
 1

Using a Victim Buffer in an Application-Specific Memory Hierarchy
Chuanjun Zhang

Department of Electrical Engineering
University of California, Riverside

czhang@ee.ucr.edu

Frank Vahid
Department of Computer Science and Engineering

University of California, Riverside
vahid@cs.ucr.edu

Also with the Center for Embedded Computer Systems
at UC Irvine

Abstract – Customizing a memory hierarchy to a
particular application or applications is becoming
increasingly common in embedded system design, with
one benefit being reduced energy. Adding a victim
buffer to the memory hierarchy is known to reduce
energy and improve performance on average, yet victim
buffers are not typically found in commercial embedded
processors. One problem with such buffers is, while
they work well on average, they tend to hurt
performance for many applications. We show that a
victim buffer can be very effective if it is considered as
a parameter in designing a memory hierarchy, like the
traditional cache parameters of total size, associativity,
and line size. We describe experiments on PowerStone
and MediaBench benchmarks, showing that having the
option of adding a victim buffer to a direct-mapped
cache can reduce memory-access energy by a factor of
3 in some cases. Furthermore, even when other cache
parameters are configurable, we show that a victim
buffer can still reduce energy by 43%. By treating the
victim buffer as a parameter, meaning the buffer can be
included or excluded, we can avoid performance
overhead of up to 4% on some examples. We discuss the
victim buffer in the context of both core-based and
pre-fabricated platform based design approaches.

1 Introduction
Energy consumption is an important issue for battery
powered embedded systems. On-chip cache consumes
almost half of a microprocessor’s total energy [11].
Energy efficient cache architecture design is thus a
critical issue in the design of microprocessors that
target embedded systems.

Direct-mapped (DM) caches are popular in
embedded microprocessor architectures due to their
simplicity and good hit rates for many applications. A
DM cache requires less power per access than a
set-associative cache that accesses multiple ways
simultaneously. Furthermore, since a DM cache does
not have to select the hit way among cache ways as in a
set-associative cache, a DM cache may have faster
access time. Furthermore, for many applications, a DM

cache’s hit rate is nearly as good as that of a
set-associative cache. For example, in [13], 17 of 23
benchmarks consumed the least energy using a
direct-mapped cache rather than a set-associative cache
with any number of ways, even when the sizes of either
cache could be varied.

However, for other applications, a DM cache has a
poor hit rate, resulting in many accesses to the slower
and power-costly next level memory (L2 cache or main
memory), and hence poor performance and high energy
consumption.

A victim buffer can improve the situation for such
applications. A victim buffer is a small fully-associative
cache, whose size is typically 4 to 16 cache lines,
residing between a direct-mapped L1 cache and the
next level of memory. The victim buffer holds lines
discarded after an L1 cache miss. The victim buffer is
checked whenever there is an L1 cache miss, before
going to the next level memory. If the desired data is
found in the victim buffer, the data in the victim buffer
is swapped back to the L1 cache. Jouppi [7] reported
that a four-entry victim buffer could reduce 20% to
95% of the conflict misses in a 4 Kbyte direct-mapped
data cache. Albera and Bahar [1] evaluated the power
and performance advantages of a victim buffer in a high
performance superscalar, speculative, out-of-order
processor. They showed that adding a victim buffer to
an 8 Kbyte direct-mapped data cache results in 10%
energy savings and 3.5% performance improvements
on average for the Spec95 benchmark suite.

A victim buffer improves the performance and
energy of a DM cache on average, but for some
applications, a victim buffer actually degrades
performance without much or any energy savings, as
we will show later. Such degradation occurs when the
victim buffer hit rate is low. Checking a victim buffer
requires an extra cycle after an L1 miss. If the victim
buffer hit rate is high, that extra cycle actually prevents
dozens of cycles for accessing the next level memory.
But if the buffer hit rate is low, that extra cycle doesn’t
save much and thus is wasteful. Whether a victim
buffer’s hit rate is high or low is dependent on what
application is running. Such performance overhead may

 2

be one reason that victim buffers aren’t always included
in embedded processor cache architectures.

An embedded system typically runs one application
(or a small number of applications) for the system’s
lifetime. Thus, while an architectural feature that works
on average is nice, what really matters to an embedded
system designer is whether the feature works well on
the one application that the designer is implementing.
Thus, there is a strong benefit to creating embedded
system architectures that are configurable, and can thus
be tuned to a particular application.

In this paper, we show that treating the victim buffer
as a configurable memory parameter to a DM cache –
i.e., the buffer can be included or excluded in a
synthesis methodology, or turned on or off in a
configurable hardware architecture) – is superior to
either using a DM cache without a victim buffer, or
using a DM cache with an always-on victim buffer.

Furthermore, we show that a victim buffer
parameter is even useful with a cache that itself is
highly parameterized. Cache parameters are standard in
microprocessors sold as cores [3][4][10][12].
Furthermore, several parameterized cache architectures
have recently been introduced such that total size,
associativity, and line size can even be configured after
chip fabrication [2][9][13]. One might think that having
a parameterized cache obviates the need for a victim
buffer. Instead, we show that a victim buffer enables
further improvement, usually by enabling the
parameterized cache to be configured as direct-mapped
for applications where otherwise the cache would have
been set-associative.

2 Victim Buffer as a Cache Parameter
We consider adding a victim buffer to both core-based
and pre-fabricated platform based design situations.

2.1 Core-Based Design Approach
A core-based approach involves incorporating a
processor (core) into a chip before the chip has been
fabricated, either using a synthesizable core (soft core)
or a layout (hard core). In either case, most core
vendors allow a designer to configure the level 1
cache’s total size (typical sizes range from no cache to
64 Kbyte), associativity (ranging from direct mapped to
4 or 8 ways), and sometimes line size (ranging from 16
bytes to 64 bytes). Other parameters include use of
write through, write back, and write allocate policies
for writing to a cache, as well as the size of a write
buffer.

Adding a victim buffer to a core-based approach is
straightforward, involving simply including or not
including a buffer into the design.

2.2 Pre-Fabricated Platform Approach
A pre-fabricated platform is a chip that has already
been designed, but is intended for use in a variety of
possible applications. To perform efficiently for the
largest variety of applications, recent platforms come
with parameterized architectures that a designer can
configure for his/her particular set of applications.
Recent architectures include cache parameters
[9][13][2] that can be configured by setting a few
configuration register bits. We therefore developed a
configurable victim buffer that could be turned on or
off by setting bits in a configuration register.

2.3 Configurable Victim Buffer
Architecture
Our configurable victim buffer is shown in Figure 1.
The first level cache is backed up with an eight-entry
fully-associative victim buffer (a four-entry buffer is
drawn). A content addressable memory (CAM) holds
the tags of the eight cache lines in the victim buffer. A
mux located between the victim buffer and the L1
cache selects the data to the L1 cache either from the
victim buffer or the next level memory.

A one-bit software programmable register controls
the on/off state of the victim buffer. When the victim
buffer is configured as on, it is accessed when there is
an L1 cache miss. If the desired content is found in the
victim buffer, then the hit cache line in the victim buffer
is swapped with the L1 cache to replace the missed
cache line. If the victim buffer is configured as off, then

Figure 1: Cache architecture with a configurable victim buffer
that can be turned on or off. VB stands for victim buffer. MUX
control: s = 0 when VB is off; s = 0 when VB is on and a
victim buffer miss; s = 1 when VB is on and a victim buffer
hit.

control signals
to the next level

memory

SRAM

tag data

SRAM SRAM

CAM
Fully-associative victim buffer

27-bit tag 16-byte cache line data

VB on/off
reg

data from
next level
memory

Vdd victim line

data to
processor

to mux

from cache
control
circuit

L1 cache

cache
control
circuit

control signals

s
0 1

 3

the next level memory is accessed when there is a L1
cache misses.

We assume separate L1 caches for instruction and
data, and thus add a distinct victim buffer to each L1
cache.

2.4 Configurable Buffer Overhead Analysis
Because the victim buffer resides after the L1 cache, the
buffer causes no critical path overhead and hence no
degradation of clock rate. While CAM tags used in the
victim buffer for full-associativity can be energy
expensive compared with conventional SRAM based
tags, the victim buffer is small, and is only accessed
when there is an L1 cache miss, making the energy
overhead of the victim buffer very small.

The configuration circuit, a 1-bit register and a
switch to turn off the victim buffer, accounts for trivial
area overhead.

3 Experiments
We simulated, using SimpleScalar [5], a variety of
benchmarks for a variety of cache configurations. The
benchmarks include programs from Motorola’s
Powerstone suite [9] (padpcm, crc, auto2, bcnt, bilv,
binary, blit, brev, g3fax, fir, pjpeg, ucbqsort, v42),
MediaBench [8] (adpcm, epic, jpeg, mpeg2, pegwit,
g721) and some programs from Spec 2000 [6] (art, mcf,
parser, vpr). We chose programs that simulated without
problems and ran in a tolerable amount of time, and
show results for all programs that we ran. We use the
test vectors that came with each benchmark as program
stimuli.

3.1 Energy Evaluation
Power dissipation in CMOS circuits is comprised of
two main components, static power dissipation due to
leakage current, and dynamic power dissipation due to
logic switching current and the charging and
discharging of the load capacitance. Dynamic energy
consumption contributes to most of the total energy
dissipation in micrometer-scale technologies, but static
energy dissipation will contribute an increasingly larger
portion of total energy consumption in nanometer-scale
technologies. Therefore, we consider both types of
energies. We also consider energy consumption of both
on-chip cache and off-chip memory. The energy
consumption of on-chip cache includes both dynamic
energy and static energy. We calculate energy using
Equation 1. The cache access energies, hitE and

fillblockcacheE __ , come from our own layout of the
cache; the energy dissipation of off-chip memory and
static energy are estimated as in [13]. totalCache ,

accessoffchipmissesmemory

fillblockcachestalluPmiss

cycleperstatictotalstatic

missMisseshittotaldynamic

staticdynamiccache

memorycachetotal

ECacheE
EEE

ECyclesE
ECacheECacheE

EEE
EEE

_

__

*

*

**

=

+=

=

+=

+=

+=

Equation 1: Equations for calculating memory-access
energy.

0%

25%

50%

75%

100%
8 Kbyte 4 Kbyte 2 Kbyte Instruction cache

0%

25%

50%

75%

100%

pa
dp

cm cr
c

au
to

2

bc
nt

bi
lv

bi
na

ry bl
it

br
ev

g3
fa

x fir

pj
ep

g

uc
bq

so
rt

v4
2

ad
pc

m

ep
ic

g7
21

pe
gw

it

m
pe

g

jp
eg ar

t

m
cf

pa
rs

er vp
r

A
ve

Data cache

Figure 2: Hit rate of a victim buffer when added to an 8 Kbyte, 4 Kbyte, or 2 Kbyte direct-mapped cache.

 4

MissesCache , and totalCycle are obtained through
SimpleScalar.

3.2 Results
3.2.1 Victim buffer with a direct mapped cache
Most benchmarks run well using a direct-mapped
cache. Figure 2 shows the hit rate of the victim buffer
when the L1 cache is an 8 Kbyte, 4 Kbyte, or 2 Kbyte
direct-mapped cache. The higher the victim buffer hit
rate, the more performance improvement and energy
reductions we can achieve, because the victim buffer
would reduce the visits to off chip memory, which is
both time consuming and energy expensive.

Figure 3 shows the performance and energy
improvements when adding an always-on victim buffer
to a direct-mapped cache. Performance is the program
execution time. Energy is calculated from Equation 1.
0% represents the performance and energy
consumption of an 8 Kbyte direct-mapped cache. From

Figure 3, we see that a victim buffer improves both
performance and energy for some benchmarks, like
mpeg, epic, and adpcm. In a core-based approach, a
victim buffer should be included for these benchmarks.
In a pre-fabricated platform approach, a configurable
victim buffer should be turned on for these benchmarks.
For other benchmarks, energy is not improved but
performance is degraded, as for vpr, fir, and padpcm. A
victim buffer should be excluded or turned off for these
benchmarks. Some benchmarks, like jpeg, parser, and
auto2, yield some energy savings at the expense of
some performance degradation using a victim buffer – a
designer might choose whether to include/exclude or
turn on/off the buffer in these cases depending on
whether energy or performance is more important.

From the above analysis, we can see that adding a
victim buffer as a cache design parameter is imperative
for embedded system designers to fully take advantage
of the victim buffer based on an application’s specific
requirements.

21% 24% 38% 43% 60%

-4%

0%

4%

8%

12%

16%

pa
dp

cm cr
c

au
to

2

bc
nt

bi
lv

bi
na

ry bl
it

br
ev

g3
fa

x fir

pj
eg

uc
bq

so
rt

v4
2

ad
pc

m

ep
ic

g7
21

pe
gw

it

m
pe

g

jp
eg ar

t

m
cf

pa
rs

er vp
r

perform ance energy

Figure 3: Performance and energy improvements when adding a victim buffer to an 8 Kbyte direct-mapped cache. Positive values mean
the victim buffer improved performance or energy, with 0% representing an 8 Kbyte direct-mapped cache without a victim buffer.
Benchmarks with both bars positive should turn on the victim buffer, while those with negative performance improvement and little or no
energy improvement should turn off the victim buffer.

32% 43% 23%

-4%

0%

4%

8%

12%

pa
dp

cm cr
c

au
to

2

bc
nt

bi
lv

bi
na

ry bl
it

br
ev

g3
fa

x fir

pj
eg

uc
bq

so
rt

v4
2

ad
pc

m

ep
ic

g7
21

pe
gw

it

m
pe

g

jp
eg ar

t

m
cf

pa
rs

er vp
r

performance energy

Figure 4: Performance and energy improvements when adding a victim buffer to an 8 Kbyte configurable cache. 0% represents a
configurable cache without a victim buffer, tuned optimally to the particular benchmark.

 5

3.2.2 Victim buffer with a parameterized cache
Previous work has shown that tuning cache parameters
to a particular application’s requirements can
dramatically improve energy efficiency [2][8]. Zhang
[13] also showed that a pre-fabricated 8 Kbyte 4-way
set-associative cache with configurable associativity
and size, tuned to a particular application, reduces
memory-access-related energy by 40% on average
compared to a 4-way set-associative cache, and by 20%
compared to a direct-mapped cache (and as high as
185% on particular benchmarks). That cache could be
configured as 4-way, 2-way or 1-way (direct mapped),
and as 8 Kbyte, 4 Kbyte or 2 Kbyte.

One might think that adding a victim buffer as a
cache parameter might not be useful with a
parameterized cache, since size and ways can already
be tuned to an application. Instead, we show here that a
victim buffer is indeed a useful parameter to add to
even a parameterized cache.

Figure 4 shows the performance and energy
improvement of adding a victim buffer to a
parameterized cache having the same configurability
described in [13]. 0% represents the performance and
energy of the original configurable cache when tuned
optimally to a particular application. The bars represent
the performance and energy of the configurable cache
when optimally tuned to an application assuming a
victim buffer exists and is always on. The optimal
cache configurations for a given benchmark are usually
different for each of the two cases (no victim buffer
versus always-on victim buffer).

We see that, even though the configurable cache
already represents significant energy savings compared
to either a 4-way or direct-mapped cache [13], a victim
buffer extends the savings of a configurable cache by a
large amount for many examples. For example, a victim
buffer yields an additional 32%, 43%, and 23% energy
savings for benchmarks adpcm, epic, and mpeg2. The
savings of adpcm and epic come primarily from the
victim buffer that reduces the visits to off-chip memory.
The saving of epic comes primarily from the victim
buffer enabling us to configure the configurable cache
to use less associativity without increasing accesses to
the next memory level. Yet, for other benchmarks, like
adpcm, auto2 and vpr, the victim buffer yields
performance overhead with no energy savings and thus
should be turned off.

It may be noticed that the energy reductions of a
victim buffer for a direct-mapped cache are larger than
for the configurable cache. This is because the
configurable cache consumes less energy than a
direct-mapped cache, so the original configurable cache
leaves less room for the victim buffer to reduce energy.

Table 1 shows the best cache configurations for all
benchmarks we simulated when cache associativity,
cache size, and the victim buffer are configurable.
There are 11 out of 23 benchmarks for data cache, and
one benchmark for instruction cache, that consume less
energy when the configurable victim buffer is turned
on.

3.3 Influence of victim buffer size
We also did experiments with a 16-line victim buffer,
which is 512 bytes (the data reported in the previous
sections used an 8-line buffer). The performance and
energy data when a 16-line victim buffer is
incorporated to an 8 Kbyte configurable cache are
shown in Figure 5. Comparing that data with Figure 4,
we see only very small improvements on a few
examples. Thus, an 8-line buffer seems sufficient for
these benchmarks.

4 Conclusion
While the average performance and energy
improvements obtainable using a victim buffer with a
direct-mapped cache are well known, we have shown
that making that victim buffer an additional cache
parameter is important in embedded systems, so that the
buffer can be excluded or turned off if the particular
application being executed yields a low buffer hit rate
and hence performance overhead. Furthermore, we
have shown that adding a victim buffer as a cache
parameter expands the usefulness of a cache with

Table 1: Optimal cache configuration when cache
associativity, cache size and victim buffer are all
configurable. I and D stands for instruction cache and data
cache, respectively. V stands for the victim buffer is on. nK
stands for the cache size is n Kbyte. The associativity is
represented by the last four characters, such as benchmark
vpr, I2D1 stands for two-way instruction cache and
direct-mapped data cache.

Example Best Example Best
padpcm I8KD4KI1D2 ucbqsort I4KDV4KI1D1

crc I2KDV4KI1D1 v42 I8KD8KI1D1
auto2 I4KD2KI1D1 adpcm I2KDV2KI1D1
bcnt I2KD2KI1D1 epic IV4KDV8KI1D1
bilv I4KD2KI1D1 jpeg I8KD2KI4D1

binary I4KD2KI1D1 mpeg2 I4KDV4KI1D1
blit I2KDV2KI1D1 g721 I8KDV2KI2D1

brev I4KD2KI1D1 art I4KDV2KI1D1
g3fax I4KDV2KI1D1 mcf I4KD4KI1D1

fir I4KD2KI1D1 parser I8KDV4KI4D1
pjepg I4KDV2KI1D1 vpr I8KD2KI2D1
pegwit I4KD4KI1D1

 6

configurable ways and size, by further increasing the
energy savings obtained from tuning the cache to a
particular application (this conclusion is non-obvious –
it could have happened that a cache’s standard
parameters would have subsumed the victim buffer’s
benefits). We conclude that adding a victim buffer as a
cache parameter should be done in embedded system
architectures utilizing either a direct-mapped or
configurable cache.

The configurable victim buffer we introduced could
be used in a static approach in which the buffer is
configured once during microprocessor reset, or even in
a dynamic approach in which the buffer is turned on
and off dynamically depending on the
presently-running application. Future work includes
dynamically detecting when to turn a configurable
victim buffer on or off, depending on the present
application or application phase, and exploring the
impact of different victim buffer sizes as another
possible parameter.

Acknowledgments
This work was supported by the National Science
Foundation (CCR-0203829, CCR-9876006) and by the
Semiconductor Research Corporation (CSR
2002-RJ-1046G).

References
[1] G. Albera and R. Bahar, “Power/performance

Advantages of Victim Buffer in High-Performance
Processors,” IEEE Alessandro Volta Memorial
Workshop on Low-Power Design,1999.

[2] D.H. Albonesi, “Selective Cache Ways:
On-Demand Cache Resource Allocation,” Journal
of Instruction Level Parallelism, May 2000.

[3] ARC International, http://www.arccores.com.

[4] ARM Ltd., http://www.arm.com.
[5] D. Burger and T.M. Austin. The SimpleScalar Tool

Set, Version 2.0. Univ. of Wisconsin-Madison
Computer Sciences Dept. Technical Report #1342,
1997.

[6] http://www.specbench.org/osg/cpu2000
[7] N. Jouppi, “Improving Direct-Mapped Cache

Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” in
the Proceedings of International Symposium on
Computer Architecture, 1990.

[8] C. Lee, M. Potkonjak and W. Mangione-Smith,
“MediaBench: A Tool for Evaluating and
Synthesizing Multimedia and Communications
Systems,” in the Proceedings of International
Symposium on Microarchitecture, 1997.

[9] A. Malik, B. Moyer, and D. Cermak, “A Low
Power Unified Cache Architecture Providing
Power and Performance Flexibility,” in the
Proceedings of International Symposiums on Low
Power Electronics and Design, 2000.

[10] MIPS Technologies, Inc, http://www.mips.com.
[11] S. Segars. Low power design techniques for

microprocessors. In IEEE Int. Solid-State Circuits
Conference Tutorial, 2001.

[12] Tensilica Inc, http://www.tensilica.com.
[13] C. Zhang, F. Vahid, and W. Najjar, “A Highly

Configurable Cache Architecture for Embedded
Systems,” in the Proceedings of International
Symposium on Computer Architecture, 2003.

35% 25%45%

-4%

0%

4%

8%

12%

16%
pa

dp
cm cr

c

au
to

2

bc
nt

bi
lv

bi
na

ry bl
it

br
ev

g3
fa

x fir

pj
eg

uc
bq

so
rt

v4
2

ad
pc

m

ep
ic

g7
21

pe
gw

it

m
pe

g

jp
eg ar

t

m
cf

pa
rs

er vp
r

performance energy

Figure 5: Performance and energy improvements when adding a 16-line victim buffer to an 8 Kbyte configurable cache. 0%
represents a configurable cache without a victim buffer, tuned optimally to the particular benchmark

