
Parameterized System Design

Abstract

Continued growth in chip capacity has led to new
methodologies stressing reuse, not only of pre-designed
processing components, but even of entire pre-designed
architectures. To be used across a variety of applications, such
architectures must be heavily parameterized, so they can adapt
to those applications’ differing constraints by trading off
power, performance and size. We describe several
parameterized system design issues, and provide results
showing how a single architecture with easily configurable
parameters can support a wide range of tradeoffs.

Keywords
System-on-a-chip, low power, intellectual property, cache, on-
chip bus, estimation, system parameters.

1. Introduction
The availability of large numbers of transistors on a chip has
led to the growth of Intellectual Property (IP) based design of
systems on a chip (SOC) [5]. Many IP-based design approaches
focus on mixing-and-matching of diverse IP to build an
application, representing a capture-and-simulate methodology.
However, others focus on mapping an application onto a pre-
designed complex SOC architecture built from existing IP
[10][14][15][16] by configuring and extending that architecture,
representing a configure-and-execute methodology [11]. Such a
pre-designed architecture [17] consists of a microprocessor,
memory hierarchy, direct memory access controller, and
processor bus. A bridge to a peripheral bus connects to
standard peripheral IP components (e.g., timers, counters,
serial communication devices, network interfaces, etc.), as well
as to a large programmable logic fabric and an off-chip bus. A
programming, simulation and emulation environment supports
the architecture. The architecture may be provided as HDL
(hardware description language) source code, as an actual chip,
or both. The large cost of developing such a complex
architecture, environment, and possibly chip, is amortized over
numerous applications. Due to the increasing gap between chip
capacity and designer productivity [7], such amortization may

be one of the only ways tomorrow’s huge-capacity chips can
actually be utilized.

Applications, especially those representing embedded systems,
differ greatly in terms of their power, performance and size
requirements. Though using the same basic architecture,
applications may seek to minimize power, maximize
performance, minimize size, or optimize some weighted
combination of those constraints. Therefore, in order to
maximize the number of applications that can use a pre-
designed architecture, the architecture must be highly
configurable.

Such configurability for a range of power, performance and size
constraints requires a new focus on "parameterized system
design," different from the past focus of building an
architecture optimized for one particular set of constraints. The
past focus was often transistor-centric, focusing on minimizing
transistors under given power and performance constraints, or
maximizing performance and minimizing power under given
size constraints.

The recent attention of selecting the best cache parameters
(size, associativity, etc.) for a specific application is a good
example of the new parameterized focus [4][6]. We can
introduce numerous parameters, incorporating numerous
previously stand-alone techniques that tradeoff power,
performance and size. Such techniques may involve caches,
memory hierarchy, code compression, buses, buffer sizes, and
so on.

The shift of focus, from minimizing transistors to maximizing
configurability given the newfound abundance of transistors,
can be compared to the shift of focus in the software field
beginning two decades ago, given the then newfound
abundance of program and data memory. The shift in software
went from writing tight code to writing reusable software
modules, first in the form of parameterized subroutines, and
then in the form of parameterized objects.

This paper represents an attempt to describe the newly
emerging field of parameterized system design. We provide an
example of a parameterized system and describe numerous
likely system parameters. We provide definitions of several
types of parameters. We describe interdependencies among
parameters. We describe the system design problem of
searching for the best parameter configuration and describe the
parameter interdependency problem in this context. We also
provide some early results demonstrating how a single
parameterized system can lead to implementations with a large
range of power and performance characteristics.

Tony D. Givargis, Frank Vahid
Department of Computer Science and Engineering

University of California, Riverside, CA 92521
{ givargis,vahid} @cs.ucr.edu

2. Parameterized architecture example
To most directly present the idea of parameterized system
design, we begin by describing our example parameterized
system-on-a-chip architecture, shown in Figure 1. A MIPS
R2000 processor and instruction and data caches communicate
over a high-speed processor-local bus. The on-chip memory and
direct memory access (DMA) controller cores are connected to
the system bus, which in turn is bridged to the processor-local
bus via a bus controller. Universal Asynchronous Receiver and
Transmitter (UART) and JPEG decoder cores are connected to
the peripheral bus, which is bridged to the system bus. Both
the UART and JPEG decoder cores are DMA capable. The
DMA controller is capable of transferring data between
peripheral cores and memory without the intervention of the
processor. The processor can run concurrent to the DMA until a
cache miss occurs, at which point the processor is blocked
waiting for the DMA transfer to complete. Most cores in our
architecture are parameterizable. These parameters will be
discussed next.

The MIPS R2000 processor can be instantiated with code
compression enabled or disabled, and local instruction cache
size set to one of 1, 4, 16 or 32. Processor local, system, and
on-chip peripheral buses of our architecture can each be
instantiated with varying data/address bus-width and encoding
schemes. Bus widths can be set to one of 4, 8, 16 or 32.
Data/address encoding can be set to binary (no encoding) or
bus-invert [8]. The total size, block-size (line) and associativity
of the instruction and data caches can also vary. Cache size can
be set to a value in the range of 128 to 64K bytes, block-size
can be set to one of 4, 8, 16, or 32 and associativity can be set
to one of 1, 2, 4, or 8. The on-chip memory can be instantiated
with 4K to 256K bytes of storage. In addition to selecting DMA
priorities, the DMA controller can be instantiated with
maximum block transfer size set to one of 4, 16, 64 or 128
bytes. The UART core’s transmitter/receiver buffer sizes can
each be set to one of 1, 2, 4, 8, or 16 bytes. Finally, the JPEG

decoder core’s pixel resolution can be set to one of 10 or 12
bits.

3. Parameter definitions
We define an SOC parameter as a feature that can be modified
to tradeoff an application's power, performance and/or size
metrics, without affecting the application's essential
functionality. Each parameter may be set to one of a finite
number of values. A configuration is a selection of values for
all parameters of an SOC.

3.1 Static versus dynamic parameters
The two main types of SOC parameters are static and dynamic.
A static parameter is a parameter whose value must be set
before we fabricate an instance of the SOC. This value is
therefore fixed in the fabricated SOC. The parameter typically
appears in the HDL source used to eventually create an
instance of the SOC. The source may be behavioral or
structural. The parameter often appears as a generic in a HDL,
such as a buffer-size generic for a UART. More complex
parameters may not be representable by generics, but rather
may require new HDL code to be generated for each parameter
value, such as a parameter indicating ROM size to a ROM
generator.

A dynamic parameter, in contrast, is one whose value may be
set in an already fabricated SOC. The SOC therefore will
contain extra on-chip structure able to support various
parameter settings. The parameter typically appears as part of
the SOC design, such as a register whose value may result in
disabling portions of a UART buffer. Dynamic parameters are
therefore run-time configurable. They are typically configured
by software, but may also be configured by other hardware or
by setting external pins. The existence of dynamic parameters
brings about the concept of a logical architecture. Each
configuration of a parameterized SOC architecture represents a
single logical architecture.

A dynamic parameter's run-time configurability introduces the
notion of configurability granularity, which is the time slice
after which this parameter can or should be reconfigured.
Examples of fine-grained configurable dynamic parameters are
those that are reconfigured for every application code segment,
every task context switch, or every cache hit/miss. Example of
coarse-grained configurable dynamic parameters are those
that are reconfigured on power up, at the start of an
application, when battery power is low, or through user
commands.

Static parameters can be converted to dynamic ones through a
process of architectural redesign. For example, a static buffer-
size parameter can be made dynamic by creating a buffer of the
maximum size possible, and adding an additional register
indicating the current value of the parameter. This register's
output would be used to enable/disable registers in the buffer,
and to set the signal indicating a full buffer when all enabled
registers were being used.

Likewise, dynamic parameters can be converted to static ones.
For example, the dynamic buffer-size parameter above can be
converted to a static parameter by removing the size register,

Figure 1: Target Architecture.

I$ D$

Bus Controller

MEM MEM Controller

DMA

BUS-
BRID

GE

UART
On Chip Per. Bus

JPEG

System
Bus

Processor Local Bus

MIPS

and creating instead a buffer of exactly the desired size. As
another example, parameters typically thought of as software
configurable parameters (e.g., DMA block size) could be
converted to static parameters by hardwiring the value for a
particular application.

3.2 Abstraction level
Parameters can also be classified by their level of abstraction,
independent of whether they are static or dynamic. We
distinguish among three levels - circuit, architecture, and
application.

Circuit-level parameters, when set, keep the same general
logical architecture, but make small modifications to the way
bits are stored or transferred. Examples of such parameters
include parity, bus-invert encoding or other encoding, code
compression, and buffer sizes.

Architecture-level parameters can reconfigure the system to
very different logical architectures, changing for example the
system’s bus hierarchy, memory hierarchy, or physical
communication link.

Application-level parameters actually change the system’s
functionality in a non-essential way, typically impacting quality
features. An example is a pixel resolution parameter in a
picture processing application, which results in lower-quality
video but less power. Another example is a sorting algorithm
parameter, which trades off memory requirements with speed.

An analogy may be made with the various layers known in
networking.

4. Parameter interdependency
Most system parameters are interdependent on each other.
These interdependencies must be considered when selecting a
valid configuration, i.e., assignment of values to all parameters.
Interdependencies can be classified as either performance
related or hard, i.e., constraint related, interdependencies.

Performance related dependencies between a pair of
parameters dictate that values for these parameters must be
selected simultaneously in order to achieve overall optimal
solutions. Likewise, such dependency dictates that selecting the
optimal value for one parameter followed by selecting the
optimal value for the other may result in an inferior solution.
As an example, it has been shown that cache and bus
parameters bear a strong performance dependency [2].

Hard or constraint related dependencies are those dependencies
that must be considered in order to select valid configurations.
As an example, given our target architecture, increasing the
UART’s transmitter buffer size past the DMA’s block transfer
size would not be valid. Likewise, decreasing the size of the
on-chip-memory to less than the size of a cache block will also
result in a faulty architecture.

It must be noted that while performance related
interdependencies make the parameter exploration slow, by
exponentially enlarging the design space, hard and constraint
related interdependencies make such exploration faster by
pruning the design space. However, for a given architecture, it
is crucial to discover all dependencies among parameters in
order to construct efficient and accurate design exploration
tools.

5. Evaluation dependency
In order to select optimal parameter values, i.e., a good
configuration, it is essential to evaluate various performance
metrics, such as power, execution time and area. In this section
we will describe three simulation-based approaches for
evaluating such metrics. Furthermore, we point out the
dependency of parameters on one another and how this
dependency must be taken into consideration in order to
perform fast and accurate evaluation of performance metrics.

Our first approach is based on a full simulation of an
application. Here a parametrizable high-level model of the
architecture is developed. Then, for each configuration, a full
simulation is performed and metrics are gathered. This process
is iterated until a desired configuration is obtained. This
approach is simple but slow because it assumes that all
parameters are dependent on one another. For example, when
evaluating power, changing the value of the UART buffer size,
may not effect the power consumption contributed by the MIPS
and cache sub-system, thus one does not need to re-simulate
these components.

Our second approach, trace-driven simulation, takes advantage
of such dependencies (or lack of). This approach also requires a
parametrizable high-level model of the architecture. When the
system is simulated for some configuration, in addition to
outputting performance metrics, each core generates some
intermediate data, i.e., a trace of its input/output data that is
subsequently used by the trace-simulators. Trace-simulators1

1 Trace-simulators often are partial simulator, i.e., they don’ t

completely implement that behavior of a core, and thus they
run faster. As an example, trace-simulators are often used to
evaluate cache performance given a trace of memory
references.

Figure 2: Dependecy Model.

I$ D$

Bus Controller

MEM

MEM Controller
DMA BUS-

BRIDGE

UART

On Chip Per. Bus

JPEG

System
Bus

Processor Local BusMIPS

are partial simulators that process the input trace and report
performance metrics. When iterating, a dependency model can
be used to determine when traces can be used in place of full
simulation. A dependency model can be depicted as a graph
with nodes representing cores and arrows representing the
dependencies. The dependency model for our target
architecture is given in Figure 2.

Our third approach improves upon our second approach by
replacing some of the trace simulators with analytical or
statistical models that further speedup evaluation of
performance metrics, with only small losses in accuracy. For
example, assuming random data transmission over a bus, and
knowing the traffic on it (obtained from the trace, say) one can
use equations to determine the bit-switching activity and
compute power consumption of that bus. Likewise, after
simulating a cache for a small number of configurations, one
can use curve fitting to estimate cache performance metrics for
other configurations.

6. Experiments
In this section, we will outline our experimental setup and give
some results. Our goal is to demonstrate the large tradeoff
between power and execution time when system parameters are
varied.

For our experiments, we have used the presented architecture
to implement a serial JPEG accelerator. In our application, the
UART is used as a high-speed link between a host (off-chip)
processor and our accelerator. Compressed JPEG images are
received via the UART and transferred to the on-chip memory
using DMA. Then, Huffman decoding is performed using the
on-chip MIPS processor. Next, the decoded image is
transferred, one 8x8-pixel block at a time, to the JPEG decoder
using DMA. The JPEG decoder performs de-quantization and
applies the inverse discrete cosine transform to each block and
transfers (using DMA) the block back to memory. Finally, the
resulting image is sent back, as they become available, to the
host (off-chip) processor.

We have implemented an executable C++ object-oriented
model of the architecture presented in Figure 1. In our model,
all computational, e.g., UART, communication, e.g., busses,
and storage, e.g., caches, are represented as objects.
Furthermore, computational cores are designed as active object,
i.e., capable of executing in their own thread of execution and
communication objects are designed to facilitate synchronous
message passing between various threads of execution. The
high-level model, currently 12,000 lines of code, can be
compiled and executed on a workstation.

Prior to execution of the system model, the software running on
the MIPS, e.g., the software for the serial JPEG accelerator
application, is compiled separately using a C compiler and
loaded into the on-chip memory. Also, the various system
parameters are set and the model is executed. The following
parameters are varied in our experiments: cache sizes (128, 8K,
or 64K), cache line (4 or 16), cache associativity (1 or 8),
processor, system and peripheral bus data width (4 or 32), bus
data encoding (binary or bus-invert), JPEG decoder pixel
resolution (10 or 12 bits), and UART transmit buffer size (1 or

16). Input to the UART is emulated to be a 640 by 480 pixel
color photograph in JPEG format. When the execution
completes, the model outputs the performance, i.e., power
consumption and execution time, of the overall system. In our
previous work, we have shown that our simulation model is on
the average accurate to 85% when compared to gate-level
simulation results. A detailed discussion of our simulation
model and various power and performance evaluation
techniques can be found in [3][12]. Considering the large
design space of our architecture (approximately trillions of
configurations), the advantage of using a high-level simulation
model is its speed of execution, enabling wider exploration.
For our serial JPEG accelerator application, we were able to
simulate 100 configurations per minute on a 450MHz machine.
In comparison, gate-level simulation would have required
several days per configuration.

For our experiments we selected a total of 9016 configurations
that represented the extremes and median values for each
parameter described in earlier sections. The power and
execution time are depicted in Figure 3. Results show a
significant tradeoff between power and execution time, with a
2x range for execution time and a 10x range for power.

7. Conclusions
We showed that a few relatively straightforward static system
parameters could yield a power/performance tradeoffs with a
range of 10x. Our system architecture could have been much
more heavily parameterized, leading to an even bigger tradeoff
potential. Such parameters could be created from existing and
future low-power techniques. For example, the microprocessor
could have had a parameterized datapath that could vary from 8
to 32 bits. The buses could have used more powerful encoding,
such as T0 for address [1] or limited-weight codes for data [9].
We could have used code compression. Furthermore, a
parameter-aware compiler could be used to optimize an
application for a particular configuration [13]. These
possibilities imply that we may be able achieve tradeoffs with
ranges of 100x or even 1000x, making parameterized systems
widely applicable and hence making further focus on
parameterized system design important.

Figure 3: Experimental Results. Power vs. Execution time.

Power (mW)

E
xe

cu
ti

on
 T

im
e

(m
s)

8. References
[1]

���������
	���
�����
����������
������������������������	�� ��!���"$#%�$&('
�)��*+���)���%	-,.���
/ �

0�����#�
�����
���1&32�45�����
��������	�'6��,879�;: �<�=�(��*>*+��	���
��������	?��	
��@�'
��#�*+ACBD#%��#%� E3��'
#%'��

 International Workshop on
Hardware/Software Codesign, 1999.

[2] T.D. Givargis, J. Henkel, and F. Vahid. Interface and Cache Power
Exploration for Core--Based Embedded System Design. International
Conference on Computer Aided Design, 1999.

[3] T.D. Givargis, F. Vahid, J. Henkel. A Hybrid approach for Core-
based System-level Power Modeling. Asia and South Pacific Design
Automation Conference, 2000.

[4] R. Gupta and Y. Zorian. Introducing Core-Based System Design.
IEEE Design & Test, Vol. 14, No. 4, Oct-Dec 1997, pp. 15-25.

[5] K. Kiefendorff. Transistor Budgets Go Ballistic. Microprocessor
Report, Volume 12, Number 10, August 3, 1998, 14-18.

[6] Y. Li and J. Henkel. A Framework for Estimating and Minimizing
Energy Dissipation of Embedded HW/SW Systems. Design
Automation Conference, pp.188-193, 1998.

[7] Semiconductor Industry Association Roadmap 1997,
http://notes.sematech.org/ntrs/PublNTRS.nsf.

[8] M.R. Stan, W.P. Burleson. Bus-Invert Coding for Low Power I/O.
IEEE Transactions on VLSI, March 1995.

[9] M.R. Stan, W.P Burleson. Coding a Terminated Bus for Low Power.
Great Lakes Symposium on VLSI, March 1995.

[10] B. Payne. Rapid Silicon Prototyping: Paradigm for Custom System-
on-a-Chip Design. http://www.vlsi.com/velocity, 1998.

[11] F. Vahid, T.D. Givargis, The Case for a Configure-and-Execute
Paradigm. International Workshop on Hardware/Software Codesign,
1999.

[12] F. Vahid, T.D. Givargis. Incorporating Cores into System-Level
Specification. International Symposium on System Synthesis, 1998.

[13] A.V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, X. Ji. Adapting
Cache Line Size to Application Behavior. International Conference
on Supercomputing, 1999.

[14] P. van der Wolf, P. Lieverse, M. Goel, D.L. Hei, K. Vissers. An
MPEG-2 Decoder Case Study as a Driver for a System Level Design
Methodology, pp. 33-37, International Workshop on
Hardware/Software Codesign, 1999.

[15] J. Van Meerbergen, A. Timmer, J. Leijten, F. Harmsze, M. Strik.
Experiences with System Level Design for Consumer ICs, VLSI’98,
pp 17-22.

[16] Velocity product information, VLSI Technology Inc.
http://www.vlsi.com/velocity.

[17] Virtual Socket Interface Association, Architecture Document.
http://www.vsi.org, 1997.

