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Abstract: We have designed a low power four-way set-
associative cache that stores the four lowest-order bits of all way’s 
tags into a fully associative memory, which we call the halt tag 
array. The comparison of the halt tag array with the desired tag 
occurs concurrently with the address decoding that determines 
which tag and data ways to read from. The halt tag array pre-
determines most tags that cannot match due to their low-order 
four bits mismatching. Further accesses to ways with known 
mismatching tags are then halted, thus saving power.  Our halt 
tag array has the additional feature of using static logic only, 
rather than dynamic logic used in highly-associative caches, 
making our cache consumes even less power. Our result shows 
55% savings of memory access related energy over a conventional 
four-way set-associative cache. We show nearly 2x energy savings 
compared with highly associative caches, while imposing no 
performance overhead and only 2% cache area overhead. 

I. INTRODUCTION  
Caches may consume nearly 50% of a microprocessor’s 
power [9][12]. Cache designers, for both high-end and 
embedded processors, must compromise between 
performance, cost, size, and power/energy dissipation. 

In this paper, we introduce a new cache design, which we 
call a way-halting cache that reduces the cache’s internal 
activities to access nearly the ideal minimum tag and data 
ways without any performance overhead – neither in the 
cache access time nor in the hit rate. Our cache is four-way 
set-associative, though the method can be applied to an 
arbitrary set associativity. We divide each of the four tag 
arrays into two sub-arrays: the first sub-array (the halt tag 
array) holds only the low-order 4 bits of each tag and the 
other sub-array (the main tag array) holds the remaining bits 
of each tag. A way-halting cache checks all the (four-bit) 
tags in the halt tag array in parallel with address index 
decoding, in contrast to traditional approaches that only 
check the tags in the cache set specified by the decoded 
address index. In a way-halting cache, the decoded index 
activates only the main tag array and data arrays of ways that 
have not been predetermined by the halt tag array check to be 
a mismatch – predetermined mismatches effectively halt the 
access to a way’s main tag array and data array. Note that 
way-halting does not impact the hit rate, as the hit rate is 
identical to that of a four-way cache – we’ve merely caused 
early terminations of accesses to ways that are pre-
determined to be misses. Furthermore, through careful 
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design, we can design the halt tag array to guarantee that the 
access and comparisons of the halt tag array do not extend 
the cache’s critical path. We will show that a way-halting 
cache comes very close to halting three ways on a hit (and 
hence accessing only one full tag and data way), and to 
halting all ways on a miss (and hence accessing no full tag or 
data ways) – both approaching the ideal minimums of cache 
access.  

Our way-halting cache uses a fully-associative memory 
for the four-bit-wide halt tag array. We took special care to 
design that memory using static circuits for the ease of 
implementation, in contrast to the dynamic circuits used in 
the content-addressable memories (CAMs) found in some 
modern highly associative cache architectures of embedded 
processors. Fortunately, address locality found in 
applications means that the static circuit inputs do not switch 
much. Since CMOS power consumption comes mostly from 
switching, our fully associative halt tag array memory 
consumes very little power. 

 A closely-related work is the adaptive serial-parallel 
highly-associative cache [5] that reduces tag access power by 
checking the least four significant tag bits of each tag (stored 
in CAMs using dynamic logic) in the first cycle, and 
checking the remaining bits if the first four match in the 
second cycle. This design prolongs cache access time 
resulting 25% slowdown as reported in [5]. A way-halting 
cache (which was developed independently), in contrast, has 
no performance overhead, and uses only static logic. 

II. WAY-HALTING CACHE ARCHITECTURE 

A. Base architecture  
Our way-halting cache architecture is shown in Figure 1. We 

 

 

 

 

 

 

 
 

Figure 1: Way-halting four-way set-associative cache architecture. 
Four bits of each tag is stored in a separate halt tag array for each 
way. The first inverter of the word line driver is replaced by a 
NAND gate. 
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utilize a four-way set-associative cache as our base 
architecture, since four-way yields a sufficiently good hit rate 
for most applications. We use an 8 Kbyte total cache size and 
a 32-byte line size, though our approach can be applied 
straightforwardly to caches with other configurations. For 
such a cache, a memory address will be divided into 6 index 
bits to determine the set, 21 tag bits to determine a match, 
and 5 offset bits to extract the appropriate bytes from a line. 
The index bits from a desired address are fed into the 
decoder. One decoder output will become high, and is 
strengthened by a word line driver consisting of a pair of 
cascaded inverters, activating four cache lines of the one 
cache set. Four tag and data arrays are thus read out 
simultaneously through the sense amplifiers. Four 
comparators compare the desired address tag with the tags 
read from the tag array to see which way (if any) is a hit. The 
data of the hit way is sent to microprocessor through the mux 
and output driver. 

B. Main idea – early detection of misses 
Given a four-way set-associative cache, four tags are 
checked for each cache access. At most one of those tags 
may match, with the other three being mismatches. We 
observed that usually the mismatches occur in the low order 
tag bits because of the spatial locality of access. Therefore, if 
we can somehow check the low-order bits of a tag early, we 
can detect most misses early. Consequently, we can 
terminate the access to the full 17 bits of tag as well as to the 
data array banks before they consume power. 

C. Basic architecture 
To enable early detection of misses, we store the low-order 4 
bits of each tag in a separate 4-bit-wide memory. We call this 
memory the halt tag array (see Figure 1). We call the 
remaining 17-bit-wide tag array, shown as tag in the figure, 
the main tag array. In a conventional cache, the index of the 
desired address is first decoded. Then the resulting decoder 
output line activates the read of the appropriate tags from the 
tag arrays. The tags are next compared with the desired tag to 
determine a hit or a miss. Decoding takes some time, during 
which we have the opportunity to check the halt tag array 
without increasing the tag path delay. Since the address has 
not been decoded yet, we do not know which tag in the halt 
tag array to read and compare – we therefore compare all the 
halt tags with the four bits of the desired address’ tag. We 
accomplish this by implementing the halt tag array as a fully-
associative memory, which we point out is only 4 bits wide 
(and 64 rows long), making such a memory feasible in terms 
of size and power.  

In a conventional cache, the address decoder would assert 
a single output line high, and that line would be strengthened 
by the word line driver enabling reading the appropriate row 
from the tag and data arrays. In our way-halting cache, that 
output line should be ANDed by the results of the halt tag 
array comparison for that row.  In other words, only if the 
low-order four bits match should the cache continue to 
access the main tag array and the data array; if the halt tag 
was a mismatch, the output line should not go high. 

Adding an AND gate after the double inverters would 
lengthen the critical path. Instead, we can achieve the same 
logic by replacing the first inverter by a NAND gate as 
shown in Figure 1; the second inverter makes the total logic 
an AND. A NAND gate would normally be slower than an 
inverter. However, the first inverter of the cascaded inverters 
is typically small – the second inverter is instead 
appropriately sized larger to drive the signal. Thus, when 
replacing the first inverter by a NAND gate, we can increase 
the size of the NAND gate so that the gate’s switching speed 
is the same as the original inverter. The identical technique 
of replacing the first inverter by a resized NAND gate was 
used in the way-concatenate cache in [13], with detailed 
layout and timing analysis results showing no lengthening of 
the critical path.  

III. DESIGNING THE HALT TAG ARRAY  
The most important component in a way-halting cache is the 
halt tag array. It must be designed not only to be faster than 
the index decoder, but also to consume low enough energy so 
that we obtain overall energy savings. The two most 
important considerations in the design of the halt tag array 
are: (1) What bit width should the array be, and (2) how 
should the comparisons be implemented in the fully-
associative memory.  

A. Bit width of the halt tag array 
We examined the impact of the halt tag array’s bit width on 
the number of ways halted. We wanted to find the minimum 
number of bits that halts nearly three of the four ways per hit, 
or conversely stated, activates only one of the four ways per 
hit. We tried bit widths varying from 2 to 4. We simulated a 
variety of benchmarks for an 8 Kbyte, 32-byte line size cache 
using SimpleScalar [2]. The benchmarks included programs 
from Motorola’s Powerstone suite [9] MediaBench [8] and 
eleven programs from Spec2000 [6] .We used the reference 
input vectors with each benchmark as program stimuli. For 
Spec 2000 benchmarks, we fast forwarded the first one 
billion instructions to warm up the caches and simulated the 
next 500M instructions.  
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Figure 2:Average number of ways of instruction cache activated when 2-bit, 3-bit, and 4-bit are compared in parallel with address decoder. 
Ave_ps, Ave_md, and Ave_sp stand for average of Powerstone, Mediabench, and Spec 2000 respectively. 
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Energy will be saved if the number of ways, both tag 
and data, activated are reduced. We collected the average 
number of cache ways activated using a halt tag array width 
of 2, 3 and 4 bits. Results are shown in Figure 2 for 
instruction cache (results for data cache are not shown due to 
space limits) with averages for each benchmark suite circled. 
We see that a bit width of 4 is very close to the ideal 
situation of only accessing one way per hit. We also 
experimented with 16 Kbyte and 32 Kbyte caches and 
obtained similar results. 

B.    Halt tag array design 
Each halt tag array is a 64x4 fully associative memory. If we 
do not design that array properly, it may consume too much 
energy and hence mitigate savings obtained from halting 
ways.  

We originally designed the halt tag array using traditional 
10-transistor CAM cells, utilizing dynamic circuit 
techniques, as found in highly-associative CAM-tag based 
caches. We laid out the halt tag array, as well as the rest of 
the cache including the main tag array and the data array 
SRAM, in a TSMC 0.18 micron CMOS technology obtained 
through MOSIS [10]. We utilized several low power SRAM 
design techniques such as pulse word line control to limit the 
bit line swing, and word line segmentation such that only one 
word (32 bits) is read [1] on each read access.  

 However, we found that designing the halt tag array as a 
fully-associative memory built using static circuit (SRAM-
based) techniques resulted in a lower energy per access. 
Initially, one might be surprised at this statement, because 
static circuits typically consume more power than dynamic 
circuits. However, spatial locality works in our favor here. In 
particular, a static circuit only consumes power (dynamic 
power, that is) when its inputs change. Spatial locality 
implies that the halt tag address is usually the same from one 
access to another, in which case no dynamic power is 
consumed in the halt tag array. We measured the percentage 
of back-to-back changes in the dynamic halt tag address 
streams and plotted the results in Figure 3. Furthermore, even 
when there is a change in the address, only a few static 
comparators’ output bits change, keeping the dynamic power 
low for our static circuit comparator. Another advantage of 
using static circuit design is that the SRAM cell and the logic 
tools are available off-the-shelf. Note that data cache tags 
change more frequently due to less spatial locality than 
instruction cache, but are still low. 

Our halt tag array design is shown in Figure 4. One word 
of the array is depicted, which consists of four standard 
SRAM cells (two are shown), and a static comparator. 

The static comparator component must execute as fast as 
the address decoder component to avoid lengthening the 
critical path. Both components have two levels of gates. We 
designed our XOR and NOR gates of the comparator with 
big enough transistors to be as fast as the address decoder. 
The size of one static comparator is 3 µm × 16µm. The total 
area overhead is less than 2% of the total cache area. 

IV. EXPERIMENTS 
In this section, we show the experiments result and compare 
the energy consumption of the way-halting cache with 
previously proposed low-power cache architectures, 
including CAM-based highly associative, direct-mapped, 
way prediction, phased, and pseudo-set-associative caches.  

A. Energy evaluation 
We compute the overall energy consumption taking into 
account the off-chip memory and the processor core. The 
energy model is given in the following equations: 
1.  overall_energy = no_of_hits * hit_energy + no_of_misses * 

miss_energy 
2. miss_energy = offchip_access_energy   + uP_stall_energy + 

cache_block_fill_energy 

In the first equation, the no_of_hits and no_of_misses are 
obtained by running SimpleScalar with different cache 
configurations. The hit_energy is computed through 
simulation of circuits extracted from our layout of SRAM 
cache using Cadence [3]. 

Determining the miss_energy in the second equation is 
more involved. The offchip_access_energy value is the 
energy for accessing off-chip memory and the 
uP_stall_energy is the energy for the microprocessor when it 
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Figure 3:Tag address change frequency of data and instruction cache. 
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is stalled due to cache misses. The cache_block_fill_energy 
is the energy to fill the cache with a new block. The first two 
terms are highly dependent on the memory model and 
microprocessor model used in a system. Results from one 
real system may be entirely different from another. 
Therefore, we choose instead to create a “realistic” system, 
and then to vary the configurations to see the impacts on 
energy distribution. We examined all three terms in equation 
2 for typical commercial memories and microprocessors. We 
found that miss_energy is 50 to 200 times the hit_energy. 
Thus, we remodeled the miss_energy using the following 
equation: 

 
3. miss_energy =  k_miss_energy * hit_energy 

 
We will consider the situations where k_miss_energy is equal 
to 50 and 200 respectively.  

B. Comparisons with other low power cache architectures 
Figure 5 compares the energy dissipation of way-halting with 
CAM-based highly-associative [14], direct mapped, way 
predicting [11], phased [7], and pseudo-set-associative 
caches [4], using k_miss_energy = 50. The energy is 
normalized with respect to a conventional four-way set-
associative cache equaling 100%. We see that a way-halting 
cache is most energy efficient. Although the energy 
difference compared with some of the other cache designs 
may seem small, bear in mind that these savings come with 
no performance penalty compared to a four-way cache.  

We also generated the data for k_miss_energy = 200. 
Way-halting still dissipated the least energy on average, 
although highly-associative was more competitive due to the 
low miss rate of the high associativity – a high energy 
penalty (200) for off-chip access means that the lower miss 
rate due to high-associativity saves more energy from off-
chip memory accesses than the case of just a high penalty of 
50. 

V. CONCLUSION  
A way-halting cache is able to save, across three different 
benchmark suites, an average 45% to 60% of the energy of a 
conventional four-way set-associative cache, with only 2% 
area overhead, and no performance penalty – neither more 
cycles nor longer critical path. That energy savings is better 
than previous low-power cache approaches, and although the 
energy savings are only slightly better than some of those 
approaches, all those other approaches introduce 
performance overhead. Way-halting also saves energy over a 
highly-associative cache, adopting only static circuits that 

can be designed using standard memory compilers and tools.  
We designed the way-halting cache using a combination of 
architectural and layout methods. A key feature of our design 
is the use of a small fully-associative memory for the halt tag 
array based on a static circuit rather than a dynamic one, 
saving power because of the tendency of address tags to stay 
the same.  
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Figure 5:Energy for various cache designs, for Powerstone benchmarks, normalized to a conventional 4-way cache. 
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