Specification and Design of
Embedded Hardware-
Software Systems

EMBEDDED SYSTEMS HAVE be-
come commonplace in recent
years. Examples include automo-
bile cruise control, fuel injection
systems, aircraft autopilots, tele-
communication products, interac-
tive television processors, network
switches, video focusing units, ro-
bot controllers, and numerous
medical devices. An embedded
system’s functionality is usually
fixed and is primarily determined
by the system’s interactions with its
environment. Embedded systems
also usually have numerous modes
of operation, must respond rapid-
ly to exceptions, and possess a
great deal of concurrency. Thus,
designing a complex embedded
system poses a difficult problem for
designers.

As an illustration of the embed-
ded-system design task, consider
the design of an interactive TV
processor (ITVP) system for sup-
port of interactive multimedia. The
system stores video frames and dis-
plays them as still pictures with ac-
companying text and audio. The
system resides in a set-top box sim-
ilar to a cable-TV box, and a user

SPRING 1995

DANIEL D. GAJSKI
University of California, Irvine
FRANK VAHID
University of California,

Riverside

Embedded-system specification
and design consists of describing a
system'’s desired functionality and
mapping that functionality for
implementation by a set of system
components such as processors,
ASICs, memories, and buses. This
tutorial discusses the key problems
of system specification and design,
including specification capture,
design exploration, hierarchical
modeling, software and hardware
synthesis, and cosimulation. The
authors highlight existing tools and
methods for solving those problems
and describe a “specify-explore-
refine” methodology for meeting
today’s embedded-system product

development requirements.

0740-7475/95/$04.00 © 1995 |EEE

interacts by selecting menu items
with a keypad. Figure 1 (next page)
shows a diagram of the overall
system.

Designing the digital subsystem
involves creating a specification of
the subsystem’s functionality, called
afunctional specification, and map-
ping it to a system-level architecture,
asshown in Figure 2. The subsystem
consists of six components: three
memories, two ASICs (application-
specific ICs), and a processor.
Memory| stores two arrays that hold
audio bytes; Memory2 stores a
video array. Memory3 stores a font
array and an array of characters to
be displayed on the screen. ASIC1
implements functions that store in-
coming audio and generate audio
on demand. ASIC2 implements
functions that store and generate
video frames and store special com-
mand bytes encoded in the audio-
video (AV) input. Finally, the
processor component implements
functions that process special AV
commands, main computer com-
mands, and user commands, and
that overlay characters on the
screen.

53

E M B E D D E D S Y S T E M Db E S I 6 N
Interactive TV processor Today’s embedded-system designer
ﬂ’ Audio_out has .httle assistance in pgrforming system
analog | Video.in Digital [P - design tasks. No widely accepted
- 191 Video_out nalog H i

subsystem > subsystem -out subsystem metho@ology ortool is aval'lable to he_lp
Avomd the designer create a functional specifi-
i) aud Butt . it cation and map it to a system-level ar-

ideo udio + utton Audio ideo P i
commands Keypad chitecture. Most system designers work

receiver
IC

A 4

Main computer

Figure 1. ITVP environment.

T

Interactive TV processor (ITVP) digital subsystem

o Audiot[t00k (8] | :

i : 1 vieeopsook [|}

i Audio2[100k[8] | : :

M esmcesemecnmaremems e l-]; -----------------------
Audio_in Audio_out
Video_in * v Video_out

__________ V_‘_ﬁ
ASIGT XC4020 |1 ASIC2 XC4020 i Memory3 V100

uOms [128] [16] [16]—[;

| Soreen._chars [30] [30] [8)

Array sizes shown
in brackets

Main control
:
: TvMode

ltvMode
\ Process AVemd W

Process remote buttons —I

Main_cmds I

Figure 2. ITVP system-level design option.

54

in an ad-hoc manner, relying heavily on
informal and manual techniques and ex-
ploring only a handful of possibilities. A
hierarchical modeling methodology can
improve the situation. In such a method-
ology, we first precisely specify the sys-
tem’s functionality, explore numerous
system-level implementations with the
aid of tools, and automatically generate
a refined description, which represents
any implementation decisions.

More specifically, the following tasks,
illustrated in Figure 3, are necessary to
create a system-level design:

1. Specification capture: To specify
the desired system functionality,
we decompose the functionality
into pieces by creating a concep-
tual model of the system. We gen-
erate a description of this model in
a language. We validate this de-
scription by simulation or verifica-
tion techniques. The result of
specification capture is a func-
tional specification, which lacks
any implementation detail.

2. Exploration: We explore numerous
design alternatives to find one that
best satisfies our constraints. To do
this, we transform the initial de-
scription into one more suitable for
implementation. We allocate a set
of system components and specify
their physical and performance
constraints, as in the example in
Figure 2, where we allocated three
memories, two ASICs, one proces-
sor, and several buses. We partition
the functional specification among
allocated components. For guid-
ance in these exploration subprob-
lems, we estimate each alternative
design’s quality.

IEEE DESIGN & TEST OF COMPUTERS

3. Specification refinement; We refine
the initial specification into a new
description that reflects the deci-
sions we have made during explo-
ration. To do this, we move each
variable into a memory, insert in-
terface protocols between compo-
nents, and add arbiters to linearize
concurrent accesses to a single re-
source. Then we generate a system
description detailing the system’s
processors, memories, and buses.
We use cosimulation to verify that
this refined description is equiva-
lent to the initial specification. The
result of specification refinement
is a system-level description that
possesses some implementation
details of the system-level archi-
tecture we have developed, but
otherwise is still largely functional.
4. Software and hardware design: We
create an implementation for
each component, using software
and hardware design techniques.
A standard processor component
requires software synthesis, which
determines a software execution
order satisfying resource and per-
formance constraints. We can
obtain an ASIC’s design through
high-level (behavioral) synthe-
sis,'? which converts the behav-
ioral description into a structure
of components from a register-
transfer (RT) library containing
microarchitectural components
such as ALUs, registers, counters,
register files, and memories. The
control logic and some RT com-
ponents are synthesized with
finite-state-machine and logic syn-
thesis techniques.®* The result of
software and hardware design is
an RT-level description, which
contains optimized C code for
software and RT-level netlists for
custom components.
5. Physical design: This step generates
manufacturing data for each com-
ponent. For software, this is as sim-

.

Specification capture

Model creation Description generation

v
(\ Functional specification

Event1 Eventz| Behavior3

Behavior? foriin1to 100
m(i):=n(i*j+10);

wait until p=1;

[« (Behavion

Event3

\
r

Exploration -
Transformation Allocation Partitioning Estimation

I

Specification refinement

Memaries Interfacing Arbitration Generation

System-level description

Bus | T T 1 E
Validation- Processor| | ASIC ASIC Memory
verification
simulation and Functional | | Functional (3 Functional
cosimulation Spec. spec. Spec. Variables

}

Software and hardware design

Software synthesis High-leve!l synthesis ~ Logic synthesis

v

RT-level description
[I 1 1
- Processor ASIC ASIC Memory-
L mapped
Ccode | |RTLstruc. [|RTL struc.| | address
space
!
Physical design
Code compilation Placement, routing, timing
v

Physical description
(to manufacturing and testing)

—

Figure 3. System-level design process using hierarchical modeling.

55

ple as compiling code into an in-

struction set sequence. For hard- |

ware, we convert an RT-level netlist

into layout data for gate arrays, |

field-programmable gate arrays
(FPGAS), or custom ASICs, using
physical design tools for place-
ment, routing, and timing.

These five tasks roughly define em-
bedded-system design methodology
from product conceptualization to man-
ufacturing. After each task, we generate
a more refined system description, re-
flecting the decisions made in that task.
This hierarchical modeling methodolo-

gy enables high productivity by pre-

serving consistency through all levels
and thus avoiding unnecessary iteration.
Each model verifies different system
properties. The functional specification
verifies the completeness and correct-
ness of system functions. The system-
level description verifies system
performance and communication pro-
tocols. The RT-level description verifies
the developed software code and the
custom design’s operation during each
clock cycle. The physical description
verifies the system’s detailed timing and
electrical characteristics. Hierarchical
modeling distinguishes modern, system-
level methodologies from past method-
ologies, which captured only the
physical model, late in the design cycle,
making specification or architecture
changes nearly impossible. (Further dis-
cussions can be found elsewhere.5%)

Specification capture

Specification capture unambiguous-
ly defines desired system functionality.
In other words, a specification tells us
what the system’s response would be
to any sequence of input values. Speci-
fication capture is a difficult problem be-
cause today’s systems are complex,
because the designer may not know a
system’s functionality precisely at the
outset, and because specification tech-
niques are often imprecise. To make the

problem worse, the specification cap-
ture stage does not receive nearly as
much attention as subsequent imple-
mentation stages, and thus many func-
tional errors are not detected until a
low-level implementation is available.
Unfortunately, functional errors are far
more difficult to correct at late stages of
product development than during the
specification stage.”

To remedy this situation, most re-
searchers propose the use of a formal
specification language, which allows
creation of a precise specification that
can be simulated, thus helping detect
and correct functional errors at an early
stage and reducing overall design time.
Capturing a precise specification of a
complex systemn in a formal language is
acomplex task. It is not a simple process
of “writing down” a well-understood
functionality; rather, it is the process of
learning, understanding, organizing, and
defining a functionality. Specification
capture consists of three subtasks: mod-
el creation, description generation, and
simulation. We usually must iterate these
tasks several times before we obtain a
complete and correct functional
specification.

Model creation. To specify a
system’s functionality, we must first de-
compose that functionality and de-
scribe the relationships between the
pieces. For example, we decomposed
the ITVP’s functionality into functions
such as video storing, audio storing,
video generation, and audio genera-
tion. We would express the relation-
ships between those functions in terms
of their execution order and the data
passing between them. In general, a
model is a formalization of allowable
pieces and their relationships.

There are many models for describ-
ing a system’s functionality. One is the
dataflow graph,'® which decomposes
functionality into activities that trans-
form data (such as a piece of a pro-
gram) and the dataflow between those

activities. Another model is the finite-
state machine (FSM), which represents
the system as a set of states and a set of
arcs that indicate transition of the sys-
tem from one state to another when cer-
tain events occur. Extensions of this
model include hierarchy and concur-
rency.® A third model, communicating
sequential processes (CSP)," decom-
poses the system into a set of concur-
rently executing processes, each of
which executes a sequence of program
instructions including variable assign-
ments, loops, branches, and procedure
calls. A fourth model, the program-state
machine (PSM),® combines the previ-
ous two models by permitting each
state of a hierarchical/concurrent FSM
to contain actions described by means
of program instructions. Other models
include Petri nets, flowcharts, entity-re-
lationship diagrams, Jackson diagrams,
control-dataflow graphs, object-orient-
ed models, and queuing models.

No model is ideal for all classes of sys-
tems. For example, the dataflow model
may be most natural for a system that re-
peats the same data transformations over
time on streams of data, such as a digital-
signal-processing system. The FSM mod-
el may be most appropriate for a system
that does not perform complex compu-
tations but must respond to complex se-
quences of external events, such as a
controkdominated system. The CSP mod-
elis most appropriate for systems that per-
form complex data transformations,
possibly in parallel, such as many soft-
ware applications. The PSM model in
many ways subsumes the FSM and CSP
models, so it is appropriate not only for
control-dominated systems but also for
data-dominated systems such as software
applications.

However, the best model is the one
that most closely matches the charac-
teristics of the system it models. For this
reason, we must define the characteris-
tics of embedded hardware-software
systems. They include hierarchy, con-
currency, state transitions, exceptions,

IEEE DESIGN & TEST OF COMPUTERS

and program instructions. Figure 4a il
lustrates a partial PSM model for the
ITVP. We decompose the ITVP into
concurrent processes (six are shown).
We describe the GenerateAudio process
as program instructions. We describe
the MainControl process as a state ma-
chine, with transitions based on certain
exceptions. We further describe each

state as concurrent processes, a state

machine, or program instructions.
Because this system description uses a
combination of hierarchy, concurren-
cy, state transitions, exceptions, and se-
quential instructions, the PSM model
captures it most easily.

Description generation. The choice
of a model is the most important influ-
ence on our ability to understand and
define system functionality during spec-
ification. Once we've chosen the appro-
priate model, we must capture system
functionality in a functional specifica-
tion, using one of many different lan-
guages. A functional specification is easy
to generate if there is a oneto-one cor-
respondence between model charac-
teristics and language constructs. If a
language construct does not exist for a
particular characteristic, we must try to
find a set of constructs that describes that
characteristic. This leads to a less read-
able description, possibly with more
functional errors.

There are several languages that de-
signers commonly use to specify func-
tionality. VHDL and Verilog are popular
standards that support easy description
of a CSP model through their process
and sequential-statement constructs.
They are also commonly used to de-
scribe FSMs, although neither language
possesses explicit constructs directly sup-

porting state transitions. Esterel' is simi- |

lar to those languages, adding constructs
to support exceptions. Statecharts® sup-
ports description of hierarchical and
concurrent FSMs, including exceptions.
SpecCharts® supports capture of the CSP
model, hierarchical/concurrent FSMs,

Itv
port audio_in: in bit_vector (7 downto 0);
port audio_out: out bit_vector (7 downto 0);

éfgnal audio, audio2: audiomemtype;

StoreAVCmd

StoreGenerateVideo

GenerateAudio

wait until gen_audio;
foriin t to num_audio loop
audio_out <= audio1 (i);

MainControl g
(Initialize g) . TvMode_)
4 Reset 4
itvMode v ¢

ProcessAVCmd
[

[J i
(ProcessRemoteBunons) J

1
i
i
|
|

(a)

entity itvE is port (
audio_in : in bit_vector (7 downto 0);
audio_out : out bit_vector (7 downto 0);

o)
end ItvE;
architecture ItvA of itvE is
begin
behavior ltv type concurrent subbehaviors is

type audiomemtype is array ...
signal audio 1, audio2 : audiomemtype;

begin
behavior StoreGenerateVideo ...

i).e‘havior StoreAVCmd
behavior OveriayCharacters
beha\}isr StoreAudio

behavior GenerateAudio type code is
begin
wait untii gen_audio;
foriin 1 to num_audio loop
audio_out < = audiol (i);

behavior MainControl type
sequential subbehaviors is
begin
Initiatize: (TOC, true, TvMode);
TvMode: (TOC, true, itvMode);
itvMode: (TOC, true, TvMode),
(TH, reset, Initialize);

end lth
(b)

entity ItvE is port (
audio_in : in bit_vector (7 downto 0);
audio_out : out bit_vector (7 downto 0);

L)
end HvE;

architecture ItvA of itvE is

begin

behavior Itv type concurrent subbehaviors is
signal abus : audiobustype;
signal abusreq, abusack: bit;
signal vbus : ...

begin

behavior Memory1 type code is
signal audio1, audio2 : audiomemtype;
begin
-~ code for accessing audio arrays over
audiobus

beh‘a'\.lior Memory2

behavior ASIC1 type concurrent subbehaviors is
egin

behavior StoreAudio ...
behavior GenerateAudio type code is
begin

wait untif gen_audio;

for i in 1 to num_audio loop

audio_out < =
ReadMemory 1 (abus, i);

behavior ASIC2
ber{é\}ior Memory3

behavior Processor type concurrent
subbehaviors is
begin
behaviorOverlayCharacters type code is

behavior MainControl type
sequential subbehaviors is
begin
Initialize: (TOC, true, TvMode);
TvMode: (TOC, true, ltvMode);
ItvMode: (TOC, true, TvMode),
(TI, reset, initialize);

end IvA;
(c)

Figure 4. ITVP specification: PSM model {a); model described in a language (b); and

refined ITVP specification (c).

57

Table 1. Language support of embedded-system model characteristics: Features fully supported (F), partially supported (P), not

supported {N), and not applicable (N/A).

Embedded-system features

State Behavioral Program Behavioral
Language fransifions hierarchy Concurrency constructs Excepfions completion
VHDL N P S S N S
Verilog N S S S S S
HardwareC N P S S N S
CSP N S S S N S
Statecharts S S S N S N
SDL S P S N N S
Silage N/A N/A S N/A N/A N/A
Esterel N S S S S S
SpecCharts S S S S S S

and the PSM model. SDL,? a CCITT
(International Consultative Committee
for Telegraph and Telephone) standard,
supports description of hierarchical
dataflow diagrams with an FSM at the
leaf level. Finally, Silage'® supports easy
description of dataflow models through
its data stream and recurrence con-
structs. Table 1 summarizes several
languages' abilities to capture charac-
teristics commonly found in models of
embedded systems.

Figure 4b shows the PSM model of
the ITVP, captured with the SpecCharts
language. Since SpecCharts was de-
signed to capture PSM models, there is
a nearly one-to-one correspondence be-
tween the model characteristics and the
language constructs. A language that
does not support all PSM characteris-
tics, such as VHDL, requires greater ef-
fort and more lines of code. (Hence, the
issue of graphical versus textual lan-
guages is not nearly as important as that
of good model support by a language).

Exploration

Given a functional specification of a
system, the designer must create a sys-
tem-evel design of interconnected com-
ponents, each component implementing
a portion of that specification. A design’s
acceptability depends on how well it sat-

isfies constraints on design metrics such
as performance, size, power, and cost.
Evaluating a design takes substantial time
and effort, so designers usually examine
only a few potential designs, often those
that they can evaluate quickly because
of previous experience.

By using a formal specification, we
can automatically explore large num-
bers of potential designs rapidly.
Exploration involves four interdepen-
dent subproblems: allocation, parti-
tioning, transformation, and estimation.
We need not solve these problems in the
given order, and we will usually need to
iterate many times before we are satis-
fied with our system-level design.

Allocation. Allocation is the problem
of finding a set of system components to
implement the system’s functions. Figure
2 showed an example allocation for the
ITVP. The allocation provides two V500
memories and one V100, two Xilinx
X(C4020 ASICs, one Intel 8086 processor,
and three buses.

The designer usually has hundreds of
components to choose from. At one ex-
treme are very fast but expensive cus-
tom-hardware components, such as
ASICs. Atthe other extreme are cheaper
but slower general-purpose program-
mable microprocessors. Between the

two extremes lie innumerable compo-
nents that vary in cost, performance,
modifiability, power, size, reliability,
and design effort. They include a variety
of microprocessors, microcontrollers,
FPGAs, parallel processors, and the new-
ly evolving application-specific instruc-
tion-set processors (ASIPs)." In addition,
hundreds of predesigned components
that implement a particular function are
available, such as memories, arbiters,
DMA controllers, floating-point multi-
pliers, and fast Fourier transforms.
Adding to the number of choices are
cores or megacells, in which processors
or other predesigned components can
be embedded within ASIC components.

New components surface every year.
We can characterize components by in-
struction sets, parameterized descrip-
tions, or number of hardware objects.
General-purpose processors are charac-
terized by instruction sets. Any part of a
specification implemented with a proces-
sor must be converted to a sequence of
instructions. Many special-purpose com-
ponents, such as floating-point multipli-
ers, Fourier transforms, and DMA
controllers, are characterized by a para-
meterized function. These components
execute the same program with slight
variations defined by the parameters.
Any part of a specification executed on

IKEE DESIGN & TEST OF COMPUTERS

these components must be transformed
to match the parameterized descriptions
exactly. Finally, ASICs, FPGAs, and gate
arays are characterized by the numbers
of hardware objects, such as transistors,
combinationalogic blocks, or gates, that
they can contain. Any part of a specifi-
cation implemented on an ASIC must be
converted to an interconnection of RT-
and logic-level components.

The designer’s job, therefore, is to
choose the proper mix of components
from an enormous number of possibili-
ties. Newly developed system design
tools and techniques assist in making this
choice. One new approach automati-
cally allocates processors to implement
a given set of functions in a manner sat-
isfying performance and cost con-
straints.'® A recently described design
environment provides rapid feedback of
performance, size, and cost metrics for
a given distribution of functions on any
allocation of processors, ASICs, memo-
ries, and buses.’ Researchers have de-
veloped tools that assist in mapping a
specification onto a fixed allocation of
one processor, one ASIC, one memory,
and one bus.'®!” Others have developed
tools that assist in mapping onto a single
processor with multiple ASICs.!31®

Partitioning. Given a functional
specification and an allocation of system
components, we need to partition the
specification and assign each partto one
of the allocated components. We can
distinguish three types of specification
objects, which must be partitioned sep-
arately. One type is a variable, which
stores data values. Variables in the spec-
ification must be assigned to memory
components. The second object type is
a behavior, which transforms data val-
ues. A behavior, which may consist of
programming statements such as as-
signment, if, and loop statements, gen-
erates a new set of values for a subset of
variables. Behaviors must be assigned to
custom or standard processors. The third
object type is a channel, which transfers

data from one behavior to another.
Channels must be assigned to buses.

Specification partitioning must satis-
fy constraints. Constraints may exist on
the number of program bytes for a
processor ot microcontroller, the num-
ber of gates or pins on an ASIC, the
number of words in a memory, the ex-
ecution time of a function, or the bit
rate of an I/O port.

There are two very different ap-
proaches to system partitioning. In struc-
tural partitioning, we implement the
system with fine-grained structural ob-
jects, such as gates; those objects are
then partitioned among several custom
components. Although easy to auto-
mate, this approach does not consider
software implementations. It also does
not consider intercomponent delay dur-
ing implementation because the design
is complete before partitioning. The oth-
erapproach, functional partitioning, di-
vides the various system functions into
groups and assigns each group to a sys-
tem component. Each group is then im-
plemented as software (for a processor)
or hardware (for an ASIC).

In developing a functional-partition-
ing technique, we must consider sever-
al issues. First, we must define object
granularity, which establishes the small-
est indivisible functional objects used in
partitioning, such as jobs, processes,
subroutines, loops, blocks of statements,
statements, arithmetic-level operations,
or Boolean expressions. Higher granu-
larity means fewer objects, enabling eas-
ier interaction, faster runtime for
partitioning algorithms, and faster esti-
mations—but fewer possible partitions.

Second, we select the design metrics
we will use to define a good partition.
Common metrics include monetary
cost, performance, communication
rates, power consumption, silicon area,
package size, testability, reliability, pro-
gram size, data size, and memotry size.

Third, we select a model by which to
estimate metric values. Estimation is
necessary because we can't spare the

hours or days necessary to build a de-
sign for each possible partition, espe-
cially if we wish to examine hundreds
or thousands of possibilities.

Fourth, we must combine multiple
estimated metric values into a single
cost value that defines a partition’s qual-
ity by using an objective function.
Because those metric values often com-
pete with one another (that is, when
one value increases, another decreas-
es), we usually need to weigh each val-
ue in the objective function by its
relative importance to the overall de-
sign. An objective function thus gives
us a way to compare two partitions and
to select one that satisfies constraints.

Fifth, we need partitioning algorithms
to efficiently explore a subset of the huge
number of possible partitions. Common-
ly used classes of algorithms include
clustering, iterative-improvement, ge-
netic, and custom algorithms. Some al-
gorithms, such as clustering, are fast,
others, such as genetic algorithms, are
slower but often find better solutions.

A variety of techniques have evolved
to assist the designer perform function-
al partitioning. The three main categories
are hardware partitioning, hardware-
software partitioning, and interactive
partitioning environments. Hardware
techniques aim to partition functionality
among hardware modules, such as
ASICs or blocks on an ASIC. Most hard-
ware techniques partition at the granu-
larity of arithmetic operations, differing
in the partitioning algorithms they em-
ploy. Forexample, researchers have de-
veloped hardware techniques using
clustering algorithms,? integerlinear pro-
gramming,* manual partitioning, and
iterativeimprovement algorithms.® Oth-
er hardware-partitioning techniques op-
erate at a higher level of granularity; one
technique,® for example, partitions
processes and subroutines among ASICs,
using clustering and iterative-improve-
ment algorithms.

Hardwaresoftware partitioning tech-
niques focus on partitioning function-

59

ality among hardware and software
components. (Previous JEEE D&T arti-
cles provide overviews of hardware-
software partitioning, including
discussion of granularity and estima-
tion."¥) One technique® partitions at
the statement level of granularity, using
clustering algorithms. Other approach-
es partition at the statement, ‘¢ statement
sequence,'” and subroutine levels, 228
using iterative-improvement algorithms.

In the third category are general envi-
ronments that suppott interactive or au-
tomated partitioning of all three types of
specification objects (variables, behav-
fors, and channels) among a variety of
system components (such as processors,
ASICs, memories, and buses). Such an
environment can be used for hardware
partitioning as well as for hardware-
software partitioning.’

Figure 2 shows a partition of the main
functional objects from Figure 4b among
the allocated system components. Be-
cause audio must perform at very high
speeds, we implement the audio storage
and generation functions with an ASIC.
Audio and video can be generated si-
multaneously, so we store audio and
video data in separate memories, pre-
venting memory access contention. The
remaining functions don't require the
speed of an ASIC, and thus we can im-
plement them more cheaply on the
processor.

Transformation. So far, we have as-
sumed that the specification consists of
functions that can be implemented one-
to-one on system components. However,
we derived those functions from a spec-
ification intended for readability, so im-
plementing them directly may not lead
to the best design. For example, we may
have introduced a procedure in the
specification for readability, but imple-
menting a distinct hardware module to
implement that procedure may produce
a performance bottleneck. Instead, we
may prefer to “indine” the procedure into

asa part of that process, resulting in bet-
ter performance. In another example, we
Create a specification consisting of two
concurrent processes, but implementing
a separate controller for each process is
too costly. Instead, we can merge the
two processes so that they will execute
serially in a single controller.

Inlining procedures and merging
processes are common examples of
specification transformations. A trans-
formation reorganizes the specification,
thus changing the organization of any
subsequent implementation. Other trans-
formations include flattening a hierarchy,
splitting processes, grouping statements
into procedures (procedure “ex-lining”),
and merging variables into arrays.

A number of techniques to automate
transformations have evolved. Several
transformations, including procedure
in-lining and process splitting, allow a
designer to trade off area and perfor-
mance.®® A process-merging tech-
nique provides fine-grained scheduling
of operations from the two processes.
The technique achieves good perfor-
mance and reduces hardware from two
controllers to one.3! Many design tools
apply optimizing transformations with
origins in software compilation to the
internal representation of behavior.

Estimation. We would like to eval-
uate metric values, such as perfor-
mance and area, for a large number of
system-level designs, to find a design
that best satisfies constraints. We could
derive those values from the system’s
implementation, but that requires far
too much time if we wish to examine
more than a few designs. Instead, we
can estimate metric values by creating
a rough (thus quick) hardware and
software implementation for each
system component.

Accuracy and speed are competing
factors in the development of an esti-
mator. Accuracy results from a more
complete implementation, while speed

each calling process and implement it | results from a less detailed one. For ex-

ample, we could rapidly estimate hard-
ware size by allocating and counting
functional units, and then making quick
statistical estimates of the number of reg-
isters, multiplexers, and controller gates.
Clearly, the time saved over generating
a complete implementation comes at
the expense of less accuracy. In gener-
al, only rough estimates are necessary
during system design. For example, to
learn whether a set of functions can be
implemented by a gate array with
100,000 gates, we only need an idea of
whether the functions require much
more.or much less than 100,000 gates.

Techniques for estimating the com-
mon metrics of hardware size, software
size, and performance are not com-
pletely accurate because the mapping
of a behavioral description into hard-
ware or software is not straightforward
(one-to-one). The complexity is intro-
duced by optimization at different ab-
straction levels. Since the estimator does
not know the algorithms used in opti-
mizing compilers, predicting the code
reduction or performance enhancement
resulting from optimization is difficult.
Predicting the effects on performance of
architectural features such as caching,
pipelining, and multiple instruction is-
sue is also difficult, since estimators do
not compute code and data dynamics.
Similarly, control logic optimization, li-
brary mapping in data paths, and state
minimization make predicting hardware
performance and size difficuit.

We can estimate the hardware size of
a set of functions by roughly synthesiz-
ing a controller and data path to imple-
ment the functions; applying algorithms
to schedule operations into control
steps; allocating functional, storage, and
interconnection units; and binding data
values and operations to units. We must
determine the number and type of RT
objects required, including registers, reg-
ister files, functional units, multiplexers,
buses, wires, state registers, and control
logic. Unfortunately, the algorithms for
doing that are computationally expen-

IEEE DESIGN & TEST OF COMPUTERS

sive, so estimators usually generate only
a subset of objects.

Once we have determined the re-
quired objects, we can estimate size for
a variety of technologies. For an FPGA
implementation, we would estimate the
total number of combinational-logic
blocks by summing the CLBs used for
each object. For a gate array, we would
sum the equivalent gates needed for
each object. For a custom implemen-
tation, we would sum the transistors for
each object, or we would compute the
bounding box area after performing ob-
ject placement and routing.

We can estimate the software size of
a given set of functions by compiling the
functions into a given processor’s in-
struction set. Alternatively, if the appro-
priate compiler is unavailable, we can
compile into a generic instruction set 323
After tabulating the number of the giv-
en processor’s instructions needed to
implement each generic instruction, we
can estimate software size by summing
tabulated numbers for all generic in-
structions in the compiled generic code.

We generally are interested in esti-
mating two types of performance met-
rics: function execution time and bus
communication bit rates. For each type,
we may be interested in minimum, max-
imum, or average values. These metrics
can be estimated at various levels of ac-
curacy. For coarse but quick estimates,
we can use queuing models. With this
approach, we (manually) associate ex-
ecution time and communication fre-
quency statistics of each function on a
given system component type. Then we
use queuing models to determine sta-
tistical execution times and communi-
cation rates for the overall system.

Program-level models will give some-
what more accurate performance esti-
mates. With this approach, determining
minimum and maximum performance
requires analysis of the possible paths
through each function in the specifica-
tion—difficult for all but very simple func-
tions. Determining average performance

requires dynamic profiling, in which we
simulate the specification with typical in-
put stimuli and determine the branch
probabilities. Once we have determined
the possible paths or the branch proba-
bilities, we must determine the perfor-
mance for the given set of system
components. For functions assigned to
hardware components, we must map the
functionsto RT-level units and determine
the minimum/maximum or average ex-
ecution frequency of each control step
from the paths or branch probabilities,
respectively. Then, multiplying the ex-
pected number of control steps by the
clock cycle produces the execution time,
and the frequency of each control step
gives us the communication rates.

On the other hand, to estimate per-
formance of functions assigned to soft-
ware components, we compile the
functions into the instruction set of the
given processor and determine each in-
struction’s minimum/maximum or av-
erage execution frequency. Then,
multiplying each instruction’s expect-
ed number of executions by its execu-
tion time produces the total execution
time, and the frequency of communi-
cation instructions gives us the com-
munication rates. As in software size
estimation, we can again use generic in-
structions and tabulation to estimate
software performance when a compiler
for a given processor is unavailable.

Software performance estimation for
SOme pProcessors requires even more ef-
fort to account for pipelining, caching,
and interrupts. For a pipeline, the exe-
cution rate depends heavily on the way
that instructions are paired. To obtain
more accurate estimates, therefore, we
might seek additional information on
each instruction’s execution time based
on what statement follows or precedes
it. For caching, each memory access
may take a different amount of time, de-
pending on whether or not the data be-
ing accessed is in the cache. We can
use statistical hit/miss ratios to deter-
mine average access time, we can as-

sume for worst-case estimates that the
data is never in the cache, or we can an-
alyze the data replacement policy in
use to determine if the data will be in
the cache. For interrupts, accuracy
might improve if we somehow deter-
mine the frequency of interrupts and
the time to service each.

Finally, software performance estima-
tion may include the case in which mul-
tiple concurrent tasks are assigned to a
single processor. In this case, we must
take into account the fact that each task
will be able to execute on the processor
only for particular intervals of time.

Researchers have suggested a vari-
ety of estimation tools and techniques.
For hardware estimation, several
techniques estimate the size and per-
formance of a group of arithmetic op-
erations. For example, one technique
obtains estimates by summing previ-
ously assigned weights associated with
each operation.” Another technique
roughly synthesizes hardware to
implement the operations.?® Another
approach is to consider multiple
groups of operations. A set of possible
rough implementations is determined
for each group, and then a global
analysis picks one implementation for
each group, satisfying global con-
straints on size and performance for all
the groups.? Other hardware estima-
tion techniques estimate for a group of
coarse-grained functions, rather than
arithmetic operations. One technique
roughly synthesizes hardware for each
group of functions, and uses a special
data structure that permits rapid, in-
cremental hardware modification as
functions are moved between groups.’

Software performance estimation
techniques include dynamic profiling to
estimate execution time during hard-
ware-software partitioning.®% Another
technique is to perform path analysis to
determine minimum or maximum exe-
cution times, the latter with the help of
user annotations.®% Wolf provides a
summary of software performance esti-

Table 2. ITVP estimates example.

Metric Estimate Constraint
Size (ASIC1) 8,000 gates <10,000 gates
Size (Processor) 5,500 bytes <4,000 bytes
Size (Memory1) 100 Kbytes <100 Kbytes
Size (Memory2) 500 Kbytes <500 Kbytes
Bit rate {audio_out) 10 Mbytes/s >8 Mbytes/s

mation techniques.®

Table 2 lists estimated values for sev-
eral design metrics for the system-level
ITVP design of Figure 2. The designer
(or automated algorithms) can use this
information to decide how to improve
the design. For example, noting that the
design violates the program-memory
size constraint for the processor and
that 2,000 gates are available on the
ASIC, the designer may try moving a
function from the processor to the ASIC.

Specification refinement

After creating a specification of sys-
tem functionality and exploring alter-
native system-level designs, we must
refine the initial functional specification
by incorporating the implementation
style and details we have selected. We
call this refined specification a system-
level description because it is a mixture
of structural and functional parts. Such
a description consists of interconnect-
ed system components, with each com-
ponent functionally specified.

Refinement is an important concept.
In past approaches, designers generated
only one description, close to the point
at which the design was ready for man-
ufacturing. To preserve consistent design
flow, today’s designers are replacing this
single-description approach with hierar-
chical modeling, in which they derive
successively more detailed descriptions
from more abstract descriptions through-
out the design process.

The refinement process consists of
adding details about memories, inter-
facing, and arbitration to the system’s

62

functionality and then generating a sys-
tem-level description.

Memories. During exploration, we
may have grouped variables for storage
in a particular memory. These variables
are no longer directly accessible by
each process. Now we must create a
memory description, move the variable
declarations to that memory descrip-
tion, and insert the memory access pro-
tocol into every part of the system
description that accesses a variable in
the memory. We may also add other de-
tails, such as specific memory address-
es for each variable, to the newly
created memory description.

Interfacing. Partitioning functions
among system components usually in-
troduces the need to communicate data
between components. For example, a
specification may include a function
that reads a variable. If the function and
the variable are assigned to different
components, then the variable’s value
must be transferred over a bus. The ad-
dition of specification details that
describe communication between com-
ponents is called interfacing. Interfacing
involves several problems: bus size gen-
eration, protocol generation, and pro-
tocol matching.

Bus size generation determines the
width of the bus that will implement a
group of communication channels, giv-
en a set of bit rate and bus width con-
straints. Although we assigned a width
to each bus during allocation, now we
can optimize the bus width to use as

few wires as possible while still satisfy-
ing performance constraints. Two pub-
lications describe approaches to bus
size generation.>®

Protocol generation determines the
exact mechanism for transferring data
over a fixed-width bus. We must deter-
mine the type of control to be used, such
as a full handshake, a half handshake,
or a fixed-time access. We must also de-
termine how to distinguish data des-
tined for different locations, perhaps by
sending an address over the data lines
first or by adding address wires. Finally,
we must determine how to decompose
the data for serial transmission, in case
the bus width is narrower than the num-
ber of data bits we wish to transfer.

Protocol matching enables commu-
nication between components when
one component uses a fixed protocol.
Such a case arises when we implement
certain functions in software running
on an off-the-shelf processor. If the oth-
er component is an ASIC, that ASIC
must implement a protocol that com-
plements the fixed protocol. If the oth-
er component uses a fixed but different
protocol, we must insert between the
two components hardware (a trans-
ducer) that can receive and send data
with each protocol.

Several techniques address the prob-
lems of interfacing. Researchers have
developed protocokspecifying tech-
niques that extend traditional timing
diagrams.“*! In one approach, the de-
tailed I/0 structure and protocols of li-
brary modules are hidden from the
designer, who can simply interconnect
those modules using high-level primi-
tives. Interface controllers are then
synthesized automatically to permit
communication between modules.”

Arbitration. When concurrently ex-
ecuting processes access the same re-
source, such as a bus or a memory, we
need to ensure that only one process ac-
cesses that resource at a given time.
Arbitration resolves simultaneous access

IEEE DESIGN & TEST OF COMPUTERS

requests by granting permission to only
one process at a time. During refinement,
we must insert new arbiter processes into
the specification where needed.

There are two types of schemes for
determining priority during arbitration.
A fixed-priority scheme assigns a prior-
ity to each process statically; the priori-
ty never changes. A dynamic-priority
scheme determines the priority of a
process at runtime, based on the access
pattern of the processes. A round-robin
dynamic-priority scheme assigns low-
est priority to the process most recently
granted access. A first-come-firstserved
dynamic-priority scheme grants access
to processes in the order that they re-
quested access.

Fixed-priority schemes have simple
implementations but may leave a low-
priority process waiting for very long pe-
riods, even forever if higher-priority
processes continuously request access.
Dynamic-priority schemes have more
complex implementations but ensure
fair access for all processes.

Generation. After introducing the re-
finement details just described, we must
generate a system-level description from
the functional specification. In doing so,
we must ensure that the new description
is readable, modifiable, and modular,
and that different designers can imple-
ment different parts. We must also en-
sure that the description is suitable for
further processing by synthesis or com-
pilation tools. Finally, we must ensure
that the description is simulatable, so
that we can continue to verify system
functionality. Several algorithms exist
for generating a system-level description
after partitioning.?

Figure 4c shows a SpecCharts system-
level description of the ITVP, reflecting
the allocation and partition of Figure 2.
The description now includes the mem-
ory, ASIC, and processor components,
aswell as declarations of buses and con-
trol signals among those components. It
also describes the functionality of each

component. Forexample, ASIC1 is to im-
plement the StoreAudio and Generate-
Audio functions. We have maodified the
GenerateAudio function (in Figure 4) by
replacing the read of audiol with a pro-
cedure call that executes a protocol
(ReadMemoryl, which reads audiol
from Memory! over a bus).

Software synthesis

A system-level description usually
possesses complex features not found
in traditional programming languages
such as C. A typical compiler usually
cannot compile these features. Software
synthesisis the task of converting a com-
plex description into a traditional soft-
ware program compilable by traditional
compilers.

One complex feature of system-level
descriptions is the definition of concur-
rent tasks. Two concurrent tasks mapped
to a single processor must be scheduled
to execute sequentially. Such schedul-
ing must ensure that every task has a
chance to execute—in other words, that
no task is “starved.” Another problem is
minimizing the amount of “busy-wait-
ing,” the time the processor spends wait-
ing for some external event. A third
problem is satisfying timing constraints
for each task. For example, a given task
may have to capture and process data
amriving at a specific rate. For another ex-
ample, a task may have to output data at
a certain rate to ensure satisfactory sys-
tem performance. Scheduling must guar-
antee such tasks a minimal execution
rate.

Several techniques exist for per-
forming such scheduling.!638434 One
uses a global task scheduler, which ac-
tivates each task (or portion thereof) by
calling each as a subroutine. This tech-
nique may require overhead to main-
tain the state of each task as it switches
from one to the other. Another tech-
nique reduces this overhead by main-
taining data locally within each task
and modifying each task to relinquish
control of the processor whenever it

must wait for an event or an interrupt
occurs. Choosing a technique usually
involves a trade-off between perfor-
mance and program size

Hardware synthesis

After generating a refined system-
level description, we must create, or
synthesize, hardware for the description
parts to be implemented on custom
components, such as ASICs or FPGAs.
Hardware synthesis combines high-
level synthesis, sequential synthesis, log-
ic synthesis, and technology mapping.

High-level synthesis transforms a sys-
tem component’s functional description
into a structure of RT components such
as registers, multiplexers, and ALUs. This
structure usually consists of two parts: a
controller implementing a finite-state
machine and a data path executing
arithmetic operations. We refer to such
astructure as a finite-state machine with
data path, or FSMD.! The controller con-
trols register transfers in the data path
and generates signals for communica-
tion with the external world.

Several interdependent tasks make
up high-level synthesis. First, we com-
pile the input executable specification
into an internal representation. The in-
ternal representation exposes control
and data dependencies between arith-
metic operations, such as additions and
comparisons. Next, allocation selects,
from an RT component database, the
storage, function, and bus units to be
used in the design. Third, scheduling
maps operations to control steps, each
usually representing one clock period
or clock phase. Scheduling is necessary
because all operations usually cannot
execute at once due to data depen-
dencies or due to an insufficient num-
ber of units capable of executing
particular operations. Finally, binding
maps scalar and array variables to reg-
isters and memories, operations to func-
tion units, and transfers to buses. A
variety of algorithms, tools, and envi-
ronments for high-level synthesis are de-

63

entity ItvTestE is
end ItvTestE;

architecture ItvTestA of ltvTestE is
begin
component ItvE port (
audio_in : in bit_vector...
. audio_out : out bit_vector...

enE -co'mponent;
--port maps

process
begin
-- input audio
for i in 1 to num_audio loop
audio_in < = audio_data (i);
wait for atime;

- .send audio output cmd
gen_audio <='1";

-- check audio output
for i in 1 to num_audio loop
assert (audio_out = audio_data (i)
report “audio sample mismatch”;
wait for atime;

...end ItvTestA;
Figure 5. ITVP simulation fest bench.

scribed in the literature.!?

Sequential and logic synthesis trans-
form an FSM to a hardware structure
consisting of a state register and a com-
binational circuit that generates the next
state as well as the controller’s outputs.
The tasks involved in creating this struc-
ture include state minimization, state
encoding, logic minimization, and tech-
nology mapping. State minimization re-
duces the number of states in an FSM by
replacing equivalent states with a single
state. Two states are equivalent if the out-
put sequence for any input sequence
does not depend on which of the two
states we start in. State minimization is
important because the number of states
determines the size of the state register
and control logic. State encoding assigns
binary codes to symbolic states. The goal
isto obtain a binary code that minimizes
the controller's combinational logic.
After encoding, logic minimization re-
duces the size or delay of the combina-
tional logic. Technology mapping

64

transforms a technology-independent
logic network produced by the logic
minimizer into a netlist of standard gates
from a particular gate library. A variety
of sequential and logic synthesis tech-
niques are available.>*

Simulation and cosimulation

Somehow we must validate that our
initial specification is complete and
correct. A specification is complete if
itincludes all possible input sequences
that the environment might provide to
our system. A specification is correct
if it generates expected output for
every such input sequence. To validate
the correctness and completeness of
our specification, we can apply formal
verification techniques or simulation
techniques.

Formal verification techniques usu-
ally involve making assertions about
the specification and then proving
that those assertions hold. For exam-
ple, we may assert that all states of an
FSM are reachable and then use a the-
orem prover to prove that assertion.
Simulation involves executing the
specification and then comparing the
generated output sequence with the
sequence of expected values. Today,
simulation is the most common verifi-

" cation technique. Presently, neither

formal verification nor simulation
entirely validates a specification’s
completeness because far too many
possible input sequences exist for
even moderate-size systems.

As an example of simulation, Figure 5
shows a simple test case for the ITVP,
written in VHDL. After instantiating an
ITVP component, we input a sequence
of audio data, give the ITVP a command
to output that data, and then check that
the output data matches the input data.
If not, we generate an error message.

Simulation is useful not only to veri-
fy the initial functional specification,
but also to verify the more detailed de-
sign descriptions generated throughout
the design process. In particular, we

must ensure that a design’s functional-
ity is consistent with the initial specifi-
cation, detect possible performance
bottlenecks arising from the mapping
of the abstract specification to real com-
ponents with limited resources, and en-
sure that the design satisfies detailed
timing constraints for communication
and synchronization.

Simulation of the more detailed de-
scriptions may take place at various lev-
els of abstraction. The design process
in Figure 3 includes four different mod-
els of the system: The functional speci-
fication, describing only functionality
without implementation, is useful in
product definition, customer contract-
ing, and marketing. The system-level
description, the system bus model, is
useful in performance estimation and
bottleneck detection. The RT-level de-
scription gives the hardware design on
the clock-cycle level and the processor
model on the instruction-set level. It lets
us check application software as well
as the correctness of the ASIC architec-
ture. The fourth model is the physical
description, which allows checking of
detailed electrical and timing proper-
ties of ASICs and standard chips.

To investigate issues during the design
process, we model different parts of the
system at different abstraction levels.
This hierarchical modeling typically re-
quires different simulators. Integrating
the simulations of a variety of models is
called cosimulation. A common exam-
ple of cosimulation is the simulation of
interconnected RT- or logic-level com-
ponents (hardware) along with instruc-
tions running on a processor (software):
hardwaresoftware cosimulation.

Hardware-software cosimulation
has two competing goals: speed and
correctness. Speed is the rate at which
simulated time proceeds. Because
simulations are usually orders of mag-
nitude slower than a real implemen-
tation, speed is crucial if we are to
simulate a reasonable number of in-
put sequences. Correctness refers to

IEEE DESIGN & TEST OF COMPUTIRS

generation of proper output values by
the simulation. Incorrect values may
arise when we simulate different parts
of the system separately at different
speeds and fail to ensure that the var-
ious parts access shared data in the
proper order (for example, ensure that
one part does not read a memory lo-
cation before another part is supposed
to have updated that location).

A third goal, which usually competes
with speed, is interactive debugging—
the ability to step through system exe-
cution, examine intermediate values,
and backtrack to debug the system.

For both hardware and software,
speed varies depending on the chosen
verification technique. For software, the
slowest but most “debug-amenable” ap-
proaches use model simulation. In one
such approach, we execute the soft-
ware on a model of the target proces-
sor with a hardware simulator. We can
write this model on one of several ab-
straction levels, including instruction-
set, RT, and gate levels. Higher levels
provide shorter simulation time at the
expense of less detailed timing accura-
cy. A faster simulation approach would
be to execute the software on a custom-
built simulator for the target processor.

Instead of simulating, we can use
faster, execution approaches. With one
execution approach, we execute the
software on our development proces-
sor (for example, our workstation), as-
surning that the description is written in
a high-level language such as C, which
can be compiled to the processor's in-
struction set. Alternatively, we can sim-
ply execute the software on the target
processor. A common hybrid approach
is called in-circuit emulation. An emu-
lator consists of a package with the
same I/O configuration as the target
processor, along with a tool on which
we can run the software and interac-
tively debug it from our workstation.

For hardware, the most common sim-
ulation technique uses an event-driven
hardware simulator. An alternative is to

use a hardware emulator. In cases where
speed is extremely important, we can cre-
ate an FPGA implementation.

We maintain cotrectness only if we
ensure that the software and hardware
simulations access shared data in the
proper order. The most straightforward
method is to create a hardware model
of the target processor and then simu-
late the hardware and software in syn-
chrony, using the same hardware
simulator. The hardware simulator thus
serves as a supervisor, ensuring that
data is accessed in correct order.

However, to speed up the simulation,
we would like to use one of the software
execution options mentioned earlier. In
such cases, one way to ensure correct-
ness is to explicitly synchronize all data
transfers between hardware and soft-
ware, so that no supervisor is necessary.
A common method for describing such
transfers is message passing. In message
passing, all data transfers occur when a
process explicitly sends data to another
process that explicitly receives it.
Alternatively, if it turns out that the soft-
ware is the only data transfer initiator,
the executing software serves as super-
visor. Conversely, when the hardware is
the only data transfer initiator, the hard-
ware simulator serves as supervisor.

Several cosimulation techniques
have appeared in the literature. In one
approach, software executes on the
development processor and commu-
nicates with a hardware simulator
through Unix interprocess communi-
cation mechanisms, using message
passing.’®# Another approach executes
the software on a processor simulator
connected to a hardware simulator.
Facilities exist between the simulators
to support message passing between
the hardware and software.

Two recent articles describe three
cosimulation techniques.!™® One, pri-
marily for timing analysis, uses estima-
tors to predict the performance of parts
of the specification (a cosimulation es-
timator is also described elsewhere®).

The second technique simulates a cycle-
accurate processor model in conjunc-
tion with the hardware, using a hardware
simulator. The third technique uses a
prototyping board that contains a RISC
(reduced instruction set computing)
processor and several FPGAs.

Another article describes a multi-
paradigm simulation environment (Pto-
lemy), which supports cosimulation of
different domains, such as synchronous
dataflow and digital hardware, and de-
fines mechanisms for transferring data
and synchronizing timing between do-
mains.® The environment thus can sup-
port a variety of hardware-software
cosimulation techniques. For example,
one method discussed uses a cycle-
accurate functional processor model, a
digital-hardware domain representation
of the RT-level hardware components,
and the synchronous dataflow domain
for functional abstraction of some ana-
log hardware components. Thus, the
mixed hardwaresoftware system can be
simulated within an integrated environ-
ment. Another article describes a new
Ptolemy domain for simulating process-
es that communicate via message pass-
ing.* This domain simulates hardware
and software; the simulation can also in-
tegrate physical implementations of
SOme processes.

AN INFORMAL DESIGN method-
ology, with design capture and simu-
lation late in the design cycle, was
tolerable in the past. Then design com-
plexity was low to medium, and new
generations of products were intro-
duced only every two to three years.
With increased complexity and short-
er time to market, however, the old
methodology is no longer acceptable.

Forembedded software and/or hard-
ware systems, a new methodology,
based on a hierarchy of models at dif-
ferent levels of abstraction, is necessary.
Using this methodology, we start with a
formal functional specification and de-
rive the next-lower level model by ex-

ploring implementation issues and re-
fining the higher level model with im-
plementation selections made during
exploration.

This specify-explore-refine method-
ology can help managers and designers
cope with today’s product development
requirements. It can lead to substantial
productivity gains through the early de-
tection of functional errors and through
faster exploration of design alternatives.
The proposed methodology leads to ex-
cellent documentation of the system’s
desired functionality as well as all de-
sign decisions, making redesign much
easier. It encourages concurrent engi-
neering because the various system
components possess precise functional
descriptions derived from an overall sys-
tem specification, which simplifies in-
tegration as well as design changes
during implementation. It enables mar-
keting departments to rapidly predict a
systemn’s size, performance, and design
time, helping determine a product’s fea-
sibility. Such rapid prediction also helps
engineering managers allocate human
resources to a design.

When we tested the specify-explore-
refine methodology on a medium-
complexity (50,000 gates) fuzzy-logic
controller, we reduced the design cycle
from conceptualization to manufactur-
ing to approximately 100 hours.*” With
the standard methodology, we estimate
that this design would take about six
months. As tools and techniques for the
new methodology improve, we believe
the design cycle of high-complexity sys-
tems can drop from the present 12to 18
months to several hundred hours. If the
goal is precisely defined and the design
process well understood, a design
should be straightforward and easily
manageable,

Acknowledgments

We thank Sanjiv Narayan of Viewlogic
and Jie Gong of UC Irvine for their substan-
tial contributions to the ideas and tech-
niques described in this article. We also

thank Jorg Henkel of the Technical
University of Braunschweig, Asawaree
Kalavade of UC Berkeley, and Rajesh Gupta
of the University of lllinois for their helpful
discussions and comments.

References

1.

10.

11.

12.

13.

14.

D. Gajski, N. Dutt, C. Wy, and Y. Lin, High-
Level Synthesis: Introduction to Chip and Sys-
tem Design, Kluwer Academic Publishers,
Boston, 1991.

. J. Vanhoof, K. Van Rompaey, . Bolsens, and

H. DeMan,“High-Level Synthesis for Real-
Time Signal Processing,” Kluwer, 1994.

. G. DeMicheli, Synthesis and Optimization of

Digital Circuits, McGraw-Hill, New York,
1994.

. S. Devadas, G. Gosh, and K. Keutzer, Logic

Synthesis, McGraw-Hill, New York,1994.

. D. Gajski, F. Vahid, S. Narayan, and J. Gong,

Specification and Design of Embedded Sys-
tems, Prentice-Hall, Englewood Cliffs, N.J.,
1994.

. K. Buchenrieder, Hardware/Software Code-

sign—An Annotated Bibliography, IT Press,
Hartenstein, Chicago, 1995.

. D. Gabel, “Software Engineering,” [EEE Spec-

trum, Vol. 31, No. 1, Jan. 1994, pp. 3841.

. W.S. Davis, Tools and Techniques for Struc-

tured Systems Analysis and Design, Addison-
Wesley, Reading, Mass., 1983.

. D.Harel, H. Lachover, A. Naamad, A. Pnueli,

M. Politi, R. Sherman, and A. Shtul-Trauring,
“Statemate: A Working Environment for the
Development of Complex Reactive Sys-
tems,” Proc. Int’l Conf. Software Engineering,
IEEE Computer Society Press, Los Alamitos,
Calif., 1988, pp. 396-406.

C. Hoare, “Communicating Sequential
Processes,” Comm. ACM, Vol. 21, No. 8,
1978, pp. 666-677.

N. Halbwachs, Synchronous Programming
of Reactive Systems, Kluwer, Boston, 1993.
F. Belina, D. Hogrefe, and A. Sarma, SDL
with Applications from Protocol Specifica-
tions, Prentice-Hall, Englewood Cliffs, N.J.,
1991.

P. Hilfinger and J. Rabaey, Anatomy of a Sil-
icon Compiler, Kluwer, Boston, 1992.

J. Praet, G. Goossens, D. Lanneer, and H. De-
Man, “Instruction Set Definition and In-

20.

21.

22.

23.

24.

25.

26.

struction Selection for ASIPs,” Proc. Int’l
Workshop High-Level Synthesis, 1993, Assn.
of Computing Machinery, New York, pp. 11-
16.

. S. Prakash and A. Parker, “Synthesis of Ap-

plication-Specific Multiprocessor Architec-
tures,” Proc. 28th Design Automation Conf.,
[EEE CS Press, 1991, pp. &13.

. R. Gupta and G. DeMicheli, “Hardware-Soft-

ware Cosynthesis for Digital Systems,” JEEE
Design & Test of Computers, Vol. 10, No. 3,
Oct. 1993, pp. 2941.

. R.Emnst, J. Henkel, and T. Benner, “Hard-

ware-Software Cosynthesis for Microcon-
trollers,” JEEE Design & Test of Computers,
Vol. 10, No. 4, Dec. 1993, pp. 64-75.

. M. Srivastava and R. Brodersen, “Rapid-

Prototyping of Hardware and Software in a
Unified Framework,” Proc. Int’l Conf. Com-
puter-Aided Design, IEEE CS Press, 1992, pp.
152-155.

. D.Thomas, J. Adams, and H. Schmit, “A Mod-

el and Methodology for Hardware/Software
Codesign,” [EEE Design & Test of Computers,
Vol. 10, No. 3, Sept. 1993, pp. 6-15.

M. McFarland and T. Kowalski, “Incorporat-
ing Bottom-up Design into Hardware Syn-
thesis,” JEEE Trans. Computer-Aided Design,
Sept. 1990, pp. 938-950.

C. Gebotys, “An Optimization Approach to
the Synthesis of Multichip Architectures,”
IEEE Trans. Very Large Scale Integration Sys-
tems, Vol. 2, No. 1, 1994, pp. 11-20.

Y. Chen, Y. Hsu, and C. King, “MULTIPAR:
Behavioral Partition for Synthesizing Multi-
processor Architectures,” JEEE Trans. Very
Large Scale Integration Systems, Vol. 2, No.
1, Mar. 1994, pp. 21-32.

R. Gupta and G. DeMicheli, “Partitioning of
Functional Models of Synchronous Digital
Systems,” Proc. Int'l Conf. Computer-Aided
Design, IEEE CS Press, 1990, pp. 216-219.
F. Vahid and D. Gajski, “Specification Parti-
tioning for System Design,” Proc. Design Au-
tomation Conf., ACM, 1992, pp. 219-224.

A. Kalavade and E. Lee, “A Hardware-Soft-
ware Codesign Methodology for DSP Appli-
cations,” JEEE Design & Test of Computers,
Vol. 10, No. 3, Sept. 1993, pp. 16-28.

X. Xiong, E. Barros, and W. Rosentiel, “A
Method for Partitioning UNITY Language in

IEEE DESIGN & TEST OF COMPUTERS

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Hardware and Software,” Proc. European De-
sign Automation Conf. (EuroDAC), IEEE CS
Press, 1994.

F. Vahid, J. Gong, and D. Gajski, “A Binary-
Constraint Search Algorithm for Minimizing
Hardware During Hardware-Software Par-
tioning,” Proc. European Design Automation
Conf., IEEE CS Press, 1994,

P. Eles, Z. Peng, and A. Doboli, “VHDL
System-Level Specification and Partitioning
in a Hardware/Software Cosynthesis Envi-
ronment, Proc. Int’l Workshop Hanware/Soft-
ware Codesign, IEEE CS Press,1994, pp.
49-55.

R. Walker and D. Thomas, “Behavioral
Transformation for Algorithmic Level IC De-
sign,” I[EEE Trans. Computer-Aided Design,
Oct. 1989.

T. Ismail, K. O'Brien, and A.A. Jerraya, “In-
teractive System-Level Paritioning with Par-
tif,” Proc. European Design Automation
Conf., IEEE CS Press, 1994,

J. Hagerman, “Synthesis of Multiple Process
Digital Systems,” PhD thesis, Carnegie Mel-
lon Univ., Pittsburgh, 1994.

J. Gong, D. Gajski, and S. Narayan, “Software
Estimation from Executable Specifications,”
Proc. European Design Automation Conf.
(EuroDAC), IEEE CS Press, 1995.

S. Antoniazzi, A. Balboni, W. Fornaciari, D.
Sciuto, “A Methodology for Control Domi-
nated System Design” Proc. Int’l Workshop
Hardware/Software Codesign, 1994, pp. 2-9.
K. Kucukcakar and A. Parker, “CHOP: A
Constraint-Driven System-Level Partitioner,”
Proc. Design Automation Conf., ACM, 1991,
pp. 514-519.

W. Ye, R. Ernst, T. Benner, and J. Henkel,
“Fast Timing Analysis for Hardware-Software
Co-Synthesis,” Proc. Int'l Conf. Computer De-
sign, IEEE CS Press, 1993, pp. 452457.

C. Park and A. Shaw, “Experiments with a
Program Timing Tool Based on Source-Lev-
el Timing Scheme,” Computer, Vol. 24, No. 5,
May 1991, pp. 48-57.

P. Puschner and C. Koza, “Calculating the
Maximum Execution Times of Real-Time
Programs,” J. Real-Time Systems, Vol. 1,
1989, pp. 159-176.

W. Wolf, “Hardware-Software Co-Design of
Embedded Systems,” Proc. IEEE, Vol. 82, No.

39.

40.

41.

42,

43.

45.

46.

47.

7, 1994, pp. 967-989.

D. Filo, D. Ku, C. Coeltho, and G. DeMicheli,
“Interface Optimization for Concurrent Sys-
tems Under Timing Constraints,” /EEE Trans.
Very Large Scale Integration Systems, Vol. 1,
Sept. 1993, pp. 268-281.

G. Borriello, “Specification and Synthesis of
Interface Logic,” in High-Level VLSI Synthe-
sis, R. Camposano and W. Wolf, eds., Kluw-
er, Boston, 1991.

P. Moeschler, H. Amann, and F. Pellandini,
“High-Level Modeling Using Extended Tim-
ing Diagrams,” Proc. European Design Au-
tomation Conf. (EuroDAC), IEEE CS Press,
1993.

J. Sun and R. Brodersen, “Design of System
Interface Modules,” Proc. Int'l Conf. Com-
puter-Aided Design, IEEE CS Press, 1992, pp.
478481.

S. Levi and A. Agrawala, Real-Time System
Design, McGraw-Hill, New York, 1990.

. G. Andrews and F. Schneider, “Concepts

and Notations for Concurrent Program-
ming,” ACM Computing Surveys, Vol. 15,
Mar. 1983, pp. 3-44.

D. Becker, R. Singh, and S. Tell, “An Engi-
neering Environment for
Software Cosimulation,” Proc. Design Auto-
mation Conf., ACM, 1992, pp. 129-134.
S.Lee and J. Rabaey, “A Hardware-Software
Cosimulation Environment,” Proc. Intl
Workshop Hardware-Software Co-Design,
1993.

L. Ramachandran, D. Gajski, S. Narayan, F.
Vahid, and P. Fung, “Towards Achieving a
100-hour Design Cycle: A Test Case,” Proc.
European Design Automation Conf. (Euro-
DAC), ACM, 1994.

Hardware/

_ 4

Daniel D. Gajski is a professor in the De-
partment of Computer Science at the Uni-
versity of California, Irvine. Previously, he

was a professor in the Department of Com-
puter Science at the University of lllinois in
Urbana-Champaign. Still earlier, he worked
in industry. His current interests are CAD
environments, ASIC and system design
methodology, high-level synthesis, and
hardware-software codesign. Gajski served
as technical chair of the High-Level Syn-
thesis Workshop in 1992 and general chair
of the High-Level Synthesis Symposium in
1994. He received the Dipl. Ing. and MS in
electrical engineering from the University
of Zagreb and the PhD in computer and in-
formation sciences from the University of
Pennsylvania. He is a senior member of the
Computer Society and a fellow of the IEEE.

Frank Vahid is an assistant professor in the
Computer Science Department at the Uni-
versity of California, Riverside. His research
interests include hardware-software code-
sign, system specification and design, be-
havioral partitioning, and behavioral
synthesis. He holds a BS in computer engi-
neering from the University of [llinois. He
holds an MS and PhD in computer science
from the University of California, lrvine,
where he was an SRC fellow and a chan-
cellor’s fellow.

Send correspondence about this article
to Daniel D. Gajski, UC Irvine, Dept. of Com-
puter Science, Irvine, CA 92717-3425; or
gajski@ics.uci.edu.

67

