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ABSTRACT 
While Boolean logic minimization is typically used in logic 
synthesis, logic minimization can be useful in numerous other 
applications. However, many of those applications, such as 
Internet Protocol routing table and network access control list 
reduction, require logic minimization during the application’s 
runtime, and hence could benefit from minimization executing on-
chip alongside the application. On-chip minimization can even 
enable dynamic hardware/software partitioning. We discuss 
requirements of on-chip logic minimization, and present our new 
on-chip logic minimization tool, ROCM. We compare with the 
well-known Espresso logic minimizer and show that ROCM is 10 
times smaller, executes 10-20 times faster, and uses 3 times less 
data memory, with a mere 2% quality penalty, for the routing 
table and access control list applications.  We show that ROCM 
solves real-sized problems on an ARM7 embedded processor in 
just seconds.   
 
Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems  

General Terms 
Algorithms, Performance. 

Keywords 
Logic minimization, dynamic optimization, on-chip logic 
minimization, on-chip synthesis, system-on-a-chip, embedded 
systems. 

1. INTRODUCTION 
Boolean logic minimization is best known as the main part of 
logic synthesis, which converts a logic function to a circuit. Logic 
minimization algorithms were first used to reduce two-level logic 
functions targeted for programmable logic arrays (PLAs). As 
programmable logic and synthesis tools matured, two-level logic 
minimization became used as an individual optimization in multi-
level logic synthesis. While many logic minimization algorithms 
exist, most are very computation intensive and are typically 
targeted to run on large workstations or servers. 
 Logic minimization can also be useful in applications other 
than logic synthesis, such as Internet Protocol (IP) routing table 
reduction and network access control list (ACL) reduction, which 
we will describe later. Many of those applications require logic 
minimization to be run dynamically along with the application, 
which poses several challenges. Figure 1 highlights two possible 
methods for performing dynamic logic minimization. In the off-
chip approach, the application transmits unoptimized data to a 

logic minimizer running on a workstation accessible through a 
communication link such as Ethernet. The workstation optimizes 
the data and transmits the results back to the application. While an 
off-chip approach has the benefit of using a powerful workstation-
based logic minimizer, the approach’s communication overhead 
can greatly slow the optimization process, especially when 
optimization is applied frequently. 

Alternatively, dynamic logic minimization can be performed 
on-chip by adding an optimizer to the chip itself. One approach 
executes the optimizer as an additional task that shares the same 
processing resources as the application itself. Another approach 
implements the optimizer using a separate small embedded 
processor/memory system, connected to the application 
processor’s memory (perhaps via direct memory access). Both on-
chip approaches have the benefit of reducing or even eliminating 
data transfer between the application and the logic minimizer, 
resulting in a very fast implementation.  
 In either on-chip approach, the logic minimizer will have 
limited processing resources, in terms of processor speed and 
memory, compared to workstation resources. These limitations 
create a need for a lean logic minimization tool. In this paper, we 
describe two modern applications of logic minimization: IP 
routing table reduction and ACL reduction. We discuss on-chip 
logic minimization tool requirements. We then describe ROCM 
(Riverside On-Chip Minimizer), our logic minimization approach 
targeted for on-chip use, and we compare with Espresso-Exact 
and Espresso-II. We show further improvements by tuning 
ROCM to the specific optimization problem of an application. 

2. IP ROUTING TABLE REDUCTION 
IP network routers route an incoming IP packet to its destination 
by determining the packet’s next hop. The router compares the 
packet’s destination IP address to the router's routing table entries, 
and selects the entry with the longest matching prefix. For small 
network routers, searching the routing table entries can be done 
quickly. However, for larger network routers with tens of 
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Figure 1: Comparison of off-chip and on-chip optimization 
approaches. 
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thousands of routing table entries, the lookup can be time 
consuming. Hence, fast IP routing table lookup, either software or 
hardware-based, has been the focus of much research.  
 The most common hardware-based lookup techniques 
incorporate a content-addressable memory (CAM) to perform 
routing table lookup in parallel. One such approach uses binary 
CAMs to perform the lookup. Because a binary CAM performs a 
fixed length match between the input and key, each distinct prefix 
length requires a separate CAM. Of the matches found within 
each CAM, the match with the longest prefix is then selected.  
 Recently, the introduction of ternary CAMs (TCAMs) has 
enabled hardware-based lookup methods without the need for 
multiple CAMs. TCAMs operate similarly to binary CAMs, but 
allow for the storing of a mask that is applied to the input and 
stored key before comparison. Longest prefix matching can be 
directly mapped to TCAMs [7]. The approach involves ordering 
routing table entries from longest to shortest prefix length and 
storing the entries in the TCAM, where the IP address is stored as 
the key and the prefix length is stored in the mask as a number of 
1s, corresponding to the prefix length, followed by 0s. TCAMs 
have the drawback of larger size and power than binary CAMs. 
 To reduce the required TCAM size, Liu [5] used two-level 
logic minimization to reduce the routing table size, as illustrated 
in Figure 2, partially taken from [5]. In the original routing table, 
entries P1 and P2 have the same next hop port. Additionally, their 
prefixes only differ in the fourth bit. Logic minimization 
combines these two entries by setting the fourth bit of the mask to 
zero. However, such mask extension cannot be applied to the 
entire routing table. Instead, the routing table is first pruned to 
remove redundant entries and partitioned into sets, where each set 
corresponds to a specific next hop and prefix length. For each set, 
Liu used Espresso-Exact to perform the mask extension. 
 Performing mask extension for the entire routing table is 
time consuming. Therefore, Liu developed an incremental update 
scheme to handle frequent routing table updates. The incremental 
update scheme uses the new route being added to the table as the 
on-set of the logic function and the existing set corresponding to 
the correct prefix length/next hop port as the don't care set (dc-
set). By applying two-level logic minimization as before, two 
conditions may occur. If the route being added is covered by an 
existing entry in the table, the new route will be added to the 
TCAM. Otherwise, the new route will be optimized and all other 
routes covered by the added route will be removed. Liu's 
incremental update technique handled an average of 50 updates 
per second, using Espresso-Exact on a 500 MHz Pentium III 
processor. However, the update figure did not include the 
potentially large time for transferring data between the network 
router and off-chip optimizer. On-chip logic minimization can 
eliminate the need for such transfers. 

3. ACCESS CONTROL LIST REDUCTION 
Most commercially available network routers are currently 
capable of handling Access Control Lists (ACLs). The network 

routers use information from the incoming IP packet, consisting 
of connection type, incoming IP address, incoming port, 
destination IP address, and destination port, to search the ACL 
for the first matching entry and the associated action of permit or 
deny to be taken. Large ACLs often have thousands of entries, 
making sequential lookup infeasible. Furthermore, hardware-
based parallel lookup approach is limited because the approach 
must preserve the ordering of the ACL entries. 

While discussing the problem of handling large ACLs with a 
company that designs network router chips, we saw a similarity 
between ACL processing and IP routing table lookup. ACL 
entries could be directly stored within a ternary CAM while 
preserving the list order. However, the size of each ACL entry is 
over 100 bits. A TCAM large enough to hold tens of thousands of 
entries requires very large hardware resources. Therefore, we can 
again use two-level logic minimization to reduce the list size. 
Before logic minimization, we partition the ACL into sets of non-
conflicting entries, corresponding to sequential entries of permit's 
or deny's. We further partition these sets into subsets with a 
maximum of 1000 entries each to achieve faster execution times, 
as the logic minimization algorithms are super-linear. 

4. ON-CHIP LOGIC MINIMIZATION  
The Quine-McCluskey method [8] was one of the first exact 
methods for two-level logic minimization. Most improvements to 
the method have focused on branch-and-bound techniques and 
reducing the effort required to generate prime implicants [5] or 
eliminating the need to explicitly do so [9]. Although exact 
algorithms are useful, in many cases getting good enough results 
(near optimal perhaps) in far less time is more important, which 
has led to the development of heuristic logic minimization tools. 
These approaches typically start with an initial cover of the logic 
function and rely upon iterative improvements to achieve good 
results. While researchers have developed many heuristic 
minimization methods, one particularly important method is the 
unate recursive paradigm used by Espresso-II [2]. 

While researchers have extensively studied both exact and 
heuristic-based two-level minimization algorithms, they have not 
explored the usefulness of these algorithms in an on-chip tool. In 
fact, most of these algorithms strive to reduce the computational 
time or improve the quality of the results. Most of these 
algorithms do so at the expense of additional memory 
requirements and larger code size. The additional memory 
required is not a big concern in traditional logic minimization that 
runs on powerful workstations. However, executing logic 
minimization on-chip imposes new requirements. 

4.1 Requirements 
Limited available on-chip resources drastically constrain on-chip 
logic minimizers. Data memory may be very limited. Whereas 
logic minimizers for desktop processors may use hundreds of 
megabytes [3], on-chip minimizers must use much less. 
Instruction memory is also limited. Desktop minimizers may have 
large program sizes, but on-chip minimizers must be much 
smaller. On-chip processor speed will also be much slower, as the 
small embedded processors on which an on-chip minimizer runs 
is typically about ten times slower than a desktop processor, but 
on-chip must still execute rapidly. 

Obviously, one must expect the results of an on-chip 
minimizer to be poorer than a desktop minimizer, but those results 
must still be good enough to satisfy the application’s demands. 

4.2 ROCM - Riverside On-Chip Minimizer 
The general two-level logic minimization problem for heuristic 
minimizers can be stated as:  

 
Given the inputs F (cover of the on-set) and D (cover of the 
don’t care dc-set) of an incompletely specified logic function, 

Figure 2: IP routing table using TCAM's before and after logic 
minimization. 

Original TCAM Entries 
# Prefix Mask Next Hop Port 

P1 10011100 11111100 7 

P2 10001100 11111100 7 
 

 

TCAM Entries After Mask Extension (Logic Minimization) 
# Prefix Mask Next Hop Port 

P1 & P2 10001100 11101100 7 
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determine a cover of F that is minimal, where a minimal 
cover of F is a cover that is not a proper superset of any other 
cover of the function. 

 
In designing our two-level logic minimization algorithm, we 

employ the techniques used by both Espresso-II [2] and Presto 
[12]. While Espresso-II produces excellent results, the algorithms 
employed are not data memory conscious. The most obvious 
example of large data memory usage is the computation of the 
off-set. While the use of the off-set for expanding cubes (a binary 
encoding of the implicants) yields a very efficient algorithm, the 
size of the off-set can be very large. We therefore chose not to 
compute the off-set and instead employ a tautology-based 
approach similar to that used by Presto.  

We designed our simple heuristic approach for two-level 
minimization using a single expand phase implemented with the 
main goal of very small memory usage and acceptable execution 
time. Figure 3 presents an overview of our optimization 
algorithm. First, we order the cubes according to decreasing cube 
size, under the assumption that larger cubes are more likely to 
cover other cubes and less likely to be covered by other cubes [2]. 
The expansion process then selects each cube c of the cover F and 
expands c to create the cube c'. During the expansion of c, each 
entry in c is iteratively expanded, ultimately resulting in the 
expanded cube c'. To check for validity of the expanded cube c', 
we determine if c' is contained within the current cover F. We 
perform the validity check by computing the cofactor of F with 
respect to expanded cube c' (Fc'), which is then tested to determine 
if the cofactor is a tautology. If the cofactor is a tautology, the 
expansion was valid. Otherwise, the expansion was invalid and 
we revert the expanded cube c' to its previous state. In addition, 
during the validity check, we will also create a set W' that 
corresponds to the set of implicants covered by c'. When the 
expand process is complete, the algorithm returns the resulting 
cube c' and the set of all cubes covered by the expansion, W. We 
then compute the current cover F as the union of the previous 
cover with the expanded cube c' minus the cubes covered by c'. 

Most heuristic logic minimizers use the expand operation 
along with reduce and irredundant transformations to further 
minimize the cover through repeated execution of an optimization 
loop. Although a logic minimization tool that uses a single expand 
phase may not perform well for logic synthesis, the IP routing 
table reduction application has data sets that contain highly 
similar entries. The high correlation of the entries results in very 
good reduction using the expand operation alone. Thus, our first 
version of ROCM contains only expand, leading to loss of 
generality, but smaller code size and faster execution. 

5. RESULTS 
To determine the feasibility of using ROCM on-chip, we compare 
ROCM with Espresso-Exact and Espresso-II. Table 1 compares 
the reduced routing table size, data memory usage, and execution 
time of the three methods. We performed routing table reduction 
using mask extension, with routing table information from four 

large network routers, MaeWest, AADS, Paix, and PacBell [9]. 
Initially, we obtained all results using a 500 MHz Sun Ultra60 
workstation, and we later show results on an embedded processor. 

ROCM’s code size is an order of magnitude smaller than 
Espresso, requiring slightly over 1000 lines of C code and only 22 
kilobytes of instruction memory. Both Espresso-Exact and 
Espresso-II are from a single source that is executed using 
different command line options. Their collective code size is over 
11,000 lines of code, resulting in a binary size of 227 kilobytes.  

The table also shows that ROCM uses only about one-third 
the data memory of Espresso-II and Espresso-Exact, using about 
1,000 kilobytes compared to over 3,000 kilobytes.  

The code and data memory savings come at the expense of 
ROCM being a bit slower (13%) than Espresso-II. Surprisingly, 
Espresso-Exact was the fastest method. Normally, the generation 
of all prime implicants is a very time consuming task, but the high 
similarity of routing table entries results in relatively few prime 
implicants compared to the number of entries. 

ROCM achieves results very close to the other tools, resulting 
in only 2% less reduction (24% versus 26%) than Espresso-Exact 
and Espresso-II. Using ROCM along with the initial pruning step, 
ROCM achieves an average 43% overall routing table reduction. 

Table 1’s data is for performing mask extension on the full 
routing table, which only occurs once, after which we use 
incremental updates. Table 2 provides execution times for 
incremental updates for three prefix length/next hop port sets with 

Figure 3: ROCM optimization algorithm. 

 

Table 1: Comparison of ROCM with Espresso-Exact and Espresso-II, in terms of data memory usage (Data, in kilobytes), execution time 
(Time, in seconds), resulting IP routing table size (Table size, in number of entries), and % reduction of the table versus the pruned table 

(Reduct.). Code size is also shown, in kilobytes. 

 Initial table size Espresso-Exact (227 Kb) Espresso-II (227 Kb) ROCM (22 Kb) 

 Orig. Pruned Data Time Table 
size Reduct. Data Time Table 

size Reduct. Data Time Table 
size Reduct.

MaeWest 29585 22042 3408 122 16323 26% 3520 217 16327 26% 1048 245 16747 24%
AADS 33740 24795 3520 135 18433 26% 3560 237 18438 26% 1056 259 18898 24%

PacBell 22165 16124 3760 166 11213 30% 3752 271 11221 30% 1080 295 11604 28%
Paix 13914 11091 2056 11 8885 20% 2056 26 8887 20% 1064 30 9000 19%

Average 24851 18513 3186 109 13714 26% 3222 188 13718 26% 1062 207 14062 24%
 

Optimize(F,D) 
{ 
    OrderCubes(F) 
    for i=1 to |F| 
    { 
        c = Fi 
        (c',W) = IterativeExpansion(F,D,c)  

 F = (F ∪ c') - W 
    } 
} 
 
IterativeExpansion(F,D,c) 
{ 
    W = {} 
    c' = c 
    for i=1 to |c| 
        c' = Expand(c',i) 
        (val,W') = ValidExpansion(F,D,c') 
        if val = true 
            W = W ∪ W' 
        else 
            Revert(c',i) 
 
    return (c',W)         
} 
 
 
ValidExpansion(F,D,c') 
{ 
    CS = F ∪ D 
    return Tautology(CSc') 
}



varying sizes from the optimized AADS routing table. In addition 
to evaluating the performance on a workstation, we also evaluated 
ROCM’s execution time on an ARM7 processor, a popular and 
inexpensive embedded 32-bit microprocessor [1], using Triscend's 
A7 development board that includes a 40 MHz ARM7 processor 
with an 8 Kbyte instruction/data cache [13]. Due to the generation 
of all prime implicants by Espresso-Exact and the computation of 
the off-set and multiple optimization iterations performed by 
Espresso-II, ROCM outperforms both optimization tools, which 
required 36.6 seconds and 12.8 seconds respectively for the 
largest example 24/01 having 4,080 entries. In contrast, the single 
expand phase of ROCM requires only 0.2 seconds to complete. 
Interestingly, although the ARM7 clock is over an order of 
magnitude slower than that of the workstation, ROCM executing 
on the ARM7 required only 2.1 seconds, which is still 
significantly less time than both Espresso-Exact and Espresso-II 
on a workstation. 

We also evaluated the usefulness of ROCM for ACL 
reduction. Table 4 shows the reduced ACL (number of entries) 
and percent savings using Espresso-Exact, Espresso-II, and 
ROCM for five examples obtained from a router chip design 
company. Univ is an ACL of a university's Computer Science 
department, Typ1 and Typ2 represent typical ACL lists of small 
size, Bad corresponds to an ACL with permit and deny actions 
frequently interleaved, and Long is substantially larger than the 
other four examples. The ACL reduction by ROCM ranges from 
17% to 40%, averaging 28%. Espresso-Exact and Espresso-II 
provide only an average 2% further reduction. 

6. CUSTOMIZING ROCM 
In most embedded systems applications, optimizing an algorithm 
for a particular application is beneficial. One possible 
optimization is to customize the algorithms and data structures for 
the particular input size of the application. A customized version 
of our logic minimizer will require less memory and reduce 
dynamic memory allocation. We can optimize the algorithms to 
exploit the known input size to improve performance. 

We created a version of ROCM, ROCM-32, optimized for 
routing table reduction applications that have an input size of 32 
bits. Table 3 provides a comparison of data memory usage and 
execution times for unoptimized ROCM and ROCM-32. ROCM-
32 requires an average of 11% less memory and 37% less 
execution time than the unoptimized version.  

7. CONCLUSIONS 
We have shown that on-chip logic minimization is feasible. Our 
ROCM tool has one-tenth the code size and uses one-third the 
data memory compared to popular desktop minimizers, while 
executing fast enough and providing results of sufficient quality 
(only 2% worse than a powerful desktop logic minimizer) to 
satisfy our sample networking application’s needs. Numerous 
other applications that can benefit from on-chip logic 
minimization may exist or evolve. For example, we are presently 
applying on-chip logic minimization as part of a dynamic 
hardware/software partitioning approach [11].  
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Table 2: Execution time (in seconds) for incremental routing 
table updates (table size in parentheses) using Espresso-Exact, 

Espresso-II, ROCM (all on a workstation), and ROCM 
executing on an ARM7. 

 Espresso-
Exact 

Espresso-
II ROCM ROCM 

(ARM7) 
24/07 (420) 0.42 0.31 0.02 0.22
23/01 (758) 1.0 0.58 0.04 0.45

24/01 (4080) 36.6 12.8 0.2 2.1
 

Table 3: Comparison of data memory usage and execution time 
for unoptimized ROCM and ROCM-32, and percent savings of 

ROCM-32 vs. ROCM.  

 Data (kilobytes) Time (seconds) 

 ROCM ROCM
-32 Saving ROCM ROCM

-32 Saving

MaeWest 1048 936 11% 245 147 40%
AADS 1056 944 11% 259 157 39%

PacBell 1080 984 9% 295 175 41%
Paix 1064 936 12% 30 22 27%

Average 1062 950 11% 207 125 37%
 

Table 4: ACL reduction (reported in number of entries) and % 
reduction using Espresso-Exact, Espresso-II  and ROCM. 

  Orig.  Espresso-Exact Expresso-II ROCM 
 Size Size Reduct. Size Reduct. Size Reduct.

Univ 361 229 37% 229 37% 233 35%
Typ1 180 147 18% 147 18% 149 17%
Typ2 128 99 23% 99 23% 99 23%
Bad 359 191 47% 191 47% 200 44%
Long 4425 3406 23% 3406 23% 3536 20%

Average 1091 814 30% 814 30% 843 28%
 


