manner simplifies the routing 
algorithm of our JIT compiler by restricting the routing of each 
net to a single pair of channels throughout the configurable logic 
fabric.

Figure 1: (a) Simple configurable logic fabric (b) configurable logic block (CLB), and (c) switch matrix (SM) architecture. 
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2.2 Just-in-Time FPGA Compiler 
While we found that developing our own configurable logic 
architecture helped to develop JIT compilation for FPGAs, 
implementing the required lean CAD tools for on-chip execution 
is not trivial. Existing FPGA CAD tools are capable of producing 
highly optimized hardware circuits. However, these tools suffer 
from very large data memory usage and long execution times. We 
designed our JIT compiler by focusing on developing lean 
algorithms that use as little data memory as possible and have fast 
execution times. These design goals will inherently restrict the 
ability of our JIT compiler to produce designs as highly optimized 
as their desktop counterparts will. However, our on-chip CAD 
tools create hardware circuits of acceptable quality. 

Our existing JIT compiler for FPGAs consists of lean versions 
of technology mapping [15], placement [19], and routing 
algorithms [17]. Starting with the standard hardware binary, our 
JIT compiler performs technology mapping to map the hardware 
onto the LUTs within the configurable logic and further packs the 
LUTs into CLBs using a hierarchical, bottom-up graph clustering 
algorithm. Once mapped, we determine the location of each CLB 
within the configurable logic using our dependency-based 
positional placement algorithm. The placement algorithm 
attempts to assign location to the CLBs to reduce the critical path 
of the circuit while ensuring the circuit can be routed. Finally, we 
perform routing, using ROCR, in which the actual wire segments 
used to connect CLBs together is determined. 

2.3 Scalability Requirements 
Scalability is often a concern when developing any algorithm. 
However, for JIT FPGA compilation, scalability is also a 
necessity to ensure circuits of increasing size can be mapped to 
FPGAs, also of increasing size. In desktop-based FPGA CAD 
tools, routing can require tens to hundreds of megabytes of 
memory and require execution times ranging from minutes to 
hours. An on-chip JIT compiler must be able to execute much 
faster while using a very small memory footprint.  

We previously demonstrated the feasibility of our lean on-
chip routing algorithm, ROCR, which requires on average only 10 
seconds and less than 4 megabytes of memory to route several 
benchmark circuits. However, our lean on-chip routing algorithm 
must be able to scale well to larger FPGAs as well as be able to 
route larger circuits quickly. For traditional FPGA routers, 
execution time is the primary concern when evaluating how well 
a specific router scales. For JIT FPGA compilation, we are also 
interested in evaluating how well memory usage and circuit 
quality scale. 

3. Riverside On-Chip Router (ROCR)  
Most FPGA routing algorithms rely on constructing a routing 
resource graph to represent the available connections between 
wires and CLBs within the FPGA architecture. An FPGA router 
must then find a path within the graph to connect the source and 
sinks of each net. During this routing process, a good FPGA 
router will attempt to route each net using the shortest path 
possible while also ensuring all nets can be routed. Most FPGA 
routing algorithms rely upon a maze routing algorithm [14]. Such 
routing algorithms also rely upon multiple routing iterations, in 
which the router rips-up some or all of the routes either to 
eliminate overuse of routing resources or to optimize the circuit 
speed.

The popular Pathfinder routing algorithm [10] further 
introduced the idea of negotiated congestion routing. During each 

routing iteration, Pathfinder routes each net using the best path 
possible allowing overuse of the routing resources. At the end of 
each routing iteration, the costs of the routing resources are 
adjusted relative to the amount of overuse in the previous routing 
iteration and all routes are ripped and rerouted in the next 
iteration. Pathfinder’s negotiated congestion algorithm produces 
good hardware circuits by routing nets along the critical path 
using the shortest path possible while routing non-critical nets 
away from the routing congestion. 

VPR’s timing-driven router relies on a modified version of the 
Pathfinder algorithm to decrease routing execution times [5]. 
VPR’s timing-driven routing algorithm also uses an Elmore delay 
model for optimizing the circuit speed instead of the linear delay 
model of the Pathfinder algorithm to improve circuit speed. 
However, VPR’s reliance on constructing a routing resource 
graph, requiring tens to hundreds of megabytes of memory, makes 
those algorithms difficult to use for JIT compilation. 

Therefore, we previously developed the Riverside On-Chip 
Router (ROCR), specifically designed for lean on-chip execution 
in JIT compilation for FPGAs. ROCR utilizes the general 
approach of VPR’s routability-driven router allowing overuse of 
routing resources and illegal routes, and eliminates illegal routing 
through repeated routing iterations. ROCR also uses the basic 
routing cost model of VPR. However, unlike VPR, ROCR routes 
a hardware netlist using a much smaller routing resource graph 
and therefore much less memory usage. We designed our simple 
configurable logic fabric to allow us to represent routing between 
CLBs as routing between the switch matrices to which the CLBs 
are connected. Subsequently, our SCLF allows our routing 
algorithm to represent the routing resources using a very small 
routing resource graph. Our routing resource graph is a directed 
graph where the nodes of the graph correspond to switch matrices 
and the edges of the graph correspond to the routing resources 
between switch matrices. Our resource graph incorporates two 
types of edges in order to distinguish between the short and long 
routing wires. Furthermore, each edge of our routing resource 
graph is also associated with the routing costs used during the 
routing process 

Figure 2 presents ROCR’s overall routing algorithm. ROCR 
starts by initializing the routing costs within our routing resource 
graph. For all un-routed nets, ROCR uses a greedy routing 
approach to route the net. During the greedy routing process, for 
each sink within the net, we determine a route between the un-
routed sink and the net’s source or the nearest routed sink. At 
each step, we restrict the router to only choosing paths within a 
bounding box of the current sink and the chosen location to which 
we are routing. After all nets are routed, if illegal routes exist – 
the result of overusing routing channels – then ROCR rips-up 
only the illegal routes and adjusts the routing costs of the entire 
routing resource graph. While we use the same routing cost model 
of VPR’s routability-driven router, ROCR also incorporates an 
adjustment cost. During the process of ripping-up illegal routes, 
we add a small routing adjustment cost to all routing resources 
used by an illegal route. During the routing process, an early 
routing decision can force our routing algorithm to choose a 
congested path. Hence, the routing adjustment cost discourages 
our greedy routing algorithm from selecting the same initial 
routing and enables our algorithm to attempt a different routing 
path in subsequent routing iterations.

Once we determine a valid global routing, ROCR performs 
detailed routing in which we assign the channels used for each 
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route. The detailed routing starts by constructing a routing 
conflict graph. Two routes conflict when both routes pass through 
a given switch matrix and assigning the same channel for both 
routes would result in an illegal routing within the switch matrix. 
ROCR assigns the routing channels by determining a vertex 
coloring of the routing conflict graph. While many approaches for 
vertex coloring exists, ROCR uses Brelaz’s vertex coloring 
algorithm [8]. Brelaz’s algorithm is a simple greedy algorithm 
that produces good results while not increasing ROCR’s overall 

memory consumption. If we are unable to assign a legal channel 
assignment for all routes, for those routes that we cannot find a 
valid channel assignment, ROCR rips-up the illegal routes, adjusts 
the routing costs of all nodes along the illegal route (as described 
before), and reroutes the illegal routes. ROCR finishes routing a 
circuit when a valid routing path and channel assignment has been 
determined for every net. 

4. Experiments 
We evaluate the scalability of our lean router, ROCR, comparing 
the execution time, memory requirements, and circuit quality of 
ROCR with VPR’s timing-driven routing algorithm and VPR’s 
timing-driven routing algorithm with the fast option enabled for 
123 MCNC benchmark circuits [22], specified using the Berkeley 
Logic Interchange Format (BLIF). The circuits range in 
complexity from small circuits with only a few LUTs to large 
circuit with tens of thousands of LUTs.  Similarly, the number of 
nets within the circuits ranges from small circuits with only a few 
nets to the largest circuit with more than 10,000 nets.  

We considered a large configurable logic fabric consisting of 
a 100x100 array of CLBs. By considering such a large FPGA, we 
can evaluate the scalability of routing algorithms with respect to 
the circuit size, rather than the availability of CLBs or routing 
resources within the configurable logic. Starting with the BLIF 
specification for the benchmarks circuits, we first mapped each 
circuit to 3-input 1-ouput LUTs using FlowMap [9]. We then 
packed the LUTs together into the 3-input 2-output LUTs and 
further into CLBs using VPR’s T-VPack [6][7]. We then 
determined the placement for each circuit using the VPR’s 
bounding box placement algorithm [5][7]. Next, we routed the 
circuits using VPR’s routability-driven router to determine the 
minimum number of routing channels required to successfully 
route all of the benchmark circuits, determining that our 
configurable logic fabric needs a routing channel width of 34. 
Finally, we routed the benchmark circuits using VPR’s timing-
driven router and ROCR. 

Figure 3(a) and Figure 3(b) present the execution time in 
seconds of VPR’s standard timing-driven router (VPR), VPR’s 
fast timing-driven router (VPR Fast), and ROCR for all 123 

Figure 2: Riverside On-Chip Router (ROCR) algorithm overview. 

Figure 3: Execution time (seconds) for VPR’s timing-driven routing algorithm, VPR’s fast timing-driven (Fast) routing algorithm, and 
ROCR, for MCNC benchmark circuits plotted against circuit size in terms of: (a) number of CLBs and (b) number of nets.
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MCNC benchmark circuits plotted against circuit size in terms of 
number of CLBs and number of nets respectively. Additionally, 
the figures include trend lines for all three routing algorithms to 
demonstrate the projected behavior when larger circuits are 
considered. For a fair comparison, we obtained all results using a 
1.6 GHz Pentium workstation. On average, ROCR requires only 
2.2 seconds to route the benchmarks compared with an average 
execution time of 33.5 seconds for VPR’s standard router and 
31.6 seconds for VPR’s fast router. When considering extremely 
small circuits with less than 100 CLBs and less than 300 nets, 
ROCR is over 40X faster than VPR. Such small designs typically 
do not require multiple routing iterations and ROCR’s simplified 
approach provides a very large advantage in terms of execution 
time. For larger circuits with more than 1000 CLBs and 3000 nets 
that require multiple routing iterations, ROCR is on average 3X 
faster than VPR’s standard routing algorithm and 2X faster than 
VPR’s fast routing algorithm. Furthermore, as demonstrated by 
the projected trends lines for larger circuits, ROCR scales better 
than both VPR algorithms.

Figure 4 presents the minimum, average, and maximum 
memory usage for VPR’s standard timing-driven router (VPR),
VPR’s fast timing-driven router (VPR Fast), and ROCR across all 
123 benchmark circuits. ROCR requires a maximum of roughly 8 
megabytes of memory while VPR’s standard and fast timing-
driven routing algorithms required a maximum of over 110 MB. 
On average, ROCR’s simplified routing architecture and 
corresponding resource graph, allows ROCR to route the circuits 
using 18X less memory than VPR. For the smallest circuits, the 
memory usage of both routers is primarily the result of the routing 
resource graph used to represent the configurable logic fabric. 
The increase in memory usage for larger circuits is directly 
related to the memory required to represent a hardware circuit’s 
CLBs and nets and any internal data structure used during routing. 
Compared with VPR, ROCR uses over 7X less memory to 
represent the hardware circuit. 

ROCR’s circuit quality also scales well as the circuit size 
increases, both in terms of circuit speed and in terms of the 
amount of routing resources used to route the circuit. For a JIT 
FPGA compiler, the circuit quality should remain reasonable even 
when considering large circuits. In other words, our lean routing 

should still be able to route the circuit reasonably close to 
desktop-based CAD tools regardless of circuit size. Therefore, we 
measure the scalability of circuit quality of ROCR by comparing 
the resulting circuits’ critical path and number of used wire 
segments to that of VPR’s standard and fast timing-driven routers. 
Figure 5 presents the critical path in nanoseconds of the hardware 
circuits produced by VPR’s standard timing-driven router (VPR),
VPR’s fast timing-driven router (VPR Fast), and ROCR, plotted 
against the circuit size in terms of number of CLBs.  ROCR 
produces circuits with a critical path on average 30% longer than 
VPR’s standard timing-driven router and 27% longer than VPR’s 
fast timing-driven router. However, for the largest circuits 
consisting of more than 3800 CLBs, the critical path produced by 
ROCR is only 19% longer than VPR’s standard router, and is 
actually 2.6% shorter than VPR’s fast router. Figure 6 presents 
the total wire segments used to route the hardware circuits using 
VPR’s standard timing-driven router (VPR), VPR’s fast timing-
driven router (VPR Fast), and ROCR plotted against circuit size 
in terms of number of nets. On average, ROCR requires only 1% 
more wire segments to route the benchmark circuits compared to 

Figure 4: Minimum, maximum, and average data memory usage 
(kilobytes) for VPR’s timing-driven routing algorithm, VPR’s 

fast timing-driven (Fast) routing algorithm, and ROCR, for 
MCNC benchmark circuits.

Figure 5: Critical path (nanoseconds) for MCNC benchmark 
circuits using VPR’s timing-driven routing algorithm, VPR’s 

fast timing-driven (Fast) routing algorithm, and ROCR, plotted 
against circuit size in terms of number of CLBs.

Figure 6: Total wire segment required to route MCNC benchmark 
circuits using VPR’s timing-driven routing algorithm, VPR’s fast 
timing-driven (Fast) routing algorithm, and ROCR plotted against 
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VPR’s standard router and 5% fewer wire segments than VPR’s 
fast router. However, for larger circuits with more than 3000 nets, 
ROCR actually requires on average 2% and 8% fewer wire 
segments to route the circuits than VPR’s standard router and fast 
router, respectively.  

5. Conclusions 
JIT compilation for FPGAs enables the development of a standard 
binary for FPGAs and facilitates the portability of binaries across 
FPGA architectures. As FPGAs continue to increase in size and 
designers need to implement increasingly large circuits on these 
FPGAs, a JIT FPGA compiler’s execution time, memory usage, 
and resulting circuit quality must scale well. We demonstrated 
that our ROCR algorithm for on-chip routing, the most 
computationally intensive component of JIT compilation, scales 
very favorably as circuit size increases. On average, ROCR routes 
the circuits 3X faster than VPR’s standard timing-driven router 
and 2X faster than VPR’s fast timing-driven router, using on 
average 18X less memory, and resulting in hardware circuits 
using fewer routing resources, and with a critical path only 30% 
longer than VPR’s standard router and 27% longer than VPR’s 
fast router. Furthermore, for the largest hardware circuit, ROCR 
executes 2X faster using 14X less memory, and results in a 
critical path that is actually 2.6% shorter than VPR’s fast router. 

Future work includes analyzing how well ROCR performs 
when considering hardware circuits of increasing size 
approaching the capacity of the FPGA. Future work also includes 
improving ROCR to increase performance as well incorporating 
timing information to improve circuit speed. We are currently 
working on improving technology mapping and placement used 
within our JIT FPGA compiler. Our current JIT compiler includes 
greedy technology mapping and placement algorithms that do not 
scale well to extremely large hardware circuits. Thus, we are 
developing lean versions of technology mapping and placement 
algorithms that scale well to large hardware circuits.  
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