Modifying Min-Cut for
Hardware and Software Functional Partitioning
Frank Vahid
Department of Computer Science

University of California, Riverside, CA 92521
vahid@cs.ucr.edu, www.cs.ucr.edu

Abstract

The Kernighan/Lin heuristic, also known as min-cut,
has been eztended very successfully for circuit partition-
ing over several decades. Those extensions customized the
heuristic and its associated data structure to rapidly com-
pute the minimum-cut metric required during circuit parti-
tioning; thus, those eztensions are not applicable to prob-
lems requiring other metrics. In this paper, we extend the
heuristic for functional paertitioning in a manner applicable
to the codesign problem of hardware/software partitioning
as well as to hardware/hardware partitioning. The exten-
sion customizes the heuristic and data structure to rapidly
compute execution-time and communication metrics, crucial
to hardware and software partitioning, and leads to near-
linear time-complezity and ezcellent results. Our ezperi-
ments demonstrate eztremely fast execution times (just a
few seconds) with results matched only by the much slower
simulated annealing heuristic, meaning that the extended
Kernighan/Lin heuristic will likely prove hard to beat for
hardware and software functional partitioning.

1 Introduction

The maturation of high-level synthesis has created the
capability to compile a single program into assembly-
level software, custom digital-hardware, or combined soft-
ware/hardware implementations. Functional partitioners
are needed to partition such programs among software
and custom hardware processors, both for use in reconfig-
urable accelerators [1, 2], as well as embedded system design
(3, 4, 5]. To fit into a compilation environment, such parti-
tioners must be fast, executing in only seconds or minutes.

Automated hardware/software functional partitioners are
presently the focus of several research efforts, using a variety
of partitioning hueristics: simulated annealing in [3], custom
greedy-improvement in [4], hierarchical clustering in [6] and
[7], custom construction in (8], tabu-search in [9], dynamic
programming in [10], and a variety of heuristics in {5]. Func-
tional partitioning, which partitions a system’s functions as
opposed to its structural implementation, was also demon-
strated in [11] to have numerous advantages over structural
partitioning for hardware/hardware partitioning.

Our goal was to develop a heuristic that would: (1) exe-
cute in a few seconds, (2) yield excellent results, (3) be ap-
plicable to hardware/software as well as hardware/hardware
partitioning, and (4) support addition of new metrics. Since
no proposed heuristic satisfied all four requirements, we ex-
amined the Kernighan/Lin (KL) heuristic [12] (also known
as group migration or min-cut). KL was extended by Fiduc-
cia/Mattheyses (KLFM) [13] and others, and is said to be
the most common circuit partitioning method [14].

With the great success and maturity of KLFM in circuit

0-8186-7895-X/97 $10.00 © 1997 IEEE

43

ict (us) size (gates)

procedure n3 (...} is ... M| 5 5 10 100
whie () loop n2| 2530 10 1500
end loop; n3| 10 5 10 500

end procedure; n4 [100 10 10 1250

n1: process ... freq bits

foriin 1o xioop et 4 16
end loop; e2| 1 16
na(...);
na(...); e3| 2 16

end process; e4 |10 16

(a) ()

Figure 1: Example: (a) specification, (b) access graph, (c)
annotations.

(b)

partitioning, we examined the possibility of re-extending KL
for functional partitioning. This paper represents the first
work in extending the highly-successful KL heuristic to the
new problem of hardware/software partitioning. Because
hardware/software partitioning has a very different problem
formulation than circuit partitioning, the extensions are non-
trivial. The key part of the extension is the integration of
the heuristic with a model of behavior execution-time {15],
which includes a communication model that quickly but ac-
curately computes data transfer times between hardware and
software parts as well as within a single part.

2 Problem description

We are given a single sequential process, such as that
shown in Figure 1(a), which can be written in C, VHDL or
some similar procedural language. We focus on partition-
ing a single process because this focus covers a number of
problems, including speeding up a C program running on
a PC or an embedded processor or microcontroller, as well
as partitioning a process to meet package constraints of mi-
crocontrollers and FPGA’s. We shall describe extensions
for concurrent processes in Section 6. For the purpose of
this paper, we assume the target architecture consists of a
standard processor with memory (the software part) and a
custom processor possibly with its own memory (the hard-
ware part), although extensions can be made for multiple
processors of either type. The standard processor may use
a system bus, and/or may have several bidirectional data
ports (such as commonly found on microcontrollers). The
two processors may have different clock speeds.

The problem considered in this paper is to assign every
piece of the program to either the software or hardware part,
such that we minimize execution time while satisfying any
size and I/O constraints.

We convert the program into a SLIF AG (System-Level

Intermediate Format Access Graph) [15], as illustrated in
Figure 1(b). Each node represents a functional object, such
as a subroutine or global variable, and each edge represents
an access by one object to another, representing a functional
call or variable read/write. Statement blocks can always be
exlined into subroutines to achieve finer granularity [16]).
We assume there are no recursive procedures, meaning that
the AG contains no cycles.

We annotate each node and edge, as shown in Figure 1(c).
Each node is annotated with estimates of internal compu-
tation times and sizes for each possible part to which it
could be assigned; in the example, there are just two parts,
software (s) and hardware (h) (actually, each part would
be identified more precisely, such as Intel 8051 or Xilinz
XC4010, along with technology files, but we omit such de-
tails in this paper). The internal computation time ict rep-
resents a nodes’s execution time on a given part, ignoring
any communication time with external nodes. In the exam-
ple, nd requires 100 clocks for computation in software but
only 10 in hardware. Each edge is annotated with the num-
ber of bits transferred during the access, and the frequency
with which the access occurs. The actual time to transfer
data during an access over the edge depends on the bus to
which the edge is assigned. The bus will have a specified
width and protocol time; we need to multiply this time by
the number of transfers required to transfer the edge’s bits
over the bus width. For example, transfering 16 bits over
an 8-bit bus with a protocol time of 5 clocks will require
5% 16/8 = 10 clocks. Note that all annotation values may
represent minimums, maximums, or averages.

Determining the annotations is just part of the met-
ric evaluation process. We use a two-phase approach to
metric evaluation. During the “pre-estimation” phase de-
scribed above, the SLIF nodes and edges are annotated;
since only performed once, before partitioning, this phase
can take many minutes. During “online-estimation,” the
annotations are quickly combined using possibly complex
equations to obtain metric values for every examined parti-
tion; since thousands of partitions might be examined, such
estimation must be extremely fast. Online-estimation is the
focus of Section 4. Pre-estimation is a hard problem, re-
quiring a combination of profilers, estimators, and synthesis
tools, but is beyond the scope of this paper. Discussions re-
garding estimation techniques and accuracies can be found
in [5, 17]. For a discussion on a more complex method for
hardware size estimation, which considers hardware sharing
among functional objects, see [18].

3 Kernighan/Lin heuristic background

An improvement heuristic is one that, given an initial par-
tition, moves nodes among parts seeking a lower-cost par-
tition. Cost is measured using a cost function. A move
is a displacement of a node from one part (e.g., a chip)
to another part. Such heuristics consist of two elements.
The control strategy includes three key activities — Se-
lectNeztMove, which chooses the next move to make, Mod-
ifySelCrit, which modifies the selection criteria, usually by
reducing the possible moves, and Terminate, which returns
if some condition is met. A control strategy’s goal is to over-
come local cost minima while making the fewest moves. A
local cost minimum is a partition for which no single move
improves the cost, but for which a sequence of moves im-

44

proves the cost; the goal is to find such sequences without
examining all possible sequences. The cost information
includes DS, which is the data structure used to model the
nodes and their partition, from which cost is computed, Up-
dateDS, which initializes DS, and meodifies DS after a move,
ideally in constant time, and CostFct, which is a function
that, given a partition, combines various metric values into
a number called cost, representing a partition’s quality. Ide-
ally the cost function takes constant time. We use the con-
vention that lower cost is better.

The KL heuristic seeks to improve a given two-way graph
partition by reducing the edges crossing between parts,
known as the cut. KL’s CostFct measures the cut size. The
essence of the heuristic is its simple yet powerful control
strategy, which overcomes many local minima without using
excessive moves,

We write the strategy in algorithmic form in Algo-
rithm 3.1. Assume N is the set of nodes ni,nq,...,n,
to be partitioned, and the two-way partition is given as
P =< p1,p2, DS >, where p1 ()p2 =0 and p1 [Jp2 = N.

Algorithm 3.1 : KLControlStrategy(P)

IterationLoop: loop // Usually < 5 passes
currP = bestP = P
UnlockedLoop: while (UnlockedNodesExist(P)) loop
swap = SelectNextMove(currP)
curr P = MoveAndLockNodes(P, swap)
bestP = GetBetterPartition(bestP, curr P)
end loop

if not (CostFct(bestP) < CostFct(P)) then
return P // Terminate; no improvement this pass
else // Do another iteration
P = bestP, UnlockAllNodes(P)
end if
end loop

// Find best (or least worst) swap by trying all
procedure SelectNextMove (P)
SwapLoop: for each (unlocked n; € p1,n; € p2) loop
Append(costlog, CostFct(Swap(P, ni,n;)),ni,n;)
end loop
return (n;,n; swap in costlog with lowest cost)

In other words, SelectNextMove trys all possible swaps of
unlocked nodes, and swaps the best or least worst. Once all
nodes are locked (already swapped), the heuristic reverts to
the lowest-cost partition seen so far, completing one itera-
tion, terminating if no improvement was found during the
iteration. Note that the innermost loop SwapLoop has a
time complexity of nZ, where n is the number of nodes in N.
This loop is called within the UnlockedLoop loop, which itself
has complexity n. Both are enclosed within IterationLoop,
which experimentally has been found to have a small con-
stant complexity, say ¢,. Hence, the runtime complexity of
KL is ¢1 x n x n?, or O(n®), though certain modifications
can reduce it-to O(n*log(n)) [14].

Fiduccia/Mattheyses [13] made three key extensions to
KL: (1) They redefined the cut metric for hypergraphs
(where edges may connect more than two nodes, more closely-
modeling real circuits), (2) They redefined a move as a move
of a single object from one part to another, rather than as a
swap of two objects, and (3) They described a data structure

enabling SelectNeztMove to find the best next move in con-
stant time. We refer to KL with these extensions as KLFM.

The second extension reduces the complexity of Select-
NeztMove from O(n?) down to O(n), since we now consider
an average of n/2 moves during each call to the procedure.
Regarding the third extension, the data structure maintains
possible moves in an array. Each node is stored in the array
at an index corresponding to the gain achieved when mov-
ing the node. Because several nodes could have the same
gain, each array item is actually a list. In Algorithm 3.2,
we see that SelectNezrtMove now performs two operations:
PopBestMove and UpdateDS. PopBestMove must remove the
first object in the array. UpdateDS must update gains of
neighboring objects and then reposition those objects in the
array. These operations are constant time as described in
(13], so the entire procedure requires only constant time, say
c2. IterationLoop has been found to loop a constant number
of times, say ci1, and UnlockedLoop still requires n iterations,
so the time complexity is ¢; X n X ¢z, or O(n).

Algorithm 3.2 : KLFM’s SelectNextMove(P)
best_move = PopBestMove(P)
UpdateDS(P, best.move)
return (best_move)

4 Extensions for hw/sw partitioning

We now describe three extensions to KL for hard-
ware/software functional partitioning, similar in idea but
very different in detail from the KLFM extensions for hy-
pergraph partitioning: (1) we replace the cut metric by an
execution-time metric, (2) we redefine a move as a single
object move, rather than a swap, (3) we describe a data
structure that permits SelectNextMove to find the best next
move in constant time. We describe each extension in detail.

4.1 Replacing cut by execution-time

This modification is the basis of the extensions for hard-
ware/software partitioning. We first noted that minimiz-
ing execution time, not cut, is the main goal of hard-
ware/software partitioning (a simple technique for incorpo-
rating other metrics, such as size and cut, is discussed in
Section 6. A node’s execution time can be modeled as as
the sum of the node’s internal computation time and the
time spent accessing other nodes [15]; a simplified form of
the equation is:

n.et = n.ict +n.ct (1)

n.ict = n.ictp, p is n’s current part
n.ct = exEn.outedges ek.freqx
(ex.tt + (ex.dst).et)
extt = [bus.delay x (ex.bits < bus_width)]

In other words, a node’s execution time n.et equals its in-
ternal computation time n.ict plus its communication time
n.ct. Note that a node’s ict may differ on different parts; for
example, a node might have n.icts,, = 100us and n.icthy =
5us. A node’s ¢t equals the transfer time ej.tt over each
outgoing edge €, plus the execution time of each accessed
object (ex.dst).et, times the number of such accesses ex. freq.
The transfer time equals the bus delay, times a factor denot-
ing the number of transfers required to transfer the edge’s

45

[nl.execudonm = lnlinwnal_comp_limc J

+|c|.freq J *(lclmnsfer_limc J
+

|n2.cxecu(ion_timej) K =In;2{intemal_comp‘time

+|e2,frqu *(Icl.tmnsfer_limc J
+

’Mcu(ion_timcl) ’: =I Minwma]_comp_umq

i | ¥ { [t ime | g
¥

.
\

{nlexecution_timel) K -'-'I n.internal_comp_time I \
+o4.freq *(%fer‘umc | :'
F

Figure 2: Execution-time model.

bits over the given bus width. The bus delay is the time re-
quired by the bus’ protocol to achieve a single data transfer.
We associate two such delay’s with each bus, one for when
the edge is contained within a single part, and another when
the edge crosses between parts; the latter is usually larger.

The equation for n! from the earlier example is shown
graphically in Figure 2. Details of the transfer times have
been omitted for simplicity.

Though the model yields some inaccuracies since some
computation and communication could actually occur in
parallel, it provides a powerful means for obtaining quick yet
fairly accurate execution-time estimates. The communica-
tion model is quite general since each edge can be associated
with buses of various delays and widths, since different com-
munication times can be used for inter-part and intra-part
communication, and since more sophisticated transfer-time
equations could be used — for example, one could include a
factor to reduce actual transfer-time based on bus load.

4.2 Redefining a move as a single object move

In hardware/software partitioning, there is not a concept
of maintaining balanced part sizes, especially since the parts
have different units (i.e., instructions versus gates). There-
fore, we redefine a move as a single object move, since such
moves permit unbalanced numbers of objects in each part.

4.3 Data structure

Ideally, we would build a data structure DS such that
SelectNezxtMove executes in constant-time. We divide Se-
lectNeztMove into two parts, PopNertMove and UpdateDS,
as in Algorithm 3.2, and we try to build these to execute
constant time, as in KLFM. We’ll see that we can’t achieve
constant time for the execution-time metric, but instead an
average time of logn.

First, we note that moving a node affects the execution
time of that node and its ancestors. In particular, in Figure 2
we observe that when an AG node n is moved from one part
to another, the node’s execution time n.et may change due
to a change in n.ict, and due to a change in the transfer

Dni.ict
move nt

Det.tt

Dn2.ict
move n2

De2.tt

DOn3.ict
move n3

Ded.tt

Dnéd.ict
move n4

De4.tt

Figure 3: Terms that change during moves.

time of any adjacent edge (i.e., a change in e.tt of any e
connecting n). Also, any node whose communication time
changes (due either to a change in an e.tt or an n.et) will
have a changed execution time. Therefore, moving a node
changes the execution time of the node itself and of accessing
(ancestor) nodes. Since only ancestors are affected, thereis a
local effect on execution time, though not as local as the cut
metric which only had immediate neighbors affected. This
localized effect means that we only need to update a small
portion of DS when a node is moved.

Next, we must rapidly compute how each possible node
move changes the execution-time, as computed by an equa-
tion like that in Figure 2, so we can pick the best node to
move. The equation terms that may change are the node ict
values and the edge tt values; the change of nl.ict is written
as Dnl.ict, of el.tt as Del.tt, and so on, as illustrated in
Figure 3. Note that the e.freq values are constants. Fig-
ure 3 shows the terms that change when a particular object
is moved. For example, moving n2 changes n2.ict and el.tt.
Based on these relationships, we collect all terms from Fig-
ure 2 that change for a given move, and create a change
equation that computes the change in nl.et for that move,
as shown in Figure 4(a).

We now build the DS. Given the above change equa-
tions, we build a change list, which is an array where nodes
are inserted at the index corresponding to their change val-
ues. Because multiple nodes could have the same change
value, each array item is actually a list. To build the change
list, we evaluate each change equation to compute Dnl.et
for each node. We store each node at Array(Dnl.et), as
shown in Figure 4(b). The array has a minimum index of
—MazIncrease and a maximum index of MazIncrease,
where MaxIncrease can be conservatively chosen as the
worst-case execution time of nl. As we insert nodes into
the array, we compare the current index with BestChange,
which is updated if the current index is closer to the front of
the array. Thus, BestChange will be the best node’s index.

We now implement SelectNeztMove (see Algorithm 3.2).
The first part, PopNextMove, deletes the best node from
the change list, which can easily be done in constant time,
and updates BestChange, which is a bit harder since we
don’t know where the next node is in the array. We use
the approach in [13] of decrementing BestChange until we
find a non-empty array item; the approach was shown to
be constant time for the cut metric. The second part, Up-
dateDS, recomputes change equations that contain a term
that changed during the move (see Figure 3 for terms
that change). If a node’s change equation result is up-
dated, we delete and reinsert the node in gain list, updating

46

Dn1.et (move nt) =
Dnt.ict +
Del.tt " el.freq+
De2.it * e2.freq +
De3.tt ~ e3.freq

Array

Dnt.et (move n2) =
Dn2.ict * el.freq +
Det.tt* el.freq

Dn1.et (move n3) =
Dn3.ict * e3.freq +
De3.tt * e3.freq +
De4.tt * e3.freq*ed.freq

— -

Dnt.et (move nd) =
Dnd.ict * (e2.freq + e3.freq”ed.freq) +
Ded.tt * ed.freq’ed.freq +
De2.tt " e2.freq

(a) (b)

Figure 4: Data structure: (a) change equations, (b) change
list.

BestChange if necessary.

The average complexity of updating the data structure
is logn, not a constant ¢ as in KLFM. In KLFM, a node
move affects the gain values of the node’s neighbors, which
in the worst case could be all » nodes, but instead is usually
a small number ¢. In our problem, a node move affects the
gain values of the node’s ancestors, which in the worst case
could be all n nodes, corresponding to a program where every
procedure calls and is called by exactly one procedure, but
instead is usually a smaller number logn, as verified in [19].

To determine the complexity of the heuristic, we note
that IterationLoop once again loops a constant number of
times, say ci1. UnlockedLoop still requires n iterations. Se-
lectNextMove consists of PopBestMove and UpdateDS. We
assume the former requires constant time, say c2, while the
latter requires an average of log n, as described above. Thus,
the average time complexity is ¢1 x n x (c2 + logn). If we
know the ancestor hierarchy is logn, then the heuristic’s
complexity is O{nlogn).

4.4 Example

Figure 5 provides an example of applying the extended
KL heuristic on the example of Figure 1. We start with
all nodes assigned to software, though any intitial partition
would be possible. The nl.et equation of Figure 2 evaluates
to 2225 for such a partition. We obtain values for the nodes’
change equations of Figure 4(a), and insert each node into
the change list corresponding to its change value. In Fig-
ure 5(b), we pop the best node n4 and move it to hardware,
update change equations for n3 and nl (n2 is unaffected,
and n4 is locked), update nl.et by the change value (2225 -
1680), and reinsert n3 and nl into the change list. We con-
tinue such popping and updating until all nodes are moved
exactly once. Finally, we return to the partition with the
lowest nl.et, which in this case happens to be the last par-
tition. Note that the local minimum of 335 was overcome
by the KL control strategy. Also note that we only consid-
ered execution time in the examplie for simplicity, causing
all nodes to go to hardware. When other metrics are also
considered, the final outcome will be different.

nl sw nl sw 50 _i00n3
n2 sw n2 sw 20
ni sw n3 sw -190 20 | n2
nd sw n4 hw 50| n1
nlet= nlet= 525 L]
(b)

nl sw 10 nl hw]
n2 sw 20 n2 sw -60 60| n2
n3 hw 10| n1 n3 hw
nd4 hw 20 n2 n4 hw
nlet= 335 nlet= 345]

© @

nlet= 285

(e)

Figure 5: KL example using the change list: (a) initial, (b)
after 1 move, (c) 2 moves, (d) 3 moves, (e) 4 moves.

5 Experiments

Figure 6(a) provides a comparison of the quality of results
on several examples for the following heuristics: Random
assignment (Ra), Greedy improvement (Gd), KL for func-
tional partitioning (KL), hierarchical clustering (Cl), clus-
tering followed by greedy improvement (Cg), and simulated
annealing (SA). Gr moves nodes from one part to another
as long as cost reductions are obtained, having a computa-
tional complexity of O(n). KL was described in this paper,
with complexity O(nlogn). Cl computes closeness between
all pairs of nodes, using the closeness metrics of communi-
cation, connectivity, common accessors, and balanced size,
and applies pairwise merging, having complexity O(n?). Cg
is Clfollowed by Gd, thus having complexity O(n?). Sa uses
random moves to escape even more local minima, at the
expense of generally long runtimes. Annealing parameters
included a temperature range of 50 down to 1, a temper-
ature reduction factor of 0.93, an equilibrium condition of
200 moves with no change, and an acceptance function as
defined in {5]. The complexity of Sa is generally unknown,
but its CPU times with the above parameters usually exceed
those of O(n?) heuristics. Gd, KL, and Sa all use the output
of Ra as their initial partition.

The four examples were VHDL descriptions of a volume-
measuring medical instrument (Ez1), a telephone answering
machine (Ez2), an interactive-TV processor (Ez3), and an
Ethernet coprocessor (Ez4).

The partition cost C is a unitless number indicating
the magnitude of estimated constraint violations [5]. Con-
straints on hardware size, software size, hardware I/O, and
execution time were intentionally formulated such that there
would be constraint violations (non-zero cost), so that we
could compare how close each heuristic came to achieving
zero cost. Each example was partitioned among 2 ASICs
(VTI), 8 ASICs, 4 ASICs, and a hardware/software (hs) con-
figuration of one processor (8086) and one ASIC.

KL'’s complexity of nlog n is slightly greater than Gr, yet,
as the table demonstrates, KL outperformed all heuristics
except simulated annealing.

We compared the runtime of KL extended for functional
partitioning (KL’) with the runtime of a straightforward KL
implementation (KL) that checks all possible moves to select
the best next move. Results are summarized in Figure 6(b)

47

{Nodes KL’ KL

10] 0.8 0.8

[Ex P] Ra Gd KL Gl Cg SA Bl ar s

1 2] 314 68 40 B85 59 15 w0l 12 30

3/ 443 s0 o 168 96 22 501 10 42

4| 428 88 29 218 15 16 0] 15 71

hs| 576 61 16 83 66 18 e I

2 2| 236 69 43 141 34 47 so| 1.7 167

31 256 25 7 244 16 0 90| 1.8 20.9

41234 0 2 339 15 0 100 24 563

hs| 160 0 0 0 0 0 110 2.3 628

3 21 893 90 68 111 78 30 120 31 49.0

311081 115 71 154 142 63 130 32 645

4]1220 141 100 141 137 94 140 35 840

hs {2115 83 20 147 144 20 150 | 4.0 148.0

4 2| 960 105 60 109 62 7 1601 4.3 102.3

3[1206 114 114 155 5 97 170 | 4.5 115.1

411338 66 39 193 37 T2 180 | 4.7 157.3

hs| 660 102 23 102 76 0 190} 4.8 174.0

Avg] 758 74 40 150 57 3l 200} 5.2 2000
(a) (b)

Figure 6: Results: (a) comparison of KL with other heuris-
tics, (b) comparison of extended KL with KL.

for generated examples ranging in size from 10 nodes to 200
nodes in increments of 10. Such a range enables us to see
how the heuristics scale with problem size — see [19] for in-
formation on generated examples. Because the number of
iterations of KL usually varies from 2 to 6, there can be
some time fluctuation among different examples not related
to the size of those examples. Because our goal here is sim-
ply to observe the difference in runtimes, we ran each KL
version for exactly one iteration. The results show that the
extended KL is far faster than KL. The extended KL scales
nearly linearly with problem size, whereas the non-extended
KL grows quadratically, as expected. The extended KL han-
dled problems of quite a large size (200 nodes) in just a few
seconds. Times are in seconds on a 166Mhz Pentium.

The improvement in speed is gained with no loss in qual-
ity. The sequences of moves made by the extended KL and
KL are identical; only the time required to determine the
next best move is changed.

6 Extensions and future work

Several additional extensions are straightforward. (1) We
can incorporate additional metrics, such size and I/0, by
using a weighted-sum cost function and maintaining change
equations for each metric; (2) We can perform multiway par-
titioning by maintaining change equations for each metric,
and having each entry in the change list represents a move of
an object to a particular part; thus, each node will appear in
the change list more than once (M-1 times, where M is the
number of parts). (3) We can partition multiple processes
easily: if there is more than one constrained node, we simply
maintain unique change equations for each. When partition-
ing among hardware parts, we can assume that each process
is implemented on its own custom processor, so there is no
multi-tasking overhead. However, when partitioning onto a
software part, we need to develop techniques to account for
multi-tasking overhead. Future extensions include adding
lookahead and multiway lookahead, as done for circuit par-
titioning in [20, 21]. Finally, performing transformations
during partitioning, would likely lead to much improved re-
sults.

7 Conclusions

We have extended the successful Kernighan/Lin parti-
tioning heuristic for functional partitioning. The new heuris-
tic: (1) runs extremely quickly, having a time-complexity of
just O(nlogn) for most problems, and completing in just
seconds for numerous examples; (2) achieves excellent re-
sults, nearly equal to results achieved by simulated anneal-
ing running for an order of magnitude more time; (3) can be
applied to hardware/software partitioning as well as hard-
ware/hardware functional partitioning; (4) allows addition
of new metrics. With these features, especially its speed
and result quality, the heuristic will likely prove hard to
beat for functional partitioning, and is ideally suited for new-
generation compiler-partitioners.

References

(1) P. Athanas and H. Silverman, “Processor reconfiguration
through instruction-set metamorphosis,” IEEE Computer,
vol. 26, pp. 11-18, March 1993.

R. Hartenstein, J. Becker, and R. Kress, “T'wo-level parti-
tioning of image processing algorithms for the parallel map-
oriented machine,” in International Workshop on Hardware-
Software Co-Design, pp. 77-84, 1996.

R. Ernst, J. Henkel, and T. Benner, “Hardware-software
cosynthesis for microcontrollers,” in IEEE Design €& Test
of Computers, pp. 64-75, December 1994.

R. Gupta and G. DeMicheli, “Hardware-software cosynthesis
for digital systems,” in IEEE Design & Test of Computers,
pp. 29-41, October 1993.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification
and design of embedded systems. New Jersey: Prentice Hall,
1994.

X. Xiong, E. Barros, and W. Rosentiel, “A method for par-
titioning UNITY language in hardware and software,” in
Proceedings of the European Design Automation Conference
(EuroDAC), 1994.

A. Balboni, W. Fornaciari, and D. Sciuto, “Partitioning
and exploration strategies in the tosca co-design flow,” in
International Workshop on Hardware-Software Co-Design,
pp. 62-69, 1993.

A. Kalavade and E. Lee, “A global criticality/local phase
driven algorithm for the constrained hardware/software par-
titioning problem,” in International Workshop on Hardware-
Software Co-Design, pp. 42-48, 1994.

P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “Hardware-
software partitioning with iterative improvement heuristics,”
in International Symposium on System Synthesis, pp. 71—
76, 1996.

P. Knudsen and J. Madsen, “PACE: A dynamic program-
ming algorithm for hardware/software partitioning,” in In-
ternational Workshop on Hardware-Software Co-Design,
pp. 85-92, 1996.

F. Vahid, T. Le, and Y. Hsu, “A comparison of functional
and structural partitioning,” in International Symposium on
System Synthesis, pp. 121-126, 1996.

B. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell System Technical Journal, Febru-
ary 1970.

C. Fiduccia and R. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proceedings of the Design
Automation Conference, 1982.

T. Lengauer, Combinatorial Algorithms for Integrated Cir-
cutt Layout. England: John Wiley and Sons, 1990.

F. Vahid and D. Gajski, “SLIF: A specification-level inter-
mediate format for system design,” in Proceedings of the Eu-
ropean Design and Test Conference (EDTC), pp. 185-189,
1995.

F. Vahid, “Procedure exlining: A transformation for im-

proved system and behavioral synthesis,” in International
Symposium on System Synthesis, pp. 84-89, 1995.

2

(3]

(4

(6]

(7]

(8]

[9

[10]

[11]
[12]
[13]
[14]

(18]

(16]

48

{17] J. Gong, D. Gajski, and S. Narayan, “Software estimation
using a generic processor model,” in Proceedings of the Eu-
ropean Design and Test Conference (EDTC), pp. 498-502,
1995.

F. Vahid and D. Gajski, “Incremental hardware estimation
during hardware/software functional partitioning,” IEEE
Transactions on Very Large Scale Integration Systems,
vol. 3, no. 3, pp. 459-464, 1995.

F. Vahid and T. Le, “Towards a model for hardware and
software functional partitioning,” in International Workshop
on Hardware-Software Co-Design, pp. 116-123, 1996.

B. Krishnamurthy, “An improved min-cut algorithm for par-
titioning VLSI networks,” IEEE Transactions on Comput-
ers, May 1984.

L. Sanchis, “Multiple-way network partitioning,” IEEE
Transactions on Computer-Aided Design, January 1989.

(18]

19]

(20]

(21

