Frank Vahid

University of California, Riverside

Programmable
processors and IC
fabrics are making once
inflexible hardware
“soft,” blurring the line
separating software
and hardware. Such
trends echo the early
days of computing,
when engineers viewed
machines and their
programs as single
entities.

0018-9162/03/$17.00 © 2003 IEEE

Published by the IEEE Computer Society

PERSPECTIVES

The Softening
of Hardware

he first programmable computers were rather nasty beasts. These

giant 1940s machines occupied entire rooms and consumed kilo-

watts of electricity. The computation problems engineers faced

more often involved failed machine hardware components than

the short and mostly unchanging programs engineers fed to
those machines. Engineers viewed computers and their programs as uni-
fied entities.

Over the next decade, computers became more stable while programs
grew more complex. Solving problems encountered during computing, or
debugging, began to have less to do with removing heat-loving insects from
the heated hardware components and more to do with finding and correct-
ing logical flaws in the programs. Hence, the frequently changing programs,
or software, became distinguished from the unchanging hardware on which
they ran. A 1958 article may be the first to have used the term software.'

Today the “software” comprising the carefully planned interpretive routines,
compilers, and other aspects of automative programming are at least as impor-
tant to the modern electronic calculator as its “hardware” of tubes, transis-
tors, wires, tapes, and the like.

The software and hardware development fields evolved along separate
paths through the end of the 20th century. We seem to have come full cir-
cle, however. The previously rigid hardware on which our programs run is
softening in many ways. Embedded systems are largely responsible for this
softening. These hidden computing systems drive the electronic products
around us, including consumer products like digital cameras and personal
digital assistants, office automation equipment like copy machines and print-
ers, medical devices like heart monitors and ventilators, and automotive
electronics like cruise controls and antilock brakes.

Embedded systems force designers to work under incredibly tight time-to-
market, power consumption, size, performance, flexibility, and cost con-
straints. Many technologies introduced over the past two decades have sought
to help satisfy these constraints. To understand these technologies, it is impor-
tant to first distinguish the underlying embedded systems elements.

EMBEDDED SYSTEMS ELEMENTS

New technologies tend to earn names stressing their distinguishing traits,
but in the rapidly changing computer world, such terms quickly become
outdated. A personal computer that serves files to thousands of users isn’t
very personal, for example, and today’s floppy disks are actually quite rigid.

This rapid outdating of terminology creates confusion. However, at this
point in the evolution of embedded computing, we can at least distinguish
among three elements that are often confused: processors, integrated circuit

April 2003

Instruction Data Instruction Data
memory memory memory memory
M Py i Py
Py _ p
4 | Yy g Py Py
| 1 / |
11 132 I3 1 ¢
Program | | Instruction RN Program | | Instruction Sl
counter register egister counter register egister 2
file file m
Controller Controller }
a\ f1\ fs [[Controller [/1
Arithmetic Arithmetic| | Multiply- Multiply-
logic unit logic unit | | accumulate accumulate
Control unit Data path Control unit Data path Control unit Data path

Processor (hole)
Application (peg)/@/

Figure 1. Processor
types executing a
simple application.
(a) A general-
purpose programma-
ble processor
requires five steps to
implement a given
statement; (b) a
semicustom pro-
grammable proces-
sor, which is opti-
mized for particular
classes of programs,
requires two steps;
and (c) a custom
Processor requires
only one step to
implement the
statement.

1

(a) (b)

fabrics, and chips. We rely on these elements to con-
vert our applications—the collections of algorithms
that compose the computing behavior of our
embedded systems—into real-world products.

Processors: Executing applications

A processor is a digital design capable of exe-
cuting an algorithm and typically includes a data
path and a controller. The data path includes basic
digital components like registers that store data,
functional units that transform data (for example,
by adding or shifting data), and multiplexers and
buses that move data. The controller includes reg-
isters and random logic gates that configure the
data path for such stores, transforms, and moves—
a large enough sequence of which we call an algo-
rithm. Many processors are programmable, but
many are not.

Square peys and round holes: Programmable versus
custom processors. “You can’t fit a square peg into
around hole.” Actually, given a large enough hole,
you can. To bring their applications (the pegs) to
life, embedded systems designers must map appli-
cations into processors (the holes). Processor types
range from general-purpose to custom.

General-purpose processors are programmable,
and are designed to execute nearly any application.
Their data paths contain large register files and flex-
ible arithmetic-logic functional units. Their con-
trollers do not incorporate information about the
application that the processor runs; instead, the
controllers execute memory-stored instructions rep-
resenting the application.

Mapping applications to general-purpose proces-
sors requires fast (measured in seconds) compilers
and other mature tools. These processors are the
holes big enough to fit any peg.

Designers can also use custom processors to exe-
cute applications. Custom processors can match
the number, sizes, and interconnections of registers

Computer

L]
(©)

and functional units to the application to best meet
performance and power constraints. They can
encode the application into the controller, elimi-
nating slow and power-hungry accesses to instruc-
tion memory.

Custom processors might include deep pipelines
or numerous data-path functional units to achieve
parallelism. The off-the-shelf custom processors
that are available for many common application
computations are referred to as coprocessors, accel-
erators, or peripherals. For other applications,
designers must build their own custom processors.
Custom processors are the holes cut to fit one peg
shape only.

Figure 1 illustrates how three different processor
types would implement a simple application requir-
ing the processor to read an input stream from a
port p1, perform a multiply-accumulate using an
array of constants M, and output the final sum over
port p2.

Figure 1a shows how a general-purpose proces-
sor would use the following sequence of steps
stored in memory to implement the multiple-accu-
mulate statement ¢ = ¢ + M[i] * p1, which would be
enclosed in a loop that increments 1.

1. Move i from the register file to the data mem-
ory address register.

2. Read M[i] into the register file.

3. Store p1 in the register file.

4. Read MJi] and p1 from the register file, multi-
ply them, and store the result in the register file.

5. Read tand M[i] * p1 from the register file, add
them, and store the result in # in the register file.

Figure 1b represents a semicustom programma-
ble processor (described later), and Figure 1c rep-
resents a custom processor implementation. On the
custom processor, the statement would execute in
one step.

The advantages of general-purpose processors
include their immediate availability, low cost (due
to mass production), and simple design flow.
Designers especially like general-purpose proces-
sors’ flexibility—they can reprogram these proces-
sors in minutes and fix bugs during the last stages
of product design. However, designers often need
the advantages that custom-designed processors
offer, including improved performance, lower
power, and reduced cost (when manufactured in
large quantities).

Such competing demands epitomize the embed-
ded systems design problem. Broadly, designers
must partition their applications to find a balance
between general and custom solutions.

Two sizes don't fit all: Semicustom processors. Not
long after designers began incorporating proces-
sors in embedded systems, processor makers intro-
duced new classes of devices—such as digital signal
processors (DSPs) and microcontrollers—that fell
between the extremes of general-purpose and cus-
tom processors.

Some embedded computers digitize analog sig-
nals (such as audio and video signals), transform
them, and send out new signals. Unlike the less
dynamic files or user-input data that desktop com-
puters process, analog signals tend to stream in and
out rapidly. Programmable DSPs incorporate spe-
cial instructions and supporting underlying hard-
ware to efficiently handle signal streams and the
common operations applied to them. For example,
a programmable DSP might contain instructions
for fast reads and writes of large arrays, single-cycle
multiply-accumulate, or fast floating-point arith-
metic.

Embedded computers that respond to events—a
press of a button or a triggering of a sensor, for
example—must sense that event and respond with
a new event, such as turning on a light or opening
a door. These computers have less need for stream-
ing signal operations, requiring instead bit-level
operations, efficient access to external wires, and
low power consumption.

Programmable microcontroller architectures are
tuned to such control behavior, often having nar-
row data paths (16, 8, or even 4 bits are common),
simple functional units, registers directly connected
to external pins, and extensive instructions for bit-
level manipulation. They might also closely inte-
grate timers, serial communication, analog-digital
converters, and other common embedded control
functions.

DSPs and microcontrollers represent early and
widespread forms of the growing class of semicus-

tom programmable processors, also known as
application-specific instruction-set processors
(ASIPs).>* Semicustom processors are opti-
mized for particular classes of programs, such
as digital picture processing, network routing,
or mobile communications. A picture-pro-
cessing ASIP, for example, might include data-

The embedded
systems design
problem requires
partitioning

applications to find

path components and special instructions to a halance hetween
assist with picture compression.
) P DIessic general and custom
Figure 1b represents a semicustom proces- -
solutions.

sor implementing the example application
used in Figure 1a. This processor would exe-
cute the statement ¢ = ¢ + M[i] * p1 in just two
steps:

1. Move i from the register file to the data mem-
ory address register.

2. Read ¢ from the register file and M[] from data
memory, use the multiply-accumulate (MAC)
unit to compute ¢ = ¢ + M[7] * p1, and store the
result in # in the register file.

No boundaries exist between processor types;
the types simply represent general categories along
a continuum from general to custom.

IC fabrics: Giving processors their style

An IC is an interconnection of transistors fol-
lowing one of several possible styles, or fabrics. Just
as you can make shirts using different knits, you
can build processors using different IC fabrics.

Programmable versus custom fabrics. Transistors
are the fundamental digital entities that make up
a processor’s components—its registers, memories,
functional units, and logic gates. How and when
we compose these transistors depends on the IC
fabric we use. Like processors, IC fabrics differ in
terms of their customizability and generality.

A chip maker could custom compose transistors
to implement the components of a processor
exactly,’ and then send the transistor design to a chip
fabrication plant. The resulting chip would be a
compact, fast, and perhaps even low-power imple-
mentation. If a processor requires AND and OR
functions, for example, a designer could create a cir-
cuit with an AND and OR gate, as Figure 2 shows.

At the other extreme, a chip maker could build
a set of interconnected modules and program each
set to implement different components.®” A mod-
ule might be a small, 16-word memory. Storing the
appropriate bits (that is, a configuration) in the
memory—the traditional definition of program-
ming—can implement a desired combinational
function. The chip maker could develop an IC fab-

April 2003

Instruction Data Instruction Data
memory memory memory memory
M Py I Py
) p
P 2 P, Py
S | | |
2 t
] . :
© || Program | | Instruction Regist Program | | Instruction S
o counter register egister counter register egister _—
file file M
Controller Controller
| | | Controller I
Arithmetic Arithmetic | | Multiply- Multiply-
logic unit logic unit | | accumulate accumulate
Control unit/‘\ Data path Control unit Data path Control unit Data path
N % [
General-purpose programmable processor Semicustom programmable processor Custom processor
8
= [
(2]
o And
Programmable IC fabric Semicustom IC fabric Custom IC fabric
(7]
=
o

Figure 2. The rela-
tionships among
processors, IC fab-
rics, and chips.
Chips physically
implement IC
fabrics, which in
turn implement
processors. High-
capacity chips can
support multiple
general-purpose,
semicustom, and
custom processors.

ric using many such combinational modules, plus
register modules for storage, and use a program-
mable interconnect made up of multiplexers whose
select line is controlled by a bit in another pro-
grammable memory to link the modules.

Because digital components consist of combina-
tional logic and storage, we could map any set of
such components onto this fabric, given adequate
resources. Components can extend across modules,
and connected components can exist on modules
separated by large distances and connected through
numerous programmable interconnects. The sys-
tem will still work, although it will consume more
power and perform less efficiently than a custom
processor in which components are close together
and connections are direct.

The most popular programmable IC fabric today
is the field-programmable gate array. An FPGA is
actually a programmable IC fabric consisting of
programmable logic modules, storage, and inter-
connect, with little resemblance to an array of gates.
The term is likely due to the preplaced transistor
feature FPGAs share with gate array technology,
which was popular when FPGAs first appeared.

The tradeoffs between custom and programma-
ble IC fabrics are similar to those for processors.

Computer

Designers like the immediate availability, simpler
design flow, and late-change flexibility of pro-
grammable IC fabrics. However, they often need
the performance, power, size, and cost advantages
of custom fabrics.

Semicustom IC fabrics. Several semicustom IC fab-
rics have evolved to meet designers’ needs for more
options in between custom and programmable fab-
rics.®

Designing custom transistor circuits requires
much effort to both avoid and fix mistakes: Place
two transistors too close together or make one tran-
sistor too small, and the entire circuit might fail.

Using predesigned transistor circuits (libraries)
of basic logic components, or standard cells,
reduces this effort. A designer merely places these
uniformly sized cells and routes wires to connect
them before sending the design to a chip fabrica-
tion plant. The fabricated chip will likely have
fewer errors than a custom IC fabric, thus reducing
chip design and fabrication time from many
months to perhaps just one or two.

A gate array IC fabric reduces chip design time
further by providing transistors that have been pre-
arranged into logic gate rows (arrays). A chip maker
can thus premanufacture much of the chip, and

designers need only connect the gates, reducing chip
design and fabrication time to perhaps just weeks.
Additional semicustom fabrics include cell
arrays, which prearrange groups of cells in rows,
so designers need only connect them. Another
method of creating a semicustom fabric removes
undesired connections rather than creating desired
connections, perhaps with a laser. Such a fabric can
be premanufactured, and the removal process may
only take a week or even a day. Many additional
semicustom fabrics exist and are evolving.

Chips: Anchoring IC fabrics
to the physical world

A chip is the thumbnail-sized piece of silicon that
physically implements IC fabrics, which in turn
implement processors. The chip consists of many
layers of elements forming transistors and wires.

Chip fabrication processes, also known as IC
technologies, have steadily improved over the past
several decades. The most prominent improvement
in IC technology is the decreasing feature size—
roughly defined as the size of the narrowest wire or
transistor part. Feature sizes below 100 nanome-
ters are becoming common.

For processors to work in the physical world, an
IC fabric must appear on a physical chip. As Intel
cofounder Gordon Moore predicted in the 1960s,
chip transistor capacity has been doubling roughly
every 18 months for several decades. Chip manu-
facturers can exploit the decreasing chip feature
size predicted by Moore’s law to pack in more tran-
sistors. Whereas early chips integrated tens or hun-
dreds of transistors, current chips integrate tens or
hundreds of millions of transistors.

A single high-capacity chip can support multiple
general-purpose and custom processors, enabling
today’s high-functionality embedded systems.
Several decades ago, a processor might have re-
quired numerous chips. The 1970s and 1980s saw
the advent of microprocessors, general-purpose
processors implemented either on one or just a few
chips.

The term application-specific integrated circuit
(ASIC) was introduced to refer to chips imple-
menting custom processors, distinguishing them
from microprocessor ICs. In the 1990s, designers
introduced the term microprocessor core—a micro-
processor appearing on a chip with other proces-
sors, rather than being on its own chip. Core has
further evolved to refer to custom processors shar-
ing a chip as well. Thus, a core is basically a proces-
sor—some are general-purpose, some semicustom,
and some custom.

Although single chips have long integrated
both custom and semicustom fabrics, high-
capacity chips have recently begun to inte-
grate programmable fabrics as well.
Furthermore, designers can now use high-
capacity chips to implement programmable
fabrics on top of semicustom fabrics.

Figure 2 shows the relationships between
processors, 1C fabrics, and chips. Designers
map processors to IC fabrics, and IC fabrics
onto chips. Several processors often coexist
on a single chip and the same chip can incorporate
numerous IC fabrics.

A processor can utilize a single fabric or multiple
fabrics, such as a custom fabric for the data path
and a semicustom fabric for the controller.
Countless possible mappings of processors to fab-
rics and fabrics to chips exist.

SOFTER HARDWARE

The term “software” is usually used to represent
the instructions to be executed on programmable
hardware processors, or to contrast those instruc-
tions on a processor with the custom hardware
processors, memories, and buses that complete a
system. At the same time, software represents the
soft bits—the zeros and ones—that configure the
system to realize a specific application.

The uses of the term software are growing
increasingly distinct, however, as soft bits often rep-
resent much more than instructions. In particular,
the programmable IC fabrics of today’s chips also
have memories that must be configured, leading to
the first cause of a blurring between software and
hardware:

Of the “soft” bits we download to a chip,
some have the traditional role of repre-
senting instructions to be executed on a
programmable processor, but others now
represent processors themselves being
mapped onto programmable IC fabrics.

The bits often represent custom processors, but
they also can represent part or all of a semicustom
processor or even a general-purpose processor
being mapped to a programmable IC fabric.

Two additional trends are changing how we view
software and hardware. Reconfigurable computing
occurs during application execution, allowing an
application to swap processors or parts of proces-
sors in and out of limited programmable IC fabric
to perform the computations an application needs.

Systems with tunable architectures contain proces-
sors, memories, and buses with additional config-
urable features. A tunable architecture can reduce

The soft bits we
now download
to a chip may

represent much

more than
instructions.

April 2003

Sequential programs (for example, C, VHDL)—Applications

Applications

Software

Compilers
(1960s, 1970s)

Assembly instructions

Assemblers,
linkers
(1950s, 1960s)

<+— Relationship2 —»

Machine instructions

Behavioral
synthesis
(1990s, 2000s)

Register transfers

Register-transfer
synthesis
(1980s, 1990s)

Boolean equations/
finite state machines

Logic synthesis

General- Semicustom Custom
purpose processors processors
processors

Traditional program on a
programmable processor

Hardware

Figure 3. The co-
design ladder.

(a) Designers use
sequential programs
to describe com-
plete applications.
(b) New tools merge
traditional program
designs with their
coprocessors, and
they merge software
program designs
with their underlying
programmable
processors. (c) In
the future, design-
ers might specify an
application and then
apply embedded
processing-system
synthesis.

() (I}

Software

<«— Relationship1 —»

(a)

cache memory size, segment buses, shut down data-
path functional units, and scale down supply voltage
by configuring the system statically during initial-
ization or dynamically during application execution.
Such architectural tuning can reduce power con-
sumption or improve performance.

In short, the processors, memories, and buses—
what we previously considered a system’s unchange-
able hardware—can actually be quite soft.

MERGING DESIGN TOOLS

Increasing hardware programmability is not
alone in blurring the distinction between what we
traditionally considered software and hardware.
Improved hardware design tools are making hard-
ware design look increasingly similar to software
design. Designers can use these improved tools to
describe their systems’ software and hardware in a
unified manner.

Climbing the software and
hardware design ladders
With the appearance over the past decades of
improved design tools, designers can use higher
abstraction levels to describe their designs. Using
higher abstraction levels is like climbing the rungs
of the ladders in Figure 3a, allowing designers to
build higher-functionality systems in less time.®
Software design tools generally seek to increase
the abstraction level at which designers write soft-
ware. In the 1950s and 1960s, developers used

Computer

(1970s, 1980s) (b)
e S (Al Application
Physical design
(1960s, 1970s)
- - Embedded
Custom processors (involving a program processing-system
if on programmable IC fabric) synthesis
(2010s?)
Hardware
Processors and programs |J
(c)

assemblers to program computers using short words,
characters, and numbers, rather than bits of zeros
and ones.

In the 1960s and 1970s, developers began using
compilers that automatically convert sequential
programming languages (having “if” and loop
statements, subroutines, and so on) to bit-level pro-
grams. Continued progress has emphasized even
higher abstraction, such as object-oriented pro-
gramming with associated compilers, which repre-
sent rungs even higher than the sequential programs
rung in Figure 3a.

Improved hardware design tools have increased
the abstraction level for designers too. Developing
the hardware ladder rungs took longer, however,
for two reasons:

o designing an interconnection of transistors is
more complicated than translating sequential
programs to programmable processor instruc-
tions, and

o implementing part of an application as custom
hardware instead of software implies a much
stronger demand for optimization.

Nevertheless, in the 1960s and 1970s, develop-
ers began using physical design tools to automati-
cally convert transistor circuits to physical chip
information. In the 1970s and 1980s, logic syn-
thesis tools emerged for converting state machines
and Boolean equations to transistor circuits.

Register-transfer synthesis tools for converting
cycle-by-cycle behavior descriptions into Boolean
equations and state machines gained popularity in
the 1980s and 1990s. Finally, beginning in the
1990s and continuing today, designers can use
behavioral synthesis tools that convert sequential
programs into cycle-by-cycle behavior.”

Thus, designers can now describe a complete
application using sequential programming lan-
guages (in addition to other computation models
such as data flow, hierarchical state machines, and
differential equations), independent of whether
they eventually implement the application as a
custom processor, general-purpose processor,
semicustom processor, or collection of processor
types.

This ability to describe an application as a unified
whole and then automatically implement a collec-
tion of programmable and custom processors
starkly contrasts with the past. When design
processes for different processor types differed rad-
ically, developers had to partition applications
among programmable and custom processors early
in the application development process.

Current synthesis tools still require describing
hardware and software applications somewhat dif-
ferently. Yet the trend is clearly toward eliminating
those differences, leading to a second cause of the
blurring between software and hardware:

Today’s hardware designers use methods
similar to those that software designers
use—they write programs and let tools
generate the implementation. Thus, not
only has the distinction between the phys-
ical implementations of traditional soft-
ware and hardware blurred, but the
distinction between the software and hard-
ware design processes, and even between
software and hardware designers them-
selves, is also blurring.

From two ladders to one

The meeting of software and hardware design
has ignited the demand for methods and tools to
help designers implement applications as collec-
tions of processors—generally referred to as hard-
ware/software codesign.

Codesign can refer to simultaneously designing
the software and the custom processors that make
up a system, as relationship 1 in Figure 3a shows.
The term can also refer to simultaneously design-
ing a software program and the programmable
processor the program will run on, as relationship
2 in Figure 3a shows.

As codesign methods develop and the tools
mature, the term codesign will likely begin
to lose meaning. The distinction between

programmable and custom processors will hetween software

blur, and the tools to convert applications to and hardware

processors will merge with one another, as design processes,

Figure 3b shows. . and even between
The hardware and software ladders might

merge into a single design step, in which a hardware and

designer specifies a desired application and software designers,

then synthesizes an embedded processing sys-

tem. The system will consist of a collection

of processors and programs, and each pro-
gram will represent a set of programmable
processor instructions or a programmable IC fab-
ric configuration. Several methods and tools are
taking us in that direction.

o Common description methods. Proposals and
standardization efforts such as SystemC
(http://www.systemc.org) are focusing on
methods to describe complete applications
using a single language or environment, rather
than using C, C++, or Java for programmable
processors and VHDL or Verilog for custom
processors.

o Simulators. Evolving simulators and debug-
gers can efficiently simulate complete systems
of custom processors, programmable proces-
sors executing their instructions, and even ana-
log components.

e Exploration tools. Tools to automatically
explore the possible tradeoffs of implement-
ing an application as a system with varying
numbers, types, and sizes of processors and
memories and to automatically generate those
implementations are also evolving. Such tools
partition applications among programmable
and custom processors and schedule the recon-
figuration of programmable IC fabrics to
implement the custom processors when
needed.

e [C platforms. Predesigned chips with many
programmable and custom processors and
memories as well as programmable IC fabrics
and their associated compilers, debuggers, and
synthesis tools are enabling rapid design of
complete embedded processing systems.

o Semicustom processor tools. Evolving tools
automatically generate the necessary compil-
ers, debuggers, and simulators for user-
designed semicustom programmable proces-
sors.* Likewise, companies are building com-
piler/synthesis tools to automatically generate

A

The distinction

is blurring.

pril 2003

a semicustom processor and a program from a
given application.?

o Architecture-aware compilers. New compilers
will be more aware of the underlying pro-
grammable processor’s resources. Knowledge
of cache configuration, DRAM line size,
scratchpad memory availability, and func-
tional unit resources can improve the decisions
regarding loop unrolling, subroutine inlining,
address assignment, instruction scheduling,
and shutdown of inactive resources.

o Dynamic compilation/optimization. Compila-
tion no longer must be completed before a pro-
gram executes. Dynamic compilers monitor
executing programs, find the most critical
regions, and re-optimize them. In fact, hard-
ware itself might have built-in dynamic com-
piler behavior. For example, some of our work
at the University of California, Riverside,
focuses on dynamically partitioning by extract-
ing critical regions from a programmable
processor’s application and dynamically creat-
ing a much faster custom processor on a pro-
grammable fabric for that region.

As Figure 3c illustrates, future designers might
describe the desired functionality of an entire sys-
tem application using one or more languages. A tool
would then implement that functionality. The imple-
mentation might consist of the best collection of
processors (general-purpose, semicustom, and cus-
tom) mapped onto the best collection of IC fabrics
(programmable, semicustom, and custom) to meet
the design constraints imposed on the system.

tions, perhaps the greatest ones being related

to educating the next generation of engi-
neers. Beyond encouraging hardware designers to
become better programmers, curriculum designers
must fundamentally rethink the introduction of
programming and digital design to new engineer-
ing and computer science students.

Current engineering and computer science uni-
versity curricula typically present software and
hardware design in separate courses and even as
separate tracks. New textbooks for introductory
courses will help,®'%!? but we need to fundamen-
tally change how we educate embedded systems
engineers so they can comfortably cross the tradi-
tional hardware/software barrier and build the next
generation of application-driven embedded com-
puting systems. ll

T he softening of hardware has many implica-

Computer

Acknowledgment
This work was supported in part by the US
National Science Foundation, grants CCR-

9876006 and CCR-0203829.

References

1. ER. Shapiro, “Origin of the Term Software: Evidence
from the JSTOR Electronic Journal Archive,” IEEE
Annals of the History of Computing, Apr.-June 2000,
p- 69.

2. S. Aditya, B.R. Rau, and V. Kathail, “Automatic
Architectural Synthesis of VLIW and EPIC Proces-
sors,” IEEE/ACM Int’l Symp. System Synthesis, IEEE
CS Press, 1999, pp. 107-113.

3. J. Fischer, “Customized Instruction Sets for Embed-
ded Processors,” Proc. Design Automation Conf.,
IEEE CS Press, 1999, pp. 253-258.

4. R. Gonzalez, “Xtensa: A Configurable and Extensi-
ble Processor,” IEEE Micro, vol. 20, no. 2, 2000, pp.
60-70; see also www.tensilica.com.

5. N. Weste and K. Eshraghian, Principles of CMOS
VLSI Design, Addison-Wesley, 1994.

6. M. Smith, Application-Specific Integrated Circuits,
Addison-Wesley, 1997.

7. S. Brown and J. Rose, “FPGA and CPLD Architec-
tures: A Tutorial,” IEEE Design & Test of Comput-
ers, vol. 13, no. 2, 1996, pp. 42-57.

8. F. Vahid and T. Givargis, Embedded System Design:
A Unified Hardware/Software Introduction, John
Wiley & Sons, 2002; www.wiley.com/college/vahid.

9. D. Gajski et al., High-Level Synthesis: Introduction
to Chip and System Design, Kluwer Academic Pub-
lishers, 1992.

10. W. Wolf, Computers as Components: Principles of
Embedded Computer Systems Design, Morgan Kauf-
mann, 2000.

11. F. Vahid, Digital System Design: A Modern
Approach, John Wiley & Sons, to appear;
www.wiley.com/college/vahid.

12.Y. Patt and S. Patel, Introduction to Computing:
From Bits and Gates to C and Beyond, 2nd ed.,
McGraw-Hill, 2003.

Frank Vahid is a professor of computer science and
engineering at the University of California, River-
side, and a member of the Center for Embedded
Computer Systems, UC Irvine. His research inter-
ests include embedded system design methods and
architectures. Vahid received a PhD from UC
Irvine. He is a member of the IEEE and the ACM.
Contact him at vahid@cs.ucr.edu.

