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Abstract 
 

We examine the energy savings possible by re-mapping 
critical software loops from a microprocessor to 
configurable logic appearing on the same-chip in 
commodity chips now commercially available. That logic 
is typically intended to implement peripherals and 
coprocessors without increasing chip count – but we show 
that reduced software energy is an additional benefit, 
making such chips even more useful. We find critical 
software loops and re-implement them in the configurable 
logic such that a repeating software task completes 
sooner, allowing us to put the system in a low-power state 
for longer periods, thus reducing energy. We use 
simulations and estimations for a hypothetical device 
having a 32-bit MIPS processor plus configurable logic, 
yielding energy savings of 25%, increasing to 39% 
assuming voltage scaling. We physically measured several 
examples running on two commercial single-chip devices 
having an 8-bit 8051 microprocessor plus configurable 
logic and a 32-bit ARM microprocessor with configurable 
logic, with energy savings of 71% and 53% respectively, 
increasing to an estimated 89% and 75% assuming 
voltage scaling.   
 
1. Introduction 
 

Commercial products are beginning to appear that 
incorporate a microprocessor and configurable logic on a 
single chip, such as Triscend’s 8051-based E5 chips and 
Arm-based A7 chips [21], Atmel’s FPSLIC [3], Xilinx’s 
Virtex II Pro [28], and Altera’s Excalibur [1]. One purpose 
of the on-chip logic is to support the incorporation of 
different numbers and types of peripherals, such as timers, 
UARTs (universal asynchronous receiver/transmitters), 
pulse-width modulators, etc. An embedded system 
designer can thus configure such a chip to have exactly the 
right combination of peripherals. Such configuration is in 
contrast to the more typical situation of a designer having 
to choose from tens or hundreds of different chip 
variations, each with different combinations of 

peripherals. The on-chip logic approach enables very high 
volume production of a single chip design, resulting in 
reduced cost per chip due to better amortized non-
recurring engineering costs, higher yield, and other 
economy of scale benefits related to chip fabrication – the 
Triscend E5 series, for example, is expected to sell for 
only around $3 per chip [4].  

A second purpose of the on-chip logic is to implement 
coprocessors and other custom logic that would otherwise 
have been implemented using a separate application-
specific integrated circuit (ASIC) chip. This reduces the 
number of chips in a system, which can have extremely 
important advantages in cost and size sensitive embedded 
systems. 

We propose that available configurable logic can be 
additionally used for a third purpose, namely for reducing 
the energy of the software running on the microprocessor. 
Low energy is an increasingly important requirement in 
embedded systems, allowing for longer battery life, among 
other things.  

Our approach makes use of the situation of embedded 
systems typically executing a single program for their 
lifetimes – the program is “fixed.” For example, the 
program executing on a microprocessor in a digital camera 
typically does not change during the camera’s lifetime. 
The approach also makes use of the situation of many 
embedded system programs spending a large percentage 
of their runtime in a few small loops, and of such 
programs repeating a main task with a given period. 

In short, the approach consists of profiling the fixed 
program using representative input stimuli, detecting the 
most critical loops, re-implementing the program so that 
some subset of those loops execute on the configurable 
logic while the microprocessor waits in a low-power state, 
and taking advantage of the resulting faster task 
completion by putting the entire system in a low-power 
state during the greater idle-time of the task’s period.  
Alternatively, we can take advantage of the faster task 
completion to run the entire system at a lower voltage, 
until the task executes at the same speed as the original 
all-software implementation – yielding even greater 
energy savings than the low-power state method. 



Although software speedups using configurable logic 
have been reported by many previous researchers, such 
speedup does not necessarily imply reduced energy. 
Configurable logic tends to consume much more power 
than software. Since energy is the product of power and 
time, the power increases that accompany speedup could 
result in energy decreases or increases. 

In this paper, we present our hardware/software 
partitioning approach and the energy results of such 
partitioning through estimation for a 32-bit MIPS-based 
device, and through physical measurements of two low-
cost devices having an 8-bit 8051 microprocessor with on-
chip configurable logic and a similar 32-bit ARM system. 
We also estimate the additional savings had those three 
devices been voltage scalable. 

 
2. Previous Work 
 

Extensive previous work has examined the 
performance benefits of partitioning a program among a 
microprocessor and configurable logic (e.g., [2][12]), 
including systems that can page new hardware in and out 
on demand [10][27], as well as language support for 
partitioning [9]. Such hardware/software partitioning can 
integrate the logic at various levels with the 
microprocessor, including within the datapath, on the 
memory bus, on the peripheral bus, or even through a 
special port of the microprocessor. Tighter integration 
tends to support the addition of custom microprocessor 
instructions, while more distant integration tends to 
support co-processing.  

Extensive work on general hardware/software 
partitioning, in which the hardware component is 
implemented on configurable logic or as an ASIC, has 
also been performed (e.g., [5][6][17][22]). 

Improved performance through hardware/software 
partitioning could result in reduced energy, but not 
necessarily so. Energy is the product of power and time. 
While using configurable logic may reduce time, it 
potentially could increase power such that the energy 
savings are very small, or even such that energy is 
increased. 

Some researchers have begun investigating the energy 
advantages of hardware/software partitioning. Henkel 
[13][14] partitioned several examples among a 
microprocessor and semi-custom ASIC, while utilizing 
low-power idle modes of the microprocessor and custom 
hardware, obtaining average energy savings of 60% 
compared to an all software solution. Wan et al [26] 
partitioned DSP algorithms among the Pleiades project’s 
architecture of a microprocessor connected through an 
interconnection network to hardware accelerators 
programmable at multiple levels of granularity, showing 
10 times overall energy improvements for certain 

examples, obtained due to the reduced microprocessor 
clock enabled by the partitioning.  

Our work differs from Henkel’s and Wan’s in that we 
utilize standard on-chip configurable logic available in 
current commodity parts, as opposed to an ASIC or a 
custom multi-level configurable architecture. While such a 
commodity part may not achieve as great of energy 
savings, it does have significant cost and time-to-market 
advantages over other approaches. 

 
3. Loop Analysis 
 

We began by profiling a number of examples from 
Motorola’s Powerstone embedded software benchmarks 
[18] to determine to what extent they spent time executing 
small loops. If much of their time was spent in a few small 
highly-iterating loops, then mapping those loops to 
configurable logic could yield considerable energy 
improvements. On the other hand, if most time was spent 
in a few very large loops, or in a large number of smaller 
loops, then those loops’ sizes in hardware might exceed 
the available on-chip logic capacity. Furthermore, if most 
time was spent in small loops but those loops only iterated 
a few times per loop visit, then the cost of switching back 
and forth between software and hardware would likely 
outweigh potential savings. 

We examined 16 examples, including a voice encoder 
(adpcm), a cyclic redundancy check (crc), a data 
encryption standard (des), an engine controller (engine), a 
fax decoder (g3fax), a JPEG decoder (jpeg), a handwriting 
recognizer (summin), and a modem encoder/decoder 
(v42). We executed each example, using the input vectors 
in Powerstone, on instruction set simulators for a MIPS 
microprocessor as well as an 8051 8-bit microcontroller. 
Those simulators were augmented to output instruction 
traces, and we used an additional tool to parse the traces 
and gather loop statistics. 

Complete results of the loop study appear in [23]. The 
main results showed that the programs running on the 
MIPS spend 66% of their time in loops with a static size 
of 256 instructions or less, while the 8051 programs spent 
76% of their time in such loops. Furthermore, 77% of time 
spent in loops (or 51% of total time) on the MIPS was 
spent in loops whose static size was 32 instructions or 
less.  More importantly, many of the examples contained 
several small loops that dominated the execution time, and 
generally iterated many times per execution.  For example, 
g3fax contains two loops that represent 62% of total 
execution time and only consist of 6 assembly instructions 
each.  In addition, one of these loops iterates 1,729 times 
on each visit.   For all of the tested examples, the two most 
frequent loops accounted for 40% of total execution time 
for the MIPS and over 70% of execution time on the 8051. 

Thus, there does exist the potential for good speedups 
through re-implementing just a few small loops in 



hardware – but whether such speedup could be obtained, 
and whether such speedup would result in actual energy 
savings, depends on the speed and increase in power 
consumption from using configurable logic. 

For our experiments, we modified the Powerstone 
benchmarks so that they would loop many times, allowing 
us to achieve more accurate and stable physical 
measurements.  In addition, for several examples, we 
moved the data initialization code into the main program 
loop, since data acquisition would occur during every 
iteration if the benchmark were implemented in an 
embedded system.  These changes cause slightly different 
loop statistic results than for the same benchmarks 
described in [23]. 

 
4. Partitioning Method 
 

Our general method of using the configurable logic for 
energy improvement consisted of moving as much of the 
software execution as possible onto the logic. Thus, based 
on the analysis of the loop regions of a given program, we 
tried to partition the most time-dominating regions onto 
the logic. Such partitioning was limited by the size of the 
logic, so we sometimes had to take the second most time-
dominating region. In addition, sometimes the best 
partitioning involved a combination of other regions that 
together accounted for more of the overall time.  

We implemented a given region on the logic by 
manually writing a synthesizable VHDL model for that 
region. In doing so, we looked at the C source code to 
determine the region’s high-level behavior, and we then 
wrote the best performing VHDL model that we could, 

with knowledge of the size limit of the configurable logic. 
Sometimes that model looked very similar to the C code, 
but other times it could be quite different.  

Figure 1: E5 single-chip architecture. 

Finding the best set of regions for implementation on 
the configurable logic, and creating the best synthesizable 
model of those regions, provide two dimensions to the 
hardware/software partitioning problem that are 
interdependent. We relied on human design expertise to 
find the solutions for each example. Automated 
exploration involving both dimensions (most automated 
approaches only consider the first dimension) remains an 
area of future work. 
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If multiple synthesizable regions were mapped to the 
configurable logic, we included them as sub-states of a 
single state machine, so that when synthesized they would 
share hardware. Such sharing was possible because we 
were guaranteed that the regions would not execute 
concurrently to one another, since they came from 
sequential software. 

Our target architecture was based on the Triscend E5 
and A7 chips. A general view of the E5 chip’s architecture 
is shown in Figure 1. Communication between the 
microprocessor and configurable system logic (CSL) takes 
place via shared memory and several direct signals. The 
E5 uses an 8051 microprocessor (8-bit) and the A7 uses an 
ARM microprocessor (32-bit).  We also evaluate results 
assuming a MIPS (32-bit) processor, as will be described.  
For the MIPS experiments, the architecture is slightly 
different.  We removed the DMA because the execution of 
the microprocessor and the custom hardware are mutually 
exclusive.  This has the advantage of a smaller system, but 
increases the complexity of the custom hardware by 
requiring the memory communication to be implemented 
in the configurable logic. 

We implemented each partitioning by replacing the 
selected software regions with handshaking behavior. The 
software would activate the CSL using a start signal, and 
then wait for the CSL to set a done signal. The 
microprocessor enters a low-power state while waiting for 
the CSL, and the CSL enters a low-power state by not 
executing while waiting for the microprocessor. 

 
5. Power and Performance Evaluation 
 

We used the testbenches that come with the 
Powerstone benchmarks to generate dynamic power and 
performance data for the benchmarks. 

The E5 chip implements a microprocessor and CSL in 
a 0.35 micron technology.  The A7 chips typically use 
0.18 micron techonology, but the version we tested was 
fabricated using 0.25 micron technology.  We took 
physical measurements, utilizing a digital multimeter, to 
determine the current and hence the power for our 
examples. We executed each example first as an all-
software implementation with the CSL in a low-power 
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Table 1: Benchmark information. 

8051 BenchmarksMIPS Benchmarks
Eg Size
Loop 
Size

Loop 
Time

CSL 
Size

Potential 
Speedup Eg Size

Loop 
Size

Loop 
Time

CSL 
Size

Potential 
Speedup

g3fax 4452 24 31% 161 1.45 g3fax 8309 71 56% 158 2.27
adpcm 7640 152 30% 469 1.43 crc 810 58 63% 87 2.69
crc 4288 68 66% 46 2.90 brev 2505 1710 92% 141 12.99
des 6116 360 52% 516 2.08 matmul 838 212 94% 539 17.24
engine 4432 64 28% 133 1.39
jpeg 5960 116 10% 157 1.11
summin 4136 100 48% 212 1.92
v42 6388 60 23% 233 1.30

Avg: 118 36% 241 1.70 Avg: 513 76% 231 8.80

mode, and then as a partitioned example, utilizing low-
power modes of the 8051 and CSL when the other was 
active. We enclosed each example in a long-running loop 
to obtain a stable power reading.  Performance was 
measured by using the serial communication on the chip in 
order to specify the start and end of the application.  A 
timer running on a workstation measured the differences 
between the starting and ending times in order to 
determine the actual execution times.  

For our MIPS-based evaluation, we used a 
simulation-based approach for performance evaluation. 
We ran each example on a MIPS architectural simulator 
[8] that outputs the number of cycles each example 
executes. In order to determine power of the MIPS 
processor, we use the reported power consumption of a 
typical MIPS core [19], based on 0.18 micron technology.  
All examples ran at 100 MHz with a supply voltage of 
1.8V.  We used Xilinx’s Virtex Power Estimator [24] to 
estimate power of the configurable logic for each example, 
also utilizing a 0.18 micron FPGA technology (in 
particular, the XCV50E). We also used Xilinx’s Xpower 
tool, with similar results.   These tools require an estimate 
of the average switching frequency of the FPGA’s internal 
nets. The Virtex Power Estimator User Guide [25] states 
that the frequency is typically between 6% and 12%. We 
thus use 9% as our value. 

Any configurable system on a chip requires a way to 
connect the microprocessor to the configurable system 
logic. The E5 chip uses what Triscend calls a configurable 
system interface (CSI) bus.  This bus (a simplified version 
can be seen in Figure 1) allows the configurable system 
logic to access resources without requiring any time from 
the microprocessor.  It also acts as the interface between 
the configurable system logic and the microprocessor.  
Fundamentally, the CSI bus consists of an 8-bit data bus 
and a 32-bit address bus.  The power dissipation of the 
CSI bus can add significantly to the overall power 
dissipation of the chip.  The number of selectors 
(connecting the address bus to the configurable system 

logic) increases as the size of the configurable system 
logic itself increases.  Therefore, the power dissipation of 
the microprocessor subsystem (microprocessor plus bus) 
will be different depending on the size of the configurable 
system logic. 

Synthesis of the selected loop regions to the CSL for 
the E5/A7 was done using the Synopsys FPGA Compiler 
[20], and placement, routing and mapping was done by the 
Triscend tools.  All synthesis, placement, and routing for 
the MIPS examples was done by Xilinx tools.  

Software performance for the MIPS examples was 
evaluated using the MIPS simulator, and counting the 
number of required cycles. Hardware performance for a 
given loop was evaluated by counting the number of 
cycles required by the synthesized hardware to execute the 
loop. Because some loops had multiple paths, we 
conservatively considered the longest path only. 

Our results are based on the assumption that the power 
consumption of the system in power-down mode is 
insignificant during the idle period that is created from the 
speedup.  Depending on the actual system used, the power 
may be higher, resulting in slightly lower energy savings. 

 
6. Results  
 

Table 1 contains information regarding the software 
examples.  Size corresponds to the static size of the 
application in terms of instruction bytes.  Therefore, for 
the MIPS, the number of instructions is the size divided by 
four.  For the 8051, the number of instructions ranges 
between the total size and the size divided by three.  This 
is because the 8051 uses variable length instructions, 
ranging from 1 byte to 3 bytes.  Loop Size is the static 
number of instruction bytes in the most frequent loops.  
The Loop Time is the percentage of total dynamic 
instructions that are executed in these loops.  CSL Size is 
the number of CSL blocks required by the CSL in order to 
implement the most frequent loops in hardware.  For the 
8051-based device, each CSL block corresponds to 



Table 2: MIPS-based device energy results. 

Eg Sw
Loop in   

sw
Loop in 

CSL Sw / CSL
Speed-

up Sw CSL Total Time(S) Energy (J)
% Energy 
Savings

g3fax 15,600,000 4,720,000 599,000 11,479,000 1.36 0.070 0.111 0.182 0.11500 2.09E-02 25%
adpcm 113,000 29,300 5,440 89,140 1.27 0.070 0.181 0.187 0.00089 1.64E-04 18%
crc 5,040,000 3,480,000 460,800 2,020,000 2.50 0.070 0.061 0.181 0.02020 3.66E-03 59%
des 142,000 70,700 15,100 86,400 1.64 0.070 0.197 0.204 0.00086 1.76E-04 31%
engine 915,000 145,000 28,100 798,100 1.15 0.070 0.082 0.180 0.00798 1.44E-03 12%
jpeg 7,900,000 646,000 171,000 7,425,000 1.06 0.070 0.092 0.180 0.07430 1.34E-02 6%
summin 2,920,000 1,270,000 266,000 1,916,000 1.52 0.070 0.111 0.187 0.01910 3.58E-03 32%
v42 3,850,000 846,000 216,000 3,220,000 1.20 0.070 0.102 0.182 0.03220 5.86E-03 15%

Average: 1.46 Average: 25%

Performance (cycles) Power (W)

 

roughly 12.5 gates.   For the MIPS-based device, each 
CSL block is roughly between 15 to 20 gates. Potential 
speedup is the approximate maximum speedup possible if 
the loops were executed in zero time.  Such speedup is 
approximate because it is based on the percentage of 
dynamic instructions instead of the percentage of 
execution time.  Therefore, if all instructions take the same 
time, the speedup is exact.  If not, which is the case for the 
8051, the actual speedup may be slightly different.   

Notice that the Size, Loop Size, and Loop Time are 
significantly different for the MIPS and 8051.  This is due 
to the fact that the MIPS is a 32-bit RISC processor and 
the 8051 is an 8-bit CISC processor.  The CSL size differs 
for the two systems because of different synthesis tools 
and target combinational logic.  The MIPS system uses the 
Virtex XCV50E from Xilinx which has a total of 1728 
logic cells and the 8051 system uses the Triscend E5 chip 
which has 2048 CSL blocks.  Both devices use blocks that 
consist of 4-bit lookup tables. 

 
6.1. Estimated Results for a MIPS-Based Device 
 

Results for several PowerStone examples running on a 
MIPS simulator are shown in Table 2. The first several 
columns describe the performance of the examples.  Sw is 
the total number of cycles to execute the example 
completely in software.  Loop in sw is the total cycles 
required by the loop when running in software.  Loop in 
CSL is the number of cycles required by the loop when 
running in custom hardware.  Sw/CSL is the number of 
cycles required to execute the entire program after 
partitioning.  Speedup is the resulting speedup after 
partitioning.  The next three columns show the power 
consumption, where Sw is the power of the software on 
the microprocessor, CSL is the power of the custom 
hardware, and Total is the power of the entire system.  The 
last three columns represent the execution time, energy, 
and energy savings of the partitioned system. 

The average speedup for the MIPS examples is 1.46.  
These speedups were achieved by moving very small 
amounts of the original application into hardware running 
on the CSL. In fact, the average percentage of total 
assembly instructions used by the loops was only 2.2%.  
This corresponds to an average of 30 instructions and 
required an average of 241 configurable logic blocks.  
These loops account for an average of 36% of the total 
execution time, and was as high as 66% for the crc 
example. 

For our experiments, we used the same clock frequency 
of 100 MHz for both the MIPS and the CSL.  This is 
based on the fact that many current platforms, such as the 
Triscend A7, run 32-bit processors and the configurable 
logic using the same clock. 

The power column in the table presents power data for 
the microprocessor and for the CSL when they are active. 
By analyzing the E5 device, we estimated for the MIPS-
based system that the interconnect power, namely the 
power consumed by the system buses and shared memory, 
would be about 0.1W. Furthermore, we are assuming a 
low-power state of 25% of the active state on the 
microprocessor [15], and the CSL’s low-power state 
consisted only of quiescent power, and thus used the 
following equation to compute total power:  

Total power = %Sw * Sw + %CSL* (CSL + .25*Sw) +               
Interconnect Power + Quiescent Power 

where %Sw is the percent of time spent in software, 
%CSL the percent time spent in the CSL, Sw is the power 
of the software when the microprocessor is active, and 
CSL is the power of the CSL when active.  Note that the 
values shown for software power and CSL power in Table 
2 do not include the interconnect and quiescent power.  
Interconnect and quiescent power are only included as part 
of total power.   

The power of the CSL consumed on average 67% more 
power than the microprocessor.  Despite this significant 
difference, total power increased by only 3% compared to 



Table 3: Triscend E5 device results. 

Eg Sw Sw/CSL Speedup Sw Sw/CSL Sw Sw/CSL Savings
g3fax 15.16 7.11 2.13 0.252 0.270 3.820 1.920 49.8%
crc 10.64 4.64 2.29 0.207 0.225 2.202 1.044 52.6%
brev 17.81 1.81 9.84 0.252 0.270 4.488 0.489 89.1%
matmul 32.66 2.06 15.85 0.270 0.288 8.818 0.593 93.3%

Average: 7.53 0.245 0.263 4.832 1.011 71.2%

Energy (J)Performance (S) Power (W)

 

Table 4: Triscend A7 device results. 

Eg Sw Sw/CSL Speedup Sw Sw/CSL Sw Sw/CSL Savings
g3fax 11.47 7.44 1.54 1.320 1.332 15.140 9.910 34.5%
crc 10.92 4.51 2.42 1.320 1.320 14.414 5.953 58.7%
brev 9.84 3.28 3.00 1.332 1.344 13.107 4.408 66.4%

Average: 2.32 1.324 1.332 14.221 6.757 53.2%

Energy (J)Performance (S) Power (W)

 

the software-only version.  The reason for this small 
increase is that in the partitioned system, the CSL was 
active for only 10% of total execution time. 

The average energy savings were 25%. If we had used 
a CSL switching frequency of 12% rather than 9%, the 
energy savings would have been 21%.  The main limit to 
energy savings is lack of speedup.  Some of the tested 
examples did not spend enough time in a small loop in 
order to achieve an effective speedup. 

We point out that, although energy savings for the 
MIPS platform were modest, we achieved average overall 
speedups of 1.46 without sacrificing energy and in most 
cases saving a small amount of energy.  Also, it is possible 
that implementing the memory communication in the 
configurable logic has a considerable power overhead 
compared to using a DMA component.  

 
6.2. Measured Results for Triscend E5 
 

Results for several Powerstone examples on the E5 are 
shown in Table 3.  All columns labeled Sw correspond to 
the software only version and Sw/CSL corresponds to the 
partitioned version. The first several columns show the 
measured performance results. Speedup is the 
corresponding speedup after partitioning.  The next two 
columns show the power consumption of the software 
version and the partitioned version. The final three 
columns represent energy results. 

Note that the average speedup is 7.53.  This speedup 
is achieved by moving an average of 513 instruction bytes 
into the CSL.  Excluding the brev example, which uses by 
far the largest number of instructions in the loop, the 
average instruction bytes moved to hardware is only 114.   

The reason for this large amount is that the 8051 is an 8-
bit processor, and may require a large amount of 
instructions to implement even a small loop.  These 
instructions account for approximately 76% of the total 
execution time. 

Power consumption only increased by an average of 18 
milliwatts compared to the software versions. This 
resulted in energy savings of 71.2%.   

 
6.3. Measured Results for Triscend A7 
 

We have recently started testing energy savings on the 
Triscend A7 chip, which combines a 32-bit ARM 
processor with configurable logic.  The results so far are 
shown in Table 4.    

The average speedup for the three examples was 2.32.  
Power consumption only increased by an average of 8 
milliwatts when using the CSL.  This resulted in energy 
savings of 53.2%. 

Comparing these three systems shows that the E5 
achieves the greatest energy savings.  This is due mainly 
to the large speedups that were achieved on the E5.  This 
was possible because the 8051 on the E5 is a relatively 
slow microprocessor compared to the MIPS and ARM.  
Therefore, given the same percentage of execution time 
for a loop, it is much easier to get a larger speedup using 
the E5.  We do not have loop analysis results for the ARM 
processor and therefore could not compare the percentage 
of total execution time of the loops.  We thus assume that 
the speedup of crc is higher on the A7 than on the E5 due 
to the application spending more time in the implemented 
loops on the ARM processor for this example.  All three 
devices showed similar power increases when using the 



Table 5: Voltage scaling results (estimated). 

MIPS Voltage Scaling Results Triscend A7 Voltage Scaling Results

Eg PSR CLK V Power Energy Savings Eg PSR CLK V Power Energy Savings
g3fax 26.4% 73.58 1.61 1.07E-01 1.67E-02 40.1% g3fax 35.1% 25.94 2.03 5.70E-01 6.53 56.8%
adpcm 21.1% 78.89 1.64 1.22E-01 1.38E-04 31.7% crc 58.7% 16.52 1.70 2.52E-01 2.75 80.9%
crc 59.9% 40.08 1.34 4.02E-02 2.03E-03 77.6% brev 66.7% 13.33 1.58 1.79E-01 1.76 86.6%
des 39.2% 60.85 1.51 8.74E-02 1.24E-04 51.2% Average: 74.8%
engine 12.8% 87.24 1.71 1.42E-01 1.30E-03 20.8%
jpeg 6.0% 93.99 1.75 1.60E-01 1.26E-02 10.7% g3fax 53.1% 11.72 2.19 5.58E-02 8.5E-01 77.9%
summin 34.5% 65.51 1.54 8.97E-02 2.62E-03 49.9% crc 56.4% 10.90 2.12 4.05E-02 4.3E-01 80.4%
v42 16.4% 83.60 1.68 1.33E-01 5.11E-03 25.8% brev 89.8% 2.54 1.30 4.26E-03 7.6E-02 98.3%

matmul 93.7% 1.58 1.17 2.28E-03 7.5E-02 99.15%
Average: 38.5% Average: 88.9%

Triscend E5 Voltage Scaling Results

CSL.  We plan to implement the remaining Powerstone 
examples on the E5 and A7 devices in the future – 
implementing them on the MIPS simulator was simpler 
and thus we completed those results first. 

 
6.4. Potential Results with Voltage Scaling and 
Low-Power Configurable Logic 
 

Voltage-scalable processors are increasing in 
popularity in low-power embedded systems. Since much 
of the power consumed in CMOS-based systems is 
proportional to the voltage-squared, reducing voltage to 
the minimum possible while meeting timing constraints 
can yield excellent power savings. In this section, we 
update our results based on hypothetical 
microprocessor/CSL devices that are voltage scalable. 

The large speedups achieved by implementing loops in 
the CSL creates the potential for reducing the voltage and 
clock frequency of the system to a point where 
performance is equal to that of the software version, but 
yet consumes much less power due to the quadratic 
reduction in power. We know of no current devices that 
implement voltage scaling for CSL.  However, we can 
estimate the energy consumption of such a system for the 
previous examples, using the following formulas [11]: 

T α V / (V – Vt)2 
T = k * V / (V – Vt)2 

where T is the delay of the critical path, V is the supply 
voltage, Vt is the threshold voltage, and k is a design-
dependant constant. 

Using the previous formulas, we are able to derive an 
equation for determining the clock frequency at a given 
supply voltage: 

F = 1/T 
F = (V – Vt)2 / (k * V), 

where F is the clock frequency.   

We first estimate the delay of the critical path by using 
the maximum clock frequency.  Using this delay, we can 
determine k.  We use a threshold voltage of 0.8 V.  The 
normal supply voltages for the systems are 1.8 V for the 
MIPS, 2.5 V for the A7, and 3.3 V for the E5.  We next 
determine how much we can reduce the clock in order to 
match the performance of the software-only design.  With 
this information, we can determine the minimum supply 
voltage that allows the design to run at the reduced clock 
speed.  Once we have determined this voltage, we can 
estimate power for the voltage-scaled system in the 
following way: 

C = Po / (0.5 * Vo
2 * a * Fo) 

P = 0.5 * V2 * C * a * F 
P = 0.5 * V2 * (Po / (0.5 * Vo

2 * a  * Fo)) * a * F 
P = (V2 / Vo

2) * (F / Fo) * Po, 
where Po, Vo, and Fo are the power, voltage, and clock 
frequency of the system before voltage scaling,  C is the 
capacitance of the system and a is the switching fequency.  
P, V, and F are the power, voltage, and clock frequency 
after voltage scaling.  Therefore, we are first estimating 
the capacitance of the system in terms of the power, 
voltage, switching activity, and clock frequency.  Once we 
have determined C, we can estimate the power of the 
voltage scaled system using the power of the original 
system and the voltages and clock frequencies of both 
systems. 

Results are shown in Table 5.  PSR is the potential 
speed reduction of the system while still achieving the 
same performance as software.  CLK is the updated clock 
frequency used to achieve this speed reduction.  The 
original clock speeds were 100 MHz for the MIPS, 40 
MHz for the A7, and 25 MHz for the E5.  V is the lowest 
voltage possible for the given clock speed, assuming the 
appropriate technology for each device.  Power, energy, 
and savings are the results of the entire system based on 
the new voltage and clock.   Power is measured in Watts 
and energy is in Joules.   Note that the Triscend A7 and E5 



do not support voltage scaling, but we are estimating the 
results in order to show the potential benefits of such 
scaling.  There are currently voltage scalable ARM-based 
chips available [15][16] but none of them currently 
contain configurable logic.  Although the A7 doesn't 
support voltage scaling, it does support clock scaling. We 
tried using the speedups to slow the clock down, but found 
almost no energy savings, compared to the normal 
partitioning, due to a linear increase in execution time and 
linear decrease in power consumption.  In some cases, 
clock scaling may lead to worse energy consumption due 
to a slightly nonlinear decrease in power.  This occurs 
because some of the power consumption on this chip is 
unrelated to the clock, i.e. quiescent power. 

Notice that the savings shown in Table 5 for the MIPS 
based system increased from 25% to 39% when using 
voltage scaling.   For the A7, energy savings improved 
from an average of 53% to 75%.  The E5 improved from 
71% to 89%. 

Furthermore, as configurable logic continues to find its 
way into final products rather than just prototypes, low-
power configurable logic will likely begin to appear (most 
low-power FPGAs today are actually just low-power when 
idle, and still consume much more power than 
microprocessors). A low-power FPGA by George [7] 
showed power reductions of an order of magnitude over 
commercial low-power FPGAs.  

 
7. Conclusions 
 

We examined the potential benefits of using on-chip 
configurable logic to reduce software energy by moving 
critical loops to the configurable logic in order to decrease 
execution time.  We based our target architecture and our 
time and power evaluation on commercial commodity 
chips with configurable logic available at low cost. We 
conservatively estimated savings of 25% for a 32-bit 
MIPS microprocessor based device, while we found 
through physical measurements energy savings of 71% for 
a commercial 8-bit microprocessor based device, and 53% 
for a commercial 32-bit microprocessor based device.  We 
also showed that if voltage scalability were added to such 
devices, the energy savings could be increased 
substantially. Furthermore, we showed that the 
configurable logic currently consumes much more power 
than the microprocessor – pointing to the need for low-
power configurable logic. 

Energy savings could be further improved by 
parallelizing the execution of the software and 
configurable logic when possible, by considering moving 
entire subroutines rather than just loops to the 
configurable logic, and by parallelizing the hardware 
through loop unrolling and other means – these remain 
areas for future investigation. Furthermore, as on-chip 

configurable logic size increases, more software can be 
mapped to that logic, for even greater savings. 

 
8. Acknowledgements 
 

This work was supported in part by the National 
Science Foundation (CCR-9876006) and UC MICRO. 

 
9. References 
 
[1] Altera Corporation, ARM-Based Embedded Processor 

PLDs, August 2001.  
[2] P. Athanas, H. Silverman. Processor reconfiguration 

through instruction-set metamorphosis.  Computer, Volume: 
26 Issue: 3, March 1993 Page(s):11-18. 

[3] Atmel FPSLIC, 
http://www.atmel.com/atmel/products/prod39.htm. 

[4] E5 Press Release, 
http://www.triscend.com/about/indexrelease051401.html. 

[5] P. Eles, Z. Peng, K. Kuchchinski and A. Doboli. System 
Level Hardware/Softeare Partitioning Based on Simulated 
Annealing and Tabu Search. Kluwer’s Design Automation 
for Embedded Systems, vol2, no 1, pp. 5-32, Jan 1997. 

[6] D. Gajski, F. Vahid, S. Narayan and J. Gong. Specification 
and Design of Embedded Systems. Prentice Hall, 1994. 

[7] V. George, H. Zhang, and J. Rabaey. The Design of a Low 
Energy FPGA Varghese George, Hui Zhang and Jan 
Rabaey, ISLPED 1999, pp. 188-193. 

[8] T. Givargis, F. Vahid, and J. Henkel. System-Level 
Exploration for Pareto-Optimal Configurations in 
Parameterized Systems-on-a-Chip. International Conference 
on Computer-Aided Design (ICCAD), San Jose, November 
2001. 

[9] M. Gokhale, J. Stone.  NAPA C: Compiling for hybrid 
RISC/FPGA architectures. IEEE Symposium on FPGAs for 
Custom Computing Machines, FCCM '98. 

[10] S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, 
R.R. Taylor, R. Laufer. PipeRench: A Coprocessor for 
Streaming Multimedia Acceleration. International 
Symposium on Computer Architecture, pp. 38-49, 1999. 

[11] R. Gonzalez, B. Gordon, and M. Horowitz.  Supply and 
Threshold Voltage Scaling for Low Power CMOS.  IEEE 
Journal of Solid-State Circuits, Vol. 32, No. 8, August 
1997. 

[12] J. Hauser, J. Wawrzynek. Garp: a MIPS processor with a 
reconfigurable coprocessor. IEEE Symposium on FPGAs 
for Custom Computing Machines, pages 12-21, Napa 
Valley, CA, April 1997. 

[13] J. Henkel, Y. Li. Energy-conscious HW/SW-partitioning of 
embedded systems: A Case Study on an MPEG-2 Encoder. 
Proceedings of Sixth International Workshop on 
Hardware/Software Codesign, March 1998, pp. 23-27. 

[14] J. Henkel.  A low power hardware/software partitioning 
approach for core-based embedded systems.  Proceedings of 

http://www.atmel.com/atmel/products/prod39.htm
http://www.triscend.com/about/indexrelease051401.html


the 36th ACM/IEEE conference on Design automation 
conference, pp. 122 – 127,1999. 

[15] Intel StrongArm 1110 Processor, 
http://developer.intel.com/design/strong. 

[16] Intel XScale Processor, 
http://developer.intel.com/design/intelxscale. 

[17] A. Kalavade and E.A. Lee. The Extended Partitioning 
Problem: Hardware/Software Mapping, Scheduling and 
Implementation-Bin Selection. Kluwer Design Automation 
for Embedded Systems, vol 2, no 2, pp. 125-163, Mar 1997. 

[18] A. Malik, B. Moyer, D. Cermak.  A Low Power Unified 
Cache Architecture Providing Power and Performance 
Flexibility.  International Symposium on Low Power 
Electronics and Design.  June 2000. 

[19] MIPS Technologies, Inc., http://www.mips.com. 
[20] Synopsys, http://www.synopsys.com. 
[21] Triscend Corporation, http:/www.triscend.com. 
[22] G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels 

and I. Bolsens. Hardware/Software Partitioning of 

Embedded System in OCAPI-xl. International Symposium 
on Hardware/Software Codesign, pp. 30-35, 2001. 

[23] J. Villarreal, R. Lysecky, S. Cotterell, K. Miller and F. 
Vahid. Loop Analysis of Embedded Applications. UC 
Riverside Technical Report UCR-CSE-01-03, 2001. 

[24] Virtex Power Estimator, http://support.xilinx.com/cgi-
bin/powerweb.pl. 

[25] Virtex Power Estimator User Guide, Xilinx Inc., 2000. 
[26] M. Wan, Y. Ichikawa, D. Lidsky, J. Rabaey.  An energy 

conscious methodology for early design exploration of 
heterogeneous DSPs. Proceedings of the IEEE 1998 
Custom Integrated Circuits Conference, p.111-117, Santa 
Clara, May 1998. 

[27] M. Wirthlin, B. Hutchings. A dynamic instruction set 
computer. Proceedings of IEEE Symposium on FPGAs for 
Custom Computing Machines, 1995, pg. 99-107.   

[28] Xilinx Corporation, Virtex-II Pro Platform FGPA 
Handbook, January 31, 2002. 

 
 

 

http://developer.intel.com/design/strong
http://www.synopsys.com/
http://support.xilinx.com/cgi-bin/powerweb.pl
http://support.xilinx.com/cgi-bin/powerweb.pl

	Abstract
	Introduction
	Previous Work
	Loop Analysis
	Partitioning Method
	Power and Performance Evaluation
	Results
	Estimated Results for a MIPS-Based Device
	Measured Results for Triscend E5
	Measured Results for Triscend A7
	Potential Results with Voltage Scaling and Low-Power Configurable Logic

	Conclusions
	Acknowledgements
	References

