
Warp Processing:
Dynamic Translation of
Binaries to FPGA Circuits

S
oftware consists of bits downloaded into a
prefabricated hardware device. Traditional
microprocessor software bits represent
sequential instructions to be executed by a
programmable microprocessor. In contrast,

field-programmable gate array software bits represent
a circuit to be mapped onto an FPGA’s configurable
logic fabric. Both software types free developers from
needing to design hardware. Instead, developers simply
download bits into a prefabricated hardware device to
implement a desired computation.

A computation might execute faster as a circuit on
an FPGA than as sequential instructions on a micro-
processor because a circuit allows concurrency, from
the bit to the process level.1 For example, a bit reversal
implemented in a circuit requires only a single clock
cycle but might require dozens of cycles when executed
as logic/shift instructions on a microprocessor. An
arithmetic-level computation involving 20 multiplica-
tions might require only two clock cycles if 10 multi-
pliers are available on the FPGA, but it would require
20 cycles or more on a microprocessor. A process-level
computation with 10 independent 100-cycle threads
might require only 100 cycles if each thread is imple-
mented as its own circuit, but it would require 1,000
cycles or more if sequenced on a single microprocessor.

Several commercial and research tools seek to com-
pile popular microprocessor-oriented software pro-

gramming languages (such as C, C++, and Java) to
FPGAs. Many such FPGA circuit compilers use profil-
ing to detect a program’s kernels—that is, small regions
in the program that account for most of the program’s
execution (following the well-known 90/10 rule)—and
map those kernels to circuits on an FPGA, leaving the
rest of the program to execute on a microprocessor.

Only a small group of expert developers has adopted
such FPGA circuit-compilation tools. Key barriers
to adoption include the difficulty of integrating such
tools into established microprocessor software develop-
ment flows and the nonconformance of such tools to
the important standard binary concept that forms the
basis of the architectures-tools-applications ecosystem
in many computing domains.

Warp processing seeks to overcome these barriers
by making FPGAs invisible to the software developer.
In warp processing, a compute platform transparently
performs FPGA circuit compilation as a program’s
binary executes on a microprocessor—that is, dynami-
cally. Benjamin Levine and Herman Schmit’s program
acceleration work dynamically reconfigured functional
units using statically created circuits.2 Nathan Clark
and his colleagues complemented statically deter-
mined program subgraphs with dynamic decisions of
functional unit reconfiguration.3 Warp processors are
fully dynamic and generate entire coprocessing circuits
beyond functional units.

Warp processing dynamically and transparently transforms an executing microprocessor’s

binary kernels into customized field-programmable gate array (FPGA) circuits, commonly

resulting in 2X to 100X speedup over executing on microprocessors. A new architecture and

set of dynamic CAD tools demonstrate warp processing’s potential.

Frank Vahid, University of California, Riverside
Greg Stitt, University of Florida
Roman Lysecky, University of Arizona

C O V E R F E A T U R E

	 40	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00	©	2008	IEEE

	 July 2008	 41

WArP ProCessinG
Figure 1 provides an overview of warp processing.

The architecture consists of a microprocessor and
FPGA sharing instruction and data caches (or memory),
a profiler, and dynamic CAD tools. A developer or end
user initially downloads a program as microprocessor
software (that is, a microprocessor binary). The profiler
dynamically detects the binary’s kernels, the dynamic
CAD tools automatically map those kernels to FPGA
circuits, and the binary updater dynamically updates
the program’s binary to use the new circuits. When the
update takes place, the program’s execution might sud-
denly speed up by a factor of 2, 10, or even more—in
other words, the execution time “warps.”

Profiling an executing binary is a widely investigated
problem with numerous approaches that trade off accu-
racy and performance overhead.4 Researchers have also
developed solid solutions for dynamic binary updating.5
Thus, developing effective dynamic CAD tools repre-
sents the main outstanding problem in enabling warp
processing. Two key challenges in developing warp
processing’s dynamic CAD tools are compiling fast and
efficient circuits from binary code instead of source code
and quickly synthesizing a computation into an FPGA
circuit using only lean dynamic-processing resources
instead of powerful desktop workstations.

Decompilation
Warp processors synthesize circuits from executing

binary code rather than from source code. However,
binary code lacks high-level constructs (such as loops,
arrays, and functions), which are readily detected in
source-level code. Without such high-level constructs,
synthesis from binaries might yield slower or bigger

circuits. We use aggressive decompilation to address
the challenge of synthesizing fast efficient circuits from
binary code.

Decompilation involves recovering high-level con-
structs from binary code. Fortunately, researchers
have developed sophisticated decompilation techniques
for retargeting binaries from one microprocessor to
another. These techniques can recover various if-then-
else constructs, loops (including nested loops), arrays,
functions, and more.6

However, efficient circuit compilation also requires
two new decompilation techniques.7 Loop rerolling
detects an unrolled loop in a binary and replaces the
code with a rerolled loop, thus letting a circuit synthe-
sizer unroll the loop by an amount that matches avail-
able FPGA resources. Previous decompilation tech-
niques also use loops to detect arrays, and synthesizers
need arrays to effectively use FPGA smart buffers, which
increase data reuse and thus decrease time-consuming
memory accesses.8 Rerolling also reduces control-flow
graph size, thus significantly reducing the time for cir-
cuit synthesis, which typically uses superlinear (such as
quadratic) algorithms with respect to the graph size.

The other new technique, operator strength promo-
tion, detects strength-reduced operations (for example, a
multiplication replaced by shifts and adds) and replaces
them with stronger operators (for example, a multiplica-
tion), thus letting a circuit compiler use fast functional
units (such as a multiplier) if available on the FPGA.

We developed a new decompilation tool, consisting
of 15,000 lines of C code that incorporates key existing
techniques and our two new techniques. The tool’s out-
put is a control/dataflow graph, which synthesis tools
can convert to a fast and efficient circuit.

Figure 1. Warp processing overview. The profiler dynamically detects a downloaded program’s binary kernels. The dynamic CAD
tools map the kernels to FPGA circuits, and the binary updater dynamically updates the binary to use the new circuits. The net result
can be dramatically faster—warped—execution.

Decompilation

Technology mapping

Placement

Logic synthesis

Routing

µPMicro-
processor

F PG A

Dynamic CAD

Program initially
executes on
microprocessor only

Warped program
executes 2X to
100X faster

1

5

4 Binary updater dynamically
updates the program’s binary
to use the new circuits

Profiler dynamically detects the
program’s kernel

2

3 Dynamic CAD tools
automatically map
kernels to FPGA circuits

Field-programmable
gate array

(FPGA)
Dynamic

CAD

Profiler
Binary

updater

Data
cache

Instr.
cache

Behavioral and
register transfer

synthesis

	 42	 Computer

We compared performance speedups (versus micro-
processor-only execution) achieved when synthesiz-
ing kernels to FPGA circuits directly from C code
to synthesizing from a decompiled control/dataflow
graph generated by our decompilation tool.9 Figure 2a
gives results for various small (several hundred lines)
embedded system benchmarks, showing nearly identi-
cal performance with using C. Speedups were nearly
identical, being 8X faster on average than micropro-
cessor execution.

Without our two new decompilation techniques, the
binary approach would have yielded 33 percent less aver-
age speedup, with a worst case of 65 percent less. With-
out any decompilation, the binary approach actually
yielded an average slowdown (not speedup) of 4X.

We also conducted an in-depth study on a large
16,000-line highly optimized H.264 video decoder
application obtained through collaboration with Free-
scale.10 Figure 2b shows that synthesis from binaries
was nearly indistinguishable from synthesis from C.

Even used statically, synthesis from binaries supports
numerous source-programming languages, leading to
commercial products from Binachip and Critical Blue
for static binary synthesis.

Dynamic CAD
To quickly convert a computational kernel into an

FPGA circuit using only lean compute resources, we
developed a complete suite of efficient CAD algorithms
and a custom FPGA fabric intended to enable such effi-
cient CAD tasks.

FPGA CAD tasks, shown in Figure 1, include

decompilation,
behavioral synthesis (converting a control/dataflow
graph to a data path and register transfers),
register transfer synthesis (converting register trans-
fers to logic),
logic synthesis (minimizing logic),
technology mapping (mapping logic to FPGA-
compatible resources),
placement (placing logic/compute resources within
specific FPGA resources), and
routing (creating connections between logic/
compute resources).

Figure 3a shows average CAD task runtime and mem-
ory usage when converting Embedded Microprocessor
Benchmark Consortium (EEMBC) application kernels to
FPGA circuits, using Xilinx ISE running on a powerful
3.2-GHz Pentium D-based desktop workstation. The fig-
ure doesn’t show data for behavioral synthesis and register
transfer synthesis because these tasks require orders of
magnitude less time and memory than the others.

Routing is the most compute- and memory-intensive
FPGA CAD task. Typical routing tool approaches itera-
tively reroute a circuit until the tool determines a valid
or sufficiently optimized routing. Such approaches rep-
resent the FPGA’s programmable elements using a large
routing resource graph, consisting of nodes that corre-
spond to every configurable switch within the FPGA (of
which there might be hundreds of thousands). During
each routing pass, the routing algorithms must search
through and update the routing resource graph, requir-
ing long execution times and much memory.

While building on such algorithms, we reduced
execution time and memory use by developing a fast
lean routing algorithm and designing a CAD-oriented
FPGA fabric.11 As Figure 4 shows, the fabric directly
connects the configurable logic blocks’ inputs and
outputs to the switch matrices that handle routing.
Then, instead of representing all configurable switches
within the FPGA, our routing approach only needs to
represent the larger switch matrices (each switch matrix
consists of hundreds of configurable switches), signifi-
cantly reducing the routing resource graph’s memory
requirements and reducing execution time required to
search the graph during routing.

Our router is 10X faster and uses 20X less memory
than the popular VPR routing algorithm. The tradeoff
is a 30 percent reduction in maximum circuit execu-

•
•

•

•
•

•

•

Figure 2. Comparison of FPGA circuit synthesis from C code and
from decompiled binary code. (a) Various standard benchmark
applications, showing only a 2.5 percent difference, and (b)
in-depth study of the most frequent 53 functions of an H.264
decoder application, showing almost no difference.

(a)

(b)

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

(c
om

pa
re

d
w

ith
 A

R
M

)

0
1
2
3
4
5
6
7
8
9

10

Number of functions in hardware

C
Binary

Ave
rag

e

pn
trc

h0
1

idc
trn

01

bit
mnp

01Url
bre

v
vit

erb
i

be
am

for
mer

fir
filt

er

Sp
ee

du
p

(c
om

pa
re

d
w

ith
 A

R
M

)

C
Binary

5349454137332925211713951

	 July 2008	 43

tion speed and 10 percent more routing resource
usage.

Our FPGA fabric also includes dedicated
hard-core components, including multiply accu-
mulators, data address generators, and loop
control hardware, specifically designed to effi-
ciently speed up microprocessor kernels, obtain-
ing improvements roughly equal to the routing
approach’s overhead.

We verified our custom CAD-oriented FPGA
design’s functionality and performance through
postlayout simulation targeting a 0.13-μm tech-
nology as part of the Intel Research Shuttle.

We also developed lean logic-synthesis, tech-
nology-mapping, and placement algorithms.9
Typically, such CAD algorithms optimize the
circuit implementation during each iteration.
Our algorithms use single-pass optimizations,
requiring orders of magnitude less memory and execu-
tion time than traditional approaches. The core of our
logic-synthesis algorithm is an efficient two-level logic
minimizer that’s 15X faster and uses 3X less memory
than Espresso-II. The tradeoff here is a 2 percent
increase in circuit size.

Our technology mapper uses a hierarchical bottom-
up graph-clustering algorithm that’s 25X faster than
commercial technology-mapping algorithms but only
minimally impacts circuit delay. Our dependency-
based positional-placement algorithm requires orders
of magnitude less memory and execution than popu-
lar commercial and research placement tools, but with
tradeoffs directly related to our routing algorithms’
circuit performance. We obtained these efficiencies by
focusing on microprocessor kernel speedup and by giv-
ing up some circuit performance for CAD efficiency.

The collection of lean FPGA CAD algorithms forms
the Riverside Dynamic CAD tools. The RDCAD tools
consist of 30,000 lines of C code. Figure 3b shows run-
time and memory use for each RDCAD task on the 3.2-
GHz desktop workstation. Runtimes are in fractions
of seconds rather than tens of seconds to minutes, and
memory use is only 3.6 Mbytes. RDCAD ran on a small
low-cost embedded processor (a 40-MHz ARM7) in
only 1.2 seconds using only 3.6 Mbytes of memory.

WArP ProCessinG sCenArios
Researchers can apply warp processing in two sce-

narios, depending on application runtime. Figure 5a
shows the execution of a short-running application,
in which the dynamic CAD tools run longer than the
application. In this scenario, warp processing achieves
no speedup for the first few executions, but warps
future executions by saving and then reusing the appli-
cation’s saved FPGA configuration.

Figure 5b illustrates warp processing for longer-
running applications requiring hours or days, such as

in scientific computing. In this scenario, profiling and
dynamic CAD finish well before the end of the appli-
cation’s first execution, allowing for warped execu-
tion of the remainder of the application. This scenario
requires no saving of the FPGA configuration beyond
an application’s single execution, although the appli-
cation could still use saved configurations for future
executions.

results
We conducted various experiments to determine over-

all application speedups obtained by warp processing.
We considered single-threaded applications as well as
increasingly common multithreaded applications.

single-threaded applications
We ran experiments on numerous single-threaded

benchmark applications from various benchmark suites,
including Powerstone, EEMBC, and MediaBench (see
Table 1 for a list of these applications). We only con-
sidered applications amenable to speedup using FPGAs,

Configurable logic block
Switch matrix

Figure 4. In the CAD-oriented FPGA, the configurable logic
block inputs and outputs are directly connected to the switch
matrices.

30-60 seconds 10
seconds 60-180 seconds

120 Mbytes
(a)

(b)

0.007/0.04/0.001/0.06 seconds

3.6 Mbytes (c)

0.1/0.4/.01/0.6 seconds

3.6 Mbytes

10
seconds

Logic synthesis Mapping Placement Routing

Figure 3. Typical time spent on CAD tasks by (a) a commercial FPGA CAD
tool running on a desktop workstation, (b) the Riverside Dynamic CAD
tools on the same workstation, and (c) the RDCAD tools on a lean 40-
MHz ARM7 processor. Note: Not drawn to scale.

	 44	 Computer

whose critical regions don’t use floating-point arithme-
tic, dynamic memory allocation, recursion, or point-
ers (other than for array accesses), though advances in
FPGA synthesis increasingly support such features. For
other applications, warp processing would provide little
or no speedup unless we rewrote them or developed new
decompilation techniques. However, warp processing
should never result in a slowdown. If warp processing
can’t speed up an application, the binary updater sim-
ply leaves the binary to execute on the microprocessor
alone.

The warp-processing architecture simu-
lated in these experiments uses an ARM9
operating at 200 MHz for the main micro-
processor. All hardware regions execute in
the FPGA at 100 MHz (some benchmarks
could have executed at a faster frequency,
but we held the frequency at 100 MHz for
simplicity).

Such a 2-to-1 clock frequency ratio between
microprocessor and FPGA is representative
of various commercially available single-chip
microprocessor/FPGA devices. The reported
speedups hold for existing and future systems
with similar frequency ratios, such as systems
with 800-MHz microprocessors and 400-
MHz FPGAs.

Our present warp FPGA fabric supports
approximately 50,000 equivalent logic gates,
roughly equal in logic capacity to a small
Xilinx Spartan3 (XC3S50) FPGA. Warp
processing required only 3,500 logic gates on
average per application, with the largest cases
being pktflow and ttsprk, which required
10,000 logic gates each. In 0.18-μm technol-
ogy, our 50,000-gate FPGA fabric occupies

roughly the same area as one ARM9 processor with a
32-Kbyte cache, or as a 64-Kbyte cache alone.

For comparison, modern commercial FPGAs have
capacities of tens of millions of gates, and commer-
cial single-chip microprocessor/FPGA devices allocate
about 5X more silicon area to the FPGA than to the
microprocessors and caches. The profiler required a
small cache of several dozen entries and 2,300 logic
gates. The dynamic CAD tools used an additional
small, inexpensive ARM7 processor operating at 40
MHz.

Table 1. Overview of benchmark applications.

Benchmark	 Benchmark	suite	 Description

brev Powerstone Bit reversal
g3fax Powerstone Group three fax decode
matmul Powerstone Matrix multiplication
mpeg2 MediaBench MPEG-2 decoder
pktflow EEMBC IP header validation
bitmnp EEMBC Bit manipulation
canrdr EEMBC Controller area network (CAN)
tblook EEMBC Table lookup and interpolation
ttsprk EEMBC Engine spark controller
matrix EEMBC Matrix operations
idct EEMBC Inverse discrete cosine transform
fir EEMBC Finite impulse response filter
rocm Warp RDCAD logic minimizer
prewitt Warp (multithreaded, or MT) Prewitt edge detection
search Warp (MT) Parallel search
moravec Warp (MT) Moravec image processing
wavelet Warp (MT) Wavelet transform
maxfilter Warp (MT) Maximum window image filter
N-body Warp (MT) Barnes-Hut N-body simulation

Figure 5. Warp processing scenarios: (a) repeated application warping, in which a short-running application is warped after several
executions; and (b) one-time warping, in which a long-running application is warped during a single execution.

(without warping)

Time

Profiling Dynamic CAD

(a)

Microprocessor execution

Time(b)

Microprocessor execution Microprocessor execution

Profiling Dynamic CAD

Warped
(remainder)

Warped
execution

Warped
execution

CAD finishes at end of second
execution – no speedup for first
few executions

All future executions are
warped by using saved FPGA
configurations

First execution

First execution Second execution Third execution Fourth execution

CAD finishes before
application – remainder of
first execution is warped

…

Warped
(remainder)

	 July 2008	 45

The current architecture
implements communication
between the microprocessor
and FPGA using a combina-
tion of shared memory, mem-
ory-mapped communication,
and interrupts. The FPGA uses
data-address generators, simi-
lar to digital signal processors
(DSPs), to stream data required
by FPGA circuits from memory.
The microprocessor uses mem-
ory-mapped communication to
initialize and enable the FPGA;
it uses interrupts to detect a
hardware circuit’s completion.

We ran each application on
an instruction-set simulator to
obtain cycle counts for micropro-
cessor execution. We ran appli-
cation kernel binaries through
our RDCAD tools to obtain
kernel cycle counts after warp
processing and to ensure that
we obtained a minimum 100-
MHz frequency. We inserted
the necessary communication
for data transfers between the
microprocessor and FPGA (as
determined by RDCAD tools)
and counted those cycles too. A
single data transfer between the
microprocessor and FPGA required at least one cycle
but at most two cycles.

Figure 6a compares the execution time of warp pro-
cessing with microprocessor-only execution to which
the data is normalized. As the figure shows, warp pro-
cessing achieved an average application speedup of
6.5X, and speedup as high as 13.3X for matmul.

Figure 6a also shows speedups of a DSP—a TriMe-
dia processor running at 200 MHz—versus the ARM9
processor. Like warp processing, the DSP exploits
arithmetic-level parallelism to improve performance,
but does so using a very large instruction word (VLIW)
architecture. The DSP averaged 4.4X speedup com-
pared to the ARM9, less than the 6.5X speedup of
warp processing.

Warp processing was usually faster. The DSP was
2X faster for one benchmark and a few percent faster
for some others. Warp processing gains versus the
DSP came primarily from warp processing’s ability to
exploit more arithmetic-level parallelism (DSPs typi-
cally can execute only several operations in parallel)
and to support a wider range of parallelism beyond
arithmetic-level parallelism. The DSP outperformed
warp processing when the application exhibited little

parallelism, such that the DSP’s faster clock frequency
led to faster overall performance.

We also applied warp processing to SPEC desktop
application benchmarks but found little speedup.
Warp processing would have had to speed up tens or
hundreds of large loops to achieve benchmark speed-
ups, requiring very large FPGAs. Furthermore, many
benchmarks used constructs, such as pointers, recur-
sion, and dynamic memory allocation, that prevented
circuit speedups.

On average, the dynamic CAD tools executed for 1.2
seconds. Thus, most of the embedded applications con-
sidered would require a saved FPGA configuration. For
example, g3fax performs a group-three fax decoding
for a single fax transmission. However, the dynamic
CAD tools wouldn’t have warped the execution until
after the first fax was decoded. By saving the synthe-
sized circuit, future fax transmissions would benefit
from warp processing, providing faster fax decoding.

Some applications would benefit immediately from
warp processing. For MPEG-2, the dynamic CAD tools
would have completed after decoding only a few video
frames, providing smoother video playback for the
remainder of the video.

Figure 6. Speedup comparison. (a) Comparison of software execution on a digital signal
processor (DSP) and warped execution on a warp processor to a 200-MHz ARM9 on single-
threaded applications. (b) Comparison of multithreaded application speedups on various
400-MHz ARM11-based multiprocessors and warp processors.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Sp
ee

du
p

(c
om

pa
re

d
w

ith
 A

R
M

)
307 130 502 169

0
10
20
30
40
50
60
70
80
90

100

Sp
ee

du
p

(c
om

pa
re

d
w

ith
 4

 m
ic

ro
pr

oc
es

so
rs

)
(a)

(b)

Ave
rag

e

matm
ulfir

mpe
g2idc

t

matr
ix

tts
prk

tbl
oo

k

bit
mnp

ca
nrd

r

pk
tflo

w
roc

m
g3

faxbre
v

ARM
Digital signal processor
Warp (with ARM)

Geo
gra

ph
ic

mea
n

Ave
rag

e

N-bo
dy

max
filt

er

wav
ele

t

mora
ve

c

se
arc

h

pre
witt

 4 microprocessors
 8 microprocessors
 16 microprocessors
 32 microprocessors
 64 microprocessors
Warp

	 46	 Computer

Multithreaded applications
Warp processing’s benefits were most apparent for

applications with much concurrency, such as brev (see
Figure 6a), which has much bit-level concurrency, and
matrix and fir, which have much arithmetic-level con-
currency. We also examined multithreaded applications,
which obviously have much thread-level concurrency.

Extending warp processing for multithreaded applica-
tions12 required additional CAD tools and operating sys-
tem support. A warp-aware operating system requests
custom processors from the dynamic CAD tools for
frequent threads. The CAD tools determine which and
how many threads to synthesize. Memory access syn-
chronization determines shared memory locations and
synchronizes the execution of threads that share memory
to reduce the number of needed direct memory access
channels. After creating thread-accelerator circuits, the
warp-aware operating system schedules threads onto
both microprocessors and custom circuits.

Figure 6b shows warp-processing results for multi-
threaded applications that we developed, including mul-
tithreaded versions of image-processing and scientific-
computing applications. Compared to a four-processor
400-MHz ARM11 system, warp processing obtained
average speedups of 169X. Although much of the speedup
came from executing threads in parallel, the speedups
compared even with a 64-processor system illustrate
that other factors, including arithmetic-level parallelism
within threads, and custom communication, were signifi-
cant. The size of the FPGA used equaled 36 ARM11s.

W e are currently focusing on desktop, server, and
scientific-computing applications. Initial results
using high-end processors and high-end FPGAs

demonstrate similar speedups for various applications.
Our warp processing work shows the technique’s

feasibility and potential, opening the door to new
challenges, including dynamically allocating FPGA
resources among multiple tasks, improving decompi-
lation and synthesis to expand the applications that can
be sped up, determining when to activate or terminate
the dynamic CAD tools, synthesizing alternative accel-
erators that trade off performance and size, and reduc-
ing power or energy via warp processing. n

references
 1. K. Compton and S. Hauck, “Reconfigurable Computing: A

Survey of Systems and Software,” ACM Computing Surveys,
vol. 34, no. 2, 2002, pp. 171-210.

 2. B.A. Levine and H.H. Schmit, “Efficient Application Rep-
resentation for HASTE: Hybrid Architectures with a Single,
Transformable Executable,” Proc. Symp. FPGAs for Custom
Computing Machines (FCCM 03), IEEE Press, 2003, pp. 101-
110.

 3. N. Clark et al., “An Architecture Framework for Transpar-
ent Instruction Set Customization in Embedded Processors,”
Proc. Int’l Symp. Computer Architecture (ISCA 05), IEEE
Press, 2005, pp. 272-283.

 4. M. Gschwind et al., “Dynamic and Transparent Binary
Translation,” Computer, Mar. 2000, pp. 54-59.

 5. M.D. Hill et al., “Wisconsin Architectural Research Tool
Set,” ACM SIGARCH Computer Architecture News, vol.
21, no. 4, 1993, pp. 8-10.

 6. C. Cifuentes and M. Van Emmerik, “UQBT: Adaptable
Binary Translation at Low Cost,” Computer, Mar. 2000, pp.
60-66.

 7. G. Stitt and F. Vahid, “Binary Synthesis,” ACM Trans. Design
Automation of Electronic Systems, vol. 12, no. 3, 2007, pp. 1-
30.

 8. Z. Guo, A.B. Buyukkurt, and W. Najjar, “Input Data Reuse in
Compiling Window Operations onto Reconfigurable Hardware,”
Proc. Symp. Languages, Compilers, and Tools for Embedded
Systems (LCTES 04), ACM Press, 2004, pp. 249-256.

 9. R. Lysecky, G. Stitt, and F. Vahid, “Warp Processors,” ACM
Trans. Design Automation of Electronic Systems, vol. 11, no.
3, 2006, pp. 659-681.

 10. G. Stitt et al., “Hardware/Software Partitioning of Soft-
ware Binaries: A Case Study of H.264 Decode,” Proc. Int’l
Conf. Hardware/Software Codesign and System Synthesis
(CODES/ISSS 05), ACM Press, 2005, pp. 285-290.

 11. R. Lysecky, F. Vahid, and S. Tan, “Dynamic FPGA Routing for
Just-in-Time Compilation,” Proc. IEEE/ACM Design Auto-
mation Conf. (DAC 04), ACM Press, 2004, pp. 954-959.

 12. G. Stitt and F. Vahid, “Thread Warping: A Framework for
Dynamic Synthesis of Thread Accelerators,” Proc. Int’l
Conf. Hardware/Software Codesign and System Synthesis
(CODES/ISSS 07), ACM Press, 2007, pp. 93-98.

Frank Vahid is a professor at the University of California,
Riverside. His research interests include embedded sys-
tem programming and design. Vahid received a PhD in
computer science from UC Irvine. He is a senior member
of the IEEE and a member of the ACM. Contact him at
vahid@cs.ucr.edu.

Greg Stitt is an assistant professor at the University of
Florida. His research interests include reconfigurable com-
puting, embedded systems, and computer-aided design.
Stitt received a PhD in computer science from UC River-
side. He is a member of the IEEE and the ACM. Contact
him at gstitt@ece.ufl.edu.

Roman Lysecky is an assistant professor at the Univer-
sity of Arizona. His research interests include embedded
systems design, dynamic adaptability, hardware/software
partitioning, field-programmable gate arrays, and low-
power design methodologies. Lysecky received a PhD in
computer science from UC Riverside. He is a member of
the IEEE and the ACM. Contact him at rlysecky@ece.
arizona.edu.

