

A Logic Block Enabling Logic Configuration
by Non-Experts in Sensor Networks

Susan Cotterell and Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
{susanc, vahid}@cs.ucr.edu, http://www.cs.ucr.edu/{~susanc, ~vahid, eblocks}

*Also with the Center for Embedded Computer Systems at UC Irvine

ABSTRACT
Recent years have seen the evolution of networks of tiny low
power computing blocks, known as sensor networks. In one
class of sensor networks, a non-expert user, who has little or
no experience with electronics or programming, selects,
connects and/or configures one or more blocks such that the
blocks compute a particular Boolean logic function of sensor
values. We describe a series of experiments showing that
non-expert users have much difficulty with a block based on
Boolean logic truth tables, and that a logic block having a
sentence-like structure with some configurable switches
yields a better success rate. We also show that a particular
use of color with a truth table improves results over a
traditional truth table.

Categories & Subject Descriptors
H5.m. Information interfaces and presentation:
Miscellaneous.

General Terms
Design; Experimentation; Human Factors

Keywords
Sensor networks; Boolean logic; embedded computing
systems; truth table; eBlocks

INTRODUCTION
The continued shrinking of computer chip size and cost has
led to a class of computing known as sensor networks [7,11].
A sensor network is a computing network consisting of tens
to thousands (or more) of tiny compute nodes. A node may
range in size from perhaps a matchbox, to something not
much larger than a large piece of dust, and may cost just a
few dollars to as little as just a few cents.

One particular evolving class of sensor networks is known as
eBlocks [3,4], which we are developing at the University of
California, Riverside. eBlocks are intended to enable regular
people, having no electronics or programming experience, to
construct basic but useful customized sensor-based systems.
One such system might alert a homeowner that their garage

door has been left open at night. Today, a garage-open-at-
night system can be purchased off-the-shelf, but due to low
sales volumes, may cost about $75. Furthermore, the off-the-
shelf systems can’t be customized easily. In contrast, with
eBlocks, the homeowner could purchase various building
blocks and as illustrated in Figure 1(a), connect the blocks,
and configure the logic to detect the condition of the contact
switch sensor and the light sensor each outputting false. As
another example, a homeowner might want to set up a system
that detects that their child is sleepwalking in the dark as
illustrated in Figure 1(b). Countless similar uses of sensor
blocks exist, e.g., a caregiver may want to detect certain daily
activities (walking, in bed, talking on the phone) of an aging
patient, an environmental scientist may wish to photograph
nocturnal animals at a feeding hole, or a building manager
may want to be alerted to a temperature exceeding a
threshold. These systems can be built from many of same
basic building blocks. Hence, makers of such blocks could
sell the blocks in large volumes, thus reducing cost.

The above systems require the use of logic blocks to compute
basic Boolean logic functions. For programmers and
engineers, AND, OR and NOT form the basic logic blocks
from which any logic function can be computed. However,
we sought to create a single block that could be configured to
a particular logic function, to avoid the inconvenience of
users having to utilize several and varying numbers of logic
blocks depending on the desired function. In this paper, we
describe several designs for logic blocks, and provide data
from several experiments demonstrating that a sentence-
based block yields best results.

TABLE-BASED LOGIC BLOCK AND INITIAL INFORMAL
EXPERIMENTS
A key design criterion for all eBlocks is that the blocks
should be self-explanatory. Our experiments have confirmed
to us, and are consistent with other studies [5,13], that users
prefer exploratory learning and dislike reading even the
shortest instructions. We built several dozen physical
eBlock prototypes. Each block was about the size of a deck
of cards, contained a PIC microcontroller
(http://www.microchip.com), and could be connected to
each other using simple two-prong plugs. We used “yes”
and “no” to represent logic values, and included short
descriptive phrases on each block. For example, the motion

Copyright is held by the author/owner(s).
CHI 2005, April 2–7, 2004, Portland, Oregon, USA.
ACM 1-59593-002-7/05/0004.

sensor block says: “Outputs ‘yes’ when motion is detected,
‘no’ otherwise.” We designed a logic block with a 2-input 1-
output truth table on the front of the block. We believed that
non-experts would not have trouble understanding a truth
table, because a truth table simply lists each input condition,
and thus users would merely need to select the desired output
(yes or no) for each input condition by moving a switch. We
favored the truth table design because a truth table can
represent all two input Boolean functions.

With these prototypes, we conducted a series of informal
experiments to see what aspects of eBlocks people readily
understood, and what aspects were challenging. We gave
users a set of blocks, asked users to build specific systems,
and observed them for 30 minutes. Participants included
neighbors, kids, friends, and one high-school class. We
observed most of the participants could not successfully use
the logic block without training. Much confusion existed as
to how to configure the switches and how to interpret the
truth table. These early informal experiments led to us to
focus on creating a better logic block.

Truth Table Experiments Using Written Quizzes
We gave a written quiz to determine if a truth table based
block was intuitive to non-experts. Typical majors of
participants were psychology, business, etc. We randomly
distributed three different versions of the quiz among the
students. All versions introduced the idea of a motion sensor,
a light sensor, and a logic block, using a short description and
figure. The quiz asked students to configure the logic block
for various sensor conditions.

One quiz version allowed the students to answer by checking
boxes in a truth table similar to the original logic block.
Table 1 summarizes results in the Truth table with variables
column. Only 36% of the students correctly filled in the table
outputs for a “detect motion at night” condition, while none
of the students correctly configured the table’s outputs for
more difficult conditions.

One might assume that the reason for the low scores was due
to the use of variable names (A, B) in the quiz, and the use of
the complement symbol (A’). To test this assumption, we
used a second version of the quiz that used a truth table
version that wrote out each input combination in English. As
can be seen in Table 1 in the Truth table with English
column, students performed better but still poorly.

We also checked whether people were comfortable writing
Boolean equations. We used a third quiz version that showed

an example of a Boolean equation of A and B, and that asked
students to write the correct Boolean equation of input
variables. As seen in the Table 1 in the Boolean equations
column, success rates were low.

Just to be sure that the notion of truth tables was the item
causing difficulties, we gave the quiz version using a truth
table with variables to students in a digital design course who
had previous experience with truth tables. Of the six students,
100% answered the motion at night question correctly, and
the average success on the remaining three questions was
90%. We found that non-expert students simply had no
understanding of what the rows and columns of the truth
table signified, and we concluded that a truth table is not a
known concept for non-experts. We thus began our search
for a single-block logic design that was more readily
understandable by users.

TRUTH TABLE AND SENTENCE EXPERIMENTS USING A
SIMULATOR
We proceeded to define three “improved” versions of table-
based logic blocks, and a sentence-based logic block, shown
in Figure 2. To support the next series of experiments, we
developed an eBlock simulator. The simulator enabled us to
experiment with larger numbers of users than possible with
our limited number of physical prototypes. Furthermore, the
simulator enabled users to examine the behavior of their
configured systems – a feature that exists when eBlocks are
used in practice, but that is absent in written quizzes.

Experiments – Four Logic Block Versions
We created a modified version of the simulator that displayed
a pre-designed eBlock system with the logic block in the
center, so that the user only had to configure the logic block
to complete the system – the user did not have to instantiate
or connect blocks. We created pre-designed systems for two
different problems, with instructions briefly describing the
problem and asking the user to configure the switches on the
“combine” block to correctly solve the problem.

We conducted experiments in spring 2004 using the
simulator. The participants were students in lab sections of
our earlier-mentioned computer applications course, and our
introduction to programming course for non-scientists/non-
engineers. Students had 15 minutes to complete a simulator-
based quiz, most finishing in less time. Table 2 shows that
the logic block versions having truth tables embedded in a
sentence slightly outperformed the phrased truth table. We
also see that the logic sentence version seemed to outperform

Figure 1: Garage Open At Night System built using eBlock
prototypes (a) and Sleepwalking Detector (b).

Table 1: Results of written quizzes for truth tables and Boolean
equations.

Question Truth table with
variables
 (11 students)

Truth table with
English
 (9 students)

Boolean
equations
 (9 students)

Motion at night 36% 22% 11%
Motion 0% 56% 0%
Motion at night or no
motion in day

0% 22% 0%

Motion or night 0% 11% 0%

contact switch
sensor light

sensor

logic

LED

(a) (b)

Wireless
TX

Wireless
RX

Parent’s Room
In hallway

LED

A

B

Light
Sensor

Motion
Sensor

2-Input
Logic
AB’

the truth table versions, demonstrating 38% success for the
daytime doorbell.

Experiments – Table Versus Logic Sentence
We ran simulator-based experiments again with students in a
computer applications course and an introduction to
programming course for scientists/engineers. We included 3
problems and tested 2 logic block versions: the colored truth
table embedded in a sentence, and the logic sentence.
Participants had to instantiate and connect the blocks
themselves, and had 15 minutes to complete the exercises.

Table 3 shows slightly better performance by students using
the logic sentence block for the slightly more difficult
nighttime doorbell. Most interesting is that we see better
performance by students using the logic sentence block for
the motion on property problem. Although that problem
seems simple, it requires a student using a truth table block to
place three switches in the yes position, whereas the other
two problems require only one switch in the yes position. In
contrast, the sentence structure only requires moving the
function switch from AND to OR.

Table 3 also shows “close to correct” responses in
parentheses, defined as meaning that only one switch was in
the wrong position. Notice that the logic sentence
outperforms the truth table for all three problems. For the
motion on property problem, note that no student failing to
configure the table correctly was even close to correct.

We conducted the same experiment with “intermediate”
students in a second programming course, using the daytime
doorbell logic problem. Only 42% of the students
successfully configured the truth table block, while 92%
configured the logic sentence correctly likely because the
logic sentence block looks similar to a Boolean expression in
a programming language’s branch or loop construct.

Experiment – Logic Sentence Block and Motivated
Participants
We conducted an experiment in the summer of 2004 in
which the participants were eight high-school graduates
planning to attend our university as some type of engineering
major, who voluntarily enrolled in a summer enrichment

program. We gave them the simulator-based experiment,
beginning with the daytime doorbell as the problem to solve
(other problems involved state-based blocks and are beyond
the scope of this paper). Students had to instantiate, connect,
and configure the blocks. The only logic block available to
them was the logic sentence block. Seven of the eight
students, or 88%, correctly instantiated and configured the
logic sentence based block.

Physical Logic Block Prototype Using a Logic Sentence
Based on the results of the above experiments, we built new
physical prototypes for our logic block, using a logic
sentence structure. We informally utilized these blocks with
10 additional users, and have not yet seen users encounter
problems utilizing the block. Although a logic-sentence block
only covers eight of the possible 16 functions of two inputs,
we have found that those eight functions seem to cover most
practical uses of a logic block.

OTHER EXPERIMENTS
We compared the user success rate of our single block logic
approach with an approach using separate blocks for AND,
OR and NOT. In the simulator-based experiments of Table 3,
we included separate AND, OR, and NOT blocks as one of
the versions. Users instantiated and connected the blocks.
Table 4 summarizes results. We see the AND/OR/NOT
blocks are competitive with the best truth table and logic
sentences. However, we see that the logic sentence still has a
higher success rate –we see that the intermediate students had
a success rate of 69%, compared to the logic sentence of
92%. Nevertheless, AND/OR/NOT seems to be a viable
option when multiple blocks for logic are feasible. We point
out again though that, when using physical blocks, utilizing
multiple blocks for a logic function can be inconvenient.

We also experimented with a colored logic sentence block,
inspired by the colored truth table’s success. The phrase
“When A is yes/no” is replaced with a green or red “A,”
likewise for B. We introduced this colored logic sentence

Figure 2: Logic block versions: (a) phrased truth table, (b) phrased
truth table embedded in a sentence, (c) colored truth table embedded

in a sentence, (d) logic sentence.

Table 2: Results of simulator-based experiments for improved
truth tables and logic sentence.

Question Phrased truth
table
(33 students)

Phrased truth
table
embedded in
sentence
(30 students)

Colored truth
table
embedded in
sentence
32 students)

Logic
sentence
(32 students)

Daytime
doorbell (AB)

15% 20% 22% 38%

Garage open at
night (A’B’)

16% 13% 25% 19%

Table 3: Results of simulator-based experiments for logic
sentence and colored truth tables. Numbers in parentheses
include students whose answers were “close to correct.”

Question Colored truth table
embedded in a sentence
(15 students)

Logic sentence
(17 students)

Daytime doorbell (AB) 47% (67%) 47% (71%)
Nighttime doorbell (AB’) 33% (52%) 41% (76%)
Motion on property (A+B) 33% (33%) 65% (71%)

(c)

yes no

The output
should be

When the
input is

out

A B
A B
A B
A B
A B

Combine

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

(d)

(a)

A B The output should
be yes w

hen:

C
om

bine

yes no

A is yes, B is
A is yes, B is no
A is no, B is yes
A is no, B is no

(b)

yes no

the output
should be

A B

When the
input is

out
Combine

A is yes, B is yes
A is yes, B is no
A is no, B is yes
A is no, B is no

Letters are colored green/red to indicate yes/no

block into the earlier-described table verse logic sentence
experiments. 12 students had received the simulator version
with the colored logic sentence block. The colored logic
sentence block did not perform as well as the regular logic
sentence block, having only a 58% success rate compared to
the 92% success rate of the regular logic sentence block.

RELATED WORK
Much work strives to simplify the design and integration of
sensor based components. We briefly discuss several classes
of solutions; a more detailed discussion can be found in [2].
Programmable products [7,10] are composed of a centralized
programmable board or block to which a user can easily add
desired sensors and actuators. Applications are specified in
graphical or textual programming languages, compiled, then
downloaded to a centralized board or across multiple boards.
Requiring a user to learn a programming language may
intimidate non-expert users and conflict with one of the main
goals of eBlocks. Board products consist of electronic
components connected on a specialized circuit board [8] and
intended for a different audience. Block products [9] are
composed of electronic components that users simply
connect the desired blocks together to build complete
systems. While the use of separate AND, OR, and NOT is
feasible, we want to minimize the number of blocks required
to build various eBlocks systems for convenience, reduced
power, and cost.

The difficulty of expressing Boolean equations is not limited
to sensor networks. Some research [6] shows that users
confuse the vague meanings of AND and OR as used in
English with those operators’ precise meanings in Boolean
equations. Further, users are unfamiliar with the scope of the
NOT operator and often ignore parentheses [12]. There is
much work in information retrieval systems, which aims to
aid in the construction of Boolean equations [12]. The many
alternatives for specifying Boolean equations do not translate
well to the logic block interface, due to power, cost, and
physical constraints making a large graphical interface
infeasible, and due to not wanting to require a computer to
configure blocks. Home automation is another area that
requires end user configuration specifying the interactions
between various appliances and devices. Direct manipulation
of physical blocks is used as a programming paradigm in [1]
and enables users to observe effects of the manipulation. Our
approach similarly uses direct interaction and exploratory
learning to enable successful configuration.

CONCLUSION
We have described an emerging class of sensor networks,
which requires non-expert users to specify Boolean logic

functions. We presented a variety of logic block interfaces,
and experiments showing that non-expert users have
difficulty with truth table based blocks. We demonstrated
that utilizing color in truth tables improves success, and that a
logic block having a sentence-like structure with some
configurable switches yields a better success rate.

ACKNOWLEDGMENTS
This work is being supported by the National Science
Foundation (CCR-0311026), and by a Department of
Education GAANN fellowship. We also thank Ryan
Mannion for his efforts in developing an eBlock Simulator.

REFERENCES
1. Blackwell, A., R. Hague. AutoHAN: An Architecture for

Programming the Home. IEEE Symposia on Human-
Centric Computing Languages and Environments, 2001.

2. Cotterell, S., F. Vahid. A Logic Block Enabling Logic
Configuration by Non-Experts in Sensor Networks. UC
Riverside Technical Report UCR-CSE-04-09, 2004.

3. S. Cotterell, K. Downey, F. Vahid. Applications and
Experiments with eBlocks - Electronic Blocks for Basic
Sensor-Based Systems. SECON 2004.

4. S. Cotterell, F. Vahid, W. Najjar, H. Hsieh. First Results
with eBlocks: Embedded Systems Building Blocks.
CODES+ISSS Merged Conference, October 2003.

5. Gammon, B. Everything we currently know about
making visitor-friendly mechanical interactives. British
Interactive Group, http://www.big.uk.com, 1999.

6. Hidreth, C. R. Intelligent Interfaces and Retrieval
methods for Subject Search in Bibliographic Retrieval
Systems. Advances in Library Info. Tech., 2 (1989).

7. Hill, J., D. Culler. MICA: A Wireless Platform For
Deeply Embedded Networks. IEEE Micro 22, 6 (2002).

8. Kharma, N. and L. Caro. MagicBlocks: A Game Kit for
Exploring Digital Logic. Proc. of the 2002 American
Society for Eng. Education Annual Conference (2002).

9. Logiblocs. http://www.logiblocs.com.
10. MIT Media Laboratory. Programmable Bricks.

http://llk.media.mit.edu/projects/cricket/
11. National Research Council. Embedded, Everywhere: A

Research Agenda for Networked Systems of Embedded
Computers. National Academies Press (2001).

12. Pane, J. and Myers, B. Tabular and Textual Methods for
Selecting Objects form a Group. Proc. Visual Languages
(2000), 157-164.

13. Sikorski, M. Teaching Computers the Young and the
Adults: Observations on Learning Style Differences. CHI
(1998), pp 42-43.

Table 4: Results of using AND/OR/INV blocks. Numbers in
parentheses include “close to correct” solutions.

Question Non-expert Students
(16 students)

Intermediate Students
(13 students)

Daytime doorbell (AB) 63% (69%) 69% (77%)
Nighttime doorbell (AB’) 50% (38%)
Motion on property (A+B) 63% (63%)

