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Abstract 
Parameterized components are becoming more commonplace in 
system design. The process of customizing parameter values for a 
particular application, called tuning, can be a challenging task 
for a designer. Here we focus on the problem of tuning a 
parameterized soft-core microprocessor to achieve the best 
performance on a particular application, subject to size 
constraints. We map the tuning problem to a well-established 
statistical paradigm called Design of Experiments (DoE), which 
involves the design of a carefully selected set of experiments and 
a sophisticated analysis that has the objective to extract the 
maximum amount of information about the effects of the input 
parameters on the experiment.  We apply the DoE method to 
analyze the relation between input parameters and the 
performance of a soft-core microprocessor for a particular 
application, using only a small number of synthesis/execution 
runs. The information gained by the analysis in turn drives a 
soft-core tuning heuristic. We show that using DoE to sort the 
parameters in order of impact results in application speedups of 
6x-17x versus an un-tuned base soft-core. When compared to a 
previous single-factor tuning method, the DoE-based method 
achieves 3x-6x application speedups, while requiring about the 
same tuning runtime. We also show that tuning runtime can be 
reduced by 40-45% by using predictive tuning methods already 
built into a DoE tool.  

1. Introduction  
Soft-core processors are becoming increasingly common in 

modern technology. A soft-core processor is a programmable 
processor that can be synthesized to a circuit, typically integrated 
into a larger system existing on an application-specific integrated 
circuit (ASIC) or field-programmable gate array (FPGA). 
Popular commercially available soft-cores include ARM [1], 
Tensillica [13], Microblaze [14], and Nios [2]. Several trends of 
modern technology catalyze soft-core usage, including stabler 
synthesis tools, higher-capacity ASICs and FPGAs, new 
commercial toolsets for application-specific instruction-set 
processors, and increasing demands for high-performance and 
low-power embedded processing.    

Whereas traditional pre-fabricated processors must be 
optimized for good performance across an entire domain of 
applications, soft-cores can instead be customized to the 
particular applications they execute. For example, a particular 
application may perform best on a processor having a large cache 
and a floating-point unit, while another application may instead 
require a hardware multiplier and have no need for a cache. 
Nearly all soft-core providers therefore include parameters that 
may be customized by a soft-core user. Common parameters 
include instantiatable coprocessor units such as hardware 

floating-point, multiplier, divider, or barrel shifter units; cache 
architecture settings such as the use of one or two levels of 
cache, separate versus unified cache, cache size, line size, 
associativity, and write back policy; and processor micro-
architecture features such as pipeline depth, bypass logic, or 
register-file size. The majority of the soft-core processors 
mentioned above contain more than ten customizable parameters, 
and the trend in newer versions is towards increasing the number 
of parameters. In this work, we only consider customizations that 
consist of tuning parameter values; such customizations are in a 
different category than are application-specific instruction-set 
extensions [13], which involve the design of new hardware 
and/or the introduction of new instructions. Extensions could be 
integrated into a tuning approach by pre-determining good 
possible extensions, and treating each possibility as a particular 
value of an “extension” parameter.  

The process of customizing a soft-core by tuning parameter 
values can yield improved performance, lower-energy, and/or 
smaller size. A newly evolving size-constrained scenario 
involves dozens of FPGA soft-cores competing for limited 
hardware-resources [9], for which tuning will be important to 
make best use of that limited hardware.   

Soft-core providers offer little or no automated support to 
assist users in customizing a soft-core’s parameters to a 
particular application, other than providing simulation tools. As a 
consequence, users must manually guess and simulate (or 
implement) a set of candidate configurations in order to find the 
best parameters for a particular application. Each such simulation 
may require tens of minutes, limiting the number of candidate 
configurations that can be examined. Some recent research 
addresses automated soft-core configuration using custom 
heuristics developed for a particular parameters [12]. However, 
those custom heuristics do not scale to handle a broader range of 
parameters, as shown below.  

In this paper, we propose to map the soft-core tuning 
problem to a well-established scientific paradigm known as 
Design of Experiments (DoE) [8][10]. DoE is an eighty years old 
statistics discipline which aims to optimize parameterized 
physical phenomena through a carefully chosen set of 
experiments. In the DoE framework, one of the objectives is to 
minimize the number of experiments because each experiment is 
costly and/or time-consuming. The main idea is to design the set 
of experiments such that subsequent analysis of the resulting data 
provides maximum information about the impact of each 
parameter on the metrics of interest.  

We claim that the work in this paper makes two distinct 
contributions. First, we will show that the DoE-based strategy 
yields a more robust soft-core customization methodology. The 
DoE-based method not only handles a wider variety of parameter 
types than previous approaches, but also results in better-
customized soft-cores having improved performance than 



obtained by previous heuristics. Second, to the best of our 
knowledge, this work represents the first use of the DoE 
paradigm in design automation. With the increasing introduction 
on the market of highly parameterized intellectual property 
components for use in system-on-chip designs, the DoE 
paradigm may prove useful for a variety of design automation 
problems involving the customization of a large spectrum of 
parameterized components or platforms.     

2. Previous Work 
Kumar [6][7] showed the benefit of multi-core general-

purpose processor chips having heterogeneous rather than 
homogenous cores. They considered superscalar processor 
parameters related to cache, instantiations of floating-point, 
multiply, and arithmetic-logic units, and sizes of the register file, 
translation lookaside buffer, and load/store queue, yielding 480 
possible single-core configurations. Via exhaustive search, they 
showed that an optimally configured four-core system has up to 
40% better performance for a given workload, versus the best 
homogeneous four-core system for that workload.  

Givargis [5] developed a tuning approach for parameterized 
system-on-a-chip platforms, considering parameters related to 
cache, bus, processor voltage, and a few parameters in 
peripherals. They used a user’s denotation of independent subsets 
of parameters to extensively prune the configuration space before 
searching dependent parameters exhaustively or using heuristics. 
They showed roughly 5x tradeoffs between power and 
performance for different applications.  

Sekar [11] discussed trends toward highly parameterized 
platforms, including parameterized processor cores, peripherals, 
caches, etc., and then described a technique for dynamically 
tuning the voltage and frequency of the processor.   

Yiannacouras [15][16] developed a framework for generating 
and customizing a soft-core for FPGAs, with parameters 
including hardware versus software multiplication, different 
shifter implementations, and pipeline depth. They showed 30% 
improvements obtained by optimally tuning soft-core parameters 
for a specific application, using exhaustive search to carry out the 
tuning. Their work motivates the need to develop efficient 
automated customization heuristics.  

We previously [12] developed heuristics for soft-core 
parameter tuning. The approach assumed that synthesis and 
execution (or simulation) of soft-core configurations, rather than 
pure estimation approaches, is essential for accurate evaluation 
of FPGA soft-cores, due to the tremendous variation of soft-core 
performance for different applications and across the hundreds of 
different FPGA devices by an FPGA vendor. Because 
synthesis/execution runs are costly, requiring tens of minutes or 
more, we developed several tuning heuristics that utilized only 
about a dozen synthesis/execution runs, thus executing in 1-2 
hours. We considered a Xilinx Microblaze soft-core processor 
whose parameters each involved the option of instantiating a 
hardware component, including a hardware multiplier, barrel 
shifter, divider, floating point unit, or a fixed-sized cache. That 
work showed 2x application speedups of a customized core 
versus a base core having no optional components instantiated.  

Our previous best heuristic (as well as our other heuristics) 
used what we will call a “single factor” analysis, a common 
analysis approach. The heuristic was guided by the speedup 
versus the base core when instantiating exactly one (single 

factor) of the core’s optional hardware components. The heuristic 
then sorted each component by the ratio of its speedup over size, 
yielding an “impact-ordered tree” of parameters, which the 
heuristic then descended (encountering two choices per tree 
level) to find a solution. While a single-factor analysis is 
effective for on/off-type parameters, such an approach lacks an 
obvious extension for parameters that have two non-zero values 
(which value would be the base value?) or that have three or 
more values. Furthermore, a single-factor analysis may be 
inaccurate if parameters are interdependent. For example, neither 
of two components may individually yield speedup, but the two 
together may; conversely, two components may individually 
each yield speedup, but instantiating both may yield little benefit 
beyond instantiating just one, due to functionality overlap. In 
contrast, the approach we introduce here performs a multi-factor 
analysis, supporting multi-valued parameters and considering 
interdependent parameters, as will be described.  

3. The Design of Experiments Paradigm 
Design of Experiments (DoE) [8][10] is a statistical paradigm 

whose objective is to design a small set of experiments that 
provides maximum information on how the experimental 
parameters, or factors, influence the output and interact with one 
another. The basic assumption in DoE is that experiments are 
costly (with respect to money and/or time) and thus only a few 
can be conducted. DoE was originally created by Sir Ronald 
Fisher in the 1920s for agriculture (in which factors might for 
example involve different watering schedules or fertilizer types, 
and output might be crop quality), and has since expanded to a 
wide variety of domains, including even management of workers.  

DoE produces three types of statistics. The first identifies the 
extent of positive or negative impact that each factor has on the 
output. The second indicates whether each factor is beneficial to 
the experiment.  The third describes how factors interact with 
one another. For a given number of allowed experiments, where 
each experiment involves setting each factor to a specific value 
and then measuring the output, DoE seeks to design experiments 
providing maximum quality of statistical information.  

DoE experimental design is based on four main principles: 
randomization, replication, blocking, and orthogonality. 
Randomization means that the experiments are performed in a 
random order. Replication means that each experiment is 
repeated. Blocking is the process of grouping different 
experiments into a group and running those experiments in the 
same environment.  Orthogonality is the process of creating the 
experiments so that one factor can be analyzed independently of 
the other factors. Orthogonality is the principle of main interest 
to our work.   

Several experimental design methods have evolved to create 
a set of runs that satisfy the orthogonality, as well as the other, 
principles. The factorial method (called an exhaustive search 
method by the design automation community) examines all 
possible combinations of the factors, thus providing maximum 
information, but obviously being infeasible in most situations 
due to too many experimental runs.  The fractional factorial 
method runs only one half to one eighth of the total number of 
runs of the factorial design, increasing feasibility to more 
situations, but still often impractical due to too many runs.  In 
contrast, the Taguchi [10] and the Plackett-Burman [10] methods 
generate just a few more runs then the number of factors, thus 



using a linear rather than an exponential number of runs with 
respect to the number of factors, at the expense of less accurate 
information obtained about the factors.   

DoE uses various statistical techniques to analyze the data 
resulting from a set of runs, namely analysis of variance 
(ANOVA) that separately analyzes the variation of each of the 
factors and multiple regression that determines whether a factor 
is statistically significant. 

We observed that the soft-core customization problem can be 
mapped to the DoE paradigm. The parameters of a soft-core 
correspond to factors of the experiment, whereas the 
performance of an application running on the soft-core 
corresponds to the output of the experiment. The time required 
for synthesizing and executing/simulating an application on a 
configured soft-core corresponds to the cost of an experiment1.  

In what follows, we exploit DoE’s strengths in experimental 
design and analysis methods to customize a soft-core for an 
application. In contrast to our previous single-factor analysis 
approach [12], a DoE approach considers interactions among 
parameters. We thus hypothesized that a DoE approach would 
yield better results than the previous single-factor method.  

4. Experimental Methodology  
In this section, we describe the features of our experimental 

setup for soft-core tuning using DoE methods. Our objective is to 
find a soft-core configuration that maximizes performance of a 
given application, subject to a size constraint.  

4.1 Soft-Core Framework 
We use a Xilinx Microblaze soft-core processor on a Virtex 2 

Pro device, illustrated in Figure 1. The system consists of a 
UART for external communication, an on-chip BRAM (Block 
RAM) accessed through the Xilinx’s LMB (local memory bus), 
and access to off chip memory via the Xilinx’s OPB (on-chip 
peripheral bus). We used Xilinx’s Virtual Platform tools to 
simulate designs.   

The soft-core parameters were: 
• Instantiatable datapath units – The Microblaze has six 

on/off parameters: barrel shifter, floating-point unit, 
multiplier, divider, MSR (machine status register) 
instructions, and comparator. Each parameter could be 
set to on, which would instantiate the hardware unit, or 
to off, which would carry out the corresponding 
function in software.  

                                                                 
1 Although in DoE, “costly” typically means costing thousands of dollars 

or requiring weeks or months of time, cost is a relative – in design 
automation, tens of minutes is costly.  

• Cache type – The Microblaze has two cache types for 
instruction and data caches: OPB (On-chip peripheral 
bus) cache and CacheLink cache. The OPB cache is the 
standard cache. The CacheLink cache is more advanced 
by using FSL (fast simplex link) technology to 
communicate with off-chip memory, as opposed to 
using the OPB, allowing other resources to use the bus. 
The CacheLink cache uses less BRAM (block RAM) 
for a given cache size at the expense of a higher LUT 
(lookup table) count. 

• Cache size – Each cache’s size may range from 0K to 
64K. We considered sizes of 0K, 4K, 16K, and 64K.    

• Instruction/data location – The instruction and data 
segments of an application can be stored in either of two 
memory locations: on-chip BRAM, or off-chip memory. 
When both instructions and data are stored off-chip, the 
size of the BRAM is reduced to 2K.   

• Compiler optimizations – An application can be 
compiled using one of four optimization levels: none, 
O1, O2, or O3.  

We define a base Microblaze core as a core configured with 
all instantiatable datapath units turned off, all caches off, 
instruction and data segments on chip, and no compiler 
optimization.   

4.2 Equivalent LUTs 
The term “size” must be qualified in the context of FPGAs. 

FPGAs contain different hardware resources, including lookup 
tables (LUTs), multipliers, and block RAM. However, having a 
single number for size is desirable during design optimization, so 
that two designs may be directly compared. The most 
straightforward method of creating a single size number is to 
combine the various hardware resource numbers of a particular 
design – number of LUTs used, number of multipliers used, 
bytes of block RAM used – using a weighted sum function. We 
use the equations shown in Figure 2, where weights for 
multipliers and block RAMs are determined from the total 

number or size of those items in a maximally configured soft-
core, resulting in an “equivalent LUT” value. For configured 
Microblazes, we found this equivalent LUT approach to correlate 
almost perfectly (0.995) to the “equivalent gate” concept defined 
by Xilinx for general circuits.  From this point forward, we use 
the term LUTs to refer to equivalent LUTs, unless otherwise 
stated.  

4.3   Size Estimation 
Although our DoE-based strategy aims to keep the number of 

soft-core configurations that must be synthesized to a minimum, 
we found it was still necessary to use some estimation to reduce 
the number of such synthesis runs during our own experiments. 
Synthesis time for one soft-core configuration can range from 10 
minutes to over one hour, depending on the particular parameter 

Figure 1: Diagram of the Microblaze system being configured. 

Figure 2: Equations for calculating Equivalent LUT value of a 
configured MB System. 
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settings of the configuration. Running 20 or 30 configurations 
could thus require 1-2 days. In an attempt to reduce that time 
during our experiments, in which we were tuning ten distinct 
applications, we investigated the accuracy of adding incremental 
sizes (versus the base) of each parameter’s hardware. In other 
words, if a multiplier adds X LUTs to the base core’s size, and a 
divider adds Y LUTs, then we sought to determine the accuracy 
of estimating the size of a core having both a multiplier and 
divider by simply adding X + Y to the base core’s size, rather 
than actually synthesizing a base core with a multiplier and 
divider.  

For every relevant parameter, we synthesized a core 
configuration with just that parameter’s hardware, and measured 
the size increment. Then, for 10 random core configurations, we 
synthesized those configurations, and compared the actual size to 
the size estimated by adding each parameter’s size increment to 
the base core’s size. Figure 3 shows that the estimation approach 
was very accurate, with an average error of only 0.03%, and with 
no configuration having an error higher than 0.1%.  We thus 
have reasonable confidence that the estimation approach is valid. 

4.4 Soft-Core Customization using DoE 
We utilized the DOE Pro XL [3] tool for DoE. The tool 

allows a user to specify the number of factors (up to 27), the type 
of experimental design method (fractionalized factorial, Taguchi, 
etc.), and the number of experimental runs. The tool 
automatically generates a list of the experiments to run, showing 
the necessary factor settings of each experiment, as shown in  
Figure 5. 

Like many DoE tools, the DOE Pro XL tool primarily 
supports factors with only two levels, due to two level factors 
enabling elegant statistical methods. The common technique used 
in DoE is thus to map multi-level factors to several two-level 
factors. For example, our cache size factor has four levels – 0K, 

4K, 16K, and 64K. We map that factor to two two-level factors. 
The first two-level factor narrows down the cache size to either 
0K or 4K (subset one), or 16K or 64K (subset two). The second 
two-level factor chooses between the smaller size or larger size 
cache in the subset chosen by the first factor. The four-level 
compiler optimization parameter can be mapped to two two-level 
factors similarly. Mapping all the soft-core parameters listed in 
Section 4.1 resulted in 16 two-level factors.  

Not all factor combinations represent valid systems. We thus 
perform simple post-processing on the tool-generated 
experiments to detect and modify invalid systems.  

The base system is the configuration where all the factors are 
set to the first of their two levels.  This is the base configuration 
that we used later in an impact-ordered tree approach.  

We chose to use a 20-run Plackett-Burman set of 
experiments, as the time for 20 runs corresponds to the 
approximate amount of time we believe to be acceptable in an 
FPGA soft-core tuning tool, namely about 2-3 hours, assuming 
each run requires about 5-10 minutes (note: the tool also could 
general 24 and 28 run experiments). We wrote a script to 
automatically run the 20 experiments specified by the tool and 
enter the results into the tool’s table. The DOE Pro XL tool then 
analyzed those results automatically to generate the factor impact 
chart shown in Figure 4. That chart show that the instruction 
location factor has the biggest impact (67.42%), followed by first 
of the two instruction cache size factors (11.28%). We sorted 
factors by the ratio of impact/size, and generated an impact-

Figure 3: Comparison between the actual LUTs and the 
estimated LUTs, showing less than 0.1% error in any case.  

Figure 4: Factor impact chart output by DOE Pro XL. 
ANOVA TABLE

Cycles
Source SS df MS F P % Contrib
I_LOC 86.3 1 86.3 169.626 0.001 67.42%

IC_SIZE_1 14.4 1 14.4 28.389 0.013 11.28%
DC_SIZE_1 7.1746 1 7.1746 14.106 0.033 5.61%

OPT_1 3.7225 1 3.7225 7.319 0.073 2.91%
BS 3.3171 1 3.3171 6.522 0.084 2.59%

MSR 3.2214 1 3.2214 6.334 0.086 2.52%
DC_SIZE_2 2.7988 1 2.7988 5.503 0.101 2.19%
IC_SIZE_2 1.8308 1 1.8308 3.600 0.154 1.43%

PCMP 1.5656 1 1.5656 3.078 0.178 1.22%
IC_TYPE 1.3164 1 1.3164 2.588 0.206 1.03%
OPT_2 0.4041 1 0.4041 0.794 0.438 0.32%
D_LOC 0.2017 1 0.2017 0.396 0.574 0.16%

DIV 0.0764 1 0.0764 0.150 0.724 0.06%
MUL 0.0678 1 0.0678 0.133 0.739 0.05%

DC_TYPE 0.0313 1 0.0313 0.062 0.820 0.02%
FPU 0.0001 1 0.0001 0.000 0.988 0.00%
Error 1.526 3 0.509 1.19%
Total 127.967 19  

Figure 5: Set of 20 runs generated by the DOE Pro XL tool. 
Factor A B C D E F G H I J K L M N O P
Row # BS FPU MUL DIV MSR PCMP IC_TYPE IC_SIZE_1 IC_SIZE_2 DC_TYPE DC_SIZE_1 DC_SIZE_2 I_LOC D_LOC OPT_1 OPT_2

1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1
2 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1
3 0 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1
4 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 1
5 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0
6 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1
7 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0
8 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1
9 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0

10 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0
11 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0
12 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0
13 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1
14 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1
15 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0
16 0 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1
17 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 1
18 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0
19 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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ordered tree based on those factors, as done in [12] (Note: for 
cache, we had to sometimes make one small departure from a 
strict impact ordering, to ensure that the decision to include a 
cache always preceded the decision of a cache’s type). We then 
used a heuristic that descended the tree and picked the faster of 
the two configurations at a given level, subject to also satisfying 
a size constraint.  

For comparison purposes, we also generated impact-ordered 
trees using our previous single-factor analysis method [12]. That 
approach considered only two-level parameters, and thus we 
applied that heuristic to our two-level factors.    

The DoE approach required 37 runs per application (20 for 
the DoE part, and 17 for the impact-ordered tree part), while the 
single-factor analysis required 34 runs – roughly the same 
number for both approaches. Thus, the difference in upcoming 
results can be attributed mostly to quality of the search process, 
rather than to more runs by one approach or the other.    

5. Results 

5.1 DoE for Determining Impact Ordering 
We ran the DoE and single-factor approach on 10 EEMBC 

benchmarks [4], for three size-constraint scenarios. Figure 6 
shows the results comparing the Single Factor and the DoE 
approaches with a small size constraint 10,000 LUTs, while 
Figure 7 shows data for a size constraint of 30,000 LUTs.  (A 
base Microblaze uses 7,376 LUTs). Results are shown in terms 
of the speedup obtained by running the application on a tuned 
core compared to running the application on a base core. The 
results show that, while both approaches yield speedups, the DoE 
approach vastly outperforms the single-factor analysis approach.  

Figure 6 shows on average that the Single Factor has an average 
speedup of 2x, while the DoE approach yields a 6x speedup; 
Figure 7’s speedups are 3x versus 17x. Thus, DoE improves on a 
single-factor approach by 6/2=3x, and by 17/3=~6x.  

We also obtained results with a 50,000 LUT size constraint. 
Because that size was large enough to support most optional core 
components, the approaches achieved the same speedups on all 
benchmarks.  

The success of the single-factor approach can depend 
strongly on selection of a good base system, and we were 
concerned that we might have chosen a poor base. We therefore 
modified the base case to place instruction and data segments 
off-chip (the most important factor in most application), and 
repeated the entire set of experiments. We found no significant 
difference in results compared to the results in Figure 6 and 
Figure 7. This latter analysis confirms that the DoE paradigm 
does not require the definition of a base system, instead 
considering multiple factors turned on (or at the high level) 
simultaneously.  

We also generated DoE results using 24 and 28 run options 
provided by the DOE Pro XL tool. The data appears in Figure 8. 
We saw only mild improvements compared to the 20 run option, 
and in some cases slight worsening, due to the approaches being 
heuristic in nature   

5.2 Using DoE’s Built-In Tuning Approach 
The previous section used DoE to determine the impact of 

each factor, and then used a tree-based heuristic to actually tune 
the parameter values. Interestingly, DoE tools often contain 
additional algorithms that further analyze the experimental data, 
and seek to predict the factor values that would predict the best 
output. These algorithms are based on sophisticated statistical 

Figure 6: Obtained application speedups when tuning a Microblaze soft-core using the Single Factor and the Design of Experiment 
approaches to build the impact ordered tree, with a size constraint of 10,000 LUTs. 
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Figure 7: Obtained application speedups when tuning a Microblaze soft-core using the Single Factor and the Design of Experiment 
approaches to build the impact ordered tree, with a size constraint of 30,000 LUTs. 
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prediction techniques whose details are beyond the scope of this 
paper2. Using the best predicted values by the DoE tool would 
eliminate the time required to run the impact-ordered tree tuning 
heuristic, thus reducing the total experiments from 37 down to 
just the 20 DoE-generated runs. 

Figure 8 shows the speedups obtained using DoE’s predicted 
best configuration (“estim.”), compared to the DoE/impact-
ordered tree/heuristic approach described earlier, for a 20-run 
DoE. The figure shows that the predicted configuration method is 
nearly as good as the impact-ordered tree heuristic. The single 
factor approach required 34 runs, the DoE 20-run approach 
followed by the tree heuristic required 37 runs, while the DoE 
with prediction approach required only 20 runs (with the 
prediction algorithm running in negligible time). This finding 
represents an additional benefit of using DoE for tuning 
parameterized soft-cores, namely that of about 40-45% faster 
tuning runtimes. 

6. Conclusions 
The well-established Design of Experiments paradigm can be 

exploited to tune a microprocessor soft-core to an application, 
yielding 6x-17x speedup compared to a base core. Those 
speedups are 3x-6x better than obtained by a previous non-DoE-
based core tuning approach. The key benefit of DoE is the multi-
factor analysis, proven to yield near-maximum information from 
a given small number of experimental runs. As modern 
technologies result in more parameterized components, applying 
DoE techniques to find the best parameter settings may become 
increasingly important in more areas of system-level design 
automation. 
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Figure 8:  Application speedups obtained by the single-factor approach; by 20, 24, and 28-run DoE approaches for creating an impact-
ordered tree; and by 20-run DoE approach using DoE’s built-in statistical prediction of the best configuration.  
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