An Object-Oriented Communication Library
for Hardware-Software CoDesign

Frank Vahid

Department of Computer Science

University of California
Riverside, CA 92521

vahid@cs.ucr.edu, www.cs.ucr.edu

Abstract

Implementing communication between hardware and
software components can be a time-consuming task. Nu-
merous communication protocols are available, differ-
ing greatly in their implementation details. Designers
must spend much time focusing on those details. Even
when libraries are available to encapsulate communi-
cation into C or VHDL routines, these routines are
not consistent across protocols, making it difficult to
switch to other protocols. In this paper, we propose an
object-oriented communication library, which provides
pre-implemented channel-based send/receive communi-
cation primitives, allowing easy implementation and se-
amless migration across protocols and components.

1 Introduction

Systems often consist of a combination of processing
components, such as microprocessors, microcontrollers,
and custom ASIC/FPGA processors. Ideally, applica-
tion developers would be able to develop software and
hardware code using abstract send/receive primitives
for communication, based on a communicating sequen-
tial processes (CSP [1]) paradigm as proposed in (2],
for example. A primitive’s underlying implementations,
such as the choice of a particular bus type and proto-
cols, the assignment of communications to ports, and
the setting and reading of interface registers and port
signals, would be hidden or created later.

However, there is presently a gap between message
passing primitives and their implementations, as illus-
trated in Figure 1. For some architecture and proto-
cols, some abstract communication primitives do exist,
though most fall far short of send/receive primitives;
for example, ISA bus transfers of a PC [3] are achieved
using in and out assembly instructions, and serial trans-
fers of an Intel 8051 are achieved by configuring several
registers [4]. For other architectures and protocols, di-
rect port manipulation is necessary, such as for most
transfers for an FPGA or microcontroller. This gap
means that developers must spend much effort learn-
ing numerous varied communication details and testing
those communications. While developers have certainly
built subroutines to hide those details, to our knowledge

0-8186-7895-X/97 $10.00 © 1997 IEEE

81

Linus Tauro
Quickturn Design Systems, Inc.
440 Clyde Ave.
Mountain View, CA 94043
tauro@cs.ucr.edu

Send (channel, messge)

Abstract message-

passing primitives Receive (channel, message)

OOCL)
UART
IN, — \

‘wait until clk_p'event and clk_p our REN=1;

="1" and req_p="0"; dsr_p="0";
rec_byte := data_p; while ('RI);
ack_p <=’0"; char_received = SBUF;
= FPGA — 8xc51 Microcontroller

Hl

[N

O

{mstat = _inp(REG_MSTAT);
while(!(mstat & MSTAT_DSR);
_outp(REG_TX, message);

PC

Communication
implementation

Figure 1: OOCL aims to bridge the gap between
abstract message-passing primitives and communi-
cation implementations.

there is no published library of routines that supports a
message passing paradigm while being consistent across
architectures and platforms.

We are therefore developing an object-oriented com-
munication library (OOCL). OOCL provides C (or C++)
and VHDL send/receive communication primitives for
numerous common protocols and components, with pre-
tested underlying implementations. A designer chooses
an OOCL channel supporting the desired protocol, with-
out needing to focus on underlying implementation de-
tails. A user instantiates a communication channel ob-
ject, initializes it, and then sends or receives messages
over it; all access to low-level ports, registers, and com-
munication behavior is hidden in the object’s implemen-
tation. Because OOCL is a library, existing languages
like C and VHDL need not be modified, and no syn-
thesis tools are required to generate the communication
behaviors (though synthesis and compilation are obvi-
ously necessary to implement those behaviors). Instead,

OOCL needs to be ported to new architectures, just
as any other library (such as a math library) must be
ported.

The OOCL approach complements related codesign
interface research. In {5], a solution is proposed that au-
tomates the hardware-software interface using minimum
glue logic, while satisfying timing constraints. To com-
municate with a peripheral device, the processor gener-
ates a sequence of signals (SEQs) that read and write
the device’s ports. Symphony [6] defines a standard
communication protocol for all processor components,
using send and receive operations with a synchronous
wait protocol, where the sender asserts a ready signal
and then waits for the receiver to assert its own ready
signal. In [2], a codesign methodology is discussed us-
ing process communication primitives that allow three
types of process interaction: synchronized data trans-
fer, unsynchronized data transfer and synchronization
without data transfer. In [7], a system design method-
ology is discussed using abstract send/receive channels
for communication. In all of these approaches, OOCL
can be used to encapsulate the communication using
send/receive primitives, while implementing the proto-
col, without any modification to the C or VHDL lan-
guages.

Operating systems often include abstractions for com-
munication, such as remote procedure calls (RPCs), mail-
boxes, and inter-process communications (IPCs). How-
ever, most of these are not supported by custom proces-
sor components and microcontrollers, since such devices
do not usually have an operating system.

OOCL is intended for use when at least one of the
communicating components has flexible ports usage, such
as a microcontroller or an FPGA, or when two fixed
components use the same protocol, such as the PC RS232
serial protocol; to interface two components having fixed
incompatible protocols, either an interface process [8] or
interface transducer [9] must be generated.

2 Using the library

We introduce use of OOCL with the simple public-key
encryption example of Figure 2; the details of the en-
cryption algorithm are not shown. A portable data-
entry device (using an 8051 microcontroller) downloads
its data in encrypted form to a PC, which requires that
it first receives two public encryption keys from the PC.
The communication occurs between one of the PC’s se-
rial ports, which uses the RS232 protocol, and the 8051’s
built-in UART and its associated ports, along with ad-
ditional general ports for control, as shown in Figure
2(a). Figure 2(b) shows the C code required by the 8051
to achieve its part of the communication, without the
use of OOCL; complementary code would exist on the

82

IO Port Connections

5’? TEERT

SMOD:(); User Program

TRO=0;

TR1=0;

TH1=256- ((ll 1*10E6)/384)/2400;

TLI=THI; . -

%‘10]1)—0’(20 // Initialize the UART)| ¢ RS2TIL !

SCON=oxdo; 21 ports T

dir_p'=1; GND UART
ns_p'=1; RS232 Com Port Control ports
REN=I;

for(i=0; i<3;) PC 8xe51

{ g =0, 1/ Receive the public

1 1/ keys (a)
while(!RT); e d—Pl dsAr_p'A ctsp'

pubkey.val txd_pAd!r_lp‘ [rts P’
—(pubkey val<<8i)ISBUF;
cts_p'=0;
Ri=0;
) dsr_p'=1; cts_p'=1;
/flli(e_l)_%l! ﬂ,;e ﬂb‘;VE loop for pubkey_n (Communication librag
or(i=0;i<3;++i T 1
{ key_chan I | msg_chan J
pubke .n
_ =(pubkey.n<<8i) | SBUF; User Program
CL_SEND_S_PCS msg_chan; // Declare the
REN=0; //Send the | | CL_REC_S_PCS key_chan; /I channels
whlle(cncodmg_needed) Hencoded msg_chan.InitDefault(); // Initialize
U while(dr_p); Ifcharacter kc{)ichmé;mﬁmfa:lt()i{ Long0 /1 channels
. | pubkey.val=key_chan.RecLong(); /7 Receive the
SBUF=encode _msg(orgmsgli++D} pubkey.n = key_chan.RecLong(); # pubtic keys
while(rts p'); while(1)
TI=0:
Vi Repeal the above three times // Send the encoded character
msg_chan.SendLong
} 8xc51 (encode_: msg((orgmsg[1++])) 8xc51
(b)
lxd_p die_p' rts_p' xd_p dse_p'ets p' | Sdap’ selp’ sda_p' sclp

PCS Master 12C Master

PCS Servant

—
i
]
!
]
'
[
'
t
1

Communication library

)

Figure 2: (a) Block diagram for the RSA system,
(b) user code without and (c) with the OOCL rou-
tines using the RS-232C serial protocol, (d) library
routines.

PC. Note that this communication code is non-trivial,
requiring knowledge of many low-level details. The pro-
grammer must study the details of the serial protocol,
referring to pin configurations, architectural details and
timing diagrams. This inevitably results in the user hav-
ing to iterate a few times to make the communication
code error free.

Figure 2(c) shows the same code re-written using the
OOCL routines. Having decided to use a PC and 8051
communicating over the PC’s serial port, the user first
selects the appropriate PC serial channel objects from
OOCL in Figure 2(d). The user then declares a chan-
nel key_chan for receiving the keys, and another channel
msg_chan for sending encoded data. The user then ini-
tializes these channels, in this case choosing the default
initialization ports and speed, and then performs sends
and receives over those channels. Note that the user
is presented with abstract message passing, as desired,

even though underlying implementations do exist.

The reduction in code size and development time
is significant, but even more significant advantages are
seen when we change the communication. Suppose we
choose to use the PC’s parallel port instead of the se-
rial port to speed up the data transfer. Such a change
would require a complete rewrite of the code in Figure
2(b), in addition to the study of the new protocol and
the testing of the implementation. However, when us-
ing OOCL, such a change merely involves selecting a
new channel object from the library, i.e., replacing PCS
in Figure 2(c) by PCP. Alternatively, suppose we de-
cide to use the PC’s ISA bus for the transfer for even
more speed. This change requires a device faster than
an 8051, so we might choose an FPGA. Once again, the
communication code would only change slightly when
OOCL is used, i.e., just declare a different channel type,
but would require a complete rewrite without OOCL.

3 Library implementations

We now discuss the underlying implementations for two
example protocols.

3.1 PC serial protocol

Information is frequently transferred to a PC, either as
integral part of the design itself or to down-load infor-
mation from an application. The RS-232C standard for
serial interfaces is suitable for applications where lower
data-transmission rates are acceptable, and the trans-
mission is over short distances or when a limited num-
ber of I/O pins are available for communication. This
protocol is especially suitable for slower devices like the
8051 which cannot keep up with the faster transfer rates
of the ISA or PCI bus. The TTL logic level signals need
to be converted to the non-TTL interface needed by the
RS-232C standard.

The receiving device controls the flow of data from
a transmitting device. Hardware handshaking is used
for developing the PCSerial communication library rou-
tines. This type of handshaking uses dedicated circuits
to control the transmission of data. Figure 2(a) showed
the block diagram of a PC and an 8051 microcontroller
connected via a serial interface. On the PC side, the
user can use any one of the available RS-232C serial
ports. The RS-232C/TTL drivers/receivers interface
the RS-232C and TTL voltage levels.

The transmit data’(tzd_p) and receive data (rzd_p)
lines run from the PC to the UART data ports, which
are P3.1 and P3.0 respectively, on the 8xc51. sg is the
RS-232C signal ground. The control handshake signals,
data terminal ready (dir_p’) and request to send (rts_p’)
run from the PC to the 8xc51, while the data set ready

83

(dsr_p’) and the clear to send (cts-p’) are the control
signals from the 8xc51 to the PC. General purpose 8xc51
I/O ports can be used for the control lines.

We now describe the naming conventions used by
OOCL. Active low logic is indicated by appending a .
The communication ports are indicated by appending
“p”. For example, ack_p’ indicates a port that is ac-
tive low. Declarations that are part of the library are
indicated in upper-case and are prefixed with “CL” e.g.,
CL_PARITY_NONE. Other declarations are indicated
in upper-case and are not prefixed with “CL”. Vari-
ables are indicated in lower case, with an underscore
if needed. The following fields are used in a channel
name and are separated by an underscore:

e A channel name is prefixed with “CL” to indicate
that is a communication library channel.

e The next field is “SEND” or “REC” to indicate
whether the channel will be used to send or re-
ceive messages.

e This is followed by “M” or “S” to describe whether
it is associated with a master or servant process.
The master process initiates the transfer.

e An abbreviation for the protocol used is next,
which may include additional information if needed.

e Finally “A” can be appended to distinguish the
addressed mode of communication from the point-
to-point mode.

Figures 3 and 4 show the OOCL routines, which use
the PCSerial protocol for the PC and 8xcb1 respec-
tively. The figures show the PC send and the 8xcbl
receive channels. The complementary channels are sim-
ilar. Each channel type’s library entry consists of dec-
larations, initializations, and send/receive transfers.

Declarations: The PC send channel is declared as
CL_SEND_M_PCS while the 8xc51 receive channel is
called CL_REC_S_PCS, conforming to the CL naming
convention. The data members for the PC send channel
are tzd_p for the data, dsr_p’ and cts_p’ for the control,
and port.ads to store the serial port address.

The 8xc51 receive channel includes rzd_p for the data,
and dsr_p’ and cts_p’ for the control lines. The channel
member functions for accessing the ports (_inp() and
_outp() for the PC, and SetPortBit() and GetPortbit()
for the 8xc51) are accessible only to the OOCL routines.

Initializations: While using the OOCL routines
for the PC, the user can call the default initialization.
In this case, the communication parameters are set to
COM]1, which is usually the 9-pin serial port, 2400 baud,
no parity, 8 data-bits, and 1 stop-bit. Otherwise the
user could call the non-default initialization by specify-
ing the communication parameters. In both these cases,
the port addresses are fixed registers. Similarly, when

Declare Channel
class CL_SEND_M_PCS
{ uint txd_p; // transmit data line

uchar dsr_p’, cts_p’; // handshake signals
uint port_ads; /1 serial port address
/I Set the baudrate
void baudset(uint port, ong baud_rate);
/1 Set the parity, data bits, stop bits
void comparmset(uint data_bits, uint stop_bits,
// Read, write to an /O port uint parity);
vint _inp(uchar addr);
void _ outp(uint addr, uchar value);
public:
// Initialize ports to default values
void InitDefault(};
// Initialize ports to user specified values
void Init(uint port, long baud_rate, uint parity,
uint data_bits, uint stop_bits);
1/ Send the message (character)
. void Send(uchar message);

Initialize channel (default)
void CL_SEND_M_PCS::InitDefault()
{

dsr_p’ = CL_MSTAT_DSR;

cts_p’ = CL_MSTAT_CTS;

/{ Defantt initialization is port-COM1, 9600

1/ no parity, 8 data bits and 1 stop bit

port_ads = CL_PCS_PORT_COM1;

txd_p = CL_REG_TX;

baudset(port_ads, 600)
comparm(CL_PCS_PARITY_NONE, CL_PCS_

STOPBITS_1, CL_PCS_DATABITS_8);
/I Turn off handshaking
_outp(CL_REG_MCONT, 0);

Send message (character)
void CL_SEND_M_PCS:: Send(uchar message)

uint mstat = 0; //to test moderm status reg

I/ Device asserts DSR when it is ready to receive
o { mstat = _inp{CL_REG_MSTAT);}

while(!(mstat & dst_p”));

mstat =0;

// Send the message

_outp(txd_p, message);

/] Device asserts CTS after receiving

mstat 0;

{ mstat = mp(CL REG_MSTAT);}
while(!(mstat & cts_p "));
mstat = 0;
/1 Wait for both DSR and CTS to go low
do

{ mstat = _inp{CL_REG_MSTAT);}

while(rastat & dsr_p °);
mstat = 0;

40 mgtar = _inp{CL_REG_MSTAT);}
} while(mstat & cts_p’);

Figure 3: OOCL code extract for the PC serial pro-
tocol: PC send.

using the 8xc51 OOCL routines, the user can call the de-
fault initialization. In this case, the crystal frequency is
specified and the 8xc51 timer registers are loaded appro-
priately to set the baud rate at 2400 baud. The I/O port
addresses for dsr.p’ and cts.p’ are pre-assigned in the
library. Alternately, the user can call the non-default
initialization function and pass the baud rate and the
I/0 port addresses for dsr_p’ and cts_p’ as parameters.
rzd_p is always port 3.0, which is the UART receive
register for the 8xc51l. Send/Receive: Figures 3 and
4 show the PC send and 8xc51 receive routines for a
byte transfer. The protocol has been discussed earlier.
The RI flag on the 8xc51 is set once a character has
been been received by the UART and has to be cleared
to enable the reception of the next byte.

84

Declare Channel
class CL_REC_S_PCS
{

uchar rxd_p
uchar dsr_p’, cts_p’;
1/ Write to a port bit
void SetPortBit(uchar port, bit value);
1/ Set the specified baud rate
void baudset(uint baud_rate, float freq);
public:
// Initialize ports to default values
void InitDefault(float freg);
/1 Initialize ports to user specified values
void Init(uchar dsr_p_addr, uchar cts_p_addr,
uint baud_rate, float freq);
// Receive the message (character)
% uchar Receive();

1/ receive data line
// handshake signals

Initialize channel (default)
void CL_REC_S_PCS::InitDefault(float freq)

rxd_p P370;
dsr. p =_CL_DEFAULT_DSR_P;
cts_p’ =_CL_DEFAULT_CTS_P;

1E=0; /1 Disable interrupts
SMOD=0; /1 To set baud rate
/1 Both timers are turned off initially
TRO=0;
TR1=0;
baudset (2400, freq);
// Initialize ports to high impedance

SetPortBit(dsr_p’, 1);
SetPortBit(cts_p’, 1);

Receive the message (character)
uchar CL,_REC_S_PCS::Receive()

uchar char_received;

REN=1; // Enable reception
// Set the primary handshake
SetPortBit(dsr_p’, 0);

1/ Read the character once received, from the
/I UART register

while (! RI);

char_received = SBUF;

/1 Next set the secondary handshake
SetPortBit(cts_p’, 0);

1/ Reset RI and turn off handshake signals
RI=

0;
SetPortBit(dsr_p’, 1);
SetPortBit(cts_p’, 1);
REN=0; // Tumn off reception
return char_received;

Figure 4: OOCL code extract for the PC serial pro-
tocol: 8xc51 receive.

3.2 Custom protocols

Many components, such as microcontrollers and FPGA’s,
have ports which are flexible, not having a pre-defined
use. In other words, the component’s program or cir-
cuit can set and read these ports in any manner desired.
Flexible ports are in contrast to fixed ports, like those
associated with the ISA bus, which have a specific pur-
pose (e.g., request, acknowledge, interrupt, data, or ad-
dress). When two components can communicate using
flexible ports, custom protocols are required.

There are several characteristics that a custom pro-
tocol behavior may possess. We can taxonomize these
characteristics as follows:

e Master versus Servant: A master behavior initi-
ates a send or a receive data transfers, using a
request port. The servant must respond to such

requests by either receiving or sending the data.

e Sender versus Receiver: Each channel may be ei-
ther for sending or receiving.

¢ Data size: Data must be encoded into some num-
ber of bits in order to be transferred.

¢ Data bus size: The data bus uses some number
of ports, which may be less than the data size, in
which case a number of “chunks” are sequentially
transferred.

o Four-phase versus two-phase handshaking: In two-
phase handshaking, the master asserts the request
signal, waits for a specified time, and then de-
asserts the signal and proceeds. In four-phase
handshaking, the master asserts the request sig-
nal, but then waits for the servant to assert and
acknowledge signal, only then proceeding. Four-
phase communication achieves synchronized data
transfers, while two-phase is faster when synchro-
nization can be ensured by other means.

e Point-to-point versus Addressed mode: A master
may have many servants, in which case the master
must provide an address along with a request. If
there’s only one servant (point-to-point), then no
address is required.

e Address bus size: If an address is used, its size
must be known.

We point out that multiple channels may share the
same ports. The actual binding of abstract channels to
ports is done during the initialization of the channel;
in the same manner, address and data may also share
ports.

Figure 5 shows the block diagram for a two-phase ad-
dressed data transfer between two 8xc51s, a liquid crys-
tal display (LCD) and an FPGA. At a given time, only
one of these devices can act as the master on the bus,
the figure shows this to be an 8xc51. All the devices on
the bus share an 8-bit bidirectional data port. An 8-bit
address port runs from the master to each servant on the
bus. In addition, an address request line (addr_req_p’)
and a data request line (reg_p’) also goes from the mas-
ter to each servant. General purpose 8xc51 I/O ports
are used for the address, data and control lines.

Figures 6 and 7 show the OOCL routines for the
master and servant 8xcbls respectively, which use the
two-phase addressed protocol. The figures show the
master send channel and the servant receive channel.
The complementary channels are similar. Each channel
type’s library entry consists of declarations, initializa-
tions, and send/receive transfers, consistent with the
OOCL methodology. Only one servant device is ad-
dressed at a time and that device responds within the
two-phase delay.

85

data_p _ _ TN
addrp__ -1 §f AGAT
addrreq p'_ - -1 1_1 4o
T E R BB I
8xc5t LCD 8xc51 FPGA
(Master) {Servant) (Servant) {Servant)

Figure 5: Bus connections for the two-phase ad-
dressed protocol using an eight-bit data port.

A number of OOCL routines have been developed
to support custom protocols; we omit details here. Be-
cause of the large number of combinations of protocol
characteristics, there are a large number of custom rou-
tines. For this reason, OOCL currently supports a sub-
set of possible characteristic values: data size is 8, data
bus size may be 8, 4, or 1, and address size is equal the
the data bus size.

3.3 Other protocols

‘We have developed an initial library for a number of
protocols. For PC’s, we have C routines for the se-
rial port and for the ISA bus, and preliminary routines
for the PCI bus. For 8051 microcontrollers, we have C
routines for custom protocols, the PC serial protocol,
and the Inter-Integrated Circuit (I°C) serial bus. For
custom hardware (FPGAs and ASICs), we have VHDL
routines for custom protocols, ISA and PCL

4 Conclusions

OOCL bridges the gap between the abstract message
passing primitives desired by the user, and the underly-
ing communication implementation. It provides a con-
sistency across diverse protocols and hardware-software
components. Because OOCL is based on libraries, no
additional tools are needed to generate the interface,
and no language extensions are necessary. In addition
to supporting the initialization, send and receive meth-
ods, the OOCL servant channels have been enhanced
with methods that determine if the channel is ready
to send or receive data, and with other routines that
then proceed to complete the transfer. This enables
the OOCL methodology to be applied to multiple pro-
cessing in software using interrupts or a RTOS, or in
hardware using a bus controller.

Future directions include expanding the library to
include other common protocols, and investigating au-
tomated generation of the library routine implementa-

Declare Channel
class CL_SEND_M_D8P2_A
{

uchar data_p, req_p’, addr_p, addr_req_p’;
// Data, function members for 2 phase delay
uint wait_time, oneus_loop;
void WaitFor(uint wait_time, oneus_loop);
// Write to a port bit
void SetPortBit(uchar addr, bit value);
// Write a character to an 8 bit port
void SetPortByte(uchar addr, uchar value);
public:
// Initialize ports to defauit vaiues
void InitDefault();
/ Initialize ports to user specified values
void Init(uchar data_p_base_addr, uchar req_p_addr,
uchar addr_p_base_addr, uchar addr_req_p_addr,
nint wait_time, vint oneus_loop};
1/ Send message (character)
void Send(uchar addr, uchar message);
¥
Initialize ch 1 (def:

it
void CL_SEND_M_D8P2_A::InitDefault()

data_p = CL_DEFAULT_DATA8_BASE_ADDR;
req_p’ =CL_DEFAULT_REQ_P;

addr_p =CL_DEFAULT_ADDRS_BASE_ADDR;
addr_req_p' = CL_DEFAULT_ADDR_REQ_P;
wait_time = CL_DEFAULT_WAIT_TIME;
oneus_loop = CL_DEFAULT_ONEUS_LOOP;

// Set data, address, handshaking to high impdenace
SetPortBit(req_p’,1);

SetPortBit(addr_req_p’,1);
SetPortByte(data_p,0xff);
SetPortByte(addr_p,0x{f);

Send message (character)

void CL_SEND_M_D8P2_A::Send(uchar addr,
uchar message);

{
SetPortByte(addr_p, addr); // Put address on port
SetPortBit(addr_req_p’,0); // Receivers : check address
// Wait as per the 2 phase delay
WaitFor(wait_time,oneus_loop);
SetPortBit(addr_req_p’,1); // Finish 2 phase handshake
// Wait as per the 2 phase delay
WaitFor(wait_time,oneus_loop);
// Put data on the port
SetPortByte(data_p, message);
SetPortBit(req_p’,0); 1 Receivers : read data
// Wait as per the 2 phase delay
WaitFor(wait_time,oneus_loop);
SetPortBit(req_p’,1); // Finish 2 phase handshake
// Wait as per the 2 phase delay
WaitFor(wait_time,oneus_loop);

SetPortByte(data_p, Oxff); // Release the data bus
SetPortByte(addr_p, Oxff); // Release the address bus

Figure 6: OOCL code extract for the two-phase ad-
dressed protocol using an eight-bit data port: mas-
ter send

tions to simplify library development and porting to new
architectures.

References

(1]

2l

C. Hoare, “Communicating sequential processes,” Com-
munications of the ACM, vol. 21, no. 8, pp. 666-677,
1978.

D. Thomas, J. Adams, and H. Schmit, “A model and
methodology for hardware/software codesign,” in IEEE
Design & Test of Computers, pp. 6~15, 1993.

L. S. Eggebrecht, Interfacing to the IBM Personal Com-
puter. Sams, second ed., 1990.

Philips, 80C51-Based 8-Bit Microcontrollers Data Hand-
book, February 1995.

P. Chou, R. Ortega, and G. Borriello, “Interface co-
synthesis techniques for embedded systems,” in Proceed-

86

Declare Channel
class CL_REC_S_D8P2_A

{
uchar data_p, req_p’, addr_p, addr_req_p’;
uchar addr; // Address of this receiver
{/ Read/write from/to a port bit
bit GetPortBit(uchar addr);
void SetPortBit(uchar addr, bit value);
// Read/write a character from/to an 8 bit port
uchar GetPortByte(uchar addr);
void SetPortByte(uchar addr, uchar value);
public:
/{ Initialize ports to default values
void InitDefault(uchar addr);
// Initialize ports to user specified values
void Init(uchar data_p_base_addr, uchar req_p_addr,
uchar addr_p_base_addr, uchar addr_req_p_addr,
uchar addr);
1/ Receive message (character)
uchar Receive ();

Initialize channel (default)

void CL_REC_S_D8P2_A::InitDefauit(uchar addr)

{
data_p = CL_DEFAULT_DATA8_BASE_ADDR;
req_p’ =CL_DEFAULT_REQ_P;
addr_p = CL_DEFAULT_ADDRS_BASE_ADDR;
addr_req_p’ = CL_DEFAULT_ADDR_REQ_P;
addr = addr;
/1 Set data, address, handshaking to high impdenace
SetPortBit(req_p’,1);
SetPortBit(addr_req_p’,1);
SetPortByte(data_p,0xff);
SetPortByte(addr_p,0xff);

Receive message (character)
uchar CL_REC_S_D8P2_A::Receive()
{

uchar data message, bus_addr;

// Wait until receiver address is on the bus
while(GetPortBit(addr_req_p’));
bus_addr = GetPortByte(addr_p);
while(bus_addr != addr)

{
while(GetPortBit(addr_p));
bus_addr = GetPortByte(addr_p);

)
// Finish 2 phase handshake
while(!GetPortBit(addr_req_p’));

while(GetPortBit(req_p’)); // Read data when ready
message = GetPortByte(data_p);

// Finish 2 phase handshake
while(!GetPortBit(req_p’));

return messsage,

Figure 7: OOCL code extract for the two-phase ad-
dressed protocol using an eight-bit data port: ser-
vant receive.

(6]

ings of the International Conference on Computer-Aided
Design, pp. 280-287, 1995.

S. Vercauteren, B. Lin, and H. D. Man, “Construct-
ing application-specific heterogeneous embedded archi-
tectures from custom HW/SW applications,” in Proceed-
ings of the Design Automation Conference, 1996.

D. Gajski, S. Narayan, L. Ramachandran, F. Vahid, and
P. Fung, “System design methodologies: Aiming at the
100 h design cycle,” IEEE Transactions on Very Large
Scale Integratian Systems, vol. 4, no. 1, pp. 70-82, 1996.

S. Narayan and D. Gajski, “Interfacing incompatible pro-
tocols using interface process generation,” in Proceedings
of the 82nd Design Automation Conference, pp. 468-473,
1995.

G. Borriello, A New Interface Specification Methodology
and its Applications to Transducer Synthesis. PhD the-
sis, University of California, Berkeley, May 1988.

