
On-Chip Logic Minimization
Roman Lysecky, Frank Vahid*

Department of Computer Science and Engineering
University of California, Riverside

{rlysecky, vahid}@cs.ucr.edu, http://www.cs.ucr.edu/~vahid
*Also with the Center for Embedded Computer Systems at UC Irvine

ABSTRACT
While Boolean logic minimization is typically used in logic
synthesis, logic minimization can be useful in numerous other
applications. However, many of those applications, such as
Internet Protocol routing table and network access control list
reduction, require logic minimization during the application’s
runtime, and hence could benefit from minimization executing on-
chip alongside the application. On-chip minimization can even
enable dynamic hardware/software partitioning. We discuss
requirements of on-chip logic minimization, and present our new
on-chip logic minimization tool, ROCM. We compare with the
well-known Espresso logic minimizer and show that ROCM is 10
times smaller, executes 10-20 times faster, and uses 3 times less
data memory, with a mere 2% quality penalty, for the routing
table and access control list applications. We show that ROCM
solves real-sized problems on an ARM7 embedded processor in
just seconds.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

General Terms
Algorithms, Performance.

Keywords
Logic minimization, dynamic optimization, on-chip logic
minimization, on-chip synthesis, system-on-a-chip, embedded
systems.

1. INTRODUCTION
Boolean logic minimization is best known as the main part of
logic synthesis, which converts a logic function to a circuit. Logic
minimization algorithms were first used to reduce two-level logic
functions targeted for programmable logic arrays (PLAs). As
programmable logic and synthesis tools matured, two-level logic
minimization became used as an individual optimization in multi-
level logic synthesis. While many logic minimization algorithms
exist, most are very computation intensive and are typically
targeted to run on large workstations or servers.
 Logic minimization can also be useful in applications other
than logic synthesis, such as Internet Protocol (IP) routing table
reduction and network access control list (ACL) reduction, which
we will describe later. Many of those applications require logic
minimization to be run dynamically along with the application,
which poses several challenges. Figure 1 highlights two possible
methods for performing dynamic logic minimization. In the off-
chip approach, the application transmits unoptimized data to a

logic minimizer running on a workstation accessible through a
communication link such as Ethernet. The workstation optimizes
the data and transmits the results back to the application. While an
off-chip approach has the benefit of using a powerful workstation-
based logic minimizer, the approach’s communication overhead
can greatly slow the optimization process, especially when
optimization is applied frequently.

Alternatively, dynamic logic minimization can be performed
on-chip by adding an optimizer to the chip itself. One approach
executes the optimizer as an additional task that shares the same
processing resources as the application itself. Another approach
implements the optimizer using a separate small embedded
processor/memory system, connected to the application
processor’s memory (perhaps via direct memory access). Both on-
chip approaches have the benefit of reducing or even eliminating
data transfer between the application and the logic minimizer,
resulting in a very fast implementation.
 In either on-chip approach, the logic minimizer will have
limited processing resources, in terms of processor speed and
memory, compared to workstation resources. These limitations
create a need for a lean logic minimization tool. In this paper, we
describe two modern applications of logic minimization: IP
routing table reduction and ACL reduction. We discuss on-chip
logic minimization tool requirements. We then describe ROCM
(Riverside On-Chip Minimizer), our logic minimization approach
targeted for on-chip use, and we compare with Espresso-Exact
and Espresso-II. We show further improvements by tuning
ROCM to the specific optimization problem of an application.

2. IP ROUTING TABLE REDUCTION
IP network routers route an incoming IP packet to its destination
by determining the packet’s next hop. The router compares the
packet’s destination IP address to the router's routing table entries,
and selects the entry with the longest matching prefix. For small
network routers, searching the routing table entries can be done
quickly. However, for larger network routers with tens of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00

Figure 1: Comparison of off-chip and on-chip optimization
approaches.

 Transmit Data

Transmit Result
Workstation

Off-Chip

On-Chip

SOC

Proc MemI$

D$

Mem
I$

D$

Proc

Proc

Mem

DMA

Optimizer

thousands of routing table entries, the lookup can be time
consuming. Hence, fast IP routing table lookup, either software or
hardware-based, has been the focus of much research.
 The most common hardware-based lookup techniques
incorporate a content-addressable memory (CAM) to perform
routing table lookup in parallel. One such approach uses binary
CAMs to perform the lookup. Because a binary CAM performs a
fixed length match between the input and key, each distinct prefix
length requires a separate CAM. Of the matches found within
each CAM, the match with the longest prefix is then selected.
 Recently, the introduction of ternary CAMs (TCAMs) has
enabled hardware-based lookup methods without the need for
multiple CAMs. TCAMs operate similarly to binary CAMs, but
allow for the storing of a mask that is applied to the input and
stored key before comparison. Longest prefix matching can be
directly mapped to TCAMs [7]. The approach involves ordering
routing table entries from longest to shortest prefix length and
storing the entries in the TCAM, where the IP address is stored as
the key and the prefix length is stored in the mask as a number of
1s, corresponding to the prefix length, followed by 0s. TCAMs
have the drawback of larger size and power than binary CAMs.
 To reduce the required TCAM size, Liu [5] used two-level
logic minimization to reduce the routing table size, as illustrated
in Figure 2, partially taken from [5]. In the original routing table,
entries P1 and P2 have the same next hop port. Additionally, their
prefixes only differ in the fourth bit. Logic minimization
combines these two entries by setting the fourth bit of the mask to
zero. However, such mask extension cannot be applied to the
entire routing table. Instead, the routing table is first pruned to
remove redundant entries and partitioned into sets, where each set
corresponds to a specific next hop and prefix length. For each set,
Liu used Espresso-Exact to perform the mask extension.
 Performing mask extension for the entire routing table is
time consuming. Therefore, Liu developed an incremental update
scheme to handle frequent routing table updates. The incremental
update scheme uses the new route being added to the table as the
on-set of the logic function and the existing set corresponding to
the correct prefix length/next hop port as the don't care set (dc-
set). By applying two-level logic minimization as before, two
conditions may occur. If the route being added is covered by an
existing entry in the table, the new route will be added to the
TCAM. Otherwise, the new route will be optimized and all other
routes covered by the added route will be removed. Liu's
incremental update technique handled an average of 50 updates
per second, using Espresso-Exact on a 500 MHz Pentium III
processor. However, the update figure did not include the
potentially large time for transferring data between the network
router and off-chip optimizer. On-chip logic minimization can
eliminate the need for such transfers.

3. ACCESS CONTROL LIST REDUCTION
Most commercially available network routers are currently
capable of handling Access Control Lists (ACLs). The network

routers use information from the incoming IP packet, consisting
of connection type, incoming IP address, incoming port,
destination IP address, and destination port, to search the ACL
for the first matching entry and the associated action of permit or
deny to be taken. Large ACLs often have thousands of entries,
making sequential lookup infeasible. Furthermore, hardware-
based parallel lookup approach is limited because the approach
must preserve the ordering of the ACL entries.

While discussing the problem of handling large ACLs with a
company that designs network router chips, we saw a similarity
between ACL processing and IP routing table lookup. ACL
entries could be directly stored within a ternary CAM while
preserving the list order. However, the size of each ACL entry is
over 100 bits. A TCAM large enough to hold tens of thousands of
entries requires very large hardware resources. Therefore, we can
again use two-level logic minimization to reduce the list size.
Before logic minimization, we partition the ACL into sets of non-
conflicting entries, corresponding to sequential entries of permit's
or deny's. We further partition these sets into subsets with a
maximum of 1000 entries each to achieve faster execution times,
as the logic minimization algorithms are super-linear.

4. ON-CHIP LOGIC MINIMIZATION
The Quine-McCluskey method [8] was one of the first exact
methods for two-level logic minimization. Most improvements to
the method have focused on branch-and-bound techniques and
reducing the effort required to generate prime implicants [5] or
eliminating the need to explicitly do so [9]. Although exact
algorithms are useful, in many cases getting good enough results
(near optimal perhaps) in far less time is more important, which
has led to the development of heuristic logic minimization tools.
These approaches typically start with an initial cover of the logic
function and rely upon iterative improvements to achieve good
results. While researchers have developed many heuristic
minimization methods, one particularly important method is the
unate recursive paradigm used by Espresso-II [2].

While researchers have extensively studied both exact and
heuristic-based two-level minimization algorithms, they have not
explored the usefulness of these algorithms in an on-chip tool. In
fact, most of these algorithms strive to reduce the computational
time or improve the quality of the results. Most of these
algorithms do so at the expense of additional memory
requirements and larger code size. The additional memory
required is not a big concern in traditional logic minimization that
runs on powerful workstations. However, executing logic
minimization on-chip imposes new requirements.

4.1 Requirements
Limited available on-chip resources drastically constrain on-chip
logic minimizers. Data memory may be very limited. Whereas
logic minimizers for desktop processors may use hundreds of
megabytes [3], on-chip minimizers must use much less.
Instruction memory is also limited. Desktop minimizers may have
large program sizes, but on-chip minimizers must be much
smaller. On-chip processor speed will also be much slower, as the
small embedded processors on which an on-chip minimizer runs
is typically about ten times slower than a desktop processor, but
on-chip must still execute rapidly.

Obviously, one must expect the results of an on-chip
minimizer to be poorer than a desktop minimizer, but those results
must still be good enough to satisfy the application’s demands.

4.2 ROCM - Riverside On-Chip Minimizer
The general two-level logic minimization problem for heuristic
minimizers can be stated as:

Given the inputs F (cover of the on-set) and D (cover of the
don’t care dc-set) of an incompletely specified logic function,

Figure 2: IP routing table using TCAM's before and after logic
minimization.

Original TCAM Entries
Prefix Mask Next Hop Port

P1 10011100 11111100 7

P2 10001100 11111100 7

TCAM Entries After Mask Extension (Logic Minimization)
Prefix Mask Next Hop Port

P1 & P2 10001100 11101100 7

Logic Minimization

determine a cover of F that is minimal, where a minimal
cover of F is a cover that is not a proper superset of any other
cover of the function.

In designing our two-level logic minimization algorithm, we

employ the techniques used by both Espresso-II [2] and Presto
[12]. While Espresso-II produces excellent results, the algorithms
employed are not data memory conscious. The most obvious
example of large data memory usage is the computation of the
off-set. While the use of the off-set for expanding cubes (a binary
encoding of the implicants) yields a very efficient algorithm, the
size of the off-set can be very large. We therefore chose not to
compute the off-set and instead employ a tautology-based
approach similar to that used by Presto.

We designed our simple heuristic approach for two-level
minimization using a single expand phase implemented with the
main goal of very small memory usage and acceptable execution
time. Figure 3 presents an overview of our optimization
algorithm. First, we order the cubes according to decreasing cube
size, under the assumption that larger cubes are more likely to
cover other cubes and less likely to be covered by other cubes [2].
The expansion process then selects each cube c of the cover F and
expands c to create the cube c'. During the expansion of c, each
entry in c is iteratively expanded, ultimately resulting in the
expanded cube c'. To check for validity of the expanded cube c',
we determine if c' is contained within the current cover F. We
perform the validity check by computing the cofactor of F with
respect to expanded cube c' (Fc'), which is then tested to determine
if the cofactor is a tautology. If the cofactor is a tautology, the
expansion was valid. Otherwise, the expansion was invalid and
we revert the expanded cube c' to its previous state. In addition,
during the validity check, we will also create a set W' that
corresponds to the set of implicants covered by c'. When the
expand process is complete, the algorithm returns the resulting
cube c' and the set of all cubes covered by the expansion, W. We
then compute the current cover F as the union of the previous
cover with the expanded cube c' minus the cubes covered by c'.

Most heuristic logic minimizers use the expand operation
along with reduce and irredundant transformations to further
minimize the cover through repeated execution of an optimization
loop. Although a logic minimization tool that uses a single expand
phase may not perform well for logic synthesis, the IP routing
table reduction application has data sets that contain highly
similar entries. The high correlation of the entries results in very
good reduction using the expand operation alone. Thus, our first
version of ROCM contains only expand, leading to loss of
generality, but smaller code size and faster execution.

5. RESULTS
To determine the feasibility of using ROCM on-chip, we compare
ROCM with Espresso-Exact and Espresso-II. Table 1 compares
the reduced routing table size, data memory usage, and execution
time of the three methods. We performed routing table reduction
using mask extension, with routing table information from four

large network routers, MaeWest, AADS, Paix, and PacBell [9].
Initially, we obtained all results using a 500 MHz Sun Ultra60
workstation, and we later show results on an embedded processor.

ROCM’s code size is an order of magnitude smaller than
Espresso, requiring slightly over 1000 lines of C code and only 22
kilobytes of instruction memory. Both Espresso-Exact and
Espresso-II are from a single source that is executed using
different command line options. Their collective code size is over
11,000 lines of code, resulting in a binary size of 227 kilobytes.

The table also shows that ROCM uses only about one-third
the data memory of Espresso-II and Espresso-Exact, using about
1,000 kilobytes compared to over 3,000 kilobytes.

The code and data memory savings come at the expense of
ROCM being a bit slower (13%) than Espresso-II. Surprisingly,
Espresso-Exact was the fastest method. Normally, the generation
of all prime implicants is a very time consuming task, but the high
similarity of routing table entries results in relatively few prime
implicants compared to the number of entries.

ROCM achieves results very close to the other tools, resulting
in only 2% less reduction (24% versus 26%) than Espresso-Exact
and Espresso-II. Using ROCM along with the initial pruning step,
ROCM achieves an average 43% overall routing table reduction.

Table 1’s data is for performing mask extension on the full
routing table, which only occurs once, after which we use
incremental updates. Table 2 provides execution times for
incremental updates for three prefix length/next hop port sets with

Figure 3: ROCM optimization algorithm.

Table 1: Comparison of ROCM with Espresso-Exact and Espresso-II, in terms of data memory usage (Data, in kilobytes), execution time
(Time, in seconds), resulting IP routing table size (Table size, in number of entries), and % reduction of the table versus the pruned table

(Reduct.). Code size is also shown, in kilobytes.

 Initial table size Espresso-Exact (227 Kb) Espresso-II (227 Kb) ROCM (22 Kb)

 Orig. Pruned Data Time Table
size Reduct. Data Time Table

size Reduct. Data Time Table
size Reduct.

MaeWest 29585 22042 3408 122 16323 26% 3520 217 16327 26% 1048 245 16747 24%
AADS 33740 24795 3520 135 18433 26% 3560 237 18438 26% 1056 259 18898 24%

PacBell 22165 16124 3760 166 11213 30% 3752 271 11221 30% 1080 295 11604 28%
Paix 13914 11091 2056 11 8885 20% 2056 26 8887 20% 1064 30 9000 19%

Average 24851 18513 3186 109 13714 26% 3222 188 13718 26% 1062 207 14062 24%

Optimize(F,D)
{
 OrderCubes(F)
 for i=1 to |F|
 {
 c = Fi
 (c',W) = IterativeExpansion(F,D,c)

 F = (F ∪ c') - W
 }
}

IterativeExpansion(F,D,c)
{
 W = {}
 c' = c
 for i=1 to |c|
 c' = Expand(c',i)
 (val,W') = ValidExpansion(F,D,c')
 if val = true
 W = W ∪ W'
 else
 Revert(c',i)

 return (c',W)
}

ValidExpansion(F,D,c')
{
 CS = F ∪ D
 return Tautology(CSc')
}

varying sizes from the optimized AADS routing table. In addition
to evaluating the performance on a workstation, we also evaluated
ROCM’s execution time on an ARM7 processor, a popular and
inexpensive embedded 32-bit microprocessor [1], using Triscend's
A7 development board that includes a 40 MHz ARM7 processor
with an 8 Kbyte instruction/data cache [13]. Due to the generation
of all prime implicants by Espresso-Exact and the computation of
the off-set and multiple optimization iterations performed by
Espresso-II, ROCM outperforms both optimization tools, which
required 36.6 seconds and 12.8 seconds respectively for the
largest example 24/01 having 4,080 entries. In contrast, the single
expand phase of ROCM requires only 0.2 seconds to complete.
Interestingly, although the ARM7 clock is over an order of
magnitude slower than that of the workstation, ROCM executing
on the ARM7 required only 2.1 seconds, which is still
significantly less time than both Espresso-Exact and Espresso-II
on a workstation.

We also evaluated the usefulness of ROCM for ACL
reduction. Table 4 shows the reduced ACL (number of entries)
and percent savings using Espresso-Exact, Espresso-II, and
ROCM for five examples obtained from a router chip design
company. Univ is an ACL of a university's Computer Science
department, Typ1 and Typ2 represent typical ACL lists of small
size, Bad corresponds to an ACL with permit and deny actions
frequently interleaved, and Long is substantially larger than the
other four examples. The ACL reduction by ROCM ranges from
17% to 40%, averaging 28%. Espresso-Exact and Espresso-II
provide only an average 2% further reduction.

6. CUSTOMIZING ROCM
In most embedded systems applications, optimizing an algorithm
for a particular application is beneficial. One possible
optimization is to customize the algorithms and data structures for
the particular input size of the application. A customized version
of our logic minimizer will require less memory and reduce
dynamic memory allocation. We can optimize the algorithms to
exploit the known input size to improve performance.

We created a version of ROCM, ROCM-32, optimized for
routing table reduction applications that have an input size of 32
bits. Table 3 provides a comparison of data memory usage and
execution times for unoptimized ROCM and ROCM-32. ROCM-
32 requires an average of 11% less memory and 37% less
execution time than the unoptimized version.

7. CONCLUSIONS
We have shown that on-chip logic minimization is feasible. Our
ROCM tool has one-tenth the code size and uses one-third the
data memory compared to popular desktop minimizers, while
executing fast enough and providing results of sufficient quality
(only 2% worse than a powerful desktop logic minimizer) to
satisfy our sample networking application’s needs. Numerous
other applications that can benefit from on-chip logic
minimization may exist or evolve. For example, we are presently
applying on-chip logic minimization as part of a dynamic
hardware/software partitioning approach [11].

8. ACKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation, grants CCR-9876006 and CCR-0203829, by the
Semiconductor Research Corporation, and by a Dept. of
Education GAANN fellowship.

9. REFERENCES
[1] Advanced RISC Machines Ltd. ARM7.

http://www.arm.com/armtech/ARM7_Thumb/, 2002.
[2] Brayton, R., et al. Logic Minimization Algorithms for VLSI

Synthesis. Kluwer Academic Publishers, Boston, MA, 1984.
[3] Cordone, R., F. Ferrandi, D. Scuito, R. Calvo. An Efficient

Heuristic Approach to Solve the Unate Covering Problem.
Proc. Design Automation and Test in Europe, pp. 364-371,
2000.

[4] Hayashi, T., T. Miyazaki, High-Speed Table Lookup Engine
for IPv6 Longest Prefix Match. Proc. IEEE Globecom, Vol.
2, pp. 1576-1581, 1999.

[5] Hlavička, J., P. Fišer. BOOM – A Heuristic Boolean
Minimizer. Proc. International Conference on Computer
Aided Design, pp. 439-442, 2001.

[6] Liu, H. Routing Table Compaction in Ternary-CAM. IEEE
Micro, pp. 58-64, Jan/Feb 2002.

[7] McAuley, A. P. Francis. Fast Router Table Lookup Using
CAMs. Proc. Infocom, Vol. 3, pp. 1382-91, 1993.

[8] McCluskey, E. Minimization of Boolean Functions. Bell
System Technical Journal, pp. 1417-1444, NY, 1959.

[9] McGeer, P., J. Sanghavi, A. Sangiovanni-Vincentelli.
Espresso-Signature: A New Exact Minimizer for Logic
Functions. IEEE Transactions on VLSI, Vol. 1, No. 4, pp.
432-440, 1993.

[10] Merit Network, Inc. Internet Routing Table Statistics,
http://www.merit.edu/ipma/routing_table/, 2002.

[11] Stitt, G., R. Lysecky and F. Vahid. Dynamic
Hardware/Software Partitioning: A First Approach. Proc.
Design Automation Conference, 2003.

[12] Svoboda, A., D.E. White. Advanced Logical Circuit Design
Techniques. Garland Press, New York, 1979.

[13] Triscend Corporation. A7 CSoC Family.
http://www.triscend.com, 2003.

Table 2: Execution time (in seconds) for incremental routing
table updates (table size in parentheses) using Espresso-Exact,

Espresso-II, ROCM (all on a workstation), and ROCM
executing on an ARM7.

 Espresso-
Exact

Espresso-
II ROCM ROCM

(ARM7)
24/07 (420) 0.42 0.31 0.02 0.22
23/01 (758) 1.0 0.58 0.04 0.45

24/01 (4080) 36.6 12.8 0.2 2.1

Table 3: Comparison of data memory usage and execution time
for unoptimized ROCM and ROCM-32, and percent savings of

ROCM-32 vs. ROCM.

 Data (kilobytes) Time (seconds)

 ROCM ROCM
-32 Saving ROCM ROCM

-32 Saving

MaeWest 1048 936 11% 245 147 40%
AADS 1056 944 11% 259 157 39%

PacBell 1080 984 9% 295 175 41%
Paix 1064 936 12% 30 22 27%

Average 1062 950 11% 207 125 37%

Table 4: ACL reduction (reported in number of entries) and %
reduction using Espresso-Exact, Espresso-II and ROCM.

 Orig. Espresso-Exact Expresso-II ROCM
 Size Size Reduct. Size Reduct. Size Reduct.

Univ 361 229 37% 229 37% 233 35%
Typ1 180 147 18% 147 18% 149 17%
Typ2 128 99 23% 99 23% 99 23%
Bad 359 191 47% 191 47% 200 44%
Long 4425 3406 23% 3406 23% 3536 20%

Average 1091 814 30% 814 30% 843 28%

