
Using On-Chip Configurable Logic to Reduce Embedded System Software Energy
Greg Stitt1, Brian Grattan2, Jason Villarreal1 and Frank Vahid1,3

1 Department of Computer Science and Engineering
2 Department of Electrical Engineering

University of California, Riverside
{gstitt/bgrattan/villarre/vahid}@cs.ucr.edu, http://www.cs.ucr.edu/~vahid

3 Also with the Center for Embedded Computer Systems at UC Irvine

Abstract

We examine the energy savings possible by re-mapping
critical software loops from a microprocessor to
configurable logic appearing on the same-chip in
commodity chips now commercially available. That logic
is typically intended to implement peripherals and
coprocessors without increasing chip count – but we show
that reduced software energy is an additional benefit,
making such chips even more useful. We find critical
software loops and re-implement them in the configurable
logic such that a repeating software task completes
sooner, allowing us to put the system in a low-power state
for longer periods, thus reducing energy. We use
simulations and estimations for a hypothetical device
having a 32-bit MIPS processor plus configurable logic,
yielding energy savings of 25%, increasing to 39%
assuming voltage scaling. We physically measured several
examples running on two commercial single-chip devices
having an 8-bit 8051 microprocessor plus configurable
logic and a 32-bit ARM microprocessor with configurable
logic, with energy savings of 71% and 53% respectively,
increasing to an estimated 89% and 75% assuming
voltage scaling.

1. Introduction

Commercial products are beginning to appear that
incorporate a microprocessor and configurable logic on a
single chip, such as Triscend’s 8051-based E5 chips and
Arm-based A7 chips [21], Atmel’s FPSLIC [3], Xilinx’s
Virtex II Pro [28], and Altera’s Excalibur [1]. One purpose
of the on-chip logic is to support the incorporation of
different numbers and types of peripherals, such as timers,
UARTs (universal asynchronous receiver/transmitters),
pulse-width modulators, etc. An embedded system
designer can thus configure such a chip to have exactly the
right combination of peripherals. Such configuration is in
contrast to the more typical situation of a designer having
to choose from tens or hundreds of different chip
variations, each with different combinations of

peripherals. The on-chip logic approach enables very high
volume production of a single chip design, resulting in
reduced cost per chip due to better amortized non-
recurring engineering costs, higher yield, and other
economy of scale benefits related to chip fabrication – the
Triscend E5 series, for example, is expected to sell for
only around $3 per chip [4].

A second purpose of the on-chip logic is to implement
coprocessors and other custom logic that would otherwise
have been implemented using a separate application-
specific integrated circuit (ASIC) chip. This reduces the
number of chips in a system, which can have extremely
important advantages in cost and size sensitive embedded
systems.

We propose that available configurable logic can be
additionally used for a third purpose, namely for reducing
the energy of the software running on the microprocessor.
Low energy is an increasingly important requirement in
embedded systems, allowing for longer battery life, among
other things.

Our approach makes use of the situation of embedded
systems typically executing a single program for their
lifetimes – the program is “fixed.” For example, the
program executing on a microprocessor in a digital camera
typically does not change during the camera’s lifetime.
The approach also makes use of the situation of many
embedded system programs spending a large percentage
of their runtime in a few small loops, and of such
programs repeating a main task with a given period.

In short, the approach consists of profiling the fixed
program using representative input stimuli, detecting the
most critical loops, re-implementing the program so that
some subset of those loops execute on the configurable
logic while the microprocessor waits in a low-power state,
and taking advantage of the resulting faster task
completion by putting the entire system in a low-power
state during the greater idle-time of the task’s period.
Alternatively, we can take advantage of the faster task
completion to run the entire system at a lower voltage,
until the task executes at the same speed as the original
all-software implementation – yielding even greater
energy savings than the low-power state method.

Although software speedups using configurable logic
have been reported by many previous researchers, such
speedup does not necessarily imply reduced energy.
Configurable logic tends to consume much more power
than software. Since energy is the product of power and
time, the power increases that accompany speedup could
result in energy decreases or increases.

In this paper, we present our hardware/software
partitioning approach and the energy results of such
partitioning through estimation for a 32-bit MIPS-based
device, and through physical measurements of two low-
cost devices having an 8-bit 8051 microprocessor with on-
chip configurable logic and a similar 32-bit ARM system.
We also estimate the additional savings had those three
devices been voltage scalable.

2. Previous Work

Extensive previous work has examined the
performance benefits of partitioning a program among a
microprocessor and configurable logic (e.g., [2][12]),
including systems that can page new hardware in and out
on demand [10][27], as well as language support for
partitioning [9]. Such hardware/software partitioning can
integrate the logic at various levels with the
microprocessor, including within the datapath, on the
memory bus, on the peripheral bus, or even through a
special port of the microprocessor. Tighter integration
tends to support the addition of custom microprocessor
instructions, while more distant integration tends to
support co-processing.

Extensive work on general hardware/software
partitioning, in which the hardware component is
implemented on configurable logic or as an ASIC, has
also been performed (e.g., [5][6][17][22]).

Improved performance through hardware/software
partitioning could result in reduced energy, but not
necessarily so. Energy is the product of power and time.
While using configurable logic may reduce time, it
potentially could increase power such that the energy
savings are very small, or even such that energy is
increased.

Some researchers have begun investigating the energy
advantages of hardware/software partitioning. Henkel
[13][14] partitioned several examples among a
microprocessor and semi-custom ASIC, while utilizing
low-power idle modes of the microprocessor and custom
hardware, obtaining average energy savings of 60%
compared to an all software solution. Wan et al [26]
partitioned DSP algorithms among the Pleiades project’s
architecture of a microprocessor connected through an
interconnection network to hardware accelerators
programmable at multiple levels of granularity, showing
10 times overall energy improvements for certain

examples, obtained due to the reduced microprocessor
clock enabled by the partitioning.

Our work differs from Henkel’s and Wan’s in that we
utilize standard on-chip configurable logic available in
current commodity parts, as opposed to an ASIC or a
custom multi-level configurable architecture. While such a
commodity part may not achieve as great of energy
savings, it does have significant cost and time-to-market
advantages over other approaches.

3. Loop Analysis

We began by profiling a number of examples from
Motorola’s Powerstone embedded software benchmarks
[18] to determine to what extent they spent time executing
small loops. If much of their time was spent in a few small
highly-iterating loops, then mapping those loops to
configurable logic could yield considerable energy
improvements. On the other hand, if most time was spent
in a few very large loops, or in a large number of smaller
loops, then those loops’ sizes in hardware might exceed
the available on-chip logic capacity. Furthermore, if most
time was spent in small loops but those loops only iterated
a few times per loop visit, then the cost of switching back
and forth between software and hardware would likely
outweigh potential savings.

We examined 16 examples, including a voice encoder
(adpcm), a cyclic redundancy check (crc), a data
encryption standard (des), an engine controller (engine), a
fax decoder (g3fax), a JPEG decoder (jpeg), a handwriting
recognizer (summin), and a modem encoder/decoder
(v42). We executed each example, using the input vectors
in Powerstone, on instruction set simulators for a MIPS
microprocessor as well as an 8051 8-bit microcontroller.
Those simulators were augmented to output instruction
traces, and we used an additional tool to parse the traces
and gather loop statistics.

Complete results of the loop study appear in [23]. The
main results showed that the programs running on the
MIPS spend 66% of their time in loops with a static size
of 256 instructions or less, while the 8051 programs spent
76% of their time in such loops. Furthermore, 77% of time
spent in loops (or 51% of total time) on the MIPS was
spent in loops whose static size was 32 instructions or
less. More importantly, many of the examples contained
several small loops that dominated the execution time, and
generally iterated many times per execution. For example,
g3fax contains two loops that represent 62% of total
execution time and only consist of 6 assembly instructions
each. In addition, one of these loops iterates 1,729 times
on each visit. For all of the tested examples, the two most
frequent loops accounted for 40% of total execution time
for the MIPS and over 70% of execution time on the 8051.

Thus, there does exist the potential for good speedups
through re-implementing just a few small loops in

hardware – but whether such speedup could be obtained,
and whether such speedup would result in actual energy
savings, depends on the speed and increase in power
consumption from using configurable logic.

For our experiments, we modified the Powerstone
benchmarks so that they would loop many times, allowing
us to achieve more accurate and stable physical
measurements. In addition, for several examples, we
moved the data initialization code into the main program
loop, since data acquisition would occur during every
iteration if the benchmark were implemented in an
embedded system. These changes cause slightly different
loop statistic results than for the same benchmarks
described in [23].

4. Partitioning Method

Our general method of using the configurable logic for
energy improvement consisted of moving as much of the
software execution as possible onto the logic. Thus, based
on the analysis of the loop regions of a given program, we
tried to partition the most time-dominating regions onto
the logic. Such partitioning was limited by the size of the
logic, so we sometimes had to take the second most time-
dominating region. In addition, sometimes the best
partitioning involved a combination of other regions that
together accounted for more of the overall time.

We implemented a given region on the logic by
manually writing a synthesizable VHDL model for that
region. In doing so, we looked at the C source code to
determine the region’s high-level behavior, and we then
wrote the best performing VHDL model that we could,

with knowledge of the size limit of the configurable logic.
Sometimes that model looked very similar to the C code,
but other times it could be quite different.

Figure 1: E5 single-chip architecture.

Finding the best set of regions for implementation on
the configurable logic, and creating the best synthesizable
model of those regions, provide two dimensions to the
hardware/software partitioning problem that are
interdependent. We relied on human design expertise to
find the solutions for each example. Automated
exploration involving both dimensions (most automated
approaches only consider the first dimension) remains an
area of future work.

Microprocessor

Configurable
System Logic

(CSL)
UART

TIMERS

If multiple synthesizable regions were mapped to the
configurable logic, we included them as sub-states of a
single state machine, so that when synthesized they would
share hardware. Such sharing was possible because we
were guaranteed that the regions would not execute
concurrently to one another, since they came from
sequential software.

Our target architecture was based on the Triscend E5
and A7 chips. A general view of the E5 chip’s architecture
is shown in Figure 1. Communication between the
microprocessor and configurable system logic (CSL) takes
place via shared memory and several direct signals. The
E5 uses an 8051 microprocessor (8-bit) and the A7 uses an
ARM microprocessor (32-bit). We also evaluate results
assuming a MIPS (32-bit) processor, as will be described.
For the MIPS experiments, the architecture is slightly
different. We removed the DMA because the execution of
the microprocessor and the custom hardware are mutually
exclusive. This has the advantage of a smaller system, but
increases the complexity of the custom hardware by
requiring the memory communication to be implemented
in the configurable logic.

We implemented each partitioning by replacing the
selected software regions with handshaking behavior. The
software would activate the CSL using a start signal, and
then wait for the CSL to set a done signal. The
microprocessor enters a low-power state while waiting for
the CSL, and the CSL enters a low-power state by not
executing while waiting for the microprocessor.

5. Power and Performance Evaluation

We used the testbenches that come with the
Powerstone benchmarks to generate dynamic power and
performance data for the benchmarks.

The E5 chip implements a microprocessor and CSL in
a 0.35 micron technology. The A7 chips typically use
0.18 micron techonology, but the version we tested was
fabricated using 0.25 micron technology. We took
physical measurements, utilizing a digital multimeter, to
determine the current and hence the power for our
examples. We executed each example first as an all-
software implementation with the CSL in a low-power

A
dd

re
ss

D
at

a

System RAM

Address
Mappers

DMA

Table 1: Benchmark information.

8051 BenchmarksMIPS Benchmarks
Eg Size
Loop
Size

Loop
Time

CSL
Size

Potential
Speedup Eg Size

Loop
Size

Loop
Time

CSL
Size

Potential
Speedup

g3fax 4452 24 31% 161 1.45 g3fax 8309 71 56% 158 2.27
adpcm 7640 152 30% 469 1.43 crc 810 58 63% 87 2.69
crc 4288 68 66% 46 2.90 brev 2505 1710 92% 141 12.99
des 6116 360 52% 516 2.08 matmul 838 212 94% 539 17.24
engine 4432 64 28% 133 1.39
jpeg 5960 116 10% 157 1.11
summin 4136 100 48% 212 1.92
v42 6388 60 23% 233 1.30

Avg: 118 36% 241 1.70 Avg: 513 76% 231 8.80

mode, and then as a partitioned example, utilizing low-
power modes of the 8051 and CSL when the other was
active. We enclosed each example in a long-running loop
to obtain a stable power reading. Performance was
measured by using the serial communication on the chip in
order to specify the start and end of the application. A
timer running on a workstation measured the differences
between the starting and ending times in order to
determine the actual execution times.

For our MIPS-based evaluation, we used a
simulation-based approach for performance evaluation.
We ran each example on a MIPS architectural simulator
[8] that outputs the number of cycles each example
executes. In order to determine power of the MIPS
processor, we use the reported power consumption of a
typical MIPS core [19], based on 0.18 micron technology.
All examples ran at 100 MHz with a supply voltage of
1.8V. We used Xilinx’s Virtex Power Estimator [24] to
estimate power of the configurable logic for each example,
also utilizing a 0.18 micron FPGA technology (in
particular, the XCV50E). We also used Xilinx’s Xpower
tool, with similar results. These tools require an estimate
of the average switching frequency of the FPGA’s internal
nets. The Virtex Power Estimator User Guide [25] states
that the frequency is typically between 6% and 12%. We
thus use 9% as our value.

Any configurable system on a chip requires a way to
connect the microprocessor to the configurable system
logic. The E5 chip uses what Triscend calls a configurable
system interface (CSI) bus. This bus (a simplified version
can be seen in Figure 1) allows the configurable system
logic to access resources without requiring any time from
the microprocessor. It also acts as the interface between
the configurable system logic and the microprocessor.
Fundamentally, the CSI bus consists of an 8-bit data bus
and a 32-bit address bus. The power dissipation of the
CSI bus can add significantly to the overall power
dissipation of the chip. The number of selectors
(connecting the address bus to the configurable system

logic) increases as the size of the configurable system
logic itself increases. Therefore, the power dissipation of
the microprocessor subsystem (microprocessor plus bus)
will be different depending on the size of the configurable
system logic.

Synthesis of the selected loop regions to the CSL for
the E5/A7 was done using the Synopsys FPGA Compiler
[20], and placement, routing and mapping was done by the
Triscend tools. All synthesis, placement, and routing for
the MIPS examples was done by Xilinx tools.

Software performance for the MIPS examples was
evaluated using the MIPS simulator, and counting the
number of required cycles. Hardware performance for a
given loop was evaluated by counting the number of
cycles required by the synthesized hardware to execute the
loop. Because some loops had multiple paths, we
conservatively considered the longest path only.

Our results are based on the assumption that the power
consumption of the system in power-down mode is
insignificant during the idle period that is created from the
speedup. Depending on the actual system used, the power
may be higher, resulting in slightly lower energy savings.

6. Results

Table 1 contains information regarding the software
examples. Size corresponds to the static size of the
application in terms of instruction bytes. Therefore, for
the MIPS, the number of instructions is the size divided by
four. For the 8051, the number of instructions ranges
between the total size and the size divided by three. This
is because the 8051 uses variable length instructions,
ranging from 1 byte to 3 bytes. Loop Size is the static
number of instruction bytes in the most frequent loops.
The Loop Time is the percentage of total dynamic
instructions that are executed in these loops. CSL Size is
the number of CSL blocks required by the CSL in order to
implement the most frequent loops in hardware. For the
8051-based device, each CSL block corresponds to

Table 2: MIPS-based device energy results.

Eg Sw
Loop in

sw
Loop in

CSL Sw / CSL
Speed-

up Sw CSL Total Time(S) Energy (J)
% Energy
Savings

g3fax 15,600,000 4,720,000 599,000 11,479,000 1.36 0.070 0.111 0.182 0.11500 2.09E-02 25%
adpcm 113,000 29,300 5,440 89,140 1.27 0.070 0.181 0.187 0.00089 1.64E-04 18%
crc 5,040,000 3,480,000 460,800 2,020,000 2.50 0.070 0.061 0.181 0.02020 3.66E-03 59%
des 142,000 70,700 15,100 86,400 1.64 0.070 0.197 0.204 0.00086 1.76E-04 31%
engine 915,000 145,000 28,100 798,100 1.15 0.070 0.082 0.180 0.00798 1.44E-03 12%
jpeg 7,900,000 646,000 171,000 7,425,000 1.06 0.070 0.092 0.180 0.07430 1.34E-02 6%
summin 2,920,000 1,270,000 266,000 1,916,000 1.52 0.070 0.111 0.187 0.01910 3.58E-03 32%
v42 3,850,000 846,000 216,000 3,220,000 1.20 0.070 0.102 0.182 0.03220 5.86E-03 15%

Average: 1.46 Average: 25%

Performance (cycles) Power (W)

roughly 12.5 gates. For the MIPS-based device, each
CSL block is roughly between 15 to 20 gates. Potential
speedup is the approximate maximum speedup possible if
the loops were executed in zero time. Such speedup is
approximate because it is based on the percentage of
dynamic instructions instead of the percentage of
execution time. Therefore, if all instructions take the same
time, the speedup is exact. If not, which is the case for the
8051, the actual speedup may be slightly different.

Notice that the Size, Loop Size, and Loop Time are
significantly different for the MIPS and 8051. This is due
to the fact that the MIPS is a 32-bit RISC processor and
the 8051 is an 8-bit CISC processor. The CSL size differs
for the two systems because of different synthesis tools
and target combinational logic. The MIPS system uses the
Virtex XCV50E from Xilinx which has a total of 1728
logic cells and the 8051 system uses the Triscend E5 chip
which has 2048 CSL blocks. Both devices use blocks that
consist of 4-bit lookup tables.

6.1. Estimated Results for a MIPS-Based Device

Results for several PowerStone examples running on a
MIPS simulator are shown in Table 2. The first several
columns describe the performance of the examples. Sw is
the total number of cycles to execute the example
completely in software. Loop in sw is the total cycles
required by the loop when running in software. Loop in
CSL is the number of cycles required by the loop when
running in custom hardware. Sw/CSL is the number of
cycles required to execute the entire program after
partitioning. Speedup is the resulting speedup after
partitioning. The next three columns show the power
consumption, where Sw is the power of the software on
the microprocessor, CSL is the power of the custom
hardware, and Total is the power of the entire system. The
last three columns represent the execution time, energy,
and energy savings of the partitioned system.

The average speedup for the MIPS examples is 1.46.
These speedups were achieved by moving very small
amounts of the original application into hardware running
on the CSL. In fact, the average percentage of total
assembly instructions used by the loops was only 2.2%.
This corresponds to an average of 30 instructions and
required an average of 241 configurable logic blocks.
These loops account for an average of 36% of the total
execution time, and was as high as 66% for the crc
example.

For our experiments, we used the same clock frequency
of 100 MHz for both the MIPS and the CSL. This is
based on the fact that many current platforms, such as the
Triscend A7, run 32-bit processors and the configurable
logic using the same clock.

The power column in the table presents power data for
the microprocessor and for the CSL when they are active.
By analyzing the E5 device, we estimated for the MIPS-
based system that the interconnect power, namely the
power consumed by the system buses and shared memory,
would be about 0.1W. Furthermore, we are assuming a
low-power state of 25% of the active state on the
microprocessor [15], and the CSL’s low-power state
consisted only of quiescent power, and thus used the
following equation to compute total power:

Total power = %Sw * Sw + %CSL* (CSL + .25*Sw) +
Interconnect Power + Quiescent Power

where %Sw is the percent of time spent in software,
%CSL the percent time spent in the CSL, Sw is the power
of the software when the microprocessor is active, and
CSL is the power of the CSL when active. Note that the
values shown for software power and CSL power in Table
2 do not include the interconnect and quiescent power.
Interconnect and quiescent power are only included as part
of total power.

The power of the CSL consumed on average 67% more
power than the microprocessor. Despite this significant
difference, total power increased by only 3% compared to

Table 3: Triscend E5 device results.

Eg Sw Sw/CSL Speedup Sw Sw/CSL Sw Sw/CSL Savings
g3fax 15.16 7.11 2.13 0.252 0.270 3.820 1.920 49.8%
crc 10.64 4.64 2.29 0.207 0.225 2.202 1.044 52.6%
brev 17.81 1.81 9.84 0.252 0.270 4.488 0.489 89.1%
matmul 32.66 2.06 15.85 0.270 0.288 8.818 0.593 93.3%

Average: 7.53 0.245 0.263 4.832 1.011 71.2%

Energy (J)Performance (S) Power (W)

Table 4: Triscend A7 device results.

Eg Sw Sw/CSL Speedup Sw Sw/CSL Sw Sw/CSL Savings
g3fax 11.47 7.44 1.54 1.320 1.332 15.140 9.910 34.5%
crc 10.92 4.51 2.42 1.320 1.320 14.414 5.953 58.7%
brev 9.84 3.28 3.00 1.332 1.344 13.107 4.408 66.4%

Average: 2.32 1.324 1.332 14.221 6.757 53.2%

Energy (J)Performance (S) Power (W)

the software-only version. The reason for this small
increase is that in the partitioned system, the CSL was
active for only 10% of total execution time.

The average energy savings were 25%. If we had used
a CSL switching frequency of 12% rather than 9%, the
energy savings would have been 21%. The main limit to
energy savings is lack of speedup. Some of the tested
examples did not spend enough time in a small loop in
order to achieve an effective speedup.

We point out that, although energy savings for the
MIPS platform were modest, we achieved average overall
speedups of 1.46 without sacrificing energy and in most
cases saving a small amount of energy. Also, it is possible
that implementing the memory communication in the
configurable logic has a considerable power overhead
compared to using a DMA component.

6.2. Measured Results for Triscend E5

Results for several Powerstone examples on the E5 are
shown in Table 3. All columns labeled Sw correspond to
the software only version and Sw/CSL corresponds to the
partitioned version. The first several columns show the
measured performance results. Speedup is the
corresponding speedup after partitioning. The next two
columns show the power consumption of the software
version and the partitioned version. The final three
columns represent energy results.

Note that the average speedup is 7.53. This speedup
is achieved by moving an average of 513 instruction bytes
into the CSL. Excluding the brev example, which uses by
far the largest number of instructions in the loop, the
average instruction bytes moved to hardware is only 114.

The reason for this large amount is that the 8051 is an 8-
bit processor, and may require a large amount of
instructions to implement even a small loop. These
instructions account for approximately 76% of the total
execution time.

Power consumption only increased by an average of 18
milliwatts compared to the software versions. This
resulted in energy savings of 71.2%.

6.3. Measured Results for Triscend A7

We have recently started testing energy savings on the
Triscend A7 chip, which combines a 32-bit ARM
processor with configurable logic. The results so far are
shown in Table 4.

The average speedup for the three examples was 2.32.
Power consumption only increased by an average of 8
milliwatts when using the CSL. This resulted in energy
savings of 53.2%.

Comparing these three systems shows that the E5
achieves the greatest energy savings. This is due mainly
to the large speedups that were achieved on the E5. This
was possible because the 8051 on the E5 is a relatively
slow microprocessor compared to the MIPS and ARM.
Therefore, given the same percentage of execution time
for a loop, it is much easier to get a larger speedup using
the E5. We do not have loop analysis results for the ARM
processor and therefore could not compare the percentage
of total execution time of the loops. We thus assume that
the speedup of crc is higher on the A7 than on the E5 due
to the application spending more time in the implemented
loops on the ARM processor for this example. All three
devices showed similar power increases when using the

Table 5: Voltage scaling results (estimated).

MIPS Voltage Scaling Results Triscend A7 Voltage Scaling Results

Eg PSR CLK V Power Energy Savings Eg PSR CLK V Power Energy Savings
g3fax 26.4% 73.58 1.61 1.07E-01 1.67E-02 40.1% g3fax 35.1% 25.94 2.03 5.70E-01 6.53 56.8%
adpcm 21.1% 78.89 1.64 1.22E-01 1.38E-04 31.7% crc 58.7% 16.52 1.70 2.52E-01 2.75 80.9%
crc 59.9% 40.08 1.34 4.02E-02 2.03E-03 77.6% brev 66.7% 13.33 1.58 1.79E-01 1.76 86.6%
des 39.2% 60.85 1.51 8.74E-02 1.24E-04 51.2% Average: 74.8%
engine 12.8% 87.24 1.71 1.42E-01 1.30E-03 20.8%
jpeg 6.0% 93.99 1.75 1.60E-01 1.26E-02 10.7% g3fax 53.1% 11.72 2.19 5.58E-02 8.5E-01 77.9%
summin 34.5% 65.51 1.54 8.97E-02 2.62E-03 49.9% crc 56.4% 10.90 2.12 4.05E-02 4.3E-01 80.4%
v42 16.4% 83.60 1.68 1.33E-01 5.11E-03 25.8% brev 89.8% 2.54 1.30 4.26E-03 7.6E-02 98.3%

matmul 93.7% 1.58 1.17 2.28E-03 7.5E-02 99.15%
Average: 38.5% Average: 88.9%

Triscend E5 Voltage Scaling Results

CSL. We plan to implement the remaining Powerstone
examples on the E5 and A7 devices in the future –
implementing them on the MIPS simulator was simpler
and thus we completed those results first.

6.4. Potential Results with Voltage Scaling and
Low-Power Configurable Logic

Voltage-scalable processors are increasing in
popularity in low-power embedded systems. Since much
of the power consumed in CMOS-based systems is
proportional to the voltage-squared, reducing voltage to
the minimum possible while meeting timing constraints
can yield excellent power savings. In this section, we
update our results based on hypothetical
microprocessor/CSL devices that are voltage scalable.

The large speedups achieved by implementing loops in
the CSL creates the potential for reducing the voltage and
clock frequency of the system to a point where
performance is equal to that of the software version, but
yet consumes much less power due to the quadratic
reduction in power. We know of no current devices that
implement voltage scaling for CSL. However, we can
estimate the energy consumption of such a system for the
previous examples, using the following formulas [11]:

T α V / (V – Vt)2
T = k * V / (V – Vt)2

where T is the delay of the critical path, V is the supply
voltage, Vt is the threshold voltage, and k is a design-
dependant constant.

Using the previous formulas, we are able to derive an
equation for determining the clock frequency at a given
supply voltage:

F = 1/T
F = (V – Vt)2 / (k * V),

where F is the clock frequency.

We first estimate the delay of the critical path by using
the maximum clock frequency. Using this delay, we can
determine k. We use a threshold voltage of 0.8 V. The
normal supply voltages for the systems are 1.8 V for the
MIPS, 2.5 V for the A7, and 3.3 V for the E5. We next
determine how much we can reduce the clock in order to
match the performance of the software-only design. With
this information, we can determine the minimum supply
voltage that allows the design to run at the reduced clock
speed. Once we have determined this voltage, we can
estimate power for the voltage-scaled system in the
following way:

C = Po / (0.5 * Vo
2 * a * Fo)

P = 0.5 * V2 * C * a * F
P = 0.5 * V2 * (Po / (0.5 * Vo

2 * a * Fo)) * a * F
P = (V2 / Vo

2) * (F / Fo) * Po,
where Po, Vo, and Fo are the power, voltage, and clock
frequency of the system before voltage scaling, C is the
capacitance of the system and a is the switching fequency.
P, V, and F are the power, voltage, and clock frequency
after voltage scaling. Therefore, we are first estimating
the capacitance of the system in terms of the power,
voltage, switching activity, and clock frequency. Once we
have determined C, we can estimate the power of the
voltage scaled system using the power of the original
system and the voltages and clock frequencies of both
systems.

Results are shown in Table 5. PSR is the potential
speed reduction of the system while still achieving the
same performance as software. CLK is the updated clock
frequency used to achieve this speed reduction. The
original clock speeds were 100 MHz for the MIPS, 40
MHz for the A7, and 25 MHz for the E5. V is the lowest
voltage possible for the given clock speed, assuming the
appropriate technology for each device. Power, energy,
and savings are the results of the entire system based on
the new voltage and clock. Power is measured in Watts
and energy is in Joules. Note that the Triscend A7 and E5

do not support voltage scaling, but we are estimating the
results in order to show the potential benefits of such
scaling. There are currently voltage scalable ARM-based
chips available [15][16] but none of them currently
contain configurable logic. Although the A7 doesn't
support voltage scaling, it does support clock scaling. We
tried using the speedups to slow the clock down, but found
almost no energy savings, compared to the normal
partitioning, due to a linear increase in execution time and
linear decrease in power consumption. In some cases,
clock scaling may lead to worse energy consumption due
to a slightly nonlinear decrease in power. This occurs
because some of the power consumption on this chip is
unrelated to the clock, i.e. quiescent power.

Notice that the savings shown in Table 5 for the MIPS
based system increased from 25% to 39% when using
voltage scaling. For the A7, energy savings improved
from an average of 53% to 75%. The E5 improved from
71% to 89%.

Furthermore, as configurable logic continues to find its
way into final products rather than just prototypes, low-
power configurable logic will likely begin to appear (most
low-power FPGAs today are actually just low-power when
idle, and still consume much more power than
microprocessors). A low-power FPGA by George [7]
showed power reductions of an order of magnitude over
commercial low-power FPGAs.

7. Conclusions

We examined the potential benefits of using on-chip
configurable logic to reduce software energy by moving
critical loops to the configurable logic in order to decrease
execution time. We based our target architecture and our
time and power evaluation on commercial commodity
chips with configurable logic available at low cost. We
conservatively estimated savings of 25% for a 32-bit
MIPS microprocessor based device, while we found
through physical measurements energy savings of 71% for
a commercial 8-bit microprocessor based device, and 53%
for a commercial 32-bit microprocessor based device. We
also showed that if voltage scalability were added to such
devices, the energy savings could be increased
substantially. Furthermore, we showed that the
configurable logic currently consumes much more power
than the microprocessor – pointing to the need for low-
power configurable logic.

Energy savings could be further improved by
parallelizing the execution of the software and
configurable logic when possible, by considering moving
entire subroutines rather than just loops to the
configurable logic, and by parallelizing the hardware
through loop unrolling and other means – these remain
areas for future investigation. Furthermore, as on-chip

configurable logic size increases, more software can be
mapped to that logic, for even greater savings.

8. Acknowledgements

This work was supported in part by the National
Science Foundation (CCR-9876006) and UC MICRO.

9. References

[1] Altera Corporation, ARM-Based Embedded Processor

PLDs, August 2001.
[2] P. Athanas, H. Silverman. Processor reconfiguration

through instruction-set metamorphosis. Computer, Volume:
26 Issue: 3, March 1993 Page(s):11-18.

[3] Atmel FPSLIC,
http://www.atmel.com/atmel/products/prod39.htm.

[4] E5 Press Release,
http://www.triscend.com/about/indexrelease051401.html.

[5] P. Eles, Z. Peng, K. Kuchchinski and A. Doboli. System
Level Hardware/Softeare Partitioning Based on Simulated
Annealing and Tabu Search. Kluwer’s Design Automation
for Embedded Systems, vol2, no 1, pp. 5-32, Jan 1997.

[6] D. Gajski, F. Vahid, S. Narayan and J. Gong. Specification
and Design of Embedded Systems. Prentice Hall, 1994.

[7] V. George, H. Zhang, and J. Rabaey. The Design of a Low
Energy FPGA Varghese George, Hui Zhang and Jan
Rabaey, ISLPED 1999, pp. 188-193.

[8] T. Givargis, F. Vahid, and J. Henkel. System-Level
Exploration for Pareto-Optimal Configurations in
Parameterized Systems-on-a-Chip. International Conference
on Computer-Aided Design (ICCAD), San Jose, November
2001.

[9] M. Gokhale, J. Stone. NAPA C: Compiling for hybrid
RISC/FPGA architectures. IEEE Symposium on FPGAs for
Custom Computing Machines, FCCM '98.

[10] S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi,
R.R. Taylor, R. Laufer. PipeRench: A Coprocessor for
Streaming Multimedia Acceleration. International
Symposium on Computer Architecture, pp. 38-49, 1999.

[11] R. Gonzalez, B. Gordon, and M. Horowitz. Supply and
Threshold Voltage Scaling for Low Power CMOS. IEEE
Journal of Solid-State Circuits, Vol. 32, No. 8, August
1997.

[12] J. Hauser, J. Wawrzynek. Garp: a MIPS processor with a
reconfigurable coprocessor. IEEE Symposium on FPGAs
for Custom Computing Machines, pages 12-21, Napa
Valley, CA, April 1997.

[13] J. Henkel, Y. Li. Energy-conscious HW/SW-partitioning of
embedded systems: A Case Study on an MPEG-2 Encoder.
Proceedings of Sixth International Workshop on
Hardware/Software Codesign, March 1998, pp. 23-27.

[14] J. Henkel. A low power hardware/software partitioning
approach for core-based embedded systems. Proceedings of

http://www.atmel.com/atmel/products/prod39.htm
http://www.triscend.com/about/indexrelease051401.html

the 36th ACM/IEEE conference on Design automation
conference, pp. 122 – 127,1999.

[15] Intel StrongArm 1110 Processor,
http://developer.intel.com/design/strong.

[16] Intel XScale Processor,
http://developer.intel.com/design/intelxscale.

[17] A. Kalavade and E.A. Lee. The Extended Partitioning
Problem: Hardware/Software Mapping, Scheduling and
Implementation-Bin Selection. Kluwer Design Automation
for Embedded Systems, vol 2, no 2, pp. 125-163, Mar 1997.

[18] A. Malik, B. Moyer, D. Cermak. A Low Power Unified
Cache Architecture Providing Power and Performance
Flexibility. International Symposium on Low Power
Electronics and Design. June 2000.

[19] MIPS Technologies, Inc., http://www.mips.com.
[20] Synopsys, http://www.synopsys.com.
[21] Triscend Corporation, http:/www.triscend.com.
[22] G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels

and I. Bolsens. Hardware/Software Partitioning of

Embedded System in OCAPI-xl. International Symposium
on Hardware/Software Codesign, pp. 30-35, 2001.

[23] J. Villarreal, R. Lysecky, S. Cotterell, K. Miller and F.
Vahid. Loop Analysis of Embedded Applications. UC
Riverside Technical Report UCR-CSE-01-03, 2001.

[24] Virtex Power Estimator, http://support.xilinx.com/cgi-
bin/powerweb.pl.

[25] Virtex Power Estimator User Guide, Xilinx Inc., 2000.
[26] M. Wan, Y. Ichikawa, D. Lidsky, J. Rabaey. An energy

conscious methodology for early design exploration of
heterogeneous DSPs. Proceedings of the IEEE 1998
Custom Integrated Circuits Conference, p.111-117, Santa
Clara, May 1998.

[27] M. Wirthlin, B. Hutchings. A dynamic instruction set
computer. Proceedings of IEEE Symposium on FPGAs for
Custom Computing Machines, 1995, pg. 99-107.

[28] Xilinx Corporation, Virtex-II Pro Platform FGPA
Handbook, January 31, 2002.

http://developer.intel.com/design/strong
http://www.synopsys.com/
http://support.xilinx.com/cgi-bin/powerweb.pl
http://support.xilinx.com/cgi-bin/powerweb.pl

	Abstract
	Introduction
	Previous Work
	Loop Analysis
	Partitioning Method
	Power and Performance Evaluation
	Results
	Estimated Results for a MIPS-Based Device
	Measured Results for Triscend E5
	Measured Results for Triscend A7
	Potential Results with Voltage Scaling and Low-Power Configurable Logic

	Conclusions
	Acknowledgements
	References

