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Abstract 
We introduce a new non-intrusive on-chip cache-tuning hardware 
module capable of accurately predicting the best configuration of 
a configurable cache for an executing application. Previous 
dynamic cache tuning approaches change the cache configuration 
several times as part of the tuning search process, executing the 
application using inferior configurations and temporarily causing 
energy and performance overhead. The introduced tuner uses a 
different approach, which non-intrusively collects data on 
addresses issued by the microprocessor, analyzes that data to 
predict the best cache configuration, and then updates the cache 
to the new best configuration in “one-shot,” without ever having 
to examine inferior configurations. The result is less energy and 
less performance overhead, meaning that cache tuning can be 
applied more frequently. We show through experiments that the 
one-shot cache tuner can reduce memory-access related energy 
for instructions by 35% and comes within 4% of a previous 
intrusive approach, and results in 4.6 times less energy overhead 
and a 7.7 times speedup in tuning time compared to a previous 
intrusive approach, at the main expense of 12% larger size.  
 
 

1. Introduction  
Cache subsystems contribute to a significant percentage of 

microprocessor system energy consumption, often 50% or more 
[21]. Caches contain several design parameters, including total 
size, line size, and associativity. Microprocessor designers 
typically optimize cache parameter values to achieve good 
performance/energy across an entire domain of applications, but 
any one application will usually exhibit better performance/energy 
if the parameter values could be customized for that application’s 
memory usage characteristics. Previous research shows savings as 
high as 53% for memory-access-related energy and a 30% 
performance improvement due to such cache tuning [10].  

 Due to increasing demand for low-energy microprocessor 
systems, from small embedded systems seeking to extend battery 
lifetime to large server systems seeking to reduce electricity and 
cooling costs, caches with configurable parameter values have 
been introduced in recent years. Synthesizable (soft-core) 
processors include numerous parameters whose values can be set 
by a designer before synthesis [3][17][26]. Albonesi [2], Zhang 
[28], and Balasubramonian [5] each introduced hardware (hard-
core) caches whose parameter values could be adjusted, statically 
or dynamically, just by setting bits in a configuration register. The 
commercially-available M*CORE processor [15] had a hardware 

configurable 4-way cache where each way could be shut down, or 
configured for instruction, data, or both. 

 Configurable caches may have many thousands of possible 
configurations, making tuning to an application a hard problem. 
Thus, several researchers have proposed automated cache tuning 
approaches. Most of those approaches assume that tuning is done 
statically, meaning done once during application design time. 
Givargis proposed an exhaustive simulation approach [9], while 
Palesi [18] improved that approach using a genetic search 
algorithm. Ghosh [8] presented a heuristic that, through an 
analytical model, directly determined the cache configuration 
based on the designer’s performance constraints and application 
characteristics. 

 Other cache tuning approaches can be used dynamically, while 
an application executes on a microprocessor (requiring of course a 
dynamically adjustable configurable cache). Zhang [28] presented 
a single-level cache tuning heuristic that examined on average 5 
of 18 possible configurations, taking care to minimize cache 
flushing for suitability as a dynamic tuning heuristic. Gordon-
Ross [11] extended Zhang’s heuristic for a two-level configurable 
cache with 18,000 possible configurations. That heuristic searched 
only 30 configurations while obtaining 62% energy savings – 
within 1% of optimal.   

 Previous dynamic cache tuning approaches search for the best 
cache configuration for a running application by dynamically 
adjusting the configurable cache to examine candidate 
configurations. Examining inferior candidates is intrusive and 
temporarily introduces energy and/or performance overhead. 
Thus, those tuning approaches should be applied sparingly so that 
the overhead of the tuning process does not dominate over the 
improvements of the tuned cache. 

 We therefore sought to develop a non-intrusive cache tuning 
approach that would not examine inferior solutions. The idea 
would be to create a hardware cache-tuning module that non-
intrusively monitors an application’s memory access patterns and 
analytically predicts the best cache configuration for those 
patterns.  If the predicted best cache configuration differed from 
the configuration presently in use (beyond some threshold), the 
cache tuner would reconfigure the cache directly to the new best 
cache, i.e., in “one shot”.  

 A one-shot cache tuning approach involves two key 
challenges. The first is to create an accurate predictor of the best 
configuration. The second is to keep the size and energy of the 
one-shot tuning module, which will certainly be more than in 
previous approaches, down to acceptable values.   

 The contribution of this paper is the development of the first 
non-intrusive one-shot cache tuner suitable for hardware 
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implementation. The one-shot tuner is based on a recent cache 
analysis technique originally developed for simulation-based 
single-pass multi-cache evaluation. Through modifications of this 
technique and use of parallel hardware, we show that the one-shot 
tuner achieves good prediction accuracy and consumes reasonable 
size and power.  

 The paper is organized as follows. Section 2 discusses 
previous research in simultaneous multi-cache evaluation and 
presents the software technique that we will be extending. Section 
3 details the modifications necessary to allow the software 
technique to be implemented in custom hardware as a one-shot 
tuner. Section 4 compares our one-shot tuner to a state-of-the-art 
intrusive cache tuning heuristic. Section 5 gives a practical 
illustration of the one-shot tuner compared to an intrusive cache 
tuning heuristic. 

2. Simultaneous multi-cache evaluation  
2.1 Multiple-pass multi-cache evaluation 

Most previous research in cache configuration emphasized fast 
offline evaluation of multiple cache configurations during 
simulation. Because simulation is slow, much attention was given 
to evaluating more than one cache configuration per simulation, 
i.e., simultaneous multi-cache evaluation. Early research in 
simultaneous multi-cache evaluation by Mattson el al. [16] 
defined the inclusion property of caches. The inclusion property 
states that at any time, the contents of a cache are a subset of the 
contents of a larger cache, allowing simultaneous evaluation of 
fully-associative caches of varying sizes using a stack-based 
methodology. Later, Hill and Smith [12] identified the set 
refinement property and extended the inclusion property to 
include direct-mapped and set-associative caches. The set-
refinement property observes that blocks that are mapped to the 
same set in larger caches are also mapped to the same set in 
smaller caches if the replacement algorithm is a stack algorithm 
such as the least recently used. Much research utilizes these 
properties to develop efficient algorithms for simultaneous multi-
cache evaluation [6][19][22]. Currently, methods only exist for a 
single level of cache. 

In seeking to develop a one-shot cache tuner, the best approach 
seemed to be to adapt previous multi-cache evaluation methods, 
originally intended for software implementation, to a hardware 
implementation. However, while those methods can 
simultaneously evaluate varying values for cache parameters 
including total size, line size, and associativity, the parameters 
themselves must be explored separately, requiring one exploration 
pass per parameter, thus requiring multiple passes. Furthermore, 
some used relatively complex data structures that would be 
difficult to convert to hardware.  

2.2 Single-pass multi-cache evaluation (SPCE) 
Recently, however, we presented a technique [27] that 

proposed a method to evaluate all values for all cache parameters 
simultaneously, requiring only one simulation pass, and using 
tables rather than complex data structures. We provide a brief 
summary here. Like previous simultaneous multi-cache evaluation 
methods, SPCE (pronounced spee-cee) uses a stack. In addition, a 
multi-layered table structure is utilized to record cache hits from 
conflict information gathered from a sequence of addresses. 
 SPCE uses a stack size equal to the number of static 
instructions in the application to store the access trace. When an 

address is processed, the stack is scanned to determine if and 
when that address was last accessed. If the address is not in the 
stack, the address represents a new access and the address is 
pushed to the top of the stack. If the address is in the stack, then 
all addresses preceding that address in the stack will suggest 
particular cache configurations that would have yielded a cache 
hit. After processing the address, the current address is moved to 
the top of the stack. 
 Figure 1 illustrates the algorithm that scans the stack to 
determine which cache configurations would yield a cache hit. 
smin, smax, bmin, and bmax refer respectively to the minimum 
and maximum number of sets and words per line. amax refers to 
the maximum associativity explored. For details, we refer the 
reader to [27]. 

 SPCE uses a multi-layered table structure to tally cache hits. 
The number of different assocativities explored determines the 
number of layers in the table – one layer per associativity. The 
update_table function takes the cache parameter values and 
updates the appropriate table layer and location.  

 After processing every address, the tables are used to 
determine the number of hits for each cache configuration. To 
verify correct cache hit predictions, we simulated each benchmark 
studied for every cache configuration. We concluded that SPCE 
correctly calculates the hit rates for every configuration.  

 We compared SPCE to a state-of-the-art heuristic for single-
level configurable cache exploration and determined that SPCE 
could produce slightly better results (by discovering the optimal 
each time) with a 6 times speedup in simulation time.  
3. Non-intrusive one-shot cache tuning in 
custom hardware 

Section 2.2 described a method for tuning a highly 
configurable cache in a single pass. In this section, we will discuss 
modifications that convert SPCE into the one-shot hardware 
implementation.  

3.1 Evaluation methodology 
To determine the effectiveness of our hardware and ensure no 

degradation in the quality of results, we developed an evaluation 
methodology. To compare our technique with a state-of-the-art 
intrusive cache tuning heuristic, we implemented SPCE as an 
instruction trace processor in C++ for the configurable cache 
described by Zhang [28]. Using Simplescalar [7], we collected 
instruction trace files for a large selection of embedded system 
benchmarks from the Powerstone [15] and MediaBench [14] 
benchmark suites.  

 For comparison purposes, we first ran SPCE to determine the 
energy consumption of each cache configuration for each 

 

 

 

 

 
 

 

 

 

Figure 1: Single-pass multi-cache evaluation algorithm. 

process (addr ) 
   addr=addr>>w   //shift out word offset 
   for b=bmax downto bmin  // for each line size 
      base_addr=addr>>log2(b)  // shift out block offset 
      was_found = lookup_stack ( base_addr ) // scan stack 
      if ( was_found )  
         for s = smin to smax  // for each set 
             num_conflicts =  count_set_conflicts ( s, base_addr ) // scan stack 
             if ( num_conflicts <= amax ) 
                α = roundup(num_conflicts)  // next power of 2 assoc 
                update_table (α, s, b)  // mark appropriate table 
   update_stack ( was_found, addr ) // push or move addr to top 



benchmark using the same energy model described by Zhang [28]. 
We refer to these energy consumption values as the gold energy 
consumption of a configuration. We refer to the lowest energy 
consuming cache, or optimal cache configuration, as the G-
Optimal (gold-optimal) cache. To determine energy savings 
compared to no cache configuration, Zhang also defines a base 
cache configuration consisting of an 8 KByte 4-way cache with a 
32 byte line size. This configuration represents a commonly 
available configuration on a microprocessor and reflects the needs 
of the benchmarks studied. 

 Next, we modified SPCE into the one-shot tuner by 
implementing the changes discussed in sections 3.2 and 3.3. We 
ran each benchmark with the one-shot tuner to gather miss rates 
for each cache configuration and applied the same energy model 
to those miss rates to determine the optimal cache configuration – 
or the P-Optimal (predicted-optimal) cache. To determine the 
effectiveness of our predicted cache, we looked up the gold 
energy consumption for the P-Optimal cache and compared it to 
the gold energy consumption of the G-Optimal cache. 

 To predict address processing time in hardware, we augmented 
the software to count cycles expended per instruction and verified 
those counts with VHDL implementation. 

3.2 Determining an upper bound on address 
processing time 

Assuming a dual-ported SRAM for the stack, a hardware 
implementation of SPCE requires an average of 500 cycles of 
processing time per address, with a worst case processing time of 
nearly 7000 cycles for one address. Unfortunately, SPCE has only 
1.5 cycles of available time on average to update all table 
locations, assuming an average CPI of 1.5. Given the complexity 
of the design and propagation delay, it is unlikely to be able to 
design hardware that could process each address in 1 to 2 
reasonable length clock cycles. 

As opposed to processing each address, the one-shot tuner 
samples the address stream. Address sampling means that the total 
number of hits will be incorrect, but if a good sampling rate is 
chosen, the relative hit rates will be correct, and the one-shot 
tuner will still determine the optimal cache configuration. We 
determined that a good sampling rate would not simply sample 
one instruction and then skip m instructions, but would instead 
buffer n instructions and then skip m instructions. We examined 
buffers sizes ranging from 2 to 64 and skip amounts ranging from 
128 to 16384. 

 We evaluated each benchmark for each sampling rate and 
observed that different sampling rates were best for each 
benchmark. However, not wanting to specialize the sampling rate 
to each application, we chose buffer/skip rates of 4/128, 16/512, 
and 64/2048, sampling only 3% of the instruction stream, but 
providing cache tuning results within 4% of the optimal on 
average. Lower sampling rates resulted in configurations much 
further from the optimal. Among the three 3% rates, we chose 
64/2048 as the best sampling approach, to allow the most absolute 
time to process the buffered addresses given that each address 
takes a variable amount of time to process. Assuming a CPI of 
1.5, the rate translates to (2048*1.5) = 3072 cycles to process 64 
addresses, meaning that the one-shot tuner has an upper bound of 
48 cycles on average to process each instruction. 

 Figure 2 compares the energy consumption normalized to the 
base cache configuration for a sampling rate of 64/2048 compared 

to the optimal cache configuration. On average, the sampling 
technique finds a cache configuration that is only 4% from the 
optimal. However, a few benchmarks resulted in suboptimal 
configurations. We note that these benchmarks performed poorly 
for all sampling rates studied. We examined the locality and 
execution breakdown of those benchmarks and did not discover 
any similarities and suspect that the regularity of the sampling rate 
is to blame for poor performance. We intend to study variable 
sampling rates in future work. 

3.3 Custom hardware 
SPCE’s bottleneck is the stack scanning time. Each stack 

location is examined sequentially and each address can require up 
to 15 scans of the stack. If each search of the stack only accessed 
3.2 locations on average, we could meet our deadline (3.2*15 = 48 
cycles). We evaluated the benchmarks and determined that the 
average stack scan depth was 30 addresses. Clearly, a sequential 
scan of the stack was not going to be feasible and a parallel search 
of the stack was necessary 

 CAMs (Content Addressable Memory) are memory structures 
that allow for a single-cycle fully-associative search of the 
memory for a particular data item. TCAMs (Ternary Content 
Addressable Memory) have the same basic functionality as a 
CAM but allow for bits within the search data to be specified as 
don’t care values (-).  Thus, searching for the data value 0101- 
would produce a hit on both 01010 and 01011. TCAMs are 
heavily used in routing tables for network traffic [20]. 

 A TCAM can readily be integrated into our hardware 
approach, eliminating the sequential search of the stack. For the 
initial stack search to determine a hit, the one-shot hardware 
would simply perform a lookup for the address with the block 
offset masked as don’t care values. The TCAM will either flag the 
location of the data or indicate that the data doesn’t exist. If more 
than one entry in the TCAM matches, the one-shot hardware is 
only interested in the highest priority match, or the value with the 
highest position in the stack and is specified by the TCAM. 

 If the address hits in the TCAM, the one-shot tuner determines, 
for each cache size, the minimum associativity necessary to yield 
a hit. Again, this can be done in a single cycle with a slight 
customization to the standard TCAM. The one-shot hardware 
searches the TCAM for matches of data items that map to the 
same set as the current address using don’t care values. The 
TCAM outputs the number of matches that occurred, specifying 
the minimum associativity necessary to yield a cache hit. 

 

 

 

 

 

 

 

Figure 2: Comparing energy savings in the instruction 
cache subsystem for the configuration chosen using an 

address sampling technique compared to the optimal 
cache configuration. 
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 After processing an address that yields a hit at the minimum 
block size, SPCE moves that address to the top of the stack. With 
a standard TCAM, such movement would require reading out and 
writing back every value to be moved. However, increasingly-
common scan chains, if included in the TCAM and appropriately 
modified, allow all values in the TCAM to be shifted by one 
location in a single cycle. We include this functionality in our 
TCAM to improve stack updating time. 

 To get the fastest stack searching time, the one-shot hardware 
must read from the TCAM every cycle instead of wasting 1 cycle 
setting up each TCAM read. To eliminate the wasted time, the 
one-shot hardware utilizes speculative searches. While waiting for 
a read to be processed, the one-shot hardware sets up the inputs 
for the next read so that if the current read does not result in a hit, 
the next read will be processed on the following cycle. If there is a 
hit, the one-shot hardware simply discards the speculative values. 
This design sacrifices power in order to meet our timing deadline.  

 We evaluated different TCAM sizes ranging from 2 through 
1024 entries. The remainder of the stack was stored in a dual-port 
SRAM and required sequential scanning and also used speculative 
reading. Using TCAM sizes of 256, 512, and 1024 we achieved 
average address processing times of 89, 61, and 50 cycles. 
Whereas a 1024-entry TCAM coupled with SRAM for the 
remainder of the stack nearly meets our timing constraints, the 
area overhead is too large.  

 To reduce the memory requirements, we studied the locality 
characteristics of the code. The premise is that, given the 90-10 
rule [24], the most frequently executed instructions will remain 
near the top of the stack. If we restrict the stack size and the stack 
becomes full, the stack will drop the last address to make room for 
the new address.  

 We re-evaluated the benchmarks using TCAM sizes ranging 
from 2 to 1024 and stack size limits ranging from 8 to 1024. We 
discovered that by limiting the stack size to 512 entries, we could 
achieve identical energy savings. In addition, by implementing the 
entire stack in a TCAM, we could achieve an average address 
processing time of 47.9 instructions with individual benchmark 
values ranging from 40.2 to 51. 

We implemented the custom one-shot hardware in 
synthesizable VHDL and verified cycle counts. We discovered 
that the maximum operating frequency of the design implemented 
in 0.18-micron technology was 200MHz. The update table 
operation was on the critical path and required determination of 
the correct layer and register values to update as well as 

incrementing a counter. We observed that the table update 
operation could be done in parallel and did not need to be on the 
critical path. To address this, we designed a custom co-processing 
circuit to encapsulate table updates. 

 Figure 3 shows a block diagram of the major components of 
the one-shot tuner. The buffer controller is a simple controller 
responsible for applying the sample rate and filling the address 
buffer/queue. The queue is a simple producer/consumer buffer 
that buffers addresses to be processed and asserts a signal when an 
address is ready. For quickest processing, the controller can 
consume addresses and the buffer can fill the queue 
simultaneously. However, to eliminate the need for a dual-port 
memory, the output to the controller is stored in a separate register 
than can be read while the queue, implemented in a single-port 
SRAM, can be written to simultaneously. The conflict vector is 
responsible for handling details pertaining to minimum 
associativity requirements to yield cache hits. Figure 4 shows a 
simplified finite state machine for the controller. Only critical 
signals are shown and if not specified, a signal is implicitly set to 
0.  

4. Design evaluation 
4.1 Experimental setup 

We compare our non-intrusive one-shot tuner to a state-of-the-
art intrusive heuristic (IH) in a runtime environment using the 
same configurable cache architecture as the evaluation 
methodology discussed in section 3.1 and detailed in [28].  

 For the one-shot tuner, we modeled the design in synthesizable 
VHDL and synthesized using Synopsys Design Compiler [25] to 
determine area requirements. We simulated the design at the gate 
level to capture switching activity and used Synopsys Power 
Compiler [25] to calculate power consumption. For TCAM power 
and energy consumption we utilized a TCAM power estimator 
[1]. We used the Artisan memory compiler [4] to model the queue 

 
 
 
 
 
 
 
 
 

Figure 3: Block diagram of hardware implementation of 
the one-shot tuner.  Signal detail has been simplified 

and control lines are omitted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4: State diagram for the one-shot tuner controller. 
If not specified, signals are set to 0.  
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as a single-port SRAM. We use 0.18-micron technology running 
at 1.8V for all components. 

4.2 Energy and performance 
We compare energy expenditures and tuning performance of 

the IH and our non-invasive one-shot tuner. The one-shot tuner 
runs the application for a single iteration with the base cache 
configuration while simultaneously gathering statistics for all 
cache configurations. The energy expended during tuning (tuning 
energy) is the energy consumed by the custom hardware. The one-
shot method has no performance overhead. The IH explores many 
different configurations requiring the application to run for one 
iteration for each configuration explored. The tuning energy is the 
cumulative energy consumed by each configuration explored 
minus the energy expended if the base cache had run for those 
iterations. The performance overhead is the cumulative execution 
time required to explore each configuration minus the execution 
time of an equal number of application iterations running with the 
base cache configuration.  

 Figure 5(a) shows improvement in tuning energy by running 
the non-invasive one-shot tuner as opposed to the IH. On average, 
the one-shot tuner expends 4.6 times less tuning energy than the 
IH with energy savings for all except three benchmarks (values 
less than 1 result in more tuning energy by the one-shot tuner) and 
two of the benchmarks expend less than 2% additional energy. 
For the blit benchmark, the one-shot tuner expends 23% more 
tuning energy than the IH because the best configuration is the 
smallest cache configuration, which is determined after only 3 
iterations of the IH. 

 Figure 5(b) shows speedup in tuning time for the non-intrusive 
one-shot tuner compared to the IH with an average speedup of 7.7 
for all benchmarks. 

4.3 Power and area overhead 
The one-shot tuner shows both energy and performance 

improvements over the IH, but trades off increased area and a 
temporary increase in power consumption. In this section we 
compare these overheads to the ARM920T [3]. We point out that 
the reported area and power consumption for the ARM920T is 
likely optimistic while our numbers are pessimistic and actual 
overheads are likely to be less than what is reported here. The 
ARM920T consumes 160mW of power including the cache while 
running at 200Mhz. The reported area is 11.2 mm2 including the 
cache. 

 The custom hardware for our design excluding the TCAM and 

queue area is .25 mm2. The area of the queue is .1 mm2. Using a 
standard 16-transistor TCAM [13], we estimate the area as 16/6 = 
2.7 times larger than an equivalent sized 6-transistor SRAM 
resulting in an area of .8 mm2. We pessimistically estimate that 
our additional scan-chain logic may increase the TCAM area by 
as much as 25%, resulting in a total TCAM area overhead of 1 
mm2. The total area overhead of our one-shot tuner is 1.35 mm2  - 
a 12% area overhead compared to the ARM920T.  

 The power consumption of our design excluding TCAM and 
queue access is 14.5 mW. One TCAM access consumes 177 mW 
of power [1] and read and write power of the queue is 45 mW and 
49.5 mW respectively. TCAM power contributes heavily to 
overall power consumption because it is accessed nearly every 
cycle due to speculative searching. Queue accesses contribute 
very little to average power consumption because the queue is 
only accessed 6% of the time – 3% writes and 3% reads. The 
average power consumption of the one-shot tuner is 194 mW – a 
2.2 times increase in power over the ARM920T. However, we 
point out that whereas this is a large increase in power, it is only 
the temporary active power during the short tuning cycle, and 
after tuning, the hardware would be shutdown and reactivated 
only during future tuning cycles. After tuning, the application 
need only iterate 4 times to recoup the expended power. For the 
ARM920T, the cache subsystem consumes nearly 50% of the total 
system power [21] and cache tuning can reduce power 
consumption of the cache subsystem by more than 50% resulting 
in a total system power reduction of approximately 25%.  

5. One-shot tuner implementation 
methodology 

For practical implementation, we propose replacing the IH with 
a one-shot cache tuner in certain operating environments. We 
examine both the IH and the one-shot tuner in a diverse 
environment such as a PDA intended to run many applications or 
a phase-based tuning environment where the cache would change 
during the run of an application to match different operating 
requirements for different phases of execution [23]. In both of 
these situations, the environment may change very quickly, only 
iterating a particular instance of an application or phase a few 
times before moving to a different instance. If the environment 
changes too quickly, the IH may not even have time to complete 
the tuning iterations before the environment changes. 

 We analyze the time needed to amortize tuning energy for both 
the IH and the non-invasive one-shot tuner targeted at the 
persistency of an application running on a PDA. The persistency 

 

 

 

 

 

 

 
 

 

Figure 5: Improvements by a single-pass cache evaluation methodology versus a heuristic-based cache exploration 
methodology. (a) Improvement in energy expended (values less than 1 denote an increase in energy). (b) Tuning speedup 

obtained. 
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is measured as the number of iterations of an application before a 
new application is loaded. Over a period of time, a PDA user may 
start many applications but only use each of those for a short 
period of time.  

Figure 6 evaluates different application persistency values. The 
x-axis shows the number of application iterations and the y-axis 
shows the average energy consumption across all benchmarks 
normalized to each application running with the base cache 
configuration. In each pair of bars, the first bar is the energy 
consumption of the IH and the second bar is the non-intrusive 
one-shot tuner. Each bar gives energy consumption broken into 
tuning energy and energy expended due to normal execution. A 
normalized value of 1 is the point at which the application has 
iterated long enough with the tuned cache to recoup the tuning 
energy. After only 2 iterations, the one-shot tuner has recouped all 
of the extra tuning energy while the IH takes 7 iterations to break-
even. We also notice the time it takes for each method to converge 
on the maximum potential energy savings. The one-shot method 
converges to the maximum energy savings after 25 iterations and 
is within 5% of the maximum energy savings after only 10 
iterations. The IH takes 75 iterations to converge on the maximum 
energy savings and comes within 5% after 50 iterations. 
Additionally, the tuning energy for the IH is not completely 
amortized until after 50 iterations. 

6. Conclusions and future work  
In this paper, we present the first run-time non-intrusive one-

shot cache tuner for hardware implementation through 
modification of a simulation-based software methodology. We 
compare our one-shot tuner with an intrusive heuristic tuning 
method and show 4.6 times less tuning energy and a 7.7 times 
speedup in tuning time with acceptable size and power overhead. 
We look at a practical implementation of the one-shot tuner and in 
summary, we propose that the invasive heuristic is still the best 
option in situations with very high persistency. However, the non-
invasive one-shot tuner is significantly better where applications 
or phases change regularly. Future work includes extending the 
one-shot tuner to evaluate multiple levels of cache. 
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Figure 6: Average energy consumption across all 
benchmarks normalized to base cache configuration for 

different application persistency. 
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