
A Study of the Scalability of On-Chip Routing for Just-in-Time
FPGA Compilation

Roman Lyseckya, Frank Vahida,*, Sheldon X.-D. Tanb

aDepartment of Computer Science and Engineering
bDepartment of Electrical Engineering

University of California, Riverside
{rlysecky, vahid}@cs.ucr.edu, stan@ee.ucr.edu

*Also with the Center for Embedded Computer Systems at UC Irvine

Abstract
Just-in-time (JIT) compilation has been used in many applications
to enable standard software binaries to execute on different
underlying processor architectures. We previously introduced the
concept of a standard hardware binary, using a just-in-time
compiler to compile the hardware binary to a field-programmable
gate array (FPGA). Our JIT compiler includes lean versions of
technology mapping, placement, and routing algorithms, of which
routing is the most computationally and memory expensive step.
As FPGAs continue to increase in size, a JIT FPGA compiler
must be capable of efficiently mapping increasingly larger
hardware circuits. In this paper, we analyze the scalability of our
lean on-chip router, the Riverside On-Chip Router (ROCR), for
routing increasingly large hardware circuits. We demonstrate
that ROCR scales well in terms of execution time, memory usage
and circuit quality, and we compare the scalability of ROCR to
the well known Versatile Place and Route (VPR) timing-driven
routing algorithm, comparing to both their standard routing
algorithm and their fast routing algorithm. Our results show that
on average ROCR executes 3 times faster using 18 times less
memory than VPR. ROCR requires only 1% more routing
resources, while creating a critical path 30% longer VPR’s
standard timing-driven router. Furthermore, for the largest
hardware circuit, ROCR executes 3 times faster using 14 times
less memory, and results in a critical path 2.6% shorter than
VPR’s fast timing-driven router.

Keywords
Place and route, just-in-time (JIT) compilation, hardware/software
partitioning, FPGA, configurable logic, platforms, system-on-a-
chip, dynamic optimization, codesign, warp processors, standard
hardware binary.

1. Introduction
Just-in-time (JIT) compilation for FPGAs enables the
development of a standard hardware binary as well as new
technologies such as warp processing [19]. Standard hardware
binaries would provide portability, allowing designers to use a
single hardware netlist to configure a multitude of different
FPGAs with different underlying architectures. An FPGA
supporting JIT compilation would be capable of mapping the
standard hardware binary to the FPGA’s configurable logic while
optimizing the hardware design for that FPGA.

In software design, just-in-time compilation provides
powerful benefits. JIT compilation involves downloading a
software binary format onto a chip, and then dynamically and
transparently re-compiling that binary to the instruction set of the
particular processor on that chip. The main benefit is that of

binary portability – standard tools can be used to create a binary,
and that same binary can be downloaded onto many different
platforms. Modern x86 processors, including Intel’s Pentium and
Transmeta’s Crusoe and Effecion processors, incorporate
localized JIT compilation wherein x86 binaries are dynamically
translated to and optimized for the chip’s underlying RISC or
VLIW instruction set [12][20].

Related to such a JIT compilation is dynamic transparent
recompiling of a binary from one architecture to another, such as
compiling x86 binaries to an Alpha architecture. Another form of
JIT compilation involves distributing software as Java bytecode,
which is then JIT compiled to a processor’s native instruction set
for improved performance compared to the execution on a Java
Virtual Machine [13]. A related benefit of JIT compilation is that
of dynamic optimization, wherein software hotspots are detected
and dynamically recompiled for performance optimization
[4][11].

As FPGAs continue to find their way alongside
microprocessors into more end-products, such as TV set-top
boxes, digital cameras, network routers, medical equipment, etc.,
the concept of a “binary” changes from that of a microprocessor
program, to a more general concept of the configuration bits for a
chip, possibly providing the configuration for an FPGA, a
software program, or both. Ideally, a designer could create a
standard binary for an FPGA and then map that standard binary to
any of multiple FPGA architectures. Unfortunately, there
presently does not exist the concept of a “standard” binary for
FPGAs. Netlist formats are specific to a particular FPGA
architecture, and FPGA architectures vary significantly.

Consider the example of a TV set-top box. Cable TV
companies often transparently upgrade software within such
boxes, by downloading new binaries. This works even though
newer boxes may contain more advanced versions of the
microprocessor, since newer processors often support older
binaries or the binary can be JIT compiled to the different
processor. Yet, such boxes increasingly rely on FPGAs for video
processing, and so ideally we could download new binaries for
the FPGAs as well, either to add new features or to fix bugs.
However, newer boxes may contain newer or different FPGA
architectures. Incorporating a JIT compiler within the FPGAs, a
standard hardware binary could be transmitted and JIT compiled
to the different FPGAs.

JIT compilation for FPGAs is also useful, in fact essential, for
warp processors that perform dynamic hardware/software
partitioning. Warp processors dynamically optimize an executing
binary by moving software kernels to on-chip configurable logic,
resulting in better performance and lower energy consumption
[16][19]. At the heart of warp processors, a JIT compiler is

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

required to implement the synthesized hardware circuits onto the
on-chip configurable logic fabric.

In designing warp processors and developing JIT FPGA
compilation tools for standard hardware binaries, we previously
developed a configurable logic fabric specifically designed to
facilitate the development of a JIT FPGA compiler [15].
Furthermore, we developed a JIT FPGA compiler that performs
technology mapping, placement, and routing [17][19].

Rapid increases in IC transistor capacities are enabling the
design and use of increasingly larger FPGAs. A JIT compilation
tool must be able to scale well to these larger FPGAs and larger
hardware circuits. Furthermore, within a JIT compiler, as well as
desktop-based FPGA CAD tools, routing is the most
computationally intensive task, requiring larger memory resources
and longer execution times than both technology mapping and
placement algorithms. Hence, ensuring the scalability of the
routing algorithm used within the JIT FPGA compilation tool is
our first priority. In this paper, we present a study of the
scalability of routing within a JIT FPGA compilation framework,
comparing the scalability of our Riverside On-Chip Router
(ROCR) algorithm with the Versatile Place and Route’s (VPR)
timing-driven router. We compare the scalability of our on-chip
router and VPR in terms of execution time, memory usage, and
circuit quality.

2. Just-in-Time FPGA Compilation
2.1 Configurable Logic Fabric
While many configurable logic architectures are currently
available, traditional FPGAs are not well suited for JIT
compilation. Traditional FPGAs are typically designed to handle
an extremely wide variety of designs and are frequently used to
prototype ASIC circuits. To support these vastly different designs,
FPGA vendors, such as Xilinx [21] and Altera [1], design FPGAs
with complex configurable logic blocks (CLBs), possibly
containing varying sizes and number of lookup tables (LUTs),
embedded memory cells, large routing resources, large
input/output resources, etc. Traditional FPGA architectures are
beneficial in terms of creating fast and compact designs, but such
complexity requires complex technology mapping and complex
place and route tools, which are not targeted for very fast or lean
execution.

While most existing FPGAs are not designed with the goal of
enabling extremely fast CAD tools, the Programmable Logic and
Switch Matrix (Plasma) architecture was specifically designed to
allow automatic routing of the entire configurable logic in three

seconds [2]. To achieve such fast routing, the Plasma configurable
logic architecture was designed with extremely large hierarchical
routing resources. The plentiful routing resources enabled fast
CAD tools for routing a circuit. However, the Plasma architecture
requires a very large silicon area, which limits the applications in
which using the Plasma architecture is feasible. Additionally, the
routing tools were designed for fast execution time, but likely still
require very large memory usage to achieve such fast routing, as
is the case with existing FPGA routing algorithms.

We previously developed a simple configurable logic fabric
(SCLF) specifically designed to enable the development of a lean
JIT compiler for FPGA. Figure 1(a) shows a version of our SCLF,
extended from that in [15] to support sequential logic by
incorporating sequential elements within the CLBs. Our SCLF
consists of an array of configurable logic blocks (CLBs)
surrounded by switch matrices (SM) for routing between CLBs.
Each CLB is directly connected to a single switch matrix to which
all inputs and outputs of the CLB can be connected. Our SCLF
handles routing between CLBs using the switch matrices, which
can route signals in one of four directions to an adjacent SM
(represented as solid lines in the figure) or to a SM two rows
apart vertically or two columns apart horizontally (represented as
dashed lines).

Figure 1(b) shows our configurable logic block architecture.
Each CLB consists of two 3-input 2-output LUTs and four flip-
flops optionally connected to each of the four outputs. Choosing
the proper size for the CLBs is important, as the size of the CLB
directly impacts area resources and delays within our configurable
logic fabric [18]. Our CLB design provides a reasonable trade-off
between area and delay while allowing us to simplify our
technology mapping and placement algorithms.

Finally, Figure 1(c) shows our switch matrix architecture.
Each switch matrix is connected using short channels for routing
between adjacent switch matrices and long channels for routing
between every other switch matrix. Routing through the switch
matrix can only connect a wire from one side with a given
channel to another wire on the same channel but a different side
of the switch matrix. Additionally, each short channel is paired
with a long channel and can be connected together within the
switch matrix (indicated as a circle where two channels intersect)
allowing nets to be routed using short and long connections.
Designing the switch matrix in this manner simplifies the routing
algorithm of our JIT compiler by restricting the routing of each
net to a single pair of channels throughout the configurable logic
fabric.

Figure 1: (a) Simple configurable logic fabric (b) configurable logic block (CLB), and (c) switch matrix (SM) architecture.

Configurable Logic Block Switch Matrix (SM)

0

0L

1

1L
2L

2

3L

3

0
1
2
3

0L
1L
2L
3L

0
1
2
3

0L1L2L 3L

0 1 2 3 0L1L 2L 3L

(a)

SM

CLB

SM

SM

SM

SM

SM

CLB

Configurable Logic Fabric
(b) (c)

LUTLUT

a b c d e f

o1 o2 o3 o4

Adj.

CLB

Adj.

CLB

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

2.2 Just-in-Time FPGA Compiler
While we found that developing our own configurable logic
architecture helped to develop JIT compilation for FPGAs,
implementing the required lean CAD tools for on-chip execution
is not trivial. Existing FPGA CAD tools are capable of producing
highly optimized hardware circuits. However, these tools suffer
from very large data memory usage and long execution times. We
designed our JIT compiler by focusing on developing lean
algorithms that use as little data memory as possible and have fast
execution times. These design goals will inherently restrict the
ability of our JIT compiler to produce designs as highly optimized
as their desktop counterparts will. However, our on-chip CAD
tools create hardware circuits of acceptable quality.

Our existing JIT compiler for FPGAs consists of lean versions
of technology mapping [15], placement [19], and routing
algorithms [17]. Starting with the standard hardware binary, our
JIT compiler performs technology mapping to map the hardware
onto the LUTs within the configurable logic and further packs the
LUTs into CLBs using a hierarchical, bottom-up graph clustering
algorithm. Once mapped, we determine the location of each CLB
within the configurable logic using our dependency-based
positional placement algorithm. The placement algorithm
attempts to assign location to the CLBs to reduce the critical path
of the circuit while ensuring the circuit can be routed. Finally, we
perform routing, using ROCR, in which the actual wire segments
used to connect CLBs together is determined.

2.3 Scalability Requirements
Scalability is often a concern when developing any algorithm.
However, for JIT FPGA compilation, scalability is also a
necessity to ensure circuits of increasing size can be mapped to
FPGAs, also of increasing size. In desktop-based FPGA CAD
tools, routing can require tens to hundreds of megabytes of
memory and require execution times ranging from minutes to
hours. An on-chip JIT compiler must be able to execute much
faster while using a very small memory footprint.

We previously demonstrated the feasibility of our lean on-
chip routing algorithm, ROCR, which requires on average only 10
seconds and less than 4 megabytes of memory to route several
benchmark circuits. However, our lean on-chip routing algorithm
must be able to scale well to larger FPGAs as well as be able to
route larger circuits quickly. For traditional FPGA routers,
execution time is the primary concern when evaluating how well
a specific router scales. For JIT FPGA compilation, we are also
interested in evaluating how well memory usage and circuit
quality scale.

3. Riverside On-Chip Router (ROCR)
Most FPGA routing algorithms rely on constructing a routing
resource graph to represent the available connections between
wires and CLBs within the FPGA architecture. An FPGA router
must then find a path within the graph to connect the source and
sinks of each net. During this routing process, a good FPGA
router will attempt to route each net using the shortest path
possible while also ensuring all nets can be routed. Most FPGA
routing algorithms rely upon a maze routing algorithm [14]. Such
routing algorithms also rely upon multiple routing iterations, in
which the router rips-up some or all of the routes either to
eliminate overuse of routing resources or to optimize the circuit
speed.

The popular Pathfinder routing algorithm [10] further
introduced the idea of negotiated congestion routing. During each

routing iteration, Pathfinder routes each net using the best path
possible allowing overuse of the routing resources. At the end of
each routing iteration, the costs of the routing resources are
adjusted relative to the amount of overuse in the previous routing
iteration and all routes are ripped and rerouted in the next
iteration. Pathfinder’s negotiated congestion algorithm produces
good hardware circuits by routing nets along the critical path
using the shortest path possible while routing non-critical nets
away from the routing congestion.

VPR’s timing-driven router relies on a modified version of the
Pathfinder algorithm to decrease routing execution times [5].
VPR’s timing-driven routing algorithm also uses an Elmore delay
model for optimizing the circuit speed instead of the linear delay
model of the Pathfinder algorithm to improve circuit speed.
However, VPR’s reliance on constructing a routing resource
graph, requiring tens to hundreds of megabytes of memory, makes
those algorithms difficult to use for JIT compilation.

Therefore, we previously developed the Riverside On-Chip
Router (ROCR), specifically designed for lean on-chip execution
in JIT compilation for FPGAs. ROCR utilizes the general
approach of VPR’s routability-driven router allowing overuse of
routing resources and illegal routes, and eliminates illegal routing
through repeated routing iterations. ROCR also uses the basic
routing cost model of VPR. However, unlike VPR, ROCR routes
a hardware netlist using a much smaller routing resource graph
and therefore much less memory usage. We designed our simple
configurable logic fabric to allow us to represent routing between
CLBs as routing between the switch matrices to which the CLBs
are connected. Subsequently, our SCLF allows our routing
algorithm to represent the routing resources using a very small
routing resource graph. Our routing resource graph is a directed
graph where the nodes of the graph correspond to switch matrices
and the edges of the graph correspond to the routing resources
between switch matrices. Our resource graph incorporates two
types of edges in order to distinguish between the short and long
routing wires. Furthermore, each edge of our routing resource
graph is also associated with the routing costs used during the
routing process

Figure 2 presents ROCR’s overall routing algorithm. ROCR
starts by initializing the routing costs within our routing resource
graph. For all un-routed nets, ROCR uses a greedy routing
approach to route the net. During the greedy routing process, for
each sink within the net, we determine a route between the un-
routed sink and the net’s source or the nearest routed sink. At
each step, we restrict the router to only choosing paths within a
bounding box of the current sink and the chosen location to which
we are routing. After all nets are routed, if illegal routes exist –
the result of overusing routing channels – then ROCR rips-up
only the illegal routes and adjusts the routing costs of the entire
routing resource graph. While we use the same routing cost model
of VPR’s routability-driven router, ROCR also incorporates an
adjustment cost. During the process of ripping-up illegal routes,
we add a small routing adjustment cost to all routing resources
used by an illegal route. During the routing process, an early
routing decision can force our routing algorithm to choose a
congested path. Hence, the routing adjustment cost discourages
our greedy routing algorithm from selecting the same initial
routing and enables our algorithm to attempt a different routing
path in subsequent routing iterations.

Once we determine a valid global routing, ROCR performs
detailed routing in which we assign the channels used for each

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

route. The detailed routing starts by constructing a routing
conflict graph. Two routes conflict when both routes pass through
a given switch matrix and assigning the same channel for both
routes would result in an illegal routing within the switch matrix.
ROCR assigns the routing channels by determining a vertex
coloring of the routing conflict graph. While many approaches for
vertex coloring exists, ROCR uses Brelaz’s vertex coloring
algorithm [8]. Brelaz’s algorithm is a simple greedy algorithm
that produces good results while not increasing ROCR’s overall

memory consumption. If we are unable to assign a legal channel
assignment for all routes, for those routes that we cannot find a
valid channel assignment, ROCR rips-up the illegal routes, adjusts
the routing costs of all nodes along the illegal route (as described
before), and reroutes the illegal routes. ROCR finishes routing a
circuit when a valid routing path and channel assignment has been
determined for every net.

4. Experiments
We evaluate the scalability of our lean router, ROCR, comparing
the execution time, memory requirements, and circuit quality of
ROCR with VPR’s timing-driven routing algorithm and VPR’s
timing-driven routing algorithm with the fast option enabled for
123 MCNC benchmark circuits [22], specified using the Berkeley
Logic Interchange Format (BLIF). The circuits range in
complexity from small circuits with only a few LUTs to large
circuit with tens of thousands of LUTs. Similarly, the number of
nets within the circuits ranges from small circuits with only a few
nets to the largest circuit with more than 10,000 nets.

We considered a large configurable logic fabric consisting of
a 100x100 array of CLBs. By considering such a large FPGA, we
can evaluate the scalability of routing algorithms with respect to
the circuit size, rather than the availability of CLBs or routing
resources within the configurable logic. Starting with the BLIF
specification for the benchmarks circuits, we first mapped each
circuit to 3-input 1-ouput LUTs using FlowMap [9]. We then
packed the LUTs together into the 3-input 2-output LUTs and
further into CLBs using VPR’s T-VPack [6][7]. We then
determined the placement for each circuit using the VPR’s
bounding box placement algorithm [5][7]. Next, we routed the
circuits using VPR’s routability-driven router to determine the
minimum number of routing channels required to successfully
route all of the benchmark circuits, determining that our
configurable logic fabric needs a routing channel width of 34.
Finally, we routed the benchmark circuits using VPR’s timing-
driven router and ROCR.

Figure 3(a) and Figure 3(b) present the execution time in
seconds of VPR’s standard timing-driven router (VPR), VPR’s
fast timing-driven router (VPR Fast), and ROCR for all 123

Figure 2: Riverside On-Chip Router (ROCR) algorithm overview.

Figure 3: Execution time (seconds) for VPR’s timing-driven routing algorithm, VPR’s fast timing-driven (Fast) routing algorithm, and
ROCR, for MCNC benchmark circuits plotted against circuit size in terms of: (a) number of CLBs and (b) number of nets.

no

Start routing

Done!

Initialize SCLF routing
costs

Rip-up illegal
routes

Build/Update routing
conflict graph

Assign route channels
(Brelaz’s vertex coloring)

Illegal channel
assignments?

yes

yes

no

Adjust SCLF
routing costs

Greedily route all un-
routed nets

Illegal routes
exist?

(a)

0

25

50

75

100

125

150

175

200

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Circuit Size (CLBs)

E
xe

cu
ti

o
n

 T
im

e
(s

)

VPR VPR (Fast) ROCR

(b)

0

25

50

75

100

125

150

175

200

0
20

00
40

00
60

00
80

00

10
00

0

12
00

0

Circuit Size (Nets)

E
xe

cu
ti

o
n

 T
im

e
(s

)

VPR VPR (Fast) ROCR

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

MCNC benchmark circuits plotted against circuit size in terms of
number of CLBs and number of nets respectively. Additionally,
the figures include trend lines for all three routing algorithms to
demonstrate the projected behavior when larger circuits are
considered. For a fair comparison, we obtained all results using a
1.6 GHz Pentium workstation. On average, ROCR requires only
2.2 seconds to route the benchmarks compared with an average
execution time of 33.5 seconds for VPR’s standard router and
31.6 seconds for VPR’s fast router. When considering extremely
small circuits with less than 100 CLBs and less than 300 nets,
ROCR is over 40X faster than VPR. Such small designs typically
do not require multiple routing iterations and ROCR’s simplified
approach provides a very large advantage in terms of execution
time. For larger circuits with more than 1000 CLBs and 3000 nets
that require multiple routing iterations, ROCR is on average 3X
faster than VPR’s standard routing algorithm and 2X faster than
VPR’s fast routing algorithm. Furthermore, as demonstrated by
the projected trends lines for larger circuits, ROCR scales better
than both VPR algorithms.

Figure 4 presents the minimum, average, and maximum
memory usage for VPR’s standard timing-driven router (VPR),
VPR’s fast timing-driven router (VPR Fast), and ROCR across all
123 benchmark circuits. ROCR requires a maximum of roughly 8
megabytes of memory while VPR’s standard and fast timing-
driven routing algorithms required a maximum of over 110 MB.
On average, ROCR’s simplified routing architecture and
corresponding resource graph, allows ROCR to route the circuits
using 18X less memory than VPR. For the smallest circuits, the
memory usage of both routers is primarily the result of the routing
resource graph used to represent the configurable logic fabric.
The increase in memory usage for larger circuits is directly
related to the memory required to represent a hardware circuit’s
CLBs and nets and any internal data structure used during routing.
Compared with VPR, ROCR uses over 7X less memory to
represent the hardware circuit.

ROCR’s circuit quality also scales well as the circuit size
increases, both in terms of circuit speed and in terms of the
amount of routing resources used to route the circuit. For a JIT
FPGA compiler, the circuit quality should remain reasonable even
when considering large circuits. In other words, our lean routing

should still be able to route the circuit reasonably close to
desktop-based CAD tools regardless of circuit size. Therefore, we
measure the scalability of circuit quality of ROCR by comparing
the resulting circuits’ critical path and number of used wire
segments to that of VPR’s standard and fast timing-driven routers.
Figure 5 presents the critical path in nanoseconds of the hardware
circuits produced by VPR’s standard timing-driven router (VPR),
VPR’s fast timing-driven router (VPR Fast), and ROCR, plotted
against the circuit size in terms of number of CLBs. ROCR
produces circuits with a critical path on average 30% longer than
VPR’s standard timing-driven router and 27% longer than VPR’s
fast timing-driven router. However, for the largest circuits
consisting of more than 3800 CLBs, the critical path produced by
ROCR is only 19% longer than VPR’s standard router, and is
actually 2.6% shorter than VPR’s fast router. Figure 6 presents
the total wire segments used to route the hardware circuits using
VPR’s standard timing-driven router (VPR), VPR’s fast timing-
driven router (VPR Fast), and ROCR plotted against circuit size
in terms of number of nets. On average, ROCR requires only 1%
more wire segments to route the benchmark circuits compared to

Figure 4: Minimum, maximum, and average data memory usage
(kilobytes) for VPR’s timing-driven routing algorithm, VPR’s

fast timing-driven (Fast) routing algorithm, and ROCR, for
MCNC benchmark circuits.

Figure 5: Critical path (nanoseconds) for MCNC benchmark
circuits using VPR’s timing-driven routing algorithm, VPR’s

fast timing-driven (Fast) routing algorithm, and ROCR, plotted
against circuit size in terms of number of CLBs.

Figure 6: Total wire segment required to route MCNC benchmark
circuits using VPR’s timing-driven routing algorithm, VPR’s fast
timing-driven (Fast) routing algorithm, and ROCR plotted against

circuit size in terms of number of nets.

0

25

50

75

100

125

150

175

200

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00

Circuit Size (CLBs)

C
ri

ti
ca

l P
at

h
 (

n
s)

VPR VPR (Fast) ROCR

8352

113235

126602

0

25000

50000

75000

100000

125000

150000

VPR VPR (Fast) ROCR

M
em

o
ry

 U
sa

g
e

(K
B

yt
es

) Minimum

Average

Maximum

0

15000

30000

45000

60000

75000

90000

0
20

00
40

00
60

00
80

00

10
00

0

12
00

0

Circuit Size (Nets)

W
ir

e
S

eg
m

en
ts

VPR VPR (Fast) ROCR

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

VPR’s standard router and 5% fewer wire segments than VPR’s
fast router. However, for larger circuits with more than 3000 nets,
ROCR actually requires on average 2% and 8% fewer wire
segments to route the circuits than VPR’s standard router and fast
router, respectively.

5. Conclusions
JIT compilation for FPGAs enables the development of a standard
binary for FPGAs and facilitates the portability of binaries across
FPGA architectures. As FPGAs continue to increase in size and
designers need to implement increasingly large circuits on these
FPGAs, a JIT FPGA compiler’s execution time, memory usage,
and resulting circuit quality must scale well. We demonstrated
that our ROCR algorithm for on-chip routing, the most
computationally intensive component of JIT compilation, scales
very favorably as circuit size increases. On average, ROCR routes
the circuits 3X faster than VPR’s standard timing-driven router
and 2X faster than VPR’s fast timing-driven router, using on
average 18X less memory, and resulting in hardware circuits
using fewer routing resources, and with a critical path only 30%
longer than VPR’s standard router and 27% longer than VPR’s
fast router. Furthermore, for the largest hardware circuit, ROCR
executes 2X faster using 14X less memory, and results in a
critical path that is actually 2.6% shorter than VPR’s fast router.

Future work includes analyzing how well ROCR performs
when considering hardware circuits of increasing size
approaching the capacity of the FPGA. Future work also includes
improving ROCR to increase performance as well incorporating
timing information to improve circuit speed. We are currently
working on improving technology mapping and placement used
within our JIT FPGA compiler. Our current JIT compiler includes
greedy technology mapping and placement algorithms that do not
scale well to extremely large hardware circuits. Thus, we are
developing lean versions of technology mapping and placement
algorithms that scale well to large hardware circuits.

6. Acknowledgements
This research was supported in part by the National Science
Foundation (CCR-0203829), the Semiconductor Research
Corporation (2003-HJ-1046G), and Xilinx Corp.

7. References
[1] Altera Corp. http://www.altera.com, 2005.
[2] Amerson, R., R. Carter, W. Culbertson, P. Kuekes, G.

Snider, L. Albertson. Plasma: An FPGA for Million Gate
Systems, Symp. on Field Programmable Gate Arrays, 1996.

[3] Atmel Corp. http://www.atmel.com, 2005.
[4] Bala, V., E. Duesterwald, S. Banerjia. Dynamo: A

Transparent Dynamic Optimization System. Conference on
Programming Language Design and Implementation (PLDI),
2000.

[5] Betz, V., J. Rose, A. Marquardt. Architecture and CAD for
Deep-Submicron FPGAs. Kluwer Academic Publishers,
1999.

[6] Betz, V., J. Rose. VPR: A New Packing, Placement, and
Routing for FPGA Research. International Workshop on
Field Programmable Logic and Applications (FPLA), 1997.

[7] Betz, V., J. Rose, A. Marquardt. VPR and T-VPack:
Versatile Packing, Placement and Routing for FPGAs. http://
www.eecg.toronto.edu/~vaughn/vpr/vpr.html, 2003.

[8] Brelaz, D. New Methods to Color the Vertices of a Graph.
Communication of the ACM 22, 251-256, 1979.

[9] Cong, J., Y. Ding. FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
based FPGA Designs. IEEE Transactions On Computer-
Aided Design of Integrated Circuits and Systems (TCAD),
Vol. 13, No. 1, pp. 1-12, 1994.

[10] Ebeling, C., L. McMurchie, S. A. Hauck, S. Burns.
Placement and Routing Tools for Triptych FPGA. IEEE
Transactions on Very Large Scale Integration (TVLSI), Dec.
1995, pp. 473-482.

[11] Gschwind, M., E. Altman, S. Sathaye, P. Ledak, D.
Appenzeller. Dynamic and Transparent Binary Translation.
IEEE Computer, Vol. 3, pp.70-77, 2000.

[12] Klaiber, A. The Technology Behind Crusoe Processors.
Transmeta Corporation White Paper, 2000.

[13] Krall, A. Efficient Java VM Just-In-Time Compilation, in
Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, pp. 54-61, 1998.

[14] Lee, C. Y. An Algorithm for Path Connection and its
Applications. IRE Transaction on Electronic Computing,
Vol. EC=10, pp. 346-365, 1961.

[15] Lysecky, R., F. Vahid. A Configurable Logic Architecture
for Dynamic Hardware/Software Partitioning. Proceedings of
the Design Automation and Test in Europe Conference
(DATE), 2004.

[16] Lysecky, R., F. Vahid. A Study of the Speedups and
Competitiveness of FPGA Soft Processor Cores using
Dynamic Hardware/Software Partitioning. Proceedings of the
Design Automation and Test in Europe Conference (DATE),
2005.

[17] Lysecky, R., F. Vahid, S. X.-D. Tan. Dynamic FPGA
Routing for Just-in-Time FPGA Compilation. Proceedings of
the 41st Design Automation Conference (DAC), 2004.

[18] Singh, S., J. Rose, P. Chow, D. Lewis. The Effect of Logic
Block Architecture on FPGA Performance. IEEE Journal of
Solid-State Circuits, Vol. 27, No. 3, 1992.

[19] Stitt, G., R. Lysecky, F. Vahid. Dynamic Hardware/Software
Partitioning: A First Approach. Proceedings of the 40th

Design Automation Conference (DAC), 2003.
[20] Transmeta Corporation. http://www.transmeta.com, 2005.
[21] Xilinx, Inc. http://www.xilinx.com, 2005.
[22] Yang, S. Logic Synthesis and Optimization Benchmarks,

Version 3.0. Technical Report, Microelectronics Center of
North Carolina, 1991.

Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’05)

0-7695-2445-1/05 $20.00 © 2005 IEEE

