
 1

Using a Victim Buffer in an Application-Specific Memory Hierarchy 
Chuanjun Zhang 

Department of Electrical Engineering 
University of California, Riverside 

czhang@ee.ucr.edu 

 
 

Frank Vahid 
Department of Computer Science and Engineering 

University of California, Riverside 
vahid@cs.ucr.edu  

Also with the Center for Embedded Computer Systems 
at UC Irvine

Abstract – Customizing a memory hierarchy to a 
particular application or applications is becoming 
increasingly common in embedded system design, with 
one benefit being reduced energy. Adding a victim 
buffer to the memory hierarchy is known to reduce 
energy and improve performance on average, yet victim 
buffers are not typically found in commercial embedded 
processors. One problem with such buffers is, while 
they work well on average, they tend to hurt 
performance for many applications. We show that a 
victim buffer can be very effective if it is considered as 
a parameter in designing a memory hierarchy, like the 
traditional cache parameters of total size, associativity, 
and line size. We describe experiments on PowerStone 
and MediaBench benchmarks, showing that having the 
option of adding a victim buffer to a direct-mapped 
cache can reduce memory-access energy by a factor of 
3 in some cases. Furthermore, even when other cache 
parameters are configurable, we show that a victim 
buffer can still reduce energy by 43%. By treating the 
victim buffer as a parameter, meaning the buffer can be 
included or excluded, we can avoid performance 
overhead of up to 4% on some examples. We discuss the 
victim buffer in the context of both core-based and 
pre-fabricated platform based design approaches.  
 

1 Introduction 
Energy consumption is an important issue for battery 
powered embedded systems. On-chip cache consumes 
almost half of a microprocessor’s total energy [11]. 
Energy efficient cache architecture design is thus a 
critical issue in the design of microprocessors that 
target embedded systems.  

Direct-mapped (DM) caches are popular in 
embedded microprocessor architectures due to their 
simplicity and good hit rates for many applications. A 
DM cache requires less power per access than a 
set-associative cache that accesses multiple ways 
simultaneously. Furthermore, since a DM cache does 
not have to select the hit way among cache ways as in a 
set-associative cache, a DM cache may have faster 
access time. Furthermore, for many applications, a DM 

cache’s hit rate is nearly as good as that of a 
set-associative cache. For example, in [13], 17 of 23 
benchmarks consumed the least energy using a 
direct-mapped cache rather than a set-associative cache 
with any number of ways, even when the sizes of either 
cache could be varied.   

However, for other applications, a DM cache has a 
poor hit rate, resulting in many accesses to the slower 
and power-costly next level memory (L2 cache or main 
memory), and hence poor performance and high energy 
consumption.  

A victim buffer can improve the situation for such 
applications. A victim buffer is a small fully-associative 
cache, whose size is typically 4 to 16 cache lines, 
residing between a direct-mapped L1 cache and the 
next level of memory. The victim buffer holds lines 
discarded after an L1 cache miss. The victim buffer is 
checked whenever there is an L1 cache miss, before 
going to the next level memory. If the desired data is 
found in the victim buffer, the data in the victim buffer 
is swapped back to the L1 cache. Jouppi [7] reported 
that a four-entry victim buffer could reduce 20% to 
95% of the conflict misses in a 4 Kbyte direct-mapped 
data cache. Albera and Bahar [1] evaluated the power 
and performance advantages of a victim buffer in a high 
performance superscalar, speculative, out-of-order 
processor. They showed that adding a victim buffer to 
an 8 Kbyte direct-mapped data cache results in 10% 
energy savings and 3.5% performance improvements 
on average for the Spec95 benchmark suite.  

A victim buffer improves the performance and 
energy of a DM cache on average, but for some 
applications, a victim buffer actually degrades 
performance without much or any energy savings, as 
we will show later. Such degradation occurs when the 
victim buffer hit rate is low. Checking a victim buffer 
requires an extra cycle after an L1 miss. If the victim 
buffer hit rate is high, that extra cycle actually prevents 
dozens of cycles for accessing the next level memory. 
But if the buffer hit rate is low, that extra cycle doesn’t 
save much and thus is wasteful. Whether a victim 
buffer’s hit rate is high or low is dependent on what 
application is running. Such performance overhead may 
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be one reason that victim buffers aren’t always included 
in embedded processor cache architectures. 

An embedded system typically runs one application 
(or a small number of applications) for the system’s 
lifetime. Thus, while an architectural feature that works 
on average is nice, what really matters to an embedded 
system designer is whether the feature works well on 
the one application that the designer is implementing. 
Thus, there is a strong benefit to creating embedded 
system architectures that are configurable, and can thus 
be tuned to a particular application. 

In this paper, we show that treating the victim buffer 
as a configurable memory parameter to a DM cache – 
i.e., the buffer can be included or excluded in a 
synthesis methodology, or turned on or off in a 
configurable hardware architecture) – is superior to 
either using a DM cache without a victim buffer, or 
using a DM cache with an always-on victim buffer. 

Furthermore, we show that a victim buffer 
parameter is even useful with a cache that itself is 
highly parameterized. Cache parameters are standard in 
microprocessors sold as cores [3][4][10][12]. 
Furthermore, several parameterized cache architectures 
have recently been introduced such that total size, 
associativity, and line size can even be configured after 
chip fabrication [2][9][13]. One might think that having 
a parameterized cache obviates the need for a victim 
buffer. Instead, we show that a victim buffer enables 
further improvement, usually by enabling the 
parameterized cache to be configured as direct-mapped 
for applications where otherwise the cache would have 
been set-associative. 

2 Victim Buffer as a Cache Parameter 
We consider adding a victim buffer to both core-based 
and pre-fabricated platform based design situations. 

2.1 Core-Based Design Approach 
A core-based approach involves incorporating a 
processor (core) into a chip before the chip has been 
fabricated, either using a synthesizable core (soft core) 
or a layout (hard core). In either case, most core 
vendors allow a designer to configure the level 1 
cache’s total size (typical sizes range from no cache to 
64 Kbyte), associativity (ranging from direct mapped to 
4 or 8 ways), and sometimes line size (ranging from 16 
bytes to 64 bytes). Other parameters include use of 
write through, write back, and write allocate policies 
for writing to a cache, as well as the size of a write 
buffer. 

Adding a victim buffer to a core-based approach is 
straightforward, involving simply including or not 
including a buffer into the design. 

2.2 Pre-Fabricated Platform Approach 
A pre-fabricated platform is a chip that has already 
been designed, but is intended for use in a variety of 
possible applications. To perform efficiently for the 
largest variety of applications, recent platforms come 
with parameterized architectures that a designer can 
configure for his/her particular set of applications. 
Recent architectures include cache parameters 
[9][13][2] that can be configured by setting a few 
configuration register bits. We therefore developed a 
configurable victim buffer that could be turned on or 
off by setting bits in a configuration register. 

2.3   Configurable Victim Buffer  
Architecture 
Our configurable victim buffer is shown in Figure 1. 
The first level cache is backed up with an eight-entry 
fully-associative victim buffer (a four-entry buffer is 
drawn). A content addressable memory (CAM) holds 
the tags of the eight cache lines in the victim buffer. A 
mux located between the victim buffer and the L1 
cache selects the data to the L1 cache either from the 
victim buffer or the next level memory.  

A one-bit software programmable register controls 
the on/off state of the victim buffer. When the victim 
buffer is configured as on, it is accessed when there is 
an L1 cache miss. If the desired content is found in the 
victim buffer, then the hit cache line in the victim buffer 
is swapped with the L1 cache to replace the missed 
cache line. If the victim buffer is configured as off, then 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Cache architecture with a configurable victim buffer 
that can be turned on or off. VB stands for victim buffer. MUX 
control: s = 0 when VB is off; s = 0 when VB is on and a 
victim buffer miss; s = 1 when VB is on and a victim buffer 
hit. 
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the next level memory is accessed when there is a L1 
cache misses.    

We assume separate L1 caches for instruction and 
data, and thus add a distinct victim buffer to each L1 
cache. 

2.4 Configurable Buffer Overhead Analysis 
Because the victim buffer resides after the L1 cache, the 
buffer causes no critical path overhead and hence no 
degradation of clock rate. While CAM tags used in the 
victim buffer for full-associativity can be energy 
expensive compared with conventional SRAM based 
tags, the victim buffer is small, and is only accessed 
when there is an L1 cache miss, making the energy 
overhead of the victim buffer very small. 

The configuration circuit, a 1-bit register and a 
switch to turn off the victim buffer, accounts for trivial 
area overhead. 

 

3 Experiments 
We simulated, using SimpleScalar [5], a variety of 
benchmarks for a variety of cache configurations. The 
benchmarks include programs from Motorola’s 
Powerstone suite [9] (padpcm, crc, auto2, bcnt, bilv, 
binary, blit, brev, g3fax, fir, pjpeg, ucbqsort, v42), 
MediaBench [8] (adpcm, epic, jpeg, mpeg2, pegwit, 
g721) and some programs from Spec 2000 [6] (art, mcf, 
parser, vpr). We chose programs that simulated without 
problems and ran in a tolerable amount of time, and 
show results for all programs that we ran. We use the 
test vectors that came with each benchmark as program 
stimuli. 

3.1 Energy Evaluation 
Power dissipation in CMOS circuits is comprised of 
two main components, static power dissipation due to 
leakage current, and dynamic power dissipation due to 
logic switching current and the charging and 
discharging of the load capacitance. Dynamic energy 
consumption contributes to most of the total energy 
dissipation in micrometer-scale technologies, but static 
energy dissipation will contribute an increasingly larger 
portion of total energy consumption in nanometer-scale 
technologies. Therefore, we consider both types of 
energies. We also consider energy consumption of both 
on-chip cache and off-chip memory. The energy 
consumption of on-chip cache includes both dynamic 
energy and static energy. We calculate energy using 
Equation 1. The cache access energies, hitE  and 

fillblockcacheE __ , come from our own layout of the 
cache; the energy dissipation of off-chip memory and 
static energy are estimated as in [13]. totalCache , 

accessoffchipmissesmemory

fillblockcachestalluPmiss

cycleperstatictotalstatic

missMisseshittotaldynamic

staticdynamiccache

memorycachetotal

ECacheE
EEE

ECyclesE
ECacheECacheE

EEE
EEE

_

___

__

*

*

**

=

+=

=

+=

+=

+=

 

Equation 1: Equations for calculating memory-access 
energy. 
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Figure 2: Hit rate of a victim buffer when added to an 8 Kbyte, 4 Kbyte, or 2 Kbyte direct-mapped cache. 



 4

MissesCache , and totalCycle are obtained through 
SimpleScalar.  

3.2 Results 
3.2.1 Victim buffer with a direct mapped cache 
Most benchmarks run well using a direct-mapped 
cache. Figure 2 shows the hit rate of the victim buffer 
when the L1 cache is an 8 Kbyte, 4 Kbyte, or 2 Kbyte 
direct-mapped cache. The higher the victim buffer hit 
rate, the more performance improvement and energy 
reductions we can achieve, because the victim buffer 
would reduce the visits to off chip memory, which is 
both time consuming and energy expensive.    

Figure 3 shows the performance and energy 
improvements when adding an always-on victim buffer 
to a direct-mapped cache. Performance is the program 
execution time. Energy is calculated from Equation 1. 
0% represents the performance and energy 
consumption of an 8 Kbyte direct-mapped cache. From 

Figure 3, we see that a victim buffer improves both 
performance and energy for some benchmarks, like 
mpeg, epic, and adpcm. In a core-based approach, a 
victim buffer should be included for these benchmarks. 
In a pre-fabricated platform approach, a configurable 
victim buffer should be turned on for these benchmarks. 
For other benchmarks, energy is not improved but 
performance is degraded, as for vpr, fir, and padpcm. A 
victim buffer should be excluded or turned off for these 
benchmarks. Some benchmarks, like jpeg, parser, and 
auto2, yield some energy savings at the expense of 
some performance degradation using a victim buffer – a 
designer might choose whether to include/exclude or 
turn on/off the buffer in these cases depending on 
whether energy or performance is more important. 

From the above analysis, we can see that adding a 
victim buffer as a cache design parameter is imperative 
for embedded system designers to fully take advantage 
of the victim buffer based on an application’s specific 
requirements.  
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Figure 3: Performance and energy improvements when adding a victim buffer to an 8 Kbyte direct-mapped cache. Positive values mean 
the victim buffer improved performance or energy, with 0% representing an 8 Kbyte direct-mapped cache without a victim buffer. 
Benchmarks with both bars positive should turn on the victim buffer, while those with negative performance improvement and little or no 
energy improvement should turn off the victim buffer. 
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Figure 4: Performance and energy improvements when adding a victim buffer to an 8 Kbyte configurable cache. 0% represents a 
configurable cache without a victim buffer, tuned optimally to the particular benchmark. 
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3.2.2 Victim buffer with a parameterized cache 
Previous work has shown that tuning cache parameters 
to a particular application’s requirements can 
dramatically improve energy efficiency [2][8].  Zhang  
[13] also showed that a pre-fabricated 8 Kbyte 4-way 
set-associative cache with configurable associativity 
and size, tuned to a particular application, reduces 
memory-access-related energy by 40% on average 
compared to a 4-way set-associative cache, and by 20% 
compared to a direct-mapped cache (and as high as 
185% on particular benchmarks). That cache could be 
configured as 4-way, 2-way or 1-way (direct mapped), 
and as 8 Kbyte, 4 Kbyte or 2 Kbyte.  

One might think that adding a victim buffer as a 
cache parameter might not be useful with a 
parameterized cache, since size and ways can already 
be tuned to an application. Instead, we show here that a 
victim buffer is indeed a useful parameter to add to 
even a parameterized cache.  

Figure 4 shows the performance and energy 
improvement of adding a victim buffer to a 
parameterized cache having the same configurability 
described in [13]. 0% represents the performance and 
energy of the original configurable cache when tuned 
optimally to a particular application. The bars represent 
the performance and energy of the configurable cache 
when optimally tuned to an application assuming a 
victim buffer exists and is always on. The optimal 
cache configurations for a given benchmark are usually 
different for each of the two cases (no victim buffer 
versus always-on victim buffer).  

We see that, even though the configurable cache 
already represents significant energy savings compared 
to either a 4-way or direct-mapped cache [13], a victim 
buffer extends the savings of a configurable cache by a 
large amount for many examples. For example, a victim 
buffer yields an additional 32%, 43%, and 23% energy 
savings for benchmarks adpcm, epic, and mpeg2. The 
savings of adpcm and epic come primarily from the 
victim buffer that reduces the visits to off-chip memory. 
The saving of epic comes primarily from the victim 
buffer enabling us to configure the configurable cache 
to use less associativity without increasing accesses to 
the next memory level. Yet, for other benchmarks, like 
adpcm, auto2 and vpr, the victim buffer yields 
performance overhead with no energy savings and thus 
should be turned off.  

It may be noticed that the energy reductions of a 
victim buffer for a direct-mapped cache are larger than 
for the configurable cache. This is because the 
configurable cache consumes less energy than a 
direct-mapped cache, so the original configurable cache 
leaves less room for the victim buffer to reduce energy. 

Table 1 shows the best cache configurations for all 
benchmarks we simulated when cache associativity, 
cache size, and the victim buffer are configurable. 
There are 11 out of 23 benchmarks for data cache, and 
one benchmark for instruction cache, that consume less 
energy when the configurable victim buffer is turned 
on. 

3.3 Influence of victim buffer size 
We also did experiments with a 16-line victim buffer, 
which is 512 bytes (the data reported in the previous 
sections used an 8-line buffer). The performance and 
energy data when a 16-line victim buffer is 
incorporated to an 8 Kbyte configurable cache are 
shown in Figure 5. Comparing that data with Figure 4, 
we see only very small improvements on a few 
examples. Thus, an 8-line buffer seems sufficient for 
these benchmarks.   

4 Conclusion 
While the average performance and energy 
improvements obtainable using a victim buffer with a 
direct-mapped cache are well known, we have shown 
that making that victim buffer an additional cache 
parameter is important in embedded systems, so that the 
buffer can be excluded or turned off if the particular 
application being executed yields a low buffer hit rate 
and hence performance overhead. Furthermore, we 
have shown that adding a victim buffer as a cache 
parameter expands the usefulness of a cache with 

Table 1: Optimal cache configuration when cache 
associativity, cache size and victim buffer are all 
configurable. I and D stands for instruction cache and data 
cache, respectively. V stands for the victim buffer is on. nK 
stands for the cache size is n Kbyte. The associativity is 
represented by the last four characters, such as benchmark 
vpr, I2D1 stands for two-way instruction cache and 
direct-mapped data cache. 

Example Best Example Best
padpcm I8KD4KI1D2 ucbqsort I4KDV4KI1D1

crc I2KDV4KI1D1 v42 I8KD8KI1D1
auto2 I4KD2KI1D1 adpcm I2KDV2KI1D1
bcnt I2KD2KI1D1 epic IV4KDV8KI1D1
bilv I4KD2KI1D1 jpeg I8KD2KI4D1

binary I4KD2KI1D1 mpeg2 I4KDV4KI1D1
blit I2KDV2KI1D1 g721 I8KDV2KI2D1

brev I4KD2KI1D1 art I4KDV2KI1D1
g3fax I4KDV2KI1D1 mcf I4KD4KI1D1

fir I4KD2KI1D1 parser I8KDV4KI4D1
pjepg I4KDV2KI1D1 vpr I8KD2KI2D1
pegwit I4KD4KI1D1  
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configurable ways and size, by further increasing the 
energy savings obtained from tuning the cache to a 
particular application (this conclusion is non-obvious – 
it could have happened that a cache’s standard 
parameters would have subsumed the victim buffer’s 
benefits). We conclude that adding a victim buffer as a 
cache parameter should be done in embedded system 
architectures utilizing either a direct-mapped or 
configurable cache. 

The configurable victim buffer we introduced could 
be used in a static approach in which the buffer is 
configured once during microprocessor reset, or even in 
a dynamic approach in which the buffer is turned on 
and off dynamically depending on the 
presently-running application. Future work includes 
dynamically detecting when to turn a configurable 
victim buffer on or off, depending on the present 
application or application phase, and exploring the 
impact of different victim buffer sizes as another 
possible parameter. 
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Figure 5: Performance and energy improvements when adding a 16-line victim buffer to an 8 Kbyte configurable cache. 0% 
represents a configurable cache without a victim buffer, tuned optimally to the particular benchmark 

 


