
Soft-core Processor Customization using the Design of Experiments
Paradigm

David Sheldon, Frank Vahid*, Stefano Lonardi
Department of Computer Science and Engineering

University of California, Riverside
*Also with the Center for Embedded Computer Systems at UC Irvine

{dsheldon,vahid,stelo}@cs.ucr.edu

Abstract
Parameterized components are becoming more commonplace in
system design. The process of customizing parameter values for a
particular application, called tuning, can be a challenging task
for a designer. Here we focus on the problem of tuning a
parameterized soft-core microprocessor to achieve the best
performance on a particular application, subject to size
constraints. We map the tuning problem to a well-established
statistical paradigm called Design of Experiments (DoE), which
involves the design of a carefully selected set of experiments and
a sophisticated analysis that has the objective to extract the
maximum amount of information about the effects of the input
parameters on the experiment. We apply the DoE method to
analyze the relation between input parameters and the
performance of a soft-core microprocessor for a particular
application, using only a small number of synthesis/execution
runs. The information gained by the analysis in turn drives a
soft-core tuning heuristic. We show that using DoE to sort the
parameters in order of impact results in application speedups of
6x-17x versus an un-tuned base soft-core. When compared to a
previous single-factor tuning method, the DoE-based method
achieves 3x-6x application speedups, while requiring about the
same tuning runtime. We also show that tuning runtime can be
reduced by 40-45% by using predictive tuning methods already
built into a DoE tool.

1. Introduction
Soft-core processors are becoming increasingly common in

modern technology. A soft-core processor is a programmable
processor that can be synthesized to a circuit, typically integrated
into a larger system existing on an application-specific integrated
circuit (ASIC) or field-programmable gate array (FPGA).
Popular commercially available soft-cores include ARM [1],
Tensillica [13], Microblaze [14], and Nios [2]. Several trends of
modern technology catalyze soft-core usage, including stabler
synthesis tools, higher-capacity ASICs and FPGAs, new
commercial toolsets for application-specific instruction-set
processors, and increasing demands for high-performance and
low-power embedded processing.

Whereas traditional pre-fabricated processors must be
optimized for good performance across an entire domain of
applications, soft-cores can instead be customized to the
particular applications they execute. For example, a particular
application may perform best on a processor having a large cache
and a floating-point unit, while another application may instead
require a hardware multiplier and have no need for a cache.
Nearly all soft-core providers therefore include parameters that
may be customized by a soft-core user. Common parameters
include instantiatable coprocessor units such as hardware

floating-point, multiplier, divider, or barrel shifter units; cache
architecture settings such as the use of one or two levels of
cache, separate versus unified cache, cache size, line size,
associativity, and write back policy; and processor micro-
architecture features such as pipeline depth, bypass logic, or
register-file size. The majority of the soft-core processors
mentioned above contain more than ten customizable parameters,
and the trend in newer versions is towards increasing the number
of parameters. In this work, we only consider customizations that
consist of tuning parameter values; such customizations are in a
different category than are application-specific instruction-set
extensions [13], which involve the design of new hardware
and/or the introduction of new instructions. Extensions could be
integrated into a tuning approach by pre-determining good
possible extensions, and treating each possibility as a particular
value of an “extension” parameter.

The process of customizing a soft-core by tuning parameter
values can yield improved performance, lower-energy, and/or
smaller size. A newly evolving size-constrained scenario
involves dozens of FPGA soft-cores competing for limited
hardware-resources [9], for which tuning will be important to
make best use of that limited hardware.

Soft-core providers offer little or no automated support to
assist users in customizing a soft-core’s parameters to a
particular application, other than providing simulation tools. As a
consequence, users must manually guess and simulate (or
implement) a set of candidate configurations in order to find the
best parameters for a particular application. Each such simulation
may require tens of minutes, limiting the number of candidate
configurations that can be examined. Some recent research
addresses automated soft-core configuration using custom
heuristics developed for a particular parameters [12]. However,
those custom heuristics do not scale to handle a broader range of
parameters, as shown below.

In this paper, we propose to map the soft-core tuning
problem to a well-established scientific paradigm known as
Design of Experiments (DoE) [8][10]. DoE is an eighty years old
statistics discipline which aims to optimize parameterized
physical phenomena through a carefully chosen set of
experiments. In the DoE framework, one of the objectives is to
minimize the number of experiments because each experiment is
costly and/or time-consuming. The main idea is to design the set
of experiments such that subsequent analysis of the resulting data
provides maximum information about the impact of each
parameter on the metrics of interest.

We claim that the work in this paper makes two distinct
contributions. First, we will show that the DoE-based strategy
yields a more robust soft-core customization methodology. The
DoE-based method not only handles a wider variety of parameter
types than previous approaches, but also results in better-
customized soft-cores having improved performance than

obtained by previous heuristics. Second, to the best of our
knowledge, this work represents the first use of the DoE
paradigm in design automation. With the increasing introduction
on the market of highly parameterized intellectual property
components for use in system-on-chip designs, the DoE
paradigm may prove useful for a variety of design automation
problems involving the customization of a large spectrum of
parameterized components or platforms.

2. Previous Work
Kumar [6][7] showed the benefit of multi-core general-

purpose processor chips having heterogeneous rather than
homogenous cores. They considered superscalar processor
parameters related to cache, instantiations of floating-point,
multiply, and arithmetic-logic units, and sizes of the register file,
translation lookaside buffer, and load/store queue, yielding 480
possible single-core configurations. Via exhaustive search, they
showed that an optimally configured four-core system has up to
40% better performance for a given workload, versus the best
homogeneous four-core system for that workload.

Givargis [5] developed a tuning approach for parameterized
system-on-a-chip platforms, considering parameters related to
cache, bus, processor voltage, and a few parameters in
peripherals. They used a user’s denotation of independent subsets
of parameters to extensively prune the configuration space before
searching dependent parameters exhaustively or using heuristics.
They showed roughly 5x tradeoffs between power and
performance for different applications.

Sekar [11] discussed trends toward highly parameterized
platforms, including parameterized processor cores, peripherals,
caches, etc., and then described a technique for dynamically
tuning the voltage and frequency of the processor.

Yiannacouras [15][16] developed a framework for generating
and customizing a soft-core for FPGAs, with parameters
including hardware versus software multiplication, different
shifter implementations, and pipeline depth. They showed 30%
improvements obtained by optimally tuning soft-core parameters
for a specific application, using exhaustive search to carry out the
tuning. Their work motivates the need to develop efficient
automated customization heuristics.

We previously [12] developed heuristics for soft-core
parameter tuning. The approach assumed that synthesis and
execution (or simulation) of soft-core configurations, rather than
pure estimation approaches, is essential for accurate evaluation
of FPGA soft-cores, due to the tremendous variation of soft-core
performance for different applications and across the hundreds of
different FPGA devices by an FPGA vendor. Because
synthesis/execution runs are costly, requiring tens of minutes or
more, we developed several tuning heuristics that utilized only
about a dozen synthesis/execution runs, thus executing in 1-2
hours. We considered a Xilinx Microblaze soft-core processor
whose parameters each involved the option of instantiating a
hardware component, including a hardware multiplier, barrel
shifter, divider, floating point unit, or a fixed-sized cache. That
work showed 2x application speedups of a customized core
versus a base core having no optional components instantiated.

Our previous best heuristic (as well as our other heuristics)
used what we will call a “single factor” analysis, a common
analysis approach. The heuristic was guided by the speedup
versus the base core when instantiating exactly one (single

factor) of the core’s optional hardware components. The heuristic
then sorted each component by the ratio of its speedup over size,
yielding an “impact-ordered tree” of parameters, which the
heuristic then descended (encountering two choices per tree
level) to find a solution. While a single-factor analysis is
effective for on/off-type parameters, such an approach lacks an
obvious extension for parameters that have two non-zero values
(which value would be the base value?) or that have three or
more values. Furthermore, a single-factor analysis may be
inaccurate if parameters are interdependent. For example, neither
of two components may individually yield speedup, but the two
together may; conversely, two components may individually
each yield speedup, but instantiating both may yield little benefit
beyond instantiating just one, due to functionality overlap. In
contrast, the approach we introduce here performs a multi-factor
analysis, supporting multi-valued parameters and considering
interdependent parameters, as will be described.

3. The Design of Experiments Paradigm
Design of Experiments (DoE) [8][10] is a statistical paradigm

whose objective is to design a small set of experiments that
provides maximum information on how the experimental
parameters, or factors, influence the output and interact with one
another. The basic assumption in DoE is that experiments are
costly (with respect to money and/or time) and thus only a few
can be conducted. DoE was originally created by Sir Ronald
Fisher in the 1920s for agriculture (in which factors might for
example involve different watering schedules or fertilizer types,
and output might be crop quality), and has since expanded to a
wide variety of domains, including even management of workers.

DoE produces three types of statistics. The first identifies the
extent of positive or negative impact that each factor has on the
output. The second indicates whether each factor is beneficial to
the experiment. The third describes how factors interact with
one another. For a given number of allowed experiments, where
each experiment involves setting each factor to a specific value
and then measuring the output, DoE seeks to design experiments
providing maximum quality of statistical information.

DoE experimental design is based on four main principles:
randomization, replication, blocking, and orthogonality.
Randomization means that the experiments are performed in a
random order. Replication means that each experiment is
repeated. Blocking is the process of grouping different
experiments into a group and running those experiments in the
same environment. Orthogonality is the process of creating the
experiments so that one factor can be analyzed independently of
the other factors. Orthogonality is the principle of main interest
to our work.

Several experimental design methods have evolved to create
a set of runs that satisfy the orthogonality, as well as the other,
principles. The factorial method (called an exhaustive search
method by the design automation community) examines all
possible combinations of the factors, thus providing maximum
information, but obviously being infeasible in most situations
due to too many experimental runs. The fractional factorial
method runs only one half to one eighth of the total number of
runs of the factorial design, increasing feasibility to more
situations, but still often impractical due to too many runs. In
contrast, the Taguchi [10] and the Plackett-Burman [10] methods
generate just a few more runs then the number of factors, thus

using a linear rather than an exponential number of runs with
respect to the number of factors, at the expense of less accurate
information obtained about the factors.

DoE uses various statistical techniques to analyze the data
resulting from a set of runs, namely analysis of variance
(ANOVA) that separately analyzes the variation of each of the
factors and multiple regression that determines whether a factor
is statistically significant.

We observed that the soft-core customization problem can be
mapped to the DoE paradigm. The parameters of a soft-core
correspond to factors of the experiment, whereas the
performance of an application running on the soft-core
corresponds to the output of the experiment. The time required
for synthesizing and executing/simulating an application on a
configured soft-core corresponds to the cost of an experiment1.

In what follows, we exploit DoE’s strengths in experimental
design and analysis methods to customize a soft-core for an
application. In contrast to our previous single-factor analysis
approach [12], a DoE approach considers interactions among
parameters. We thus hypothesized that a DoE approach would
yield better results than the previous single-factor method.

4. Experimental Methodology
In this section, we describe the features of our experimental

setup for soft-core tuning using DoE methods. Our objective is to
find a soft-core configuration that maximizes performance of a
given application, subject to a size constraint.

4.1 Soft-Core Framework
We use a Xilinx Microblaze soft-core processor on a Virtex 2

Pro device, illustrated in Figure 1. The system consists of a
UART for external communication, an on-chip BRAM (Block
RAM) accessed through the Xilinx’s LMB (local memory bus),
and access to off chip memory via the Xilinx’s OPB (on-chip
peripheral bus). We used Xilinx’s Virtual Platform tools to
simulate designs.

The soft-core parameters were:
• Instantiatable datapath units – The Microblaze has six

on/off parameters: barrel shifter, floating-point unit,
multiplier, divider, MSR (machine status register)
instructions, and comparator. Each parameter could be
set to on, which would instantiate the hardware unit, or
to off, which would carry out the corresponding
function in software.

1 Although in DoE, “costly” typically means costing thousands of dollars

or requiring weeks or months of time, cost is a relative – in design
automation, tens of minutes is costly.

• Cache type – The Microblaze has two cache types for
instruction and data caches: OPB (On-chip peripheral
bus) cache and CacheLink cache. The OPB cache is the
standard cache. The CacheLink cache is more advanced
by using FSL (fast simplex link) technology to
communicate with off-chip memory, as opposed to
using the OPB, allowing other resources to use the bus.
The CacheLink cache uses less BRAM (block RAM)
for a given cache size at the expense of a higher LUT
(lookup table) count.

• Cache size – Each cache’s size may range from 0K to
64K. We considered sizes of 0K, 4K, 16K, and 64K.

• Instruction/data location – The instruction and data
segments of an application can be stored in either of two
memory locations: on-chip BRAM, or off-chip memory.
When both instructions and data are stored off-chip, the
size of the BRAM is reduced to 2K.

• Compiler optimizations – An application can be
compiled using one of four optimization levels: none,
O1, O2, or O3.

We define a base Microblaze core as a core configured with
all instantiatable datapath units turned off, all caches off,
instruction and data segments on chip, and no compiler
optimization.

4.2 Equivalent LUTs
The term “size” must be qualified in the context of FPGAs.

FPGAs contain different hardware resources, including lookup
tables (LUTs), multipliers, and block RAM. However, having a
single number for size is desirable during design optimization, so
that two designs may be directly compared. The most
straightforward method of creating a single size number is to
combine the various hardware resource numbers of a particular
design – number of LUTs used, number of multipliers used,
bytes of block RAM used – using a weighted sum function. We
use the equations shown in Figure 2, where weights for
multipliers and block RAMs are determined from the total

number or size of those items in a maximally configured soft-
core, resulting in an “equivalent LUT” value. For configured
Microblazes, we found this equivalent LUT approach to correlate
almost perfectly (0.995) to the “equivalent gate” concept defined
by Xilinx for general circuits. From this point forward, we use
the term LUTs to refer to equivalent LUTs, unless otherwise
stated.

4.3 Size Estimation
Although our DoE-based strategy aims to keep the number of

soft-core configurations that must be synthesized to a minimum,
we found it was still necessary to use some estimation to reduce
the number of such synthesis runs during our own experiments.
Synthesis time for one soft-core configuration can range from 10
minutes to over one hour, depending on the particular parameter

Figure 1: Diagram of the Microblaze system being configured.

Figure 2: Equations for calculating Equivalent LUT value of a
configured MB System.

UART

BRAM

Off Chip Memory

MB

OPB

LMB XC2VP30

MBfullLUTMBfullsizeBRAMUsedsizeBRAMBRAMEquivalentLUT
MBfullLUTMBfullMultUsedMultMultEquivalentLUT

BRAMEquivalentLUTMultEquivalentLUTRegularLUTEquivalentLUT

*/)(

*/##)(

)()(

=

=

++=

settings of the configuration. Running 20 or 30 configurations
could thus require 1-2 days. In an attempt to reduce that time
during our experiments, in which we were tuning ten distinct
applications, we investigated the accuracy of adding incremental
sizes (versus the base) of each parameter’s hardware. In other
words, if a multiplier adds X LUTs to the base core’s size, and a
divider adds Y LUTs, then we sought to determine the accuracy
of estimating the size of a core having both a multiplier and
divider by simply adding X + Y to the base core’s size, rather
than actually synthesizing a base core with a multiplier and
divider.

For every relevant parameter, we synthesized a core
configuration with just that parameter’s hardware, and measured
the size increment. Then, for 10 random core configurations, we
synthesized those configurations, and compared the actual size to
the size estimated by adding each parameter’s size increment to
the base core’s size. Figure 3 shows that the estimation approach
was very accurate, with an average error of only 0.03%, and with
no configuration having an error higher than 0.1%. We thus
have reasonable confidence that the estimation approach is valid.

4.4 Soft-Core Customization using DoE
We utilized the DOE Pro XL [3] tool for DoE. The tool

allows a user to specify the number of factors (up to 27), the type
of experimental design method (fractionalized factorial, Taguchi,
etc.), and the number of experimental runs. The tool
automatically generates a list of the experiments to run, showing
the necessary factor settings of each experiment, as shown in
Figure 5.

Like many DoE tools, the DOE Pro XL tool primarily
supports factors with only two levels, due to two level factors
enabling elegant statistical methods. The common technique used
in DoE is thus to map multi-level factors to several two-level
factors. For example, our cache size factor has four levels – 0K,

4K, 16K, and 64K. We map that factor to two two-level factors.
The first two-level factor narrows down the cache size to either
0K or 4K (subset one), or 16K or 64K (subset two). The second
two-level factor chooses between the smaller size or larger size
cache in the subset chosen by the first factor. The four-level
compiler optimization parameter can be mapped to two two-level
factors similarly. Mapping all the soft-core parameters listed in
Section 4.1 resulted in 16 two-level factors.

Not all factor combinations represent valid systems. We thus
perform simple post-processing on the tool-generated
experiments to detect and modify invalid systems.

The base system is the configuration where all the factors are
set to the first of their two levels. This is the base configuration
that we used later in an impact-ordered tree approach.

We chose to use a 20-run Plackett-Burman set of
experiments, as the time for 20 runs corresponds to the
approximate amount of time we believe to be acceptable in an
FPGA soft-core tuning tool, namely about 2-3 hours, assuming
each run requires about 5-10 minutes (note: the tool also could
general 24 and 28 run experiments). We wrote a script to
automatically run the 20 experiments specified by the tool and
enter the results into the tool’s table. The DOE Pro XL tool then
analyzed those results automatically to generate the factor impact
chart shown in Figure 4. That chart show that the instruction
location factor has the biggest impact (67.42%), followed by first
of the two instruction cache size factors (11.28%). We sorted
factors by the ratio of impact/size, and generated an impact-

Figure 3: Comparison between the actual LUTs and the
estimated LUTs, showing less than 0.1% error in any case.

Figure 4: Factor impact chart output by DOE Pro XL.
ANOVA TABLE

Cycles
Source SS df MS F P % Contrib
I_LOC 86.3 1 86.3 169.626 0.001 67.42%

IC_SIZE_1 14.4 1 14.4 28.389 0.013 11.28%
DC_SIZE_1 7.1746 1 7.1746 14.106 0.033 5.61%

OPT_1 3.7225 1 3.7225 7.319 0.073 2.91%
BS 3.3171 1 3.3171 6.522 0.084 2.59%

MSR 3.2214 1 3.2214 6.334 0.086 2.52%
DC_SIZE_2 2.7988 1 2.7988 5.503 0.101 2.19%
IC_SIZE_2 1.8308 1 1.8308 3.600 0.154 1.43%

PCMP 1.5656 1 1.5656 3.078 0.178 1.22%
IC_TYPE 1.3164 1 1.3164 2.588 0.206 1.03%
OPT_2 0.4041 1 0.4041 0.794 0.438 0.32%
D_LOC 0.2017 1 0.2017 0.396 0.574 0.16%

DIV 0.0764 1 0.0764 0.150 0.724 0.06%
MUL 0.0678 1 0.0678 0.133 0.739 0.05%

DC_TYPE 0.0313 1 0.0313 0.062 0.820 0.02%
FPU 0.0001 1 0.0001 0.000 0.988 0.00%
Error 1.526 3 0.509 1.19%
Total 127.967 19

Figure 5: Set of 20 runs generated by the DOE Pro XL tool.
Factor A B C D E F G H I J K L M N O P
Row # BS FPU MUL DIV MSR PCMP IC_TYPE IC_SIZE_1 IC_SIZE_2 DC_TYPE DC_SIZE_1 DC_SIZE_2 I_LOC D_LOC OPT_1 OPT_2

1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1
2 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1
3 0 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1
4 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 1
5 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0
6 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1
7 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0
8 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1
9 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0

10 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0
11 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0
12 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0
13 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1
14 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1
15 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0
16 0 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1
17 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 1
18 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0
19 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
50000

100000
150000
200000

co
nfig

 1

confi
g 2

con
fig

 3

co
nfi

g 4

con
fig

 5

co
nfig

 6

confi
g 7

con
fig

 8

co
nfig

 9

co
nfi

g 10

Eq
u

iv
 L

U
Ts

Estimation

Actual

ordered tree based on those factors, as done in [12] (Note: for
cache, we had to sometimes make one small departure from a
strict impact ordering, to ensure that the decision to include a
cache always preceded the decision of a cache’s type). We then
used a heuristic that descended the tree and picked the faster of
the two configurations at a given level, subject to also satisfying
a size constraint.

For comparison purposes, we also generated impact-ordered
trees using our previous single-factor analysis method [12]. That
approach considered only two-level parameters, and thus we
applied that heuristic to our two-level factors.

The DoE approach required 37 runs per application (20 for
the DoE part, and 17 for the impact-ordered tree part), while the
single-factor analysis required 34 runs – roughly the same
number for both approaches. Thus, the difference in upcoming
results can be attributed mostly to quality of the search process,
rather than to more runs by one approach or the other.

5. Results

5.1 DoE for Determining Impact Ordering
We ran the DoE and single-factor approach on 10 EEMBC

benchmarks [4], for three size-constraint scenarios. Figure 6
shows the results comparing the Single Factor and the DoE
approaches with a small size constraint 10,000 LUTs, while
Figure 7 shows data for a size constraint of 30,000 LUTs. (A
base Microblaze uses 7,376 LUTs). Results are shown in terms
of the speedup obtained by running the application on a tuned
core compared to running the application on a base core. The
results show that, while both approaches yield speedups, the DoE
approach vastly outperforms the single-factor analysis approach.

Figure 6 shows on average that the Single Factor has an average
speedup of 2x, while the DoE approach yields a 6x speedup;
Figure 7’s speedups are 3x versus 17x. Thus, DoE improves on a
single-factor approach by 6/2=3x, and by 17/3=~6x.

We also obtained results with a 50,000 LUT size constraint.
Because that size was large enough to support most optional core
components, the approaches achieved the same speedups on all
benchmarks.

The success of the single-factor approach can depend
strongly on selection of a good base system, and we were
concerned that we might have chosen a poor base. We therefore
modified the base case to place instruction and data segments
off-chip (the most important factor in most application), and
repeated the entire set of experiments. We found no significant
difference in results compared to the results in Figure 6 and
Figure 7. This latter analysis confirms that the DoE paradigm
does not require the definition of a base system, instead
considering multiple factors turned on (or at the high level)
simultaneously.

We also generated DoE results using 24 and 28 run options
provided by the DOE Pro XL tool. The data appears in Figure 8.
We saw only mild improvements compared to the 20 run option,
and in some cases slight worsening, due to the approaches being
heuristic in nature

5.2 Using DoE’s Built-In Tuning Approach
The previous section used DoE to determine the impact of

each factor, and then used a tree-based heuristic to actually tune
the parameter values. Interestingly, DoE tools often contain
additional algorithms that further analyze the experimental data,
and seek to predict the factor values that would predict the best
output. These algorithms are based on sophisticated statistical

Figure 6: Obtained application speedups when tuning a Microblaze soft-core using the Single Factor and the Design of Experiment
approaches to build the impact ordered tree, with a size constraint of 10,000 LUTs.

0

3

6

9

aif
ir

aif
ir_

flo
at

Bas
eF

P01

bit
mnp bre

v
ca

nrd
r

g3
fax

g7
21

_p
s

matm
ul

tbl
oo

k

av
era

ge

Sp
ee

du
p

Single Factor
Doe 20 runs

31

Figure 7: Obtained application speedups when tuning a Microblaze soft-core using the Single Factor and the Design of Experiment
approaches to build the impact ordered tree, with a size constraint of 30,000 LUTs.

0
4
8

12
16
20
24

aif
ir

aif
ir_

flo
at

Bas
eF

P01

bit
mnp bre

v
ca

nrd
r

g3
fax

g7
21

_p
s

matm
ul

tbl
oo

k

av
era

ge

Sp
ee

du
p

Single Factor
Doe 20 runs

57

prediction techniques whose details are beyond the scope of this
paper2. Using the best predicted values by the DoE tool would
eliminate the time required to run the impact-ordered tree tuning
heuristic, thus reducing the total experiments from 37 down to
just the 20 DoE-generated runs.

Figure 8 shows the speedups obtained using DoE’s predicted
best configuration (“estim.”), compared to the DoE/impact-
ordered tree/heuristic approach described earlier, for a 20-run
DoE. The figure shows that the predicted configuration method is
nearly as good as the impact-ordered tree heuristic. The single
factor approach required 34 runs, the DoE 20-run approach
followed by the tree heuristic required 37 runs, while the DoE
with prediction approach required only 20 runs (with the
prediction algorithm running in negligible time). This finding
represents an additional benefit of using DoE for tuning
parameterized soft-cores, namely that of about 40-45% faster
tuning runtimes.

6. Conclusions
The well-established Design of Experiments paradigm can be

exploited to tune a microprocessor soft-core to an application,
yielding 6x-17x speedup compared to a base core. Those
speedups are 3x-6x better than obtained by a previous non-DoE-
based core tuning approach. The key benefit of DoE is the multi-
factor analysis, proven to yield near-maximum information from
a given small number of experimental runs. As modern
technologies result in more parameterized components, applying
DoE techniques to find the best parameter settings may become
increasingly important in more areas of system-level design
automation.

7. Acknowledgements
This work was supported in part by the National Science

Foundation (CNS-0614957) and the Semiconductor Research

2 And frankly, not entirely understood by this paper’s authors. DOE Pro

XL fully implements the statistical techniques, so it is not required that
DoE users have a complete understanding – akin to a user of an integer
linear program (ILP) solver not having a complete understanding of
ILP solution methods.

Corporation (2005-HJ-1331), and by donations from Xilinx
Corp.
References
[1] Arm http://www.arm.com.
[2] Altera Corp. Nios II Processors. http://www.altera.com/products/

ip/processors/nios2/ni2-index.html, 2005.
[3] DOE Pro XL http://sigmazone.com/doepro_faqs.htm.
[4] EEMBC. http://www.eembc.org/, 2005.
[5] Givargis, T., F. Vahid. Platune: A Tuning Framework for System-

on-a-Chip Platforms. IEEE Transactions on Computer Aided
Design, Vol. 21, No. 11, Nov. 2002, pp. 1317-1327.

[6] Kumar, R., D. Tullsen, N. Jouppi. Core Architecture Optimization
for Heterogeneous Chip Multiprocessors. International Conference
on Parallel Architectures and Compilation Techniques, PACT,
Seattle, April 2006.

[7] Kumar. R., D. Tullsen, P. Ranganathan, N. Jouppi, K. Farkas.
Single-ISA Heterogeneous Multi-core Architectures for
Multithreaded Workload Performance. In 31st International
Symposium on Computer Architecture, ISCA-31, June 2004.

[8] McLean, R., V. Anderson, Applied Factorial and Fractional
Designs. Marcel Dekker, Inc. New York, New York, 1984.

[9] Moyer, B., Tune Multicore Hardware for Software. Xcell Journal,
Issue 58, 2006, pp 55-57.

[10] Petersen, R., Design and Analysis of Experiments. Mercel Dekker
Inc. New York, New York, 1985.

[11] Sekar, K., Kanishka Lahiri, Sujit Dey. Dynamic Platform
Management for Configurable Platform-Based System-on-Chips.
Intl. Conf. on Computer-Aided Design (ICCAD), 2003.

[12] Sheldon, D., R. Kumar, R. Lysecky, F. Vahid, D. Tullsen.
Application-Specific Customization of Paramaterized FPGA Soft-
Core Processors. Intl. Conf. on Computer-Aided Design (ICCAD),
2006.

[13] Tensilica, Inc. The XPRES Compiler: Triple-Threat Solution to
Code Performance Challenges. http://www.tensilica.com/
pdf/XPRES-Triple-Threat_Solution.pdf, 2005.

[14] Xilinx, Inc. MicroBlaze Soft Processor Core.
http://www.xilinx.com/, 2005.

[15] Yiannacouras, P., J. G. Steffan, J. Rose. Application-Specific
Customization of Soft Processor Microarchitecture. FPGA 2006.

[16] Yiannacouras, P., J. Rose, J. G. Steffan. The Microarchitecture of
FPGA-based soft processors International Conference on Compilers,
Architecture, and Synthesis For Embedded Systems (CASES), 2005.

Figure 8: Application speedups obtained by the single-factor approach; by 20, 24, and 28-run DoE approaches for creating an impact-
ordered tree; and by 20-run DoE approach using DoE’s built-in statistical prediction of the best configuration.

0

5

10

15

20

25

30

aif
ir

aif
ir_

flo
at

Bas
eF

P01

bit
mnp bre

v
ca

nrd
r

g3
fax

g7
21

_p
s

matm
ul

tbl
oo

k

av
era

ge

S
pe

ed
up

Single Factor
Doe 28 runs
Doe 24 runs
Doe 20 runs
DoE 20 runs estim.

57 55

