
 A One-Shot Configurable-Cache Tuner for Improved Energy and Performance

Abstract
We introduce a new non-intrusive on-chip cache-tuning hardware
module capable of accurately predicting the best configuration of
a configurable cache for an executing application. Previous
dynamic cache tuning approaches change the cache configuration
several times as part of the tuning search process, executing the
application using inferior configurations and temporarily causing
energy and performance overhead. The introduced tuner uses a
different approach, which non-intrusively collects data on
addresses issued by the microprocessor, analyzes that data to
predict the best cache configuration, and then updates the cache
to the new best configuration in “one-shot,” without ever having
to examine inferior configurations. The result is less energy and
less performance overhead, meaning that cache tuning can be
applied more frequently. We show through experiments that the
one-shot cache tuner can reduce memory-access related energy
for instructions by 35% and comes within 4% of a previous
intrusive approach, and results in 4.6 times less energy overhead
and a 7.7 times speedup in tuning time compared to a previous
intrusive approach, at the main expense of 12% larger size.

1. Introduction
Cache subsystems contribute to a significant percentage of

microprocessor system energy consumption, often 50% or more
[21]. Caches contain several design parameters, including total
size, line size, and associativity. Microprocessor designers
typically optimize cache parameter values to achieve good
performance/energy across an entire domain of applications, but
any one application will usually exhibit better performance/energy
if the parameter values could be customized for that application’s
memory usage characteristics. Previous research shows savings as
high as 53% for memory-access-related energy and a 30%
performance improvement due to such cache tuning [10].

 Due to increasing demand for low-energy microprocessor
systems, from small embedded systems seeking to extend battery
lifetime to large server systems seeking to reduce electricity and
cooling costs, caches with configurable parameter values have
been introduced in recent years. Synthesizable (soft-core)
processors include numerous parameters whose values can be set
by a designer before synthesis [3][17][26]. Albonesi [2], Zhang
[28], and Balasubramonian [5] each introduced hardware (hard-
core) caches whose parameter values could be adjusted, statically
or dynamically, just by setting bits in a configuration register. The
commercially-available M*CORE processor [15] had a hardware

configurable 4-way cache where each way could be shut down, or
configured for instruction, data, or both.

 Configurable caches may have many thousands of possible
configurations, making tuning to an application a hard problem.
Thus, several researchers have proposed automated cache tuning
approaches. Most of those approaches assume that tuning is done
statically, meaning done once during application design time.
Givargis proposed an exhaustive simulation approach [9], while
Palesi [18] improved that approach using a genetic search
algorithm. Ghosh [8] presented a heuristic that, through an
analytical model, directly determined the cache configuration
based on the designer’s performance constraints and application
characteristics.

 Other cache tuning approaches can be used dynamically, while
an application executes on a microprocessor (requiring of course a
dynamically adjustable configurable cache). Zhang [28] presented
a single-level cache tuning heuristic that examined on average 5
of 18 possible configurations, taking care to minimize cache
flushing for suitability as a dynamic tuning heuristic. Gordon-
Ross [11] extended Zhang’s heuristic for a two-level configurable
cache with 18,000 possible configurations. That heuristic searched
only 30 configurations while obtaining 62% energy savings –
within 1% of optimal.

 Previous dynamic cache tuning approaches search for the best
cache configuration for a running application by dynamically
adjusting the configurable cache to examine candidate
configurations. Examining inferior candidates is intrusive and
temporarily introduces energy and/or performance overhead.
Thus, those tuning approaches should be applied sparingly so that
the overhead of the tuning process does not dominate over the
improvements of the tuned cache.

 We therefore sought to develop a non-intrusive cache tuning
approach that would not examine inferior solutions. The idea
would be to create a hardware cache-tuning module that non-
intrusively monitors an application’s memory access patterns and
analytically predicts the best cache configuration for those
patterns. If the predicted best cache configuration differed from
the configuration presently in use (beyond some threshold), the
cache tuner would reconfigure the cache directly to the new best
cache, i.e., in “one shot”.

 A one-shot cache tuning approach involves two key
challenges. The first is to create an accurate predictor of the best
configuration. The second is to keep the size and energy of the
one-shot tuning module, which will certainly be more than in
previous approaches, down to acceptable values.

 The contribution of this paper is the development of the first
non-intrusive one-shot cache tuner suitable for hardware

Ann Gordon-Ross1, Pablo Viana2, Frank Vahid1,3, Walid Najjar1, Edna Barros4

1 Department of Computer Science and Engineering – University of California, Riverside
http://www.cs.ucr.edu/~{ann, vahid, najjar}; {ann, vahid, najjar}@cs.ucr.edu

2Universidade Federal de Alagoas – Arapiraca-AL, Brazil
3Also with the center for Embedded Computer Systems – University of California, Irvine

4Centro de Informática – Federal University of Pernambuco, Recife-PE, Brazil

implementation. The one-shot tuner is based on a recent cache
analysis technique originally developed for simulation-based
single-pass multi-cache evaluation. Through modifications of this
technique and use of parallel hardware, we show that the one-shot
tuner achieves good prediction accuracy and consumes reasonable
size and power.

 The paper is organized as follows. Section 2 discusses
previous research in simultaneous multi-cache evaluation and
presents the software technique that we will be extending. Section
3 details the modifications necessary to allow the software
technique to be implemented in custom hardware as a one-shot
tuner. Section 4 compares our one-shot tuner to a state-of-the-art
intrusive cache tuning heuristic. Section 5 gives a practical
illustration of the one-shot tuner compared to an intrusive cache
tuning heuristic.

2. Simultaneous multi-cache evaluation
2.1 Multiple-pass multi-cache evaluation

Most previous research in cache configuration emphasized fast
offline evaluation of multiple cache configurations during
simulation. Because simulation is slow, much attention was given
to evaluating more than one cache configuration per simulation,
i.e., simultaneous multi-cache evaluation. Early research in
simultaneous multi-cache evaluation by Mattson el al. [16]
defined the inclusion property of caches. The inclusion property
states that at any time, the contents of a cache are a subset of the
contents of a larger cache, allowing simultaneous evaluation of
fully-associative caches of varying sizes using a stack-based
methodology. Later, Hill and Smith [12] identified the set
refinement property and extended the inclusion property to
include direct-mapped and set-associative caches. The set-
refinement property observes that blocks that are mapped to the
same set in larger caches are also mapped to the same set in
smaller caches if the replacement algorithm is a stack algorithm
such as the least recently used. Much research utilizes these
properties to develop efficient algorithms for simultaneous multi-
cache evaluation [6][19][22]. Currently, methods only exist for a
single level of cache.

In seeking to develop a one-shot cache tuner, the best approach
seemed to be to adapt previous multi-cache evaluation methods,
originally intended for software implementation, to a hardware
implementation. However, while those methods can
simultaneously evaluate varying values for cache parameters
including total size, line size, and associativity, the parameters
themselves must be explored separately, requiring one exploration
pass per parameter, thus requiring multiple passes. Furthermore,
some used relatively complex data structures that would be
difficult to convert to hardware.

2.2 Single-pass multi-cache evaluation (SPCE)
Recently, however, we presented a technique [27] that

proposed a method to evaluate all values for all cache parameters
simultaneously, requiring only one simulation pass, and using
tables rather than complex data structures. We provide a brief
summary here. Like previous simultaneous multi-cache evaluation
methods, SPCE (pronounced spee-cee) uses a stack. In addition, a
multi-layered table structure is utilized to record cache hits from
conflict information gathered from a sequence of addresses.
 SPCE uses a stack size equal to the number of static
instructions in the application to store the access trace. When an

address is processed, the stack is scanned to determine if and
when that address was last accessed. If the address is not in the
stack, the address represents a new access and the address is
pushed to the top of the stack. If the address is in the stack, then
all addresses preceding that address in the stack will suggest
particular cache configurations that would have yielded a cache
hit. After processing the address, the current address is moved to
the top of the stack.
 Figure 1 illustrates the algorithm that scans the stack to
determine which cache configurations would yield a cache hit.
smin, smax, bmin, and bmax refer respectively to the minimum
and maximum number of sets and words per line. amax refers to
the maximum associativity explored. For details, we refer the
reader to [27].

 SPCE uses a multi-layered table structure to tally cache hits.
The number of different assocativities explored determines the
number of layers in the table – one layer per associativity. The
update_table function takes the cache parameter values and
updates the appropriate table layer and location.

 After processing every address, the tables are used to
determine the number of hits for each cache configuration. To
verify correct cache hit predictions, we simulated each benchmark
studied for every cache configuration. We concluded that SPCE
correctly calculates the hit rates for every configuration.

 We compared SPCE to a state-of-the-art heuristic for single-
level configurable cache exploration and determined that SPCE
could produce slightly better results (by discovering the optimal
each time) with a 6 times speedup in simulation time.
3. Non-intrusive one-shot cache tuning in
custom hardware

Section 2.2 described a method for tuning a highly
configurable cache in a single pass. In this section, we will discuss
modifications that convert SPCE into the one-shot hardware
implementation.

3.1 Evaluation methodology
To determine the effectiveness of our hardware and ensure no

degradation in the quality of results, we developed an evaluation
methodology. To compare our technique with a state-of-the-art
intrusive cache tuning heuristic, we implemented SPCE as an
instruction trace processor in C++ for the configurable cache
described by Zhang [28]. Using Simplescalar [7], we collected
instruction trace files for a large selection of embedded system
benchmarks from the Powerstone [15] and MediaBench [14]
benchmark suites.

 For comparison purposes, we first ran SPCE to determine the
energy consumption of each cache configuration for each

Figure 1: Single-pass multi-cache evaluation algorithm.

process (addr)
 addr=addr>>w //shift out word offset
 for b=bmax downto bmin // for each line size
 base_addr=addr>>log2(b) // shift out block offset
 was_found = lookup_stack (base_addr) // scan stack
 if (was_found)
 for s = smin to smax // for each set
 num_conflicts = count_set_conflicts (s, base_addr) // scan stack
 if (num_conflicts <= amax)
 α = roundup(num_conflicts) // next power of 2 assoc
 update_table (α, s, b) // mark appropriate table
 update_stack (was_found, addr) // push or move addr to top

benchmark using the same energy model described by Zhang [28].
We refer to these energy consumption values as the gold energy
consumption of a configuration. We refer to the lowest energy
consuming cache, or optimal cache configuration, as the G-
Optimal (gold-optimal) cache. To determine energy savings
compared to no cache configuration, Zhang also defines a base
cache configuration consisting of an 8 KByte 4-way cache with a
32 byte line size. This configuration represents a commonly
available configuration on a microprocessor and reflects the needs
of the benchmarks studied.

 Next, we modified SPCE into the one-shot tuner by
implementing the changes discussed in sections 3.2 and 3.3. We
ran each benchmark with the one-shot tuner to gather miss rates
for each cache configuration and applied the same energy model
to those miss rates to determine the optimal cache configuration –
or the P-Optimal (predicted-optimal) cache. To determine the
effectiveness of our predicted cache, we looked up the gold
energy consumption for the P-Optimal cache and compared it to
the gold energy consumption of the G-Optimal cache.

 To predict address processing time in hardware, we augmented
the software to count cycles expended per instruction and verified
those counts with VHDL implementation.

3.2 Determining an upper bound on address
processing time

Assuming a dual-ported SRAM for the stack, a hardware
implementation of SPCE requires an average of 500 cycles of
processing time per address, with a worst case processing time of
nearly 7000 cycles for one address. Unfortunately, SPCE has only
1.5 cycles of available time on average to update all table
locations, assuming an average CPI of 1.5. Given the complexity
of the design and propagation delay, it is unlikely to be able to
design hardware that could process each address in 1 to 2
reasonable length clock cycles.

As opposed to processing each address, the one-shot tuner
samples the address stream. Address sampling means that the total
number of hits will be incorrect, but if a good sampling rate is
chosen, the relative hit rates will be correct, and the one-shot
tuner will still determine the optimal cache configuration. We
determined that a good sampling rate would not simply sample
one instruction and then skip m instructions, but would instead
buffer n instructions and then skip m instructions. We examined
buffers sizes ranging from 2 to 64 and skip amounts ranging from
128 to 16384.

 We evaluated each benchmark for each sampling rate and
observed that different sampling rates were best for each
benchmark. However, not wanting to specialize the sampling rate
to each application, we chose buffer/skip rates of 4/128, 16/512,
and 64/2048, sampling only 3% of the instruction stream, but
providing cache tuning results within 4% of the optimal on
average. Lower sampling rates resulted in configurations much
further from the optimal. Among the three 3% rates, we chose
64/2048 as the best sampling approach, to allow the most absolute
time to process the buffered addresses given that each address
takes a variable amount of time to process. Assuming a CPI of
1.5, the rate translates to (2048*1.5) = 3072 cycles to process 64
addresses, meaning that the one-shot tuner has an upper bound of
48 cycles on average to process each instruction.

 Figure 2 compares the energy consumption normalized to the
base cache configuration for a sampling rate of 64/2048 compared

to the optimal cache configuration. On average, the sampling
technique finds a cache configuration that is only 4% from the
optimal. However, a few benchmarks resulted in suboptimal
configurations. We note that these benchmarks performed poorly
for all sampling rates studied. We examined the locality and
execution breakdown of those benchmarks and did not discover
any similarities and suspect that the regularity of the sampling rate
is to blame for poor performance. We intend to study variable
sampling rates in future work.

3.3 Custom hardware
SPCE’s bottleneck is the stack scanning time. Each stack

location is examined sequentially and each address can require up
to 15 scans of the stack. If each search of the stack only accessed
3.2 locations on average, we could meet our deadline (3.2*15 = 48
cycles). We evaluated the benchmarks and determined that the
average stack scan depth was 30 addresses. Clearly, a sequential
scan of the stack was not going to be feasible and a parallel search
of the stack was necessary

 CAMs (Content Addressable Memory) are memory structures
that allow for a single-cycle fully-associative search of the
memory for a particular data item. TCAMs (Ternary Content
Addressable Memory) have the same basic functionality as a
CAM but allow for bits within the search data to be specified as
don’t care values (-). Thus, searching for the data value 0101-
would produce a hit on both 01010 and 01011. TCAMs are
heavily used in routing tables for network traffic [20].

 A TCAM can readily be integrated into our hardware
approach, eliminating the sequential search of the stack. For the
initial stack search to determine a hit, the one-shot hardware
would simply perform a lookup for the address with the block
offset masked as don’t care values. The TCAM will either flag the
location of the data or indicate that the data doesn’t exist. If more
than one entry in the TCAM matches, the one-shot hardware is
only interested in the highest priority match, or the value with the
highest position in the stack and is specified by the TCAM.

 If the address hits in the TCAM, the one-shot tuner determines,
for each cache size, the minimum associativity necessary to yield
a hit. Again, this can be done in a single cycle with a slight
customization to the standard TCAM. The one-shot hardware
searches the TCAM for matches of data items that map to the
same set as the current address using don’t care values. The
TCAM outputs the number of matches that occurred, specifying
the minimum associativity necessary to yield a cache hit.

Figure 2: Comparing energy savings in the instruction
cache subsystem for the configuration chosen using an

address sampling technique compared to the optimal
cache configuration.

0.0

0.2

0.4

0.6

0.8

1.0

bre
v
ep
ic

raw
ca
ud
io

po
cs
ag

g7
21
De
co
de

pe
gw
itD
ec
od
e
v4
2

uc
bq
so
rt
g3
fax bil

v
bin
ary bli

t

ma
tm
ul

mp
eg
De
co
de

pe
gw
itE
nc
od
e

jpe
gD
ec
od
e

ps
-jp
eg fir

jpe
gE
nc
od
e
bc
nt

av
era
ge

En
er

gy
 c

on
su

m
pt

io
n

no
rm

al
iz

ed
 to

ba

se
 c

ac
he

optimal
64/2048

 After processing an address that yields a hit at the minimum
block size, SPCE moves that address to the top of the stack. With
a standard TCAM, such movement would require reading out and
writing back every value to be moved. However, increasingly-
common scan chains, if included in the TCAM and appropriately
modified, allow all values in the TCAM to be shifted by one
location in a single cycle. We include this functionality in our
TCAM to improve stack updating time.

 To get the fastest stack searching time, the one-shot hardware
must read from the TCAM every cycle instead of wasting 1 cycle
setting up each TCAM read. To eliminate the wasted time, the
one-shot hardware utilizes speculative searches. While waiting for
a read to be processed, the one-shot hardware sets up the inputs
for the next read so that if the current read does not result in a hit,
the next read will be processed on the following cycle. If there is a
hit, the one-shot hardware simply discards the speculative values.
This design sacrifices power in order to meet our timing deadline.

 We evaluated different TCAM sizes ranging from 2 through
1024 entries. The remainder of the stack was stored in a dual-port
SRAM and required sequential scanning and also used speculative
reading. Using TCAM sizes of 256, 512, and 1024 we achieved
average address processing times of 89, 61, and 50 cycles.
Whereas a 1024-entry TCAM coupled with SRAM for the
remainder of the stack nearly meets our timing constraints, the
area overhead is too large.

 To reduce the memory requirements, we studied the locality
characteristics of the code. The premise is that, given the 90-10
rule [24], the most frequently executed instructions will remain
near the top of the stack. If we restrict the stack size and the stack
becomes full, the stack will drop the last address to make room for
the new address.

 We re-evaluated the benchmarks using TCAM sizes ranging
from 2 to 1024 and stack size limits ranging from 8 to 1024. We
discovered that by limiting the stack size to 512 entries, we could
achieve identical energy savings. In addition, by implementing the
entire stack in a TCAM, we could achieve an average address
processing time of 47.9 instructions with individual benchmark
values ranging from 40.2 to 51.

We implemented the custom one-shot hardware in
synthesizable VHDL and verified cycle counts. We discovered
that the maximum operating frequency of the design implemented
in 0.18-micron technology was 200MHz. The update table
operation was on the critical path and required determination of
the correct layer and register values to update as well as

incrementing a counter. We observed that the table update
operation could be done in parallel and did not need to be on the
critical path. To address this, we designed a custom co-processing
circuit to encapsulate table updates.

 Figure 3 shows a block diagram of the major components of
the one-shot tuner. The buffer controller is a simple controller
responsible for applying the sample rate and filling the address
buffer/queue. The queue is a simple producer/consumer buffer
that buffers addresses to be processed and asserts a signal when an
address is ready. For quickest processing, the controller can
consume addresses and the buffer can fill the queue
simultaneously. However, to eliminate the need for a dual-port
memory, the output to the controller is stored in a separate register
than can be read while the queue, implemented in a single-port
SRAM, can be written to simultaneously. The conflict vector is
responsible for handling details pertaining to minimum
associativity requirements to yield cache hits. Figure 4 shows a
simplified finite state machine for the controller. Only critical
signals are shown and if not specified, a signal is implicitly set to
0.

4. Design evaluation
4.1 Experimental setup

We compare our non-intrusive one-shot tuner to a state-of-the-
art intrusive heuristic (IH) in a runtime environment using the
same configurable cache architecture as the evaluation
methodology discussed in section 3.1 and detailed in [28].

 For the one-shot tuner, we modeled the design in synthesizable
VHDL and synthesized using Synopsys Design Compiler [25] to
determine area requirements. We simulated the design at the gate
level to capture switching activity and used Synopsys Power
Compiler [25] to calculate power consumption. For TCAM power
and energy consumption we utilized a TCAM power estimator
[1]. We used the Artisan memory compiler [4] to model the queue

Figure 3: Block diagram of hardware implementation of
the one-shot tuner. Signal detail has been simplified

and control lines are omitted.

Figure 4: State diagram for the one-shot tuner controller.
If not specified, signals are set to 0.

idle

shift
ready

assoc
wait

assoc
ready

shift
wait

wait
cv

if inst_ready /
 addr = data, deQ = 1
 shift = MIN_SHIFT+1, TCAM_read = 1
 TCAM_data = data >> MIN_SHIFT

TCAM_data = addr >> shift
shift ++, TCAM_read = 1

if !hit
 and shift = MAX_SHIFT+1

if !hit /
TCAM_data = addr >> shift

shift ++, TCAM_read = 1
if hit /
 priority = TCAM_addr
 loc = TCAM_addr
 TCAM_read = 1
 TCAM_data =
 (addr >> shift-1)
 &MIN_SETS
 sets = MIN_SETS
 sets++, shift-- if cv_done and

 sets!=MAX_SETS /
 UPDATE_TABLE
 priority = loc
 TCAM_read = 1
 TCAM_data =
 (addr >> shift)
 &sets

if !cv_done

TCAM_read = 1
priority = loc
TCAM_data =
 (addr >> shift)&sets
sets ++

 if matches > 1 /
 INVOKE CV
 sets --

if matches = 1 /
 UPDATE_TABLE
 priority = loc
 TCAM_read = 1
 TCAM_data =
 (addr >> shift)&sets
 sets ++

if cv_done and
 sets=MAX_SETS+1 and
 shift=MAX_SHIFT+1 /
 UPDATE STACK

if sets = MAX_SETS+1
 and shift = MAX_SHIFT+1 /
 UPDATE_STACK

if sets = MAX_SETS+1
 and shift != MAX_SHIFT
 TCAM_read = 1
 TCAM_data = (addr<<shift)
 shift ++

if cv_done and
 shift!=MAX_SHIFT+1 /
 TCAM_read = 1
 TCAM_data = (addr<<shift)
 shift++

 Conflict
Vector

 Table
Decoder

α1
α2
α4

Controller

 Buffer
Controller

 Buffer (Queue)inst_ready
deQ

TC
A

M

in
st

 a
dd

r

data
TCAM

data

hit

TCAM
addr

priority

matches

ta
bl

e
up

da
te

in
vo

ke

cv

cv
 d

on
e

as a single-port SRAM. We use 0.18-micron technology running
at 1.8V for all components.

4.2 Energy and performance
We compare energy expenditures and tuning performance of

the IH and our non-invasive one-shot tuner. The one-shot tuner
runs the application for a single iteration with the base cache
configuration while simultaneously gathering statistics for all
cache configurations. The energy expended during tuning (tuning
energy) is the energy consumed by the custom hardware. The one-
shot method has no performance overhead. The IH explores many
different configurations requiring the application to run for one
iteration for each configuration explored. The tuning energy is the
cumulative energy consumed by each configuration explored
minus the energy expended if the base cache had run for those
iterations. The performance overhead is the cumulative execution
time required to explore each configuration minus the execution
time of an equal number of application iterations running with the
base cache configuration.

 Figure 5(a) shows improvement in tuning energy by running
the non-invasive one-shot tuner as opposed to the IH. On average,
the one-shot tuner expends 4.6 times less tuning energy than the
IH with energy savings for all except three benchmarks (values
less than 1 result in more tuning energy by the one-shot tuner) and
two of the benchmarks expend less than 2% additional energy.
For the blit benchmark, the one-shot tuner expends 23% more
tuning energy than the IH because the best configuration is the
smallest cache configuration, which is determined after only 3
iterations of the IH.

 Figure 5(b) shows speedup in tuning time for the non-intrusive
one-shot tuner compared to the IH with an average speedup of 7.7
for all benchmarks.

4.3 Power and area overhead
The one-shot tuner shows both energy and performance

improvements over the IH, but trades off increased area and a
temporary increase in power consumption. In this section we
compare these overheads to the ARM920T [3]. We point out that
the reported area and power consumption for the ARM920T is
likely optimistic while our numbers are pessimistic and actual
overheads are likely to be less than what is reported here. The
ARM920T consumes 160mW of power including the cache while
running at 200Mhz. The reported area is 11.2 mm2 including the
cache.

 The custom hardware for our design excluding the TCAM and

queue area is .25 mm2. The area of the queue is .1 mm2. Using a
standard 16-transistor TCAM [13], we estimate the area as 16/6 =
2.7 times larger than an equivalent sized 6-transistor SRAM
resulting in an area of .8 mm2. We pessimistically estimate that
our additional scan-chain logic may increase the TCAM area by
as much as 25%, resulting in a total TCAM area overhead of 1
mm2. The total area overhead of our one-shot tuner is 1.35 mm2 -
a 12% area overhead compared to the ARM920T.

 The power consumption of our design excluding TCAM and
queue access is 14.5 mW. One TCAM access consumes 177 mW
of power [1] and read and write power of the queue is 45 mW and
49.5 mW respectively. TCAM power contributes heavily to
overall power consumption because it is accessed nearly every
cycle due to speculative searching. Queue accesses contribute
very little to average power consumption because the queue is
only accessed 6% of the time – 3% writes and 3% reads. The
average power consumption of the one-shot tuner is 194 mW – a
2.2 times increase in power over the ARM920T. However, we
point out that whereas this is a large increase in power, it is only
the temporary active power during the short tuning cycle, and
after tuning, the hardware would be shutdown and reactivated
only during future tuning cycles. After tuning, the application
need only iterate 4 times to recoup the expended power. For the
ARM920T, the cache subsystem consumes nearly 50% of the total
system power [21] and cache tuning can reduce power
consumption of the cache subsystem by more than 50% resulting
in a total system power reduction of approximately 25%.

5. One-shot tuner implementation
methodology

For practical implementation, we propose replacing the IH with
a one-shot cache tuner in certain operating environments. We
examine both the IH and the one-shot tuner in a diverse
environment such as a PDA intended to run many applications or
a phase-based tuning environment where the cache would change
during the run of an application to match different operating
requirements for different phases of execution [23]. In both of
these situations, the environment may change very quickly, only
iterating a particular instance of an application or phase a few
times before moving to a different instance. If the environment
changes too quickly, the IH may not even have time to complete
the tuning iterations before the environment changes.

 We analyze the time needed to amortize tuning energy for both
the IH and the non-invasive one-shot tuner targeted at the
persistency of an application running on a PDA. The persistency

Figure 5: Improvements by a single-pass cache evaluation methodology versus a heuristic-based cache exploration
methodology. (a) Improvement in energy expended (values less than 1 denote an increase in energy). (b) Tuning speedup

obtained.

0.99 0.77 0.98

0

4

8

12

br
evep
ic

ra
wc
au
di
o

po
cs
ag

g7
21
De
co
de

pe
gw
itD
ec
od
e
v4
2

uc
bq
so
rt

g3
fa
x
bi
lv

bi
na
ry bl
it

m
at
m
ul

m
pe
gD
ec
od
e

pe
gw
itE
nc
od
e

jp
eg
De
co
de

ps
-jp
eg fir

jp
eg
En
co
de
bc
nt

av
er
ag
e

0

4

8

12

16

br
evep
ic

ra
wc
au
di
o

po
cs
ag

g7
21
De
co
de

pe
gw
itD
ec
od
e
v4
2

uc
bq
so
rt

g3
fa
x
bi
lv

bi
na
ry bl
it

m
at
m
ul

m
pe
gD
ec
od
e

pe
gw
itE
nc
od
e

jp
eg
De
co
de

ps
-jp
eg fir

jp
eg
En
co
de
bc
nt

av
er
ag
e

(a) (b)

1

is measured as the number of iterations of an application before a
new application is loaded. Over a period of time, a PDA user may
start many applications but only use each of those for a short
period of time.

Figure 6 evaluates different application persistency values. The
x-axis shows the number of application iterations and the y-axis
shows the average energy consumption across all benchmarks
normalized to each application running with the base cache
configuration. In each pair of bars, the first bar is the energy
consumption of the IH and the second bar is the non-intrusive
one-shot tuner. Each bar gives energy consumption broken into
tuning energy and energy expended due to normal execution. A
normalized value of 1 is the point at which the application has
iterated long enough with the tuned cache to recoup the tuning
energy. After only 2 iterations, the one-shot tuner has recouped all
of the extra tuning energy while the IH takes 7 iterations to break-
even. We also notice the time it takes for each method to converge
on the maximum potential energy savings. The one-shot method
converges to the maximum energy savings after 25 iterations and
is within 5% of the maximum energy savings after only 10
iterations. The IH takes 75 iterations to converge on the maximum
energy savings and comes within 5% after 50 iterations.
Additionally, the tuning energy for the IH is not completely
amortized until after 50 iterations.

6. Conclusions and future work
In this paper, we present the first run-time non-intrusive one-

shot cache tuner for hardware implementation through
modification of a simulation-based software methodology. We
compare our one-shot tuner with an intrusive heuristic tuning
method and show 4.6 times less tuning energy and a 7.7 times
speedup in tuning time with acceptable size and power overhead.
We look at a practical implementation of the one-shot tuner and in
summary, we propose that the invasive heuristic is still the best
option in situations with very high persistency. However, the non-
invasive one-shot tuner is significantly better where applications
or phases change regularly. Future work includes extending the
one-shot tuner to evaluate multiple levels of cache.

7. Acknowledgements
This work was supported in part by the National Science

Foundation (CNS-0614957) and the Semiconductor Research
Corporation (2005-HJ-1331).

8. References
[1] B. Agrawal, T. Sherwood. Modeling TCAM power for next

generation network devices. IEEE International Symposium on
Performance Analysis of Systems and Software, 2006.

[2] D. Albonesi. Selective cache ways: on-demand cache resource
allocation. MICRO 1999

[3] ARM, www.arm.com.
[4] Artisan. www.artisan.com
[5] R. Balasubramonian, D. Albonesi, A. Byuktosunoglu, S. Dwarkada.

Memory hierarchy reconfiguration for energy and performance in
general-purpose processor architectures. MICRO 2000.

[6] E. Berg, E. Hagerstein. StatCache: a probabilistic approach to
efficient and accurate data locality analysis. IEEE International
Symposium on Performance Analysis of Systems and Software, 2004.

[7] D. Burger, T. Austin, S. Bennet. Evaluating future microprocessors:
the simplescalar toolset.University of Wisconsin-Madison. Computer
Science Department Technical Report CS-TR-1308, July 2000

[8] A. Ghosh, T. Givargis. Cache optimization for embedded processor
cores: an analytical approach. International Conference on Computer
Aided Design, November 2003.

[9] T. Givargis. F. Vahid. Platune: a tuning framework for system-on-a-
chip platforms. IEEE Transactions on Computer Aided Design,
November 2002.

[10] A. Gordon-Ross, F. Vahid, N. Dutt. Automatic tuning of two-level
caches to embedded applications. Design Automation and Test in
Europe, Feb 2004.

[11] A. Gordon-Ross, F. Vahid, N. Dutt. Fast configurable-cache tuning
with a unified second level cache. International Symposium on Low
Power Electronics and Design, 2005.

[12] M. Hill, A. Smith. Evaluating associativity in CPU caches, IEEE
Transactions on Computing, 1989.

[13] R. Kempke. A. McAuley. Ternary CAM memory architecture and
methodology. U.S. Patent 5 841 874, Aug 13 1996

[14] C. Lee, M. Potkonjak, W.H. Mangione-Smith. MediaBench: A tool
for evaluating and synthesizing multimedia and communication
systems. MICRO 1997.

[15] A. Malik, W. Moyer, D. Cermak. A low power unified cache
architecture providing power and performance flexibility. International
Symposium on Low Power Electronics and Design, 2000

[16] R. Mattson, J. Gecsei, D. Slutz, I. Traiger. Evaluation techniques for
storage hierarchies. IBM Systems Journal, 1970

[17] MicroBlaze, www.xilinx.com
[18] M. Palesi, T. Givargis, Multi-objective design space exploration

using genetic algorithms. International Workshop on
Hardware/Software Codesign, May 2002

[19] J. Pierper, A. Mellan, J. Paul, D. Thomas, F. Karim. High level cache
simulation for heterogeneous multiprocessors, Design Automation
Conference, 2004

[20] V. Ravikumar, R. Mahapatra, L. Bhuyan. EaseCAM: an energy and
storage efficient TCAM-based router architecture for IP lookup. IEEE
Transactions on Computers, May 2005.

[21] S. Segars. Low power design techniques for microprocessors,
International Solid State Circuit Conf, 2001

[22] R. Sugumar, S. Abraham. Efficient simulation of multiple cache
configurations using binomial trees. Technical Report CSE-TR-111-91,
1991.

[23] T. Sherwood, S. Sair, B. Calder. Phase tracking and prediction. 30th
International Symposium on Computer Architecture, 2003

[24] D. Suresh, W. Najjar, F. Vahid, J. Villarreal, G. Stitt. Profiling tools
for hardware/software partitioning of embedded aplications. LCTES
2003.

[25] Synopsys, www.synopsys.com
[26] Tensilica, Xtensa Processor Generator, www.tensilica.com/.
[27] P. Viana. A methodology to explore the design space of memory

hierarchies for embedded systems. PhD Thesis, 2006
[28] C. Zhang, F. Vahid, W. Najjar. A highly-configurable cache

architecture for embedded systems. 30th Annual International
Symposium on Computer Architecture, June 2003.

Figure 6: Average energy consumption across all
benchmarks normalized to base cache configuration for

different application persistency.

E
ne

rg
y

co
ns

um
pt

io
n

no
rm

al
iz

ed

to
 b

as
e

ca
ch

e
co

nf
ig

ur
at

io
n

1 2 5 10 25 50 75

 tuning energy
execution energy

 invasive heuristic

non-invasive
one-shot

0.5

1.0

1.5
2.0

2.5
3.0

Number of iterations

Breakeven at 1

