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Abstract

Functional partitioning assigns the functions of a sys-
tem’s program-like specification among system compo-
nents, such as standard-software and custom-hardware
processors. We introduce a new transformation, called
procedure cloning, that significantly improves functional
partitioning results. The transformation creates a clone
of a procedure for sole use by a particular procedure
caller, so the clone can be assigned to the caller’s pro-
cessor, which in turn improves performance through re-
duced communication.” We define several cloning heuris-
tics that seek to clone the minimum number of proce-
dures, a goal necessary to obtain the best improvements.
We highlight ezperiments comparing our cloning heuris-
tics and showing partition improvements with cloning.

1 Introduction

Functional partitioning is an increasingly important
task for system design environments. In such partition-
ing, a behavioral specification’s functions are assigned
to system components, including software processors,
custom hardware processors, and memories. Such par-
titioning must satisfy constraints, like package size and
pin limits, while minimizing other metrics, like execu-
tion time or power. Recent research has shown benefits
of lower cost and better performance when functionally
partitioning among hardware and software [1, 2; 3, 4, 5,
6, 7, 8]. Other research focused on functionally rather
than structurally partitioning among hardware packages
[9, 10, 11, 12, 13, 14, 15] with numerous benefits, like
fewer packages, improved performance, faster synthesis,
and easier debugging [16]. To gain these benefits, good
functional partitioning approaches are needed.

Functional partitioning approaches usually start with
a program-like specification of system functionality. De-
velopers of such specifications, like their software devel-
oper counterparts, must create modular, readable, and
reusable programs. These issues lead to extensive use
of procedures, many called from multiple locations. To
our knowledge, such multiply-called procedures are han-
dled in earlier approaches either by: (1) Treating each
procedure as a single computation, so one instance of a
procedure (or of its blocks or statements) is partitioned
among components, or (2) Treating each procedure call
as a computation, so multiple instances are partitioned.

The second approach exposes the largest solution
space by essentially creating a dataflow graph, where
a distinct graph node for each call shows the different
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data dependencies per call, similar to using distinct ad-
dition nodes for each addition operation for behavioral
synthesis. However, a larger space represents a harder
partitioning problem. Our experiments show that the
number of nodes can increase by almost an order of mag-
nitude (and thus the solution space by an even greater
factor), leading to inferior solutions.

The first approach also has a drawback, but it can
be solved by cloning. The drawback is that a single
procedure instance may be called from procedures on
other components, requiring inter~-component commu-
nication, but in some cases copying the procedure for
each call would eliminate this communication. For ex-
ample, in Figure 1(a), procedure Main calls Slow 128
times and Fast 16 times, which both call Util 256 times
and Resource 64 times. There is inter-component com-
munication between Slow and Resource and between
Fast and Util. Assume Resource requires 200 cycles
in software and only 20 in hardware, Util requires 20
cycles in both, and each inter-component communica-
tion requires 2 cycles. The time for communicating with
and executing Resource is thus: (128 * 64 * (2 + 20)) +
{16 * 64 * 20) = 200,704. Likewise, the time for Util
is: (128 % 256 * 20) + (16 * 256 * (2 + 20)) = 745,472 cy-
cles. Moving Util to hardware would increase its time to
802, 816 due to more communication. Moving Resource
to software, while reducing communication, increases its
time to 1, 845, 248 due to slower execution in software.

The solution is to copy, or clone, certain procedures.
Copying Util for use by Fast in hardware, as in Fig-
ure 1(b), reduces Util’s time to: (128 » 256 * 20) + (16 *
256 * 20) = 737, 280. In contrast, copying Resource in-
creases time, since the eliminated communication is out-
weighed by slower execution in software. Thus, we have
aimed to clone procedures only when beneficial. Each
procedure is initially represented as one node, and then
a cloning transformation, guided by a heuristic, clones
a subset of procedures, analogous to duplicating gates
during circuit partitioning {17]. Cloning heuristics are
needed to clone just the right procedures and hence im-
prove partition results, without cloning too many pro-
cedures and hence worsening partition results.

In this paper, we define the clone and unclone trans-
formations, describe how estimation techniques must be
modified to account for clones, introduce several heuris-
tics for performing cloning before, during and after func-
tional partitioning, and highlight experiments demon-
strating cloning’s benefits and comparing our heuristics.
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Fig. 1: Cloning example: (a) original partition, (b)
reduced communication after cloning.

2 Clone/unclone transforms
2.1 Internal representation

We convert a specification to an Access-Graph (AG)
representation [18, 19], suitable for many system design
problems like partitioning and cloning. An AG node
represents a behavior (procedure or process) or variable.
An AG directed edge represents a behavior accessing
another behavior (a procedure call) or variable (a read
or write). The edge direction indicates the accessor and
accessee, but not the direction of the flow of data, which
can flow in either or both directions. Each node is an-
notated with internal computation times (execution ex-
cluding communication and accessed object times) and
sizes for every implementation type (e.g., 8051 micro-
controller or XC4000 FPGA). Each edge is annotated
with its access frequency and the number of bits trans-
ferred per access. All annotations can be minimums,
averages, or maximums. Developed equations quickly
compute size, I/0, and execution times (including com-
munication) from the annotations for any partition [18].

2.2 Cloning

We introduce the cloning transformation through a
simple example. Consider the AG of Figure 2(a). Node
has two accessors, Accessorl and Accessor2. Cloning
Node for Accessor2 results in the AG of Figure 2(b).
Accessor2 now accesses its own copy NodeClonel, and
no longer accesses Node. Also, NodeClonel accesses
the same nodes (Accesseel and Accessee2) that Node
accesses. Because cloning is intended to allow an ac-
cessor to have a copy of the node on its own part,
NodeClonel has been created on Accessor2’s part. In
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Fig. 2: Cloning an AG node.

this example, we would probably need to further clone
Accesseel and Accessee2 for NodeClonel, in order to
obtain a reduction in communication time and I/O.

More formally, the clone transformation, as applied
to an AG, can be defined as follows:

e Input: (1) an AG, (2) a base n, which is the
AG node to clone having fanin > 1, and (3) an
accessor a, which is an AG node that accesses n
via an edge e.

¢ Output: An AG with new node ngione, which is a
copy of n including copies of outgoing edges, such
that e connects a t0 Nicione, Mcione-fanin = 1, and
Nelone - Port = a.part.

Note that node cloning is only defined relative to a
node’s accessor; we must specify the particular accessor
for which a node copy will be made. Also, if n originally
had a fanin of 1, cloning need not be performed because
a is already the sole accessor of n.

Also note that cloning is not inlining. In inlining,
a procedure call is replaced by the procedure’s contents.
Inlining, like cloning, has the effect of copying a proce-
dure for sole use by the accessor, but it has the added
undesirable effect of choosing the procedure’s implemen-
tation. In particular, a procedure can be implemented
either as inlined, as a control subroutine, a custom pro-
cessor, or a datapath functional unit; inlining before
synthesis eliminates the latter three choices for a synthe-
sis tool. Inlining can be very expensive when there are
multiple calls to a procedure and/or there is a deep call-
ing hierarchy; hardware or software sizes can grow pro-
hibitively. Cloning, in contrast, keeps the procedures as
procedures, so that subsequent synthesis tools can still
choose the other three implementation options, usually
far more efficient than the inlining option.

We currently only clone nodes representing proce-
dures, not variables, though both node types can have
fanin > 1. Cloning a variable node would prevent its ac-
cessors from communicating through stored data. Sim-
ilarly, we do not clone procedures having static local
variables, which essentially serve to share data.
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2.3 Uncloning

Uncloning will be required by our heuristics. Un-
cloning is the inverse transformation of cloning, but in
some cases requires more work than undoing the changes
of the clone transformation, as we shall see.

Consider the AG of Figure 2(b). Node has a clone
NodeClonel, which was created for Accessor2. Un-
cloning NodeClonel to Node results in the AG of Fig-
ure 2(a). NodeClonel is gone along with its outgoing
edges, and Accessor2 now accesses Node instead.

More formally, the unclone transformation, as ap-
plied to an AG, can be defined as follows:

e Input: (1) an AG, (2) a clone ncione, Which is
the AG node to be uncloned, and (3) an identical
node Nident-

e Output: An AG in which ncione’s incoming edges
point to nigent, and which does not include ncione,
Ticlone 'S OUtgoing edges, or dead nodes.

A dead node is one that had incoming edges before
the unclone, but has none after the unclone. For ex-
ample, Figure 3 shows a sequence of clone and unclone
transforms leading to a dead node. Starting with Fig-
ure 3(a), we clone A for one accessor, resulting in Al of
Figure 3(b). This clone increases B’s fanin to 2, mak-
ing B a candidate for cloning. Cloning B for Al yields
B1 in Figure 3(c). Now, if we unclone Al to A, as in
Figure 3(d), B1 would be dead; uncloning must delete
such dead nodes. Deleting a dead node may yield more
dead nodes, which must also be deleted.

An identical node n;gent is a node with the same base
S Ticlone. Usually, Niden: is the base n itself from which
Ticlone Was created, but it could instead be a fellow clone
of n. We use the terminology of uncloning a node to
another node, i.e., we unclone ncione t0 Nident.

3 Estimation modifications

We must account for clones when estimating perfor-
mance, size, and I/O during partitioning, so that esti-
mates don’t become inaccurate. This means realizing
that clones on a single part will always be uncloned to
one node after partitioning, since all same-part acces-
sors can use that one node without adding inter-part
communication. For size estimation techniques where
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each node is assigned a weight and a part’s size is com-
puted as the sum of its nodes’ weights, we maintain
a list of bases on a part along with a count field in-
dicating the number of nodes with that base. When
a node is added to a part, that base’s count is incre-
mented; when deleted, the count is decremented. The
node’s size is added to the part’s size only when the
count changes from 0 to 1, and is subtracted only when
count changes from 1 to 0. (More complex size estima-
tion techniques that consider hardware sharing [20] can
be similarly modified).

1/0 estimation must be modified similarly. 1/0 is the
number of input/output pins required on a part. For a
part, all edges crossing the part’s boundary and pointing
to same-base nodes should only be counted once, since
those nodes will be merged and hence the edges can
share the same I/O pins.

Execution-time estimation does not need modifica-
tion. We compute a node’s execution-time for a given
partition by adding the node’s internal computation
time (ict) and its communication time. Communica-
tion time is the time spent transferring data to/from
accessed nodes, plus the execution-time of those nodes.
We focus on partitioning a single large process, or mul-
tiple processes that do not contend for processing re-
sources, so slow-downs due to resource contention need
not be computed; extensions for multiple contending
processes remain as future work. Because a clone’s an-
notations are identical to its base’s annotations, we need
not modify the execution-time estimation technique for
clones. When a clone is moved to a different part, the
technique will automatically use a different ict value
and different data-transfer times when computing that
clone’s execution-time.

4 Cloning heuristics

Having defined the clone/unclone transformations and
discussed estimation modifications for clones, we now
discuss different heuristics for finding the best proce-
dures to clone. We classify cloning heuristics into three
categories, each of which shall be discussed:

1. Pre-partition cloning: clone a subset of proce-
dures, and then partition the new AG.

2. Post-partition cloning: partition the original AG,
clone some subset of procedures based on the par-
tition, and then partition again.

3. Integrated partitioning and cloning: partition us-
ing an iterative improvement heuristic that not
only moves nodes among parts, but also clones
and unclones nodes.

4.1 Pre-partition cloning

In pre-partition maz-cloning, we clone procedures un-
til none has more than one accessor, as illustrated in
Figure 4(b). Max-cloning provides the largest solution
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Fig. 4: Two cloning heuristics: (a) input AG, (b) pre-
partition max-cloning, (c) post-partition max-cloning.

space to subsequent partitioning. Max-cloning is sim-
ilar to creating a dataflow graph instead of an access-
graph from the specification; since each procedure call
involves distinct data, each call requires a distinct node.
Max-cloning results in a large increase in the number of
AG nodes, meaning that partitioning heuristics, which
can not always find the optimal solution due to the NP-
completeness of partitioning, may yield poor results and
long run-times {as shown in Section 5).

In pre-partition best-cloning, we predict which nodes
when cloned would best improve the cost after partition-
ing, much as clustering uses closeness metrics to predict
which node groupings would yield the best final parti-
tion [20]. Because of the excellent results of the other
heuristics, we have not yet investigated pre-partition
best-cloning.

4.2 Post-partition cloning

In post-partition maz-cloning, after initially parti-
tioning, we clone every node (with fanin > 1, of course)
for every accessor on a different part than the node it-
self, as long as the node also has an accessor on the same
part. Contrast this with pre-partition max-cloning, in
which we cloned a node for every accessor, not just those
on different parts. Figure 4(c) illustrates post-partition
max-cloning.

To understand why we require at least one same-part
and one different-part accessor, consider the possibilities
for a node with at least two accessors:
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1. All accessors are on the same part as the node:
There is no need to clone since all accessors al-
ready have same-part access to the node.

2. All accessors are on different parts than the node:
If providing a clone on one of the accessor’s parts
would yield an improvement, then . partitioning
would have likely placed the node on that acces-
sor’s part. Since the node appeared on a different
part, the node probably won’t fit on the other
parts, or the node’s ict was lower on the current
part but the accessor could not be moved there:

3. At least one accessor is on the same part and an-
other is on a different part: The same-part acces-
sor could have prevented the node from appearing
on another accessor’s part. Cloning will reduce
communication and I/O; whether this reduction
outweighs the increase in the accessor’s part size
and the possible reduction in the node’s ict will
be seen only after repartitioning.

In post-partition best-cloning, after initially partition-
ing, we predict which nodes when cloned would best
improve the cost after repartitioning. One approach is
to clone those nodes for accessors that immediately im-
prove the partition’s cost. However, our experiments
found that a single clone rarely reduced cost after par-
titioning, so future work might focus on looking instead
for sequences of clones yielding improvement,.

4.3 Integrated partitioning and cloning

Iterative-improvement partitioning heuristics make
thousands of changes, moving nodes among parts, using
a control strategy overcoming local cost minima with-
out making excessive moves. Modifying the definition
of a “change” from just a node move to either a move,
clone, or unclone, and thus integrating partitioning and
cloning, represents the third cloning category.

The simulated annealing heuristic is a popular heuris-
tic for which such a modification is straightforward. The
modification replaces a function RendomMove, called
in the heuristic’s inner loop, by function RandomChange.
The function has three parameters in addition to the
partition itself, representing the probabilities of per-
forming a move, clone, and unclone change, respectively.
A move consists of moving a random node to a random
destination part. A clone consists of applying the clone
transformation of Section 2 to a random node with fanin
> 1 and a random accessor of that node. An unclone
consists of uncloning a random clone node to its base.

4.4 Max-uncloning

After any of the cloning heuristics, the resulting par-
tition may have multiple same-based nodes (clones) on
a single part. These nodes can be uncloned to a sin-
gle node, shared by the accessors. We define a post-
partition maz-unclone transformation that unclones all
same-base nodes on a single part through repeated ap-
plication of the unclone transformation.
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Fig. 5: Cloning heuristic comparison: (a) costs, (b) runtimes, (¢) number of nodes.

5 Experiments

We conducted experiments comparing our heuristics
and showing improvements gained by cloning. Exam-
ples included a telephone answering machine (ans), an
Ethernet coprocessor (ether), a fuzzy-logic controller
(fuzzy), an interactive TV processor (itv), and a mi-
crowave transmitter controller (mwt). We automati-
cally annotated each example’s AG using UC Irvine’s
SpecSyn estimators [20], and then partitioned among
hardware and software (an 8086 processor and a Xilinx
XC4000-series FPGA). Each example had at least one
execution-time constraint, usually on a root node, thus
the time included communication and times for many
accessed nodes. We used a cost function with three
terms: the total execution time of constrained nodes,
the FPGA I/O constraint violation, and the FPGA size
constraint violation; the processor’s software size was
not constrained. The FPGA constraints were weighed
heavily to ensure they would not be violated. Such a
formulation seeks to find the best software speedup pos-
sible using the FPGA as a coprocessor.

Figure 5(a) summarizes results. None represents par-
titioning without cloning, using simulated annealing. A
four-times longer cooling schedule (None2) gave identi-
cal resuits. Premaz-u, Postmaz-u and Integ-u are pre-
partition max-cloning, post-partition max-cloning, and
integrated partitioning and cloning, followed by max-
uncloning, as indicated by the -u. Integ-u used sim-
ulated annealing with clone and unclone probabilities
of 0.05 each and hence a move probability of 0.9. We
tried smaller move probabilities, but results were infe-
rior. HwSize, HwIO and SwSize represent the number of
hardware gates, hardware input/output pins, and soft-
ware bytes after partitioning, respectively. Ezec is the
total execution time of all constrained functions in the
example.

Cloning heuristics greatly reduced ezecution time, with
20% to 30% reductions. Premaz increased average hard-
ware size by 40%, while Postmaz and Integ actually de-
creased average hardware size with only a minor soft-

491

ware size increase or even a decrease. Such a decrease
of both hardware and software size is possible because
a node’s hardware and software sizes are somewhat dis-
tinct, and hence swapping two nodes between hardware
and software parts could actually decrease the size of
both parts. A good cloning heuristic enables the par-
titioning heuristic to find such decreases. Figure 5(b)
and (c) display run-times for each heuristic measured
in seconds on a 166MHz Pentium, and the number of
nodes remaining for each heuristic before and after max-
uncloning the final partition.

To better understand heuristic performance as a func-
tion of problem size, we applied the heuristics to 13
highly-procedural generated examples ranging in size
from 10 to 130 nodes in increments of 10, using gener-
ation techniques described in [19]. Figure 6(a) demon-
strates the final normalized execution times. Postmaz
was usually the best, followed by Integ. Premaz was
best for tiny examples, but as the problem size grew,
it quickly became the worst. None and None?2 yielded
identical costs, demonstrating that the cost reductions
couldn’t be obtained through better partitioning alone.
Figure 6(b) shows heuristic runtimes. Integ was only
slightly slower than None. Postmaz required about dou-
ble the time of Integ, since partitioning is applied twice.
Premaz is even slower, even though it only applies parti-
tioning once. Figure 7 shows the number of nodes before
and after (indicated as -u) the final max-uncloning step.
Premaz yields large numbers of nodes; for example, 60
nodes grew to 572 nodes after max-cloning. Numbers
for examples 100 through 130 were off the chart so are
not displayed; they were 810, 922, 741, and 998, respec-
tively. These large numbers of nodes explain Premaz’s
poor results and long runtimes in Figure 6. Even after
max-uncloning, Premaz yields many nodes, resulting in
more hardware and software. Integ-u yielded the fewest
nodes after max-uncloning, followed closely by Postmaz.

In summary, both the Postmaz and Integ cloning
heuristics yielded excellent cost improvements over reg-
ular partitioning. Integ was faster, but this might not
be true for other improvement heuristics.
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Conclusions

We demonstrated that significant improvements can
be gained by combining procedure cloning with func-
tional partitioning. We showed that post-partition max-
cloning and integrated partition/cloning are both good
cloning heuristics. We also showed the inferiority of ap-
proaches that expose a bigger solution space by creating
a dataflow graph (pre-partition max-cloning). The suc-

cess
any

of cloning makes it a very useful transformation in
system-level functional partitioning tool.
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