
Design Automation for Embedded Systems, 2, 237–261 (1997)
c© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Extending the Kernighan/Lin Heuristic
for Hardware and Software Functional Partitioning

FRANK VAHID vahid@cs.ucr.edu
Department of Computer Science, University of California, Riverside, CA 92521

THUY Dm LE
Department of Computer Science, University of California, Riverside, CA 92521

Abstract. The Kernighan/Lin graph partitioning heuristic, also known as min-cut or group migration, has been
extended over several decades very successfully for circuit partitioning. Those extensions customized the heuristic
and its associated data structure to rapidly compute the minimum-cut metric central to circuit partitioning; as such,
those extensions are not directly applicable to other problems. In this paper, we extend the heuristic for functional
partitioning, which in turn can solve the much investigated codesign problem of partitioning a system’s coarse-
grained functions among hardware and software components. The key extension customizes the heuristic and
data structure to rapidly compute execution-time and communication metrics, crucial to hardware and software
partitioning, and leads to near-linear time-complexity and excellent resulting quality. Another extension uses a
new criteria for terminating the heuristic, eliminating time-consuming and unnecessary fine-tuning of a partition.
Our experiments demonstrate extremely fast execution times (just a few seconds) with results matched only by the
slower simulated annealing heuristic, meaning that the extended Kernighan/Lin heuristic will likely prove hard to
beat for hardware and software functional partitioning.

1. Introduction

The maturation of high-level synthesis has created the capability to compile a single program
into assembly-level software, custom digital-hardware, or combined software/hardware
implementations. Such a capability may lead to: (1) reconfigurable accelerators, where
field-programmable gate arrays (FPGA’s) are automatically reconfigured to speedup par-
ticular software applications [1], [2], and (2) cheaper, faster, and more quickly designed
embedded systems, where advanced design automation tools assist the embedded system
designer in quickly exploring and generating design alternatives [3], [4], [5]. In either case,
new-generation compilers will be needed that can not only compile to either software or
hardware, but that can partition the program among any number of software and hardware
parts. Such partitioners must be extremely fast, since they must fit into an environment
in which compilations are expected to execute in just seconds or at most minutes. Hard-
ware partitioning is currently done by partitioning structure, but results in [6] demonstrate
dramatic improvements to be gained by partitioning functions instead. Hardware/software
partitioning is currently done manually, but the advent of partitioning compilers will likely
change matters.

Automated hardware/software partitioners are presently the focus of several research
efforts. In [3], statement blocks are partitioned among a software and hardware proces-
sor using simulated annealing. In [4], statement threads are partitioned using a custom
greedy-improvement heuristic. In [7], hierarchical clustering is used to merge statements



238 VAHID AND LE

together based on their suitability for hardware of software implementation. In [8], tasks in
a dataflow graph are simultaneously partitioned and scheduled using a custom constructive
heuristic. In [9], basic blocks are partitioned among hardware and software using a dynamic
programming algorithm that takes communication into account. In [10], processes derived
from a hierarchical state-machine are partitioned among a hardware and software processor,
either manually or using hierarchical clustering; several formal transformations are incor-
porated, such as parallelization. In [5], [11], [12], subroutines and variables are partitioned
automatically among standard and custom processors, memories, and buses, using a suite of
automated heuristics (e.g., greedy improvement, group migration, clustering and simulated
annealing), or interactively using hints and a spreadsheet-like display of metric values and
constraints. Further overviews can be found in [13], [14].

Our goal was to develop a heuristic that would : (1) run extremely quickly (executing
in just a few seconds), (2) consistently yield excellent results, (3) be applicable to hard-
ware/software partitioning as well as to hardware/hardware functional partitioning, and (4)
not restrict the inclusion of new metrics. Since no proposed hardware/software heuristic
satisfied all four requirements, we examined the Kernighan/Lin (KL) heuristic [15] (also
known as group migration or min-cut). According to Lengauer [16], KL-based heuristics
are the main methods for hypergraph partitioning, generating robust and satisfactory solu-
tions for many applications. KL was extended by Fiduccia/Mattheyses (KLFM) [17] to run
in linear time, and has since been improved to yield even better results.

With the great success and maturity of KLFM in circuit partitioning, we examined the pos-
sibility of re-extending KL for functional partitioning. This paper represents the first work
in extending the highly-successful KL heuristic to the new problem of hardware/software
partitioning. Because of the very different problem formulation from that of circuit parti-
tioning, creating a set of extensions achieving linear-time complexity is non-trivial. In fact,
a straightforward implementation of KL would result instead inO(n2) complexity. The
most important and difficult part of the extension is the integration of the heuristic with a
powerful model of behavior execution-time [18]. This model includes a communication
model that quickly but accurately computes data transfer times between hardware and soft-
ware parts as well as within a single part. By incorporating the heuristic with the model,
excellent results can be obtained extremely quickly.

The paper is organized as follows. In Section 2, we provide a hardware/software parti-
tioning problem definition. In Section 3, we provide background on KL and its extensions
for circuit partitioning. In Section 4, we describe extensions for hardware/software par-
titioning, which include using an entirely different partitioning metric combined with an
efficient data structure, leading to near-linear time-complexity. In Section 5, we describe a
technique for obtaining practical reductions in the heuristic’s runtime for the case of dealing
with coarse estimates, as is the case during hardware/software partitioning. In Section 6,
we provide results of experiments showing extremely fast and high-quality results of the
heuristic as compared to several standard heuristics. In Section 7, we describe future exten-
sions that might prove useful, similar to extensions made for circuit partitioning. Finally,
in Section 8, we provide conclusions.



EXTENDING THE KERNIGHAN/LIN HEURISTIC 239

Figure 1. Example: (a) specification, (b) access graph, (c) annotations.

2. Problem Definition

We are given a single sequential process, such as that shown in Figure 1(a), which can
be written in C, VHDL or some similar procedural language; we shall describe possible
extensions for concurrent processes in Section 7. The program is to be implemented on a
target architecture consisting of a standard processor with memory (the software part) and
a custom processor possibly with its own memory (the hardware part), the most general
version of which is shown in Figure 2. The standard processor may use a system bus, and/or
may have several bidirectional data ports (such as commonly found on microcontrollers).
The custom processor can access the software memory, as well as its own local memory.
The two processors may have different clock speeds.

Our problem is to assign every piece of the program to either the software or hardware
part, such that we minimize execution time while satisfying any size and I/O constraints.

To achieve such a partition, we first decompose the program intofunctional objects, where
each object represents a subroutine or a variable. (We can always treat certain statement
blocks as subroutines to achieve finer granularity [19]). We use the SLIF AG (System-Level
Intermediate Format Access Graph) representation for this purpose [18]. The AG represents
each object as a node, and each access as an edge, as illustrated in Figure 1(b).

We annotate each node and edge, as shown in Figure 1(c). Each node is annotated with
estimates of internal computation times and sizes for each possible part to which it could be
assigned; in the example, there are just two parts, software (s) and hardware (h) (actually,
each part would be identified more precisely, such asIntel 8051or Xilinx XC4010, along
with technology files, but we omit such details in this paper). The internal computation time
ict represents a nodes’s execution time on a given part, ignoring any communication time
with external nodes. In the example,n4 requires 100 clocks for computation in software
but only 10 in hardware. Each edge is annotated with the number of bits transferred during



240 VAHID AND LE

Figure 2. Target architecture.

the access, and the frequency with which the access occurs. The actual time to transfer data
during an access over the edge depends on the bus to which the edge is assigned. The bus
will have a specified width and protocol time; we need to multiply this time by the number
of transfers required to transfer the edge’s bits over the bus width. For example, transfering
16 bits over an 8-bit bus with a protocol time of 5 clocks will require 5∗16/8= 10 clocks.
Note that all annotation values may represent minimums, maximums, or averages.

Determining the annotations is just part of the metric evaluation process. We use a two-
phase approach to metric evaluation. During the “pre-estimation” phase described above,
the SLIF nodes and edges are annotated; since only performed once, before partitioning,
this phase can take many minutes. During “online-estimation,” the annotations are quickly
combined using possibly complex equations to obtain metric values for every examined
partition during partitioning; since thousands of partitions might be examined, such estima-
tion must be extremely fast. Online-estimation is the focus of Section 4. Pre-estimation is
a hard problem, requiring a combination of profilers, estimators, and synthesis tools, but is
beyond the scope of this paper. Discussions regarding estimation techniques and accuracies
can be found in [5], [20], [12]. For a discussion on a more complex method for hardware
size estimation, which considers hardware sharing among functional objects, see [21].

The main difference between an AG and a dataflow graph (DFG) is that an AG usually
uses one node for each procedure, and each call to that procedure translates to an edge
pointing to that node; in contrast, a DFG may use distinct nodes for each call, resulting in
a large number of nodes for examples having a deep, convergent procedure-call hierarchy.
We can, of course, clone an AG node whose calls from different locations result in very
different procedure executions. We assume there are no recursive procedures, meaning that
the AG contains no cycles.

Given the annotated SLIF AG, we can develop an equation for estimating a node’s ex-
ecution time for any given partition. The equation is based on a model in which a node’s



EXTENDING THE KERNIGHAN/LIN HEURISTIC 241

execution-time is computed as the sum of its internal computation time (on the current part
to which it is assigned) and its communication time. This model will be discussed further
in Section 4.

3. Kernighan/Lin Heuristic Background

3.1. Improvement Heuristic Elements

An improvement heuristic is one that, given an initial partition, moves nodes among parts
seeking a lower-cost partition. Cost is measured using a cost function. A move is a
displacement of a node from one part (e.g., a chip) to another part. We view such heuristics
as consisting of two closely-related but distinct elements:

1. Control strategy: Includes three key activities—

(a) SelectNextMove: chooses the next move to make.

(b) ModifySelCrit: modifies the selection criteria, usually by reducing the possible
moves.

(c) Terminate: returns if some condition is met.

A control strategy’s goal is to overcome local cost minima while making the fewest
moves. A local cost minimum is a partition for which no single move improves the cost,
but for which a sequence of moves improves the cost; the goal is to find such sequences
without examining all possible sequences.

2. Cost information: Includes—

(a) DS: the data structure used to model the nodes and their partition, from which cost
is computed.

(b) UpdateDS: initializes DS, and modifies DS after a move, ideally in constant time.

(c) CostFct: a function that, given a partition, combines various metric values into
a number called cost, representing a partition’s quality. Ideally, the cost function
requires only constant time. We use the convention that lower cost is better.

(The term “heuristic” often refers to both elements, but can also refer to just the control
strategy; in this paper we use it to refer to both elements).

For example, in simulated annealing [22],SelectNextMovechooses moves at random,
rejecting more cost-increasing moves as the “temperature” is lowered.Terminateexits if
the temperature indicates a frozen status.ModifySelCritlowers the temperature if no lower-



242 VAHID AND LE

cost partition has been found for some time (representing attainment of an equilibrium state
at the current temperature).Cost informationis completely user-defined.

3.2. The Kernighan/Lin Heuristic

The KL heuristic seeks to improve a given two-way graph partition by reducing the edges
crossing between parts, known as thecut. KL’s CostFctmeasures the cut size. The essence
of the heuristic is its simple yet powerful control strategy, which overcomes many local
minima without using excessive moves.

The control strategy can be summarized as follows.SelectNextMovemeasures the cost of
all possible swaps of unlocked nodes in opposite parts, and then swaps the nodes with the
best gain (greatest cost decrease or least cost increase). If all nodes are locked, the heuristic
goes back to the lowest-cost partition seen, thus completing one iteration.ModifySelCrit
locks the swapped nodes, removing them from consideration during future moves; if all
nodes are locked and the iteration decreased the cost, then it unlocks all nodes and repeats.
Terminatereturns if the iteration did not decrease the cost.

We write the strategy in algorithmic form in Algorithm 3.1. AssumeN is the set of nodes
n1, n2, . . . ,nn to be partitioned, and the two-way partition is given asP = 〈p1, p2, DS〉,
wherep1

⋂
p2 = ∅ and p1

⋃
p2 = N.

Algorithm 3.1. KLControlStrategy(P)

IterationLoop:loop // Usually< 5 passes
currP= bestP= P
UnlockedLoop:while (UnlockedNodesExist(currP)) loop

swap= SelectNextMove(currP)
currP= MoveAndLockNodes(currP, swap)
bestP= GetBetterPartition(bestP, currP)

end loop

if not (CostFct(bestP) < CostFct(P)) then
return P // Terminate; no improvement this pass

else// Do another iteration
P= bestP, UnlockAllNodes(P)

end if
end loop

// Find best (or least worst) swap by trying all
procedure SelectNextMove (P)

SwapLoop:for each (unlockedni ∈ p1, nj ∈ p2) loop
Append(costlog, CostFct(Swap(P, ni , nj ))

end loop
return (ni , nj swap in costlog with lowest cost)

Note that the innermost loopSwapLoophas a time complexity ofn2, wheren is the
number of nodes inN. This loop is called within theUnlockedLooploop, which itself
has complexityn. Both are enclosed withinIterationLoop, which experimentally has been
found to have a small constant complexity, sayc1. Hence, the runtime complexity of KL is
c1× n× n2, or O(n3), though certain modifications can reduce it toO(n2log(n)) [16].



EXTENDING THE KERNIGHAN/LIN HEURISTIC 243

3.3. Fiduccia/Mattheyses Extensions

Fiduccia/Mattheyses [17] made three key extensions to KL:

1. They redefined the cut metric for hypergraphs, rather than graphs.

2. They redefined a move as a move of a single object from one part to another, rather than
as a swap of two objects.

3. They described a data structure that permittedSelectNextMoveto find the best next
move in constant time.

We refer to KL with these extensions as KLFM.
Regarding the first extension, the difference between a hypergraph and graph is that the

former’s edges, or hyperedges, may connect more than just two nodes. Hypergraphs more
closely model real circuits.

The second extension reduces the complexity ofSelectNextMovefrom O(n2) down to
O(n), since we now consider an average ofn/2 moves during each call to the procedure.
The redefinition has the disadvantage of slightly increasing the final partition’s cost, since
fewer partitions are being examined, but it has the added advantage of permitting unbalanced
parts (though KLFM still requires a minimal balancing).

Regarding the third extension, the data structure maintains possible moves in an array.
Each node is stored in the array at an index corresponding to the gain achieved when moving
the node. Because several nodes could have the same gain, each array item is actually a list.
In Algorithm 3.2, we see thatSelectNextMovenow performs two operations:PopBestMove
andUpdateDS. PopBestMovemust remove the first object in the array.UpdateDSmust
update gains of neighboring objects and then reposition those objects in the array. These
operations are performed in constant time as described in [17], so the entire procedure
requires only constant time, sayc2. IterationLoophas been found to loop a constant number
of times, sayc1, andUnlockedLoopstill requiresn iterations, so the time complexity is
c1× n× c2, or O(n).

Algorithm 3.2. KLFM’s SelectNextMove(P)
bestmove = PopBestMove(P)
UpdateDS(P, bestmove)
return (bestmove)

c1 of KLFM has been found to be slightly greater thanc1 of KL, because there are fewer
single object moves than swaps, so KLFM examines fewer moves per iteration than KL,
thus requiring more iterations [16].

3.4. Lookahead and Multiway Extensions

Krishnamurthy [23] sought to decrease KLFM’s final partition cost by replacing the arbritary
choice of equal-gain moves by a more intelligent choice. He introduced the concept of



244 VAHID AND LE

lookahead, by extending the gain to a sequence of numbers. The first number in the
sequence is the gain as defined above. The subsequent numbers in the sequence are other
metrics used to distinguish between objects with the same gain. Sanchis [24] extended
Krishnamurthy’s technique for multiway partitioning.

4. Extensions for Hardware/Software Partitioning

We now describe three extensions to KL for hardware/software partitioning, similar in idea
but very different in detail from the KLFM extensions for hypergraph partitioning:

1. We replace the cut metric by an execution-time metric.

2. We redefine a move as a single object move, rather than a swap.

3. We describe a data structure that permitsSelectNextMoveto find the best next move in
constant time.

We now describe the details of each extension.

4.1. Replacing Cut by Execution-Time Including Communication

This modification is the basis of the extensions for hardware/software partitioning. We first
noted that minimizing wires between parts (i.e., the cut) is not a particularly relevant goal
during hardware/software partitioning, since the wires between parts are fixed, or can be
easily reduced by time-multiplexing data transfers between parts. (Note that such time mul-
tiplexing is not usually possible during circuit partitioning, since the scheduling of transfers
to clock cycles is done before partitioning—this is one reason we might perform functional
partitioning rather than circuit partitioning even when partitioning among hardware blocks
only). We might consider replacing the goal of minimizing cut by the goal of minimizing
bits communicated between parts. However, minimizing bits is merely an indirect measure
of our real goal, which is to minimize execution time.

There are other metrics that must also be considered during hardware/software partition-
ing, such as hardware and software size and I/O. Since the techniques for incorporating
those metrics are straightforward, we discuss them later Section 7, and focus in this paper
on the hardest technique of minimizing execution time.

A node’s execution time can be computed using a model in which the execution-time
equals the sum of the node’s internal computation time and the time spent accessing other
nodes. This model can be captured as an equation as described in [18]; a simplified form
of the equation is:

n.et = n.ict + n.ct (1)

n.ict = n.ictp, p is n’s current part
n.ct =∑ek∈n.outedgesek.freq× (ek.t t + (ek.dst).et)
ek.t t = dbus delay× (ek.bits÷ buswidth)e



EXTENDING THE KERNIGHAN/LIN HEURISTIC 245

Figure 3. Execution-time model.

In other words, a noden’s execution timen.et equals its internal computation timen.ict
plus its communication timen.ct. Note that a node’sict may differ on different parts; for
example, a node might haven.ictsw = 100us andn.icthw = 5us. A node’sct equals the
transfer timeek.t t over each outgoing edgeek, plus the execution time of each accessed
object(ek.dst).et, times the number of such accessesek. f req. The transfer time equals
the bus delay, times a factor denoting the number of transfers required to transfer the edge’s
bits over the given bus width. The bus delay is the time required by the bus’ protocol to
achieve a single data transfer. We associate two such delay’s with each bus, one for when
the edge is contained within a single part, and another when the edge crosses between parts;
the latter is usually larger.

The equation forn1 from the earlier example is shown graphically in Figure 3. Details
of the transfer times have been omitted for simplicity.

Though the model yields some inaccuracies since some computation and communication
could actually occur in parallel, it provides a powerful means for obtaining quick yet fairly
accurate execution-time estimates. The communication model is quite general since each
edge can be associated with buses of various delays and widths, since different commu-
nication times can be used for inter-part and intra-part communication, and since more
sophisticated transfer-time equations could be used—for example, one could include a fac-
tor to reduce actual transfer-time based on bus load [25]. The actual implementation scheme
can be determined during an interface synthesis step that follows partitioning [5], [12].

Given the above definition of a node’s execution time, we obtain the equations shown
in Figure 4(a) for the execution times of the nodes in Figure 1. Suppose there is a time-



246 VAHID AND LE

Figure 4. Execution-time: (a) for all nodes, (b) for n1, after inlining.

constraint onn1, meaning we are most concerned withn1’s execution time equation. Fig-
ure 4(b) showsn1’s equation after inlining all other nodes’ execution-time equations. (Note
that such inlining would not have been possible if the original program was recursive).

4.2. Redefining a Move as a Single Object Move

Swaps were used in KL to maintain balanced part sizes. Although we have two parts (soft-
ware and hardware), we assume that the part sizes having different units (i.e., instructions
versus gates) invalidates the need for balanced part sizes. Therefore, we redefine a move
as a single object move, since single object moves permit unbalanced numbers of objects
in each part.

4.3. Data Structure

Ideally, we would build a data structure DS such thatSelectNextMoveexecutes in constant-
time. In a straightforward approach, we would build aSelectNextMovethat tried all possible
moves and picked the best (as in Algorithm 3.1, but replacing swaps by single-object
moves), but this approach would yield a linear-timeSelectNextMoveand thus a KL of



EXTENDING THE KERNIGHAN/LIN HEURISTIC 247

O(n2), assuming that the cost function and DS updates are designed to execute in constant
time. Instead, we divideSelectNextMoveinto two parts,PopNextMoveandUpdateDS, as in
Algorithm 3.2, and we try to build these to execute in constant time, as in KLFM. However,
because of the very different characteristic of the execution-time metric from the cut metric,
we will not be able to achieve constant time, but instead logarithmic time.

First, we note that moving a node affects the execution time of that node and its ancestors,
and not of all nodes. In particular, given the equation of Figure 4(a), we observe that when
an AG noden is moved from one part to another, the node’s execution timen.et may change
due to a change inn.ict , and due to a change in the transfer time of any adjacent edge (i.e., a
change ine.t t of anyeconnectingn). We also observe that any node whose communication
time changes (due either to a change in ane.t t or ann.et) will have a changed execution time.
Therefore, moving a node changes the execution time of the node itself and of accessing
nodes. Changes in an accessing nodem’s execution time further changes the execution time
of m’s accessing nodes. Not all nodes are changed, but rather only those that are ancestors
of the moved node in the AG. There is thus a local effect on execution time, though
not as localized as the effect on cut, where only immediate neighbors are affected. This
localized effect means that we may need only update a small portion of DS when a node is
moved.

Next, we devise a technique to rapidly compute the change in execution-time when moving
a node in a partition, so that we can determine the best node to move. Since the execution
time is computed by an equation, as the one in Figure 4(b), we must compute how each
possible node move changes the result of this equation. The equation terms that may change
are the nodeict values and the edget t values; the change ofn1.ict is written asDn1.ict ,
of e1.t t as De1.t t , and so on, as illustrated in Figure 5. Note that thee. f req values are
constants. Figure 5 shows the terms that change when a particular object is moved. For
example, movingn2 changesn2.ict ande1.t t . Based on these relationships, we collect all
terms from Figure 4(b) that change for a given move, and create achange equationthat
computes the change inn1.et for that move, as shown in Figure 6(a).

We are now ready to build the DS. Given the above change equations, we build achange
list, which is an array where nodes are inserted at the index corresponding to their change
values. Because multiple nodes could have the same change value, each array item is
actually a list. To build the change list, we evaluate each change equation to compute
Dn1.et for each node. We store each node atChangeList(Dn1.et), as shown in Figure 6(b).
The array has a minimum index of−MaxIncreaseand a maximum index ofMaxIncrease,
whereMaxIncreasecan be conservatively chosen as the worst-case execution time ofn1.
As we insert nodes into the array, we compare the current index withBestChange, which
is updated if the current index is closer to the front of the array. Thus,BestChangewill be
the index of the best node.

Now we must implementSelectNextMove(see Algorithm 3.2). The first part,Pop-
NextMove, consists of deleting the best node from the change list, and updatingBestChange.
Finding and deleting the best node clearly can be done in constant time. However, updating
BestChangeis not as easy, because we do not know where the next node is in the array.
We use the approach in [17] of decrementingBestChangeuntil we find a non-empty array
item. Such a decrement approach was proven in [17] to be constant time for the cut metric.



248 VAHID AND LE

Figure 5. Terms that change during moves.

Figure 6. Data structure: (a) change equations, (b) change list.



EXTENDING THE KERNIGHAN/LIN HEURISTIC 249

While we have not looked into such a proof for the execution-time metric, we note that we
can view the number of decrements as some constant number less thanMaxIncrease.

The second part,UpdateDS, consists of recomputing change values. We need not recom-
pute all change equations; instead, we only recompute those containing a term that changed
during the move (see Figure 5 for terms that change). If a node’s change equation result is
updated, we delete and reinsert the node in gain list, updatingBestChangeif necessary.

The complexity of updating the data structure is logn, not a constantc as in KLFM;
we shall now explain why. In KLFM, a node move affects the gain values of the node’s
neighbors. In our problem, a node move affects the gain values of the node’sancestors. In
the absolute worst case, a node in the KLFM problem could haven neighbors and a node
in our problem could haven ancestors, but fortunately, these cases rarely or never occur.
In the KLFM problem, the worst case corresponds to a graph where each node is adjacent
to every other node, i.e., a fully-connected graph. However, since the graph represents a
logic network, the graph will instead have nodes adjacent to a small numberc of neighbors.
Likewise, in our problem, the worst case corresponds to each node having indegree of 1 and
outdegree of 1, i.e., a chain of nodes. (A fully-connected AG would also yieldn ancestors
per node, but this can’t occur since we don’t allow cycles). However, since the SLIF AG
represents accesses among procedures and variables, the SLIF AG will instead have nodes
adjacent to a small number of neighbors. In other words, people don’t write programs
where every procedure accesses exactly one other procedure and is accessed from exactly
one procedure; instead, each procedure accesses a small number of other procedures, and
may be called from more than one procedure. In a SLIF-AG derived from such a program,
the depth of the directed graph will usually not exceed logn (this number was verified with
several examples in [26]).

To determine the complexity of the heuristic, we note thatIterationLooponce again loops a
constant number of times, sayc1. UnlockedLoopstill requiresn iterations.SelectNextMove
consists ofPopBestMoveandUpdateDS. We assume the former requires constant time,
sayc2, while the latter requires logn, as described above. Thus, the time complexity is
c1× n× (c2 + logn), or O(n logn). While this complexity does not meet that of KLFM,
it is still quite good.

4.4. Example

Figure 7 provides an example of applying the extended KL heuristic on the example of
Figure 1. We arbitrarily start with all nodes assigned to software, though any intitial
partition would be possible. Then1.et equation of Figure 4(b) evaluates to 2205 for such a
partition. We obtain values for the nodes’ change equations of Figure 6(a), and insert each
node into the change list corresponding to its change value. In Figure 7, we pop the best
noden4 and move it to hardware, update change equations forn3 andn1 (n2 is unaffected,
andn4 is locked), updaten1.et by the change value(2205− 1680), and reinsertn3 and
n1 into the change list. We continue such popping and updating until all nodes are moved
exactly once. Finally, we return to the partition with the lowestn1.et, which in this case
happens to be the last partition. Note that the local minimum of 335 was overcome by the
KL control strategy. Also note that we only considered execution time in the example for



250 VAHID AND LE

simplicity, causing all nodes to go to hardware. When other metrics are also considered, as
to be discussed in Section 4.5, the final outcome will be different.

4.5. Incorporating Multiple Metrics

For simplicity, the technique until now has focused on minimizing the execution-time of a
single behavior. We now describe incorporation of other metrics, such as hardware size,
software size, hardware I/O, software I/O, and multiple behaviors’ execution-time.

First, let us consider multiple metricsmi whose values should be minimized. We can use
the following cost function to combine the values into one number (an improved function
will be discussed shortly):

CostFct = m1+m2+ · · ·ml (2)

We maintain different information for each type of metric:

• Behavior execution-time—For each such metric, we maintain a unique set of change
equations as defined earlier.

• Hardware size—When hardware size is computed as the sum of node sizes, then the
node’s hardware size annotation indicates the change value for this metric.

• Software size—Since software size is computed as the sum of node sizes, the node’s
software size annotation indicates the change value for this metric.

• Hardware and software I/O—This metric is the same as the cut metric in KLFM. We
treat it in a similar manner as in KLFM. Note that software I/O is relevant when the
standard processor has multiple data ports (commonly the case for a microcontroller),
which act as general I/O pins rather than a system bus, and we wish to use as few of
those pins as possible.

We compute initial change values for each node for each metric. These change values
are summed to give the total change in cost that would be obtained when moving a node.
The total change is then used as the index into the change array.

Figure 8 provides an example of incorporating four metrics:n1’s execution time,n4’s
execution time, hardware size, and software size. Initially, we compute change values for
each metric independently, combine those values into a singleChangevalue, and insert
nodes into the change list. We pop the best noden4 and then update any change values;
only then1 andn3 execution-time values must be updated. We recombine change values
and repeat until all nodes have been moved. In this example, the best overall cost occurs
when onlyn4 is moved to hardware. The hardware size metric thus prevented all nodes
from moving to hardware, in contrast with the previous example.

The above cost function can be further improved as follows:

Cost Fct = k1 · F(m1)+ k2 · F(m2)+ · · · kl · F(ml ) (3)

Thek’s are user-defined constants indicating the relative importance of each metric. The
function F normalizes each value to a number between 0 and 1000. Such normalization



EXTENDING THE KERNIGHAN/LIN HEURISTIC 251

Figure 7. Extended KL example using the change list.



252 VAHID AND LE

Figure 8. Example of change list use with multiple metrics.

can be achieved by dividing the value by the largest possible value for that metric, and
multiplying by 1000. For example, a node’s execution-time value can be divided by the
largest possible change in execution time, which is determined by finding the largest possible
change for each node. Likewise, a hardware size value can be divided by the largest possible
hardware size change, which simply equals the hardware size of the largest node. We
multiply by 1000 so that the cost can still serve as an index into the change list. Note that
such normalizing actually solves the problem of requiring a huge change list to account
for the maximum possible change; the unnormalized maximum change in execution time
exceeded 1,000,000 in some examples. (KLFM does not encounter this problem since the
maximum change is just the most that cutsize could change when moving a single node).
For further details on normalizing metrics in a cost function, see [11], [5].

We have assumed that each metric is an optimization metric, i.e., that we seek to minimize
the value of the metric. However, some metrics are merely constraint metrics. For example,
we may have 10,000 gates available in hardware, and we might only be concerned with not
violating that constraint. In this case, we need not minimize hardware size below 10,000
gates. Such constraint metrics can be handled with a simple modification ofF . Any change
that happens below the constraint value is ignored and thus forced to 0. For example, if



EXTENDING THE KERNIGHAN/LIN HEURISTIC 253

the hardware size constraint is 10,000 gates, the current metric value is 5,000 gates, and
movingn1 would change this by 2,000 gates while movingn2 would change this by 6,000
gates, then the hardware size change value forn1 is 0, and the change value forn2 is
(5, 000+ 6, 000)− 10, 000, or 1,000.

5. Extension for Faster Termination

There are two observations that led us to find a KL termination criteria that led to substantial
practical reductions in KL runtimes. First, there is a well-known notion that we should not
record a numerical value to a degree of precision that exceeds the accuracy of the measuring
instrument. For example, if an instrument measures mass to 0.01 milligrams of accuracy,
we should not record measurements to 0.001 degree of precision. A similar notion applies
to hardware/software partitioning. Specifically, we should not partition to reduce cost to
a degree of precision that exceeds the accuracy of our estimates. For example, if our
execution-time estimate is accurate to within 10%, then we need not spend time reducing
cost by amounts less than 10%.

Second, we observed after numerous KL trials that the amount by which each iteration
reduced the cost usually decreased after each iteration. In particular, if an iteration decreased
the cost byX%, then it rarely occurred that a subsequent iteration decreased cost by aY%
such thatY > X; instead,Y was usually less thanX, eventually becoming 0 after which
KL terminates. In other words, thechangein cost as a function of iteration number usually
monotonically decreased.

Based on the above observations, we developed a newTerminatefunction for KL. Rather
than exiting when an iteration’s initial and final costs are equal (i.e., 0% improvement),
we exit when those costs are within some degree of precision. In other words, when the
difference between one iterations’s cost and the next is less than some percentage of the
original cost, we terminate. We experimented with several precisions, and present results
in Section 6.

6. Experiments

We performed three types of experiments. First, we compared the quality of results obtained
by KL with other common heuristics. Second, we compared the runtimes of our version
of KL with a straightforward implementation of KL. Finally, we compared results using
various termination precisions.

6.1. Quality of Results

Table 1 provides a comparison of the quality of results on several examples for the fol-
lowing heuristics: Random assignment (Ra), Greedy improvement (Gd), KL for functional
partitioning (KL), hierarchical clustering (Cl), clustering followed by greedy improvement
(Cg), and simulated annealing (SA). Gr moves nodes from one part to another as long as



254 VAHID AND LE

Table 1.Cost comparison for functional partition-
ing heuristics.

Ex P Ra Gd KL Cl Cg SA

1 2 314 68 40 85 59 15
3 443 50 0 168 96 22
4 428 88 29 218 15 16

hs 576 61 16 88 66 18

2 2 236 69 43 141 34 47
3 256 25 7 244 16 0
4 234 0 2 339 15 0

hs 160 0 0 0 0 0

3 2 893 90 68 111 78 30
3 1081 115 71 154 142 63
4 1220 141 100 141 137 94

hs 2115 83 20 147 144 20

4 2 960 105 60 109 62 7
3 1206 114 114 155 5 97
4 1338 66 39 193 37 72

hs 660 102 23 102 76 0

Avg 758 74 40 150 57 31

cost reductions are obtained, having a computational complexity ofO(n). KL was de-
scribed in this paper, with complexityO(n logn). Cl computes closeness between all pairs
of nodes, using the closeness metrics of communication, connectivity, common accessors,
and balanced size, and applies pairwise merging, having complexityO(n2). Cg is Cl fol-
lowed byGd, thus having complexityO(n2). Sauses random moves to escape even more
local minima, at the expense of generally long runtimes. Annealing parameters included a
temperature range of 50 down to 1, a temperature reduction factor of 0.93, an equilibrium
condition of 200 moves with no change, and an acceptance function as defined in [5]. The
complexity ofSais generally unknown, but its CPU times with the above parameters usually
exceed those ofO(n2) heuristics.Gd, KL, andSaall use the output ofRaas their initial
partition.

The four examples were VHDL descriptions of a volume-measuring medical instrument
(Ex1), a telephone answering machine (Ex2), an interactive-TV processor (Ex3), and an
Ethernet coprocessor (Ex4).

The partition costC is a unitless number indicating the magnitude of estimated constraint
violations [5]. Constraints on hardware size, software size, hardware I/O, and execution
time were intentionally formulated such that there would be constraint violations (non-zero
cost), so that we could compare how close each heuristic came to achieving zero cost. Each
example was partitioned among2ASICs (VTI),3ASICs,4ASICs, and a hardware/software
(hs) configuration of one processor (8086) and one ASIC.

KL’s complexity ofO(n logn) is just above that of the greedy heuristicGr, yet, as the table
demonstrates,KL outperformed all of the other heuristics except for simulated annealing.



EXTENDING THE KERNIGHAN/LIN HEURISTIC 255

Table 2.Runtimes of KL for f.p. vs.
straightforward KL (real examples).

Ex Nodes KL for f.p. (s) KL (s)

1 30 .7 1.8
2 45 1.1 1.1
3 70 1.4 21.0
4 85 1.5 19.7
5 123 2.2 58.1

6.2. Runtimes

We compared the runtime of KL extended for functional partitioning (KL for f.p.) with the
runtime of a straightforward KL implementation (KL)—note that resulting costs for the two
heuristics will be identical, since they make exactly the same moves. In the straightforward
implementation, the next best move is determined by tentatively moving every free node,
rather than using a change equations and a change list, as was done in the original KL
heuristic.

Results are summarized in Table 2 and Table 3. The heuristics were run on five real
examples: a microwave-transmitter controller (Ex1), an answering machine (Ex2), a fuzzy-
logic controller (Ex3), an interactive TV processor (Ex4), and an Ethernet coprocessor
(Ex5). These examples ranged in size from 30 nodes to 123 nodes. The heuristics were
also run on generated examples ranging in size from 10 nodes to 200 nodes in increments
of 10. Such a range enables us to see how the heuristics scale with problem size—see [26]
for information on generated examples.

Because the number of iterations of KL usually varies from 2 to 6, different examples
may yield runtime fluctuations not related to the size of those examples. Thus, because
our goal is to observe thedifferencein runtimes between the two KL versions, we ran each
version for exactly one iteration.

The results clearly show that the extended KL is far faster than the straightforward KL.
The extended KL scales nearly linearly with problem size, whereas the non-extended KL
grows quadratically, as expected. The extended KL handled problems of quite a large size
(200 nodes) in just a few seconds. Times were measured on a 166Mhz Pentium.

One should keep in mind that the improvement in speed is gained withabsolutely no
loss in quality. The sequences of moves made by each heuristic are identical, but the time
required to determine the next best move is greatly reduced in the extended KL.

6.3. Faster Termination

We have performed two experiments to demonstrate the extension for faster termination
of KL. In the experiments, we examine two factors: the reduction of the partition cost in
successive partitioning iterations, and the runtime of the heuristic. In the first experiment,
we used KL to perform hardware/software partitioning among an Intel 8086 processor and
an FPGA on six real examples and eight generated generic examples ranging from 40 nodes



256 VAHID AND LE

Table 3. Runtimes of KL for
f.p. vs. straightforward KL
(generated examples).

Nodes KL for f.p. (s) KL (s)

10 0.8 0.8
20 0.7 0.6
30 0.7 0.7
40 1.2 3.0
50 1.0 4.2
60 1.5 7.1
70 1.6 21.1
80 1.7 16.7
90 1.8 20.9

100 2.4 56.3
110 2.3 62.8
120 3.1 49.0
130 3.2 64.5
140 3.5 84.0
150 4.0 148.0
160 4.3 102.3
170 4.5 115.1
180 4.7 157.3
190 4.8 174.0
200 5.2 200.0

to 120 nodes. Figures 9 and 10 demonstrate the number of iterations KL required on the
examples, and the cost resulting after each iteration; for presentation purposes, we have
normalized costs between 0 and 1. Table 4 demonstrates the time reductions achieved if
we terminate when an iteration reduces cost by less than 10%, 5% or 1%. If we terminate
hw/sw partitioning of the real examples when an iteration reduces cost by less than 10%, we
reduce average runtime by 53%. For precisions of 5% and 1%, we reduce average runtime
by 43% and 10%, respectively. The substantial reductions in runtime are paid for by only a
small cost increase, as illustrated in Table 5. For the hardware/software partitioning of the
six real examples at 5% precision, we can reduce average runtime by 43% at an average
cost increase of only 2.4%. Because we likely do not have estimations that are accurate to
that degree, we are not concerned with this small cost increase.

In the second experiment, we performed hardware/hardware partitioning among two
FPGAs on six real examples and eight generated generic examples ranging from 40 nodes to
120 nodes. Figure 11 and 12 summarize costs per iteration. As with the hardware/software
partitioning, the runtime reductions are nearly 50% in many cases, with cost increases of
only 1 or 2%.

7. Discussion and Future Work

While we have focused on partitioning among one hardware and one software part in this
paper, the technique can be extended to any number of parts. We maintain change equations
for each constrained or optimization metric, and each entry in the change list represents a



EXTENDING THE KERNIGHAN/LIN HEURISTIC 257

Figure 9. Iterations vs. cost (hw/sw, real examples).

Table 4.Average time reduction.

Precision Hardware/software Hardware/hardware
real generated real generated

10% 53% 56% 49% 62%
5% 43% 52% 36% 47%
1% 10% 36% 27% 24%

move of an object to a particular part; thus, each node will appear in the change list more
than once (M-1 times, where M is the number of parts).

The extended KL can be applied to multiple processes without modification. If there is
more than one constrained node, we simply maintain unique change equations for each.
When partitioning among hardware parts, we can assume that each process is implemented
on its own custom processor, so there is no multi-tasking overhead. However, when par-
titioning onto a software part, we might want to consider multi-tasking overhead (e.g., as
achieved using a real-time operating system) to obtain more accurate execution-time esti-
mations. One method for considering this is to keep track of a processor’s load, and reduce
internal computation time values by some factor when the load is heavy. This remains an
area for future work.

Other future extensions include adding lookahead and multiway lookahead to the hard-
ware/software partitioning technique in this paper; such additions might improve the quality



258 VAHID AND LE

Figure 10. Iterations vs. cost (hw/sw, generated examples).

Figure 11. Iterations vs. cost (hw/hw, real examples).



EXTENDING THE KERNIGHAN/LIN HEURISTIC 259

Figure 12. Iterations vs. cost (hw/hw, generated examples).

Table 5.Average cost increase.

Precision Hardware/software Hardware/hardware
real generated real generated

10% 2.4% 2.1% 1.4% 3.3%
5% 2.4% 0.7% 1.4% 1.2%
1% 0.3% 0.5% 0.4% 0.4%

of results in the same way that they improved circuit partitioning. Another future area of
research is to extend the technique to address the problem of combined partitioning with
scheduling, a problem addressed in [8]. Finally, performing transformations during parti-
tioning, such as cloning nodes, would likely lead to much improved results.

8. Conclusions

We have extended the successful Kernighan/Lin partitioning heuristic for functional parti-
tioning. The new heuristic: (1) runs extremely quickly, having a time-complexity of just
O(n logn), and completing in just seconds for numerous examples; (2) achieves excel-
lent results, nearly equal to results achieved by simulated annealing running for an order
of magnitude more time; (3) can be applied to hardware/software partitioning as well as



260 VAHID AND LE

hardware/hardware functional partitioning; (4) allows addition of new metrics. With these
features, especially its speed and result quality, the heuristic will likely prove hard to beat
for functional partitioning, and is ideally suited for new-generation compiler/partitioners.

References

1. P. Athanas and H. Silverman. Processor reconfiguration through instruction-set metamorphosis.IEEE Com-
puter26: 11–18, March 1993.

2. R. Hartenstein, J. Becker, and R. Kress. Two-level partitioning of image processing algorithms for the
parallel map-oriented machine. InInternational Workshop on Hardware-Software Co-Design, pp. 77–84.
1996.

3. R. Ernst, J. Henkel, and T. Benner. Hardware-software cosynthesis for microcontrollers. InIEEE Design &
Test of Computers, pp. 64–75, December 1994.

4. R. Gupta and G. DeMicheli. Hardware-software cosynthesis for digital systems. InIEEE Design & Test of
Computers, pp. 29–41, October 1993.

5. D. Gajski, F. Vahid, S. Narayan, and J. Gong.Specification and Design of Embedded Systems. Prentice Hall,
New Jersey, 1994.

6. F. Vahid, T. Le, and Y. Hsu. A comparison of functional and structural partitioning. InInternational Sym-
posium on System Synthesis, pp. 121–126, 1996.

7. X. Xiong, E. Barros, and W. Rosentiel. A method for partitioning UNITY language in hardware and software.
In Proceedings of the European Design Automation Conference (EuroDAC), 1994.

8. A. Kalavade and E. Lee. A global criticality/local phase driven algorithm for the constrained hard-
ware/software partitioning problem. InInternational Workshop on Hardware-Software Co-Design, pp. 42–
48, 1994.

9. P. Knudsen and J. Madsen. PACE: A dynamic programming algorithm for hardware/software partitioning.
In International Workshop on Hardware-Software Co-Design, pp. 85–92, 1996.

10. A. Balboni, W. Fornaciari, and D. Sciuto. Partitioning and exploration strategies in the tosca co-design flow.
In International Workshop on Hardware-Software Co-Design, pp. 62–69, 1993.

11. F. Vahid and D. Gajski. Closeness metrics for system-level functional partitioning. InProceedings of the
European Design Automation Conference (EuroDAC), pp. 328–333, 1995.

12. D. Gajski, S. Narayan, L. Ramachandran, F. Vahid, and P. Fung. System design methodologies: Aiming at
the 100 h design cycle.IEEE Transactions on Very Large Scale Integration Systems4(1): 70–82, 1996.

13. W. Wolf. Hardware-software co-design of embedded systems.Proceedings of the IEEE82(7): 967–989,
1994.

14. D. Gajski and F. Vahid. Specification and design of embedded hardware-software systems.IEEE Design &
Test of Computers12(1): 53–67, 1995.

15. B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.Bell System Technical
Journal, February 1970.

16. T. Lengauer.Combinatorial Algorithms for Integrated Circuit Layout. John Wiley and Sons, England, 1990.
17. C. Fiduccia and R. Mattheyses. A linear-time heuristic for improving network partitions. InProceedings of

the Design Automation Conference, 1982.
18. F. Vahid and D. Gajski. SLIF: A specification-level intermediate format for system design. InProceedings

of the European Design and Test Conference (EDTC), pp. 185–189, 1995.
19. F. Vahid. Procedure exlining: A transformation for improved system and behavioral synthesis. InInterna-

tional Symposium on System Synthesis, pp. 84–89, 1995.
20. J. Gong, D. Gajski, and S. Narayan. Software estimation using a generic processor model. InProceedings

of the European Design and Test Conference (EDTC), pp. 498–502, 1995.
21. F. Vahid and D. Gajski. Incremental hardware estimation during hardware/software functional partitioning.

IEEE Transactions on Very Large Scale Integration Systems3(3): 459–464, 1995.
22. S. Kirkpatrick, C. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.Science220(4598):

671–680, 1983.
23. B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI networks.IEEE Transactions on

Computers, May 1984.



EXTENDING THE KERNIGHAN/LIN HEURISTIC 261

24. L. Sanchis. Multiple-way network partitioning.IEEE Transactions on Computer-Aided Design, January
1989.

25. S. Narayan and D. Gajski. Synthesis of system-level bus interfaces. InProceedings of the European Con-
ference on Design Automation (EDAC), 1994.

26. F. Vahid and T. Le. Towards a model for hardware and software functional partitioning. InInternational
Workshop on Hardware-Software Co-Design, pp. 116–123, 1996.


