48.5

System-Level Exploration with SpecSyn

Daniel D. Gajski

Inform. and Computer Science
University of California
Irvine, CA 92717
gajski@ics.uci.edu

Abstract

We present the SpecSyn system-level design environment
supporting the specify-explore-refine (SER) design paradigm.
This three-step approach includes precise specification of sys-
tem functionality, rapid ezploration of numerous system-
level design options, and refinement of the specification into
one reflecting the chosen option. A system-level design op-
tion consists of an allocation of system components like stan-
dard and custom processors, and a partitioning of function-
ality among those components. Focusing on SpecSyn’s ez-
ploration techniques, we emphasize its two-phase estimation
approach and highlight ezperiments using SpecSyn.

1 Introduction

The focus of design effort on higher abstraction levels,
driven by increasing system complexity, shorter design times,
and migration of entire systems onto a single chip, demands
a system-level design methodology and supporting tools.
We can isolate three tasks in such a methodology. First,
we must specify the system’s functionality and constraints.
Second, we must explore various system-level design alter-
natives, each an interconnection of system components and
an assignment of functionality to them. System compo-
nents include standard software processors, custom hard-
ware processors, memories, and buses. Third, we must refine
the original specification into a new system-level description
with components. Subsequently, we implement each com-
ponent, where software components require compilation and
possibly thread scheduling, while hardware components re~
quire behavioral and register-transfer synthesis.

In current practice, these three tasks are carried out in
an informal manner. The specify-explore-refine paradigm
aims to provide a more precise approach to these tasks, en-
abling automated assistance. We have developed the Spec-
Syn environment, illustrated in Figure 1, to support the
specify-explore-refine paradigm. In this paper, we focus on
SpecSyn’s design exploration.

2 Related work

Several system-level design environments have evolved
recently. TOSCA [1] focuses on control-dominated systems.
It parses a hierarchical finite-state machine into a process
algebra internal format, which it partitions among system
components manually or by clustering, supporting some for-
mal transformations. It outputs software in a virtual in-
struction set to achieve processor independence. COSYMA
[2] focuses on microcontroller-based systems. It converts an

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage, the copyright notice, the title of the publi-
cation and its date appeat, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 98, San Francisco, California

©1998 ACM 0-89791-964-5/98/06..$5.00

Frank Vahid
Computer Science and Eng.
University of California
Riverside, CA 92521
vahid@cs.ucr.edu

812

Sanjiv Narayan
Ambit Design Systems
2500 Augustine Drive
Santa Clara, CA 95054

sanjiv@ambit.com

Jie Gong
Qualcomm Inc
6455 Lusk Boulevard
San Diego, CA 92121
jiej@qualcomm.com

extended C input to a syntax graph, dynamically modify-
ing the graph’s granularity [3]. Fast indirect design metrics
guide a simulated annealing partitioning among a software
and hardware component with shared memory, with direct
design metrics from a subsequent implementation guiding
further iterations. Vulcan II [4] uses a similar architecture
and applies a greedy partitioning heuristic with fast indirect
metrics. Ptolemy [5] focuses on cosimulating inputs from dif-
ferent computation models, but also partitions a task-level
dataflow graph among a similar architecture using a custom
heuristic. Approaches in [6, 7] simultaneously allocate pro-
cessors from a diverse library while partitioning a task graph
among them. Summaries of these and other approaches can
be found in [8]. Recent ideas on the system exploration
problem were provided in [9], and to a refinement-based ap-
proach in [10].

SpecSyn possesses several unique features. First, Spec-
Syn uses a two-level estimation method to obtain fast yet
accurate estimations, using direct design metrics, like total
hardware size or process execution time, rather than indi-
rect metrics. Second, SpecSyn supports a variety of system
architectures, heuristics, estimation models, and cost func-
tions; no one version of any of these is advocated for all
systems. For example, a suite of heuristics is provided, and
new ones can be added. Third, SpecSyn outputs a system-
level description that ideally can be simulated, edited, and
synthesized, thus supporting the SER methodology.

Functional specification
-

SpecSyn v

Allocator

Partitioner

SLIF

Y
Partitioned description

Software synthesis

Fig. 1: The SpecSyn system-design environment

3 Specification

3.1 Computation model

We have focused on the Program-State Machine (PSM)
computation model [11]. PSM can be thought of as State-
charts [12] with arbitrarily complex sequential programs in
the leaf states. Thus, PSM represents a powerful computa-
tion model for both hardware and software, able to describe

hierarchical/concurrent finite-state machines, a sequential
program, or even communicating sequential processes.

The designer can specify constraints on behavior execu-
tion times and channel bitrates. Other design constraints,
such as a component size and 1/0 limitations, are derived
from each component’s library entry.

3.2 Internal representation

The specification must be converted into an internal rep-
resentation on which subsequent tools can operate. Because
system specifications tend to be highly procedural, we use a
representation similar to a call-graph used in software com-
pilation, introduced by an example. Figure 2 shows a par-
tial VHDL specification of a fuzzy-logic controller. Inputs
inl and in2 must be converted to output out! using fuzzy
logic. The main process FuzzyMain repeatedly reads inputs
into variables inlval and in2val, twice calls procedure Eval-
Rule to fill arrays (¢tmr! or tmr2) based on the input and on
another predefined array (mrl or mr2), convolves the tmr
arrays, and computes and outputs a centroid value.

entity FuzzyControllerE is
poﬂ(lm in2 :ininteger; outt: out integer);

FuzzyMaIn: process

variable in1val, in2val : integer;

type mr. array is array (1 10:384) of integer;
vanable mri, m amay; -- membership rules
type tmr_amay is array (1 to 128) of integer;

procedure EvaluawRuIe(num ininteger) is
variable trunc : integer; - truncated value

% {num =

trune : _z\mn(mn(intval), mr (128+in1val));

variable tmr1, tmr2: tmr_array; -- truncated memb. rules
function Min ... elsif (num = 2) then
trune := Min{mr2(in2val), mr2(128+in2val});
N sendif;
begin
inval := in1; in2val :=in2; foriin ‘":0 ’12)5 Joop
EvaluateRule(1); =
Evalua!eRuIe{ ; tmrifi) -Mln(truna mr1{256+1);
Con elsit (num = N)
Dun <- ComputeCentrold 'mrz(') = Min{trune, mr2(256+));
wait until .. end if,
end loop;
end process; end;

Fig. 2: Fuzzy-logic controller example.

int in2 out

]

19

Centroid

Convolve
ci c18

ci7

6]
-
1

Jltmr1l|lmr’2|

H__Mi_n l lmr1 Irmrz

Fig. 3: Access graph for the example.

[trunc

Figure 3 shows the internal representation. Each graph
node represents a behavior or variable, where a behav-
ior is a process or procedure, though for finer granular-
ity we can exline [13] statement blocks like loops into new
procedures. Each graph directed-edge represents a com-
munication channel, which is a procedure call, a variable
or port read or write, or a message pass specified using
send/receive constructs. For example, process FuzzyMain,
procedure EvalRule and variable in1val are each represented
by a node. The write of inlval in FuzzyMain translates to
a single edge, while the two calls of EvalRule by Fuzzy-
Main translate to another single edge. We call this the
Specification-level intermediate format (SLIF), since

813

Object | ict.8051 ict.xc4020 size.8051 size.xc4020
FuzzyMain 6 8 80 500
inlval 0 0 2 80
in2val [0 2 80
EvalRule 778 522 500 1600
Convolve 800 G600 900 2000

Object | accreq bits src dst

cl 1 6 FuzzyMain inlval

c2 1 6 FuzzyMain in2val

e3 2 9 FuzzyMain EvalRule

c4 1 0 FuzzyMain Convolve

c5 1 [FuzzyMain Centroid

i 16 EvalRule inlval

Fig. 4: Slif behavior/variable and channel annotations

its granularity is that of objects explicit in the specification.
The SLIF part shown above is an access graph, or AG,
since it represents the accesses among objects.

The SLIF is annotated with numerous values, as shown
in Figure 4. A behavior and variable object has a list of
size weights, one weight for each component type to which
the object may be assigned. For example, a variable object
has the number of memory words for each library mem-
ory component, while a behavior has square microns, gates,
combinational-logic blocks, and bytes for each custom chip,
ASIC, FPGA, and standard processor, respectively, in the
component library. Behaviors and variables are annotated
with computation times on each component. Each edge has
access frequency weights obtained through profiling, and a
bit weight representing the number of bits per transfer. An-
notations are computed during pre-estimation, and are com-
bined into quality metric estimates during online estimation,
as discussed in Section 4.3.

4 Exploration

Exploration is the task of finding a set of potential archi-
tectures that satisfy constrained metrics and optimize other
metrics. It consists of allocation, partitioning, transforma-
tion and estimation. These problems can be solved in vari-
ous orders, and we usually iterate several times.

4.1 Allocation

Allocation is the task of adding components to the de-
sign. The SpecSyn allocator permits allocation of any num-
ber of standard processors, custom processors, memories,
and buses. Each component is characterized in a library by
its constraints, and by a technology file. For example, a cus-
tom processor might be characterized by the maximum I/O
pins and gates, and by a technology file describing an RT-
component library. A standard processor is characterized
by a maximum program memory size, a bus size, a maxi-
mum bus bitrate, and a technology file describing how to
map a generic instruction set to the processor’s instruction
set [11]. A memory is characterized by the number of ports,
number of words, word width, and access time. A bus is
characterized by the number of wires, protocol, and maxi-
mum bitrates. Allocation is currently manual, though sim-
ple scripts can be used to automatically sequence through
numerous possible allocations and apply partitioning.

Figure 5 demonstrates an example allocation. Standard-
Procl is an Intel 8051 with 4 kilobytes of on-chip memory,
and CustomProcl is a Xilinx XC4010 FPGA with 160 I/O
pins and 10,000 gates. Two 1 kbyte memories are also allo-
cated.

StandardProcessort (18051)

Bus2

CustomProct (XC4020)

Busi

Memory1 (V100) Memory2 (V100)

Fig. 5: An example allocation of components

4.2 Partitioning

Given a functional specification and an allocation of sys-
tem components, we need to partition the specification and
assign each part to one of the allocated components. In
fact, we can distinguish three types of functional objects
that must be partitioned. Variables store data values and
are assigned to memory components. Behaviors transform
data values and are assigned to processors. Channels trans-
fer data from one behavior to another and are assigned to
buses.

SpecSyn uses a partitioning engine that takes a data
structure, cost function, and data structure update proce-
dure as inputs, and applies any of numerous built-in heuris-
tics. In this way, heuristics, data structures and cost func-
tions stay distinct, and thus can easily be added or improved.

4.2.1 Manual partitioning and hints

SpecSyn supports designer interaction by providing the abil-
ity to manually relocate objects, allowing user control of the
relative weights of various metrics in the cost function, and
automatically providing hints of what changes might yield
improvements to the current partition. SpecSyn currently
supports two types of hints.

Closeness hints are based on a weighted function of vari-
ous closeness metrics. Seven behavior closeness metrics have
been defined. For example, connectivity is based on the num-
ber of wires shared between the sets of behaviors. Grouping
behaviors that share wires should result in fewer pins. Three
variable/channel closeness metrics have also been defined,
such as sequentiality of access of the variables/channels by
behaviors, which aims to group items to avoid resource con-
flicts and performance degradation.

The second type of hints are lookahead hints. Here, we
generate all possible n modifications of the current parti-
tion, where an n modification is a sequence of » moves of
any objects from one group to another (n is user-defined).
We again provide a list of such modifications, sorted by the
partition improvement gained by each as measured by a cost
function.

4.2.2 Cost functions

Partitioning heuristics are guided by cost functions. A vari-
ety of cost functions can be supported. The following sup-
ported cost function focuses on satisfying constraints:

Costfct = ki1-
ks - F(c2.size, c2.5ize_constr)
ks - F(cl.IO, c1.IO_constr)

ks - F(bl.exectime,bl.ezectime_constr)

(1)

F(cl.size, cl.size_constr)

++ +

814

where the k’s are user-provided constants indicating the rel-
ative importance of each metric, F is a function indicating
the desirability of a metric’s value, cl, ¢2 are components,
and bl is a behavior. A common form of F returns the de-
gree of constraint violation, normalized such that 0 indicates
no violation, and 1 indicates very large violation.

The above cost function is very general, permitting us
to satisfy constraints as well as to optimize certain metrics
(through heavier weights), without requiring specific knowl-
edge in a heuristic of the constraints or optimization metrics.

As an example of the results of partitioning, Figure 6
shows a partition of several of the previous example’s nodes
among two memories, a custom processor, a standard pro-
cessor and a bus. Note that four communication channels
have been partitioned onto busl.

in1 i{12 outt
T T StandardProci
intva —1 (18051)
q in2val
EvalRule lConvoIve I I Centroid
= ,
| Busi I 1
[}
ﬁrunc H Min | [mrt l I mr2 l tmri I l tmr2 I
CustomProci1 (XC4020) Metnory1 (V100) Memory2 (V100)

Fig. 6: Partitioning AG nodes among components

4.3 Estimation

Estimation of design quality metrics is required to deter-
mine if a particular system-level design (a partition of func-
tions among allocated components) satisfies constraints, and
to compare alternative designs.

SpecSyn uses a two-level technique to obtain fast yet ac-
curate estimates of design metrics, as illustrated in Figure 7:

1. Pre-estimation: Each functional object (behavior,
variable and channel) is annotated with information
(see Section 3.2), such as the average frequency of
channel access. Pre-estimation occurs only once at
the beginning of exploration and is independent of
any particular partition and allocation.

2. Online-estimation: Pre-estimated annotations are
combined in complex expressions to rapidly obtain
metric values for a particular partition and allocation
(usually in constant time [14]). Online-estimation oc-
curs hundreds or thousands of times during manual
or automated exploration.

In most other approaches, exploration consists of only
one level of estimation, with another level coming only after
RT-level design. We now discuss SpecSyn estimation mod-
els for three metric types: performance, hardware size, and
software size.

4.3.1 Performance

In SpecSyn’s performance model, a behavior’s execution
time is calculated as the sum of the behavior’s internal com-
putation time (ict) and communication time. The ict is the

Functional specification

(;ploration

Internal representation

@,

Pre-estimation

several iterations

Allocation, Partitioning,
Transformation

Standard processor

Custom Processo
P2)

5 &

Online estimation

1000's of

fterations | neremental estimation models

Cost functions

Refined specification

Fig. 7: Subtasks during exploration

execution time on a particular component, assuming all ac-
cesses to other behaviors and variables take zero time. The
communication time includes time to transfer data to/from
accessed behaviors and variables, as well as the time for such
accessed behaviors to execute (e.g., the time for a called pro-
cedure to execute and return).

More precisely, execution time is computed as follows:

(2

b.ezectime = b.ict + b.commtime
b.commtime e €b.outchannels Ok-GCC fregx
(ck ttimepus + (cx .dst).exectime)
= [bus.time x (cy.bits+ bus.width)]

Ck Attimebw

In other words, a behavior d’s execution time equals its
ict on the current component (b.ict), plus its communica-
tion time (b.commtime). The communication time equals
the transfer time over a channel for each accessed object
(cxk-ttimepys), plus the execution time of each accessed ob-
ject ((ck.dst).exectime), times the number of such accesses
(ck-accfreq). The transfer time over a channel is determined
from the bus data transfer time (bus.time) and the width of
that bus (bus.width). If the data bits exceeds the bus width,
then multiple transfers are used (as computed by the divi-
sion). The bus-time is usually less when the communication
is within one component.

For example, the execution-time equation for FuzzyMain
of Figure 3 would be:

FuzzyMain.ict

cl.accfreq * (cl.tt + inlval.et)
c2.accfreq * (c2.tt + in2val.et)
c3.accfreq * (c3.tt + EvalRule.et)
cd.decfreq x (c4.tt + Convolve.et)
cb.accfreg x (¢5.tt + Centroid.et)
nlval.ict + 0

n2val.ict + 0

EvalRule.ict

c8.accfreq * (c8.tt + trunc.et)

FuzzyMain.et

inlval.et
m2val.et
Eval Rule.et

++0 0+ ++++1

®3)

815

Pre-estimation — A behavior’s internal computation
time can be computed during pre-estimation through profil-
ing and scheduling [15]. Profiling determines the execution
count of each basic block. A schedule for each basic block is
then estimated for each possible processor component, us-
ing compilation for standard processors and synthesis for
custom processors. The summation over all blocks of each
block’s execution count times steps yields the total steps for
the behavior. Multiplying by the step time, i.e., the clock
period, yields an ict value. Channel access frequencies are
also determined through profiling. Bus times and widths are
already associated with each bus.

Online estimation — Given a partition of every func-
tional object to a component, the actual ict, bus widths,
and bus times become known. Thus, a behavior’s execu-
tion time equation can be evaluated. When a partitioning
heuristic moves an object, the object’s ict value will change,
and bus times may also change since objects previously on
the same component may now be on different components.
We only need to change those values and re-evaluate the
equation. In addition, any other equations that include the
object’s execution time must also be updated.

DP inputs

logic |

1

state-reg I

cu

T DP outputs

Fig. 8: CU/DP area model

area factor is a function of
state_reg # states
cu +
logic # states, # ctrl_lines, # states each ctrl_line is active
CU/DP
storage # bits and # words of each storage
+
func_units # bits and type of each FU
bP +
muxes # sources of each storage or FU input, or DP output port
+
wires # DP connections, # DP components

Fig. 9: Equation and terms for computing CU/DP area,

4.3.2 Hardware size

SpecSyn uses a hardware design model similar to those in
[11, 16, 17], consisting of a control-unit/datapath (CU/DP)
ag shown in Figure 8. We present our estimation technique
[14] briefly here. The CU/DP area can be computed as
the sum of the following terms: Functional-unit (FU) size;
Storage-unit size including registers, register files and mem-
ories; Multiplezer size; State-register size; Control-logic size;
and Wiring-size. As shown in Figure 9, each term'is a func-

tion of basic parameters, such as the number of possible
states and control lines.

Pre-estimation — The parameters relevant to each
functional object are computed (through approximate syn-
thesis) and annotated to each object. Given an initial parti-
tion of functional objects among custom processors, we can
obtain a rough design of each processor by intelligently com-
bining its objects’ parameter annotations. For example, we
can determine the number of FU’s by taking the union of the
objects’ FU’s (since sequential behaviors can share FU’s).

Online-estimation — When a partitioning heuristic
removes an object from a processor, we update that proces-
sor’s terms. Some terms can be updated simply by exam-
ining the object’s annotations. For example, the number of
possible processor states is reduced by the object’s number,
and the state register size recomputed using the log function.
On the other hand, other terms require further examination.
For example, an object might require a particular FU, but
removing that object only removes that FU if no other ob-
ject uses the FU; thus, we keep track of which objects use
each FU; similar analysis can be performed for muxes.

Softwere
Metrics.

Fig. 10: Software size estimation:
model, (b) generic model.

(a) processor-specific

4.3.3 Software size

Software size refers to the number of bytes of program mem-
ory required when a behavior is compiled into the instruction
set of a specific processor.

Pre-estimation — While compilation can be used to ob-
tain program size for a behavior on a given processor, Spec-
Syn uses a generic processor model as shown in Figure 10(b).
A functional object’s size is first compiled into generic three-
address instructions. Using available processor-specific tech-
nology files listing the number of bytes that each generic
instruction would require in each processor, the estimator
computes the software size. A target processor’s technology
file can be developed based on the size information of the
processor’s instruction set. Details on derivation of technol-
ogy files for specific processors are given in [15]. Some ex-
periments comparing the generic model with the processor-
specific model yielded inaccuracy of roughly 7% [15).

Note that the same generic processor approach would be
applied for software performance estimation. Specifically,
the technology file of the target processor would include not
only the bytes but also the number of steps for each generic
instruction.

Online estimation — Online software size estimation
congsists simply of increasing or decreasing the processor size
by the size of the added or removed functional object.

816

5 Refinement

Refinement is the generation of a new specification for
each system component after exploration has yielded a suit-
able allocation and partition. The refined specification should
be both readable and simulatable, enabling further verifica-
tion and synthesis. Tasks include generations of interfaces
[11], memories, and arbiters. The refined output can serve
as input to simulation and cosimulation tools.

eniity FuzzyConlrollerE is
’!‘)dorl(im in2 :ininleger; outl: oul ineger);

componen! ASICIE is
port (m1 m2 in integer; startEvalRule : in bit;
1Rule : out bit; num_chan : i
" mr_ chan tmr_chan: addr int_chan; ..);
ond;

procedure Evalualeﬂlle(rum ninteger) is
variable Irunc : integer; - truncated value
variable mr_valt, mr_vai2 : integer;
vanab(slmr val : inleger;

xl(num 1)(hon

ReadMemory1(inival + MR{OFFS!
ReadMemory1 \28+m1valvMR10 SE
infmrl_vall, mri_v.

) then
1= Raaddemotw inval + MRZOFFSI
m_vai? := ReadMemory1 28 un1va| + MR20I
Arunc := Min{mr_valt, mr_vai2
endif;

componem Memory1E
poﬂ (mr_chan : addr_int_chan);

component Memory2E is .
component Processort £ i is.

< port maps > ..

entity ASICIE is
port (int, in2 : in integer; stanEvaiRule : in bit;
doneEvalRule : out bit; num_chan : int_chan;
mr_chan, tmr_chan : addr_in_char; ..J;

ond;

mr_vall:= HoadMemory‘l(ZSGﬂ +MR10OFFSET);
tmr_val := Min{trunc, mr_y F%
WrileMemory2(i + TMRIOFFSET, me_val);
elsu (num 1 n
val1 := RoadMermory1(256+ + MR2OFFSET);
lrrl' vali= Mm(umc mr_val};
WnlsMemory‘Z(nTMHZOFFSET imr_val);

forlzm |o12& Ioop

proc
vanablelmval in2val : integer;

vanablenun vn(eger
be jin

wan uniil startEvalRule="1'; end if;

:= ReadNum(num_ chan) end loop;
Eva\ua!eRule(num end;
doneEvalRule=1'

Fig. 11: Refined fuzzy-logic controller VHDL description.

In Figure 11, we show part of a refined specification for
the system design shown in Figure 6. The interface of the
fuzzy controller remains unchanged. However, its contents
now consist of more details than in the original specification
of Figure 2, such as new subroutines that read data from
Memoryl and write data to Memory?2 using detailed com-
munication protocols for memory accesses. Note the large
amount of detail that must be added to the specification.
Also, note that the designer has access to that detail, since
a refined specification was generated, which can be viewed
and edited. Due to space limitations, we refer the reader to
[11, 18] for details on refinement.

6 Experiments

SpecSyn, under development since 1989, consists of over
150,000 lines of C code. Its main interface is a spreadsheet-
like display showing each component and functional object
along with annotations, constraints and metric values for
each. Menu options permit designers to perform various de-
sign tasks, with results reflected in the displayed values, and
violated constraints highlighted. SpecSyn has been released
to several universities and companies.

We conducted experiments exploring design alternatives
for several industrial examples. We present results for a
fuzzy-logic controller example [19]. Four library components
were available: a standard processor (Intel 8051) and three
custom processors with 50k, 100k, and 150k gates, each with
a cost. We automatically generated all possible allocations
of these components below a certain cost. For each alloca-
tion, we partitioned using simulated annealing and a cost
function that sought to meet size and pin constraints and
minimize execution time.

FUuzzy

—
s
17000.0
180000
13000.0
>
£
&
E oo -,
34
Az Azs
3
aza At
a0 14 17 1oy Azo |, AcsA a0 a
Y N Ay AAg 22 38
9000.0 as Adihgg 20
A, A
1sate Ao
as Adys
1z
70000

8000.0,

0.0 800 1000 1600 2000 2600 8000 8500 4000 4600 600.0 6600 600.0

Cost

Fig. 12: Exploration for the fuzzy-logic controller

Figure 12 shows results for 35 allocations. Constraint-
violating allocations are omitted. Allocation 3 was one 8051
standard and one 50k custom processor, resulting in a fuzzy-
controller execution time of 18,115 microseconds. Allocation
5 was one 8051 and one 100k processor, yielding 7721 mi-
croseconds. Higher-cost allocations yielded no better exe-
cution time. SpecSyn thus aids the designer to understand
the design space, enabling a focus on promising points. The
above data was generated in 1 hour on a Sparc 2.

SpecSyn was used by an industry engineer to design the
fuzzy-logic controller [19]. The partitioning results matched
favorably with those obtained by another engineer who did a
manual partition. The entire implementation was obtained
in roughly 100 man-hours with the aid of SpecSyn and high-
level synthesis, which is nearly a 10 times reduction from the
6-months required for the manual design.

SpecSyn was used in the design of a recent commercial
product: a 1 ms scan, 10k step programmable controller
[20]. Additional SpecSyn information can be found in [21].

7 Conclusions

We described the SpecSyn environment supporting the
specify-explore-refine system-design paradigm. Our explo-
ration approach uses pre-estimation and online-estimation
to achieve fast and accurate estimates, supports various par-
titioning heuristics, and is intended to be continually ex-
tended, enabling a designer to quickly examine many alter-
native designs. This paradigm and tool may eventually re-
sult in a 100-hour design cycle, and our experiments demon-
strate the feasibility of such a design-time reduction. Fu-
ture work may involve estimation models for pipelining and
caching, new transformations, support of fixed cores, and in-
corporation of post-synthesis metrics into design iterations.

References

[1] A.Balboni, W. Fornaciari, and D. Sciuto, “Partitioning
and exploration strategies in the tosca co-design flow,”
in Int. Workshop on Hardware-Software Co-Design,
pp. 62-69, 1996.

817

[2] R. Ernst, J. Henkel, and T. Benner, “Hardware-
software cosynthesis for microcontrollers,” in IEEE De-
sign & Test of Computers, pp. 64-75, December 1994.

J. Henkel and R. Ernst, “A hardware/software parti-
tioner using a dynamically determined granularity,” in
DAC, 1997.

R. Gupta and G. DeMicheli, “Hardware-software
cosynthesis for digital systems,” in IEEE Design & Test
of Computers, pp. 29-41, October 1993.

A. Kalavade and E. Lee, “A hardware/software code-
sign methodology for DSP applications,” in IEEE De-
sign & Test of Computers, 1993.

J. Hou and W. Wolf, “Process partitioning for dis-
tributed systems,” in Int. Workshop on Hardware-
Software Co-Design, pp. 70-75, 1996.

S.Prakash and A. Parker, “Synthesis of application-
specific multiprocessor architectures,” in DAC, pp. 8-
13, 1991.

W. Wolf, “Hardware-software co-design of embedded
systems,” Proceedings of the IEEE, vol. 82, no. 7,
pp. 967-989, 1994,

O. Bentz, J. Rabaey, and D. Lidsky, “A dynamic de-
sign estimation and exploration environment,” in DAC,
1997.

J. Rowson and A. Sangiovanni-Vincentelli, “Interface-
based design,” in DAC, 1997.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, Speci-
fication and design of embedded systems. New Jersey:
Prentice Hall, 1994.

D. Harel, “Statecharts: A visual formalism for com-
plex systems,” Science of Computer Programming 8,
pp. 231-274, 1987.

F. Vahid, “Procedure exlining: A transformation
for improved system and behavioral synthesis,” in
Int. Symposium on System Synthesis, pp. 84-89, 1995.
F. Vahid and D. Gajski, “Incremental hardware esti-
mation during hardware/software functional partition-
ing,” IEEE Transactions on VLSI Systems, vol. 3,
no. 3, pp. 459-464, 1995

J. Gong, D. Gajski, and S. Narayan, “Software estima-
tion using a generic processor model,” in Proceedings
of the European Design and Test Conference (EDTC),
pp- 498-502, 1995.

M. McFarland and T. Kowalski, “Incorporating
bottom-up design into hardware synthesis,” IEEE
Transactions on CAD, pp. 938-950, September 1990.
E. Lagnese and D. Thomas, “Architectural partitioning
for system level synthesis of integrated circuits,” IEEE
Transactions on CAD, vol. 10, pp. 847-860, July 1991.
J. Gong, D. Gajski, and S. Bakshi, “Model refinement
for hardware-software codesign,” in Proceedings of the
European Design and Test Conference (EDTC), 1996.
L. Ramachandran, D. Gajski, S. Narayan, F. Vahid,
and P. Fung, “Towards achieving a 100-hour design cy-
cle: A test case,” in EuroDAC, pp. 144-149, 1994.

L. Matsushita Electric Works, “Fpl0sh programmable
controller.” Datasheet, 1996.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, “Spec-
syn: An environment supporting the specify-explore-
refine paradigm for hardware/software system design,”
IEEE Transactions on VLSI Systems, vol. 6, no. 1,
pp. 84-100, 1998.

31

(4]

5]

(6]

(7l

8

[

(10]

(11]

(12]

(13]

(14]

(15]

[16]

[17]

[18]

(19]

20]

(21]

