
Exploiting Fixed Programs in Embedded
Systems: A Loop Cache Example

Ann Gordon-Ross, Susan Cotterell and Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
http://www.cs.ucr.edu/~vahid

*Also with the Center for Embedded Computer Systems at UC Irvine

Abstract--Embedded systems commonly execute one
program for their lifetime. Designing embedded system
architectures with configurable components, such that
those components can be tuned to that one program based
on a program pre-analysis, can yield significant power
and performance benefits. We illustrate such benefits by
designing a loop cache specifically with tuning in mind.
Our results show a 70% reduction in instruction memory
access, for MIPS and 8051 processors – representing
twice the reduction from a regular loop cache, translating
to good power savings.

Keywords--Loop cache, architecture tuning, low power,

fixed program, embedded systems.

I. INTRODUCTION

Microprocessor usage in many embedded systems has an
important feature distinct from usage in “desktop” computing
systems like personal computers, laptop computers, and
servers. In desktop systems, the microprocessor executes
many different programs over the system’s lifetime. In
contrast, in many embedded systems such as digital cameras
or automobile control systems, the microprocessor may
execute one program for the system’s lifetime – the program
is fixed.1

Microprocessor architects have long been aware of this
fixed program feature. They have thus incorporated certain
configurable features into the microprocessor architectures.
For example, a microprocessor chip may support two
configurations: one using an external program memory,
another using a smaller on-chip memory, which frees the
external pins for parallel I/O use. The embedded system
developer configures the chip during system initialization,
using the second configuration only if the fixed program fits
in on-chip memory. Architects also identify classes of
programs, and develop separate architectures for each class –

Manuscript submitted: 21 Dec. 2001.
Manuscript accepted: 20 Jan. 2002.
Manuscript received: 28 Jan. 2002.

perhaps differing in the amount of on-chip memory, on-chip
peripherals, supported interrupts, etc.

Continued increases in chip capacity have enabled far
more extensive incorporation of configurable features into a
microprocessor architecture. One reason is because
developers today often acquire a microprocessor architecture
in the form of intellectual property, known as a core, and
they then integrate the microprocessor into a system-on-a-
chip. Thus, they can tune the core’s configurable components
to match the fixed program, before fabricating the chip. For
example, they can create just the right amount of on-chip
cache or choose between direct-mapped or set-associative
cache. A second reason is that the cost of including
additional transistors onto pre-fabricated microprocessor
chips has decreased – an important point in the cost
hypersensitive embedded systems market. Transistors are by
no means free, but the cost equations have changed such that
including some additional transistors may not impact the
chip cost as much as it did in the past. Thus, we are seeing an
increase in on-chip configurable components, such as
configurable on-chip cache [9].

Microprocessor architects can therefore increasingly
consider creating aggressively parameterized components for
allowing an embedded system developer to tune those
components to a fixed program. We will demonstrate the
effectiveness of such aggressive parameterization using a
loop cache. We will show one way to redesign a basic loop
cache to exploit the fixed program feature. We provide
results showing excellent reductions in instruction memory
access, translating to reduced power.

II. ARCHITECTURE TUNING

We first describe the basic steps that a developer might
follow in tuning an architecture to a fixed program. Such
tuning is the complement of the common task of tuning a
program to an architecture – something that has long been
done in both embedded and desktop systems.

Architecture tuning is a step added to the end of the
program development process. Architecture tuning is the task
of selecting the best configuration for a particular fixed

program, where best is a user-defined combination of power,
performance, size, and other metrics. We define a
configuration as a particular setting of all parameters in all
parameterized components in an architecture. Architecture
tuning can be done pre-fabrication (in the case of cores) or
post-fabrication. Architecture tuning consists of several sub-
tasks [12]:

• Profiling consists of characterizing the program as it
executes with representative input vectors.

• Evaluation consists of determining the power and
performance (and size for pre-fabrication tuning) metrics
for a given program and configuration. Evaluation can
be done by in-system execution and measurement, or by
simulation-based methods.

• Exploration consists of strategies to efficiently explore
the potentially enormous set of possible configurations in
an effort to find the set of configurations representing
interesting power/performance tradeoffs. Iteration
among the evaluation and exploration phases is likely.

A very aggressive form of architecture tuning involves
creating customized instructions, either pre-fabrication [3][4]
or post-fabrication [6]. Our focus is on tuning that does not
modify the instruction set.

After architecture tuning, a developer will likely need to
modify the original program boot sequence to include
configuration of the architectural parameters with the
selected configuration. In a post-fabrication approach, the
developer then downloads the new program into existing
chips. In a pre-fabrication approach, the developer creates a
customized version of the microprocessor and proceeds with
chip fabrication steps. The developer may choose to iterate
between architecture tuning and program tuning, as they are
interdependent.

III. A LOOP CACHE EXAMPLE

An embedded microprocessor architect, aware that the
eventual developer will perform architecture tuning, can
design tunable components to provide power and
performance benefits, as we will now demonstrate.

A. Dynamically Loaded Loop Cache

We use a loop cache as an example. We’ll focus in this
paper on a loop cache’s ability to reduce power, but
improving performance could also be considered. Fetches to
the first level of instruction memory (whether cache or
regular memory, whether on-chip or off-chip) typically
account for much of a system’s power consumption [4],
because such fetches occur frequently, require driving high-
capacitance bus lines (especially when off-chip), and may
involve numerous tag comparisons.

At the same time, many embedded system programs
spend much of their time in small, tight loops [7][13]. Thus,
numerous approaches to reducing instruction fetch power

focus on caching such small loops in a very small and hence
very low-power loop cache, having perhaps only 16-64
entries. Power per access may be 50-100 times less than
access to regular instruction memory [8].

The problem remains as to how and when to fill and fetch
from a loop cache. Some architectures have special
instructions for forming loops [1][11], which can be used to
trigger loop cache fills and to know when the loop
terminates, but such approaches are not applicable to existing
architectures without such instructions, and also limit loop
forms. Kin [5] proposed a very small regular cache called a
filter cache, having tag comparison and miss logic, placed
before instruction memory. To reduce the many misses of a
filter cache, Bellas [2] proposed a modified architecture
coupled with program tuning, wherein a profile-guided
compiler would map only the most frequent instructions to a
special memory region recognized by the architecture as
destined for the filter cache; all other instruction accesses
would bypass the filter cache. The result was fewer misses
and thus less performance overhead and greater power
savings.

Lee [7][8] introduced a loop cache with no performance
overhead and requiring no profile-guided compilation. A
loop cache controller fills the cache after detecting a simple
loop – defined as any short backwards branch instruction.
The fill occurs by copying the dynamic instruction stream –
no stall is generated. Once the fill is a complete, the loop
cache controller seamlessly switches to loop cache fetching,
shutting down all logic associated with regular instruction
memory fetching. The controller conservatively aborts the fill
or exits loop cache fetching if a jump is taken within the
loop, since a taken jump means we may not fill the entire
loop or we may actually be leaving the loop. Note that
predicated instructions increase the number of loops without
internal jumps. The loop cache controller uses a simple wrap-
around counter for indexing into the cache, and requires no
tags. Average instruction memory access reductions were
40% using a 32-entry loop cache with an M*CORE processor
(larger sizes did not yield further improvements since most
loops were small), with overall system power reductions of
14% [8].

B. A Pre-Loaded “Tunable” Loop Cache

1) Overview
We use the Lee-style loop cache as our starting point.

While that loop cache reduces average instruction access
power in many examples, it could reduce power further in
several examples. Some limitations reduce a dynamically
loaded loop cache’s power savings:
• Many loops contain internal branches – especially in

architectures without predicated instructions.
• Some loops are not formed by a single backwards branch

– they may consist of several backwards branches
pointing to the loop start.

• Nested loops could cause loop cache thrashing.
• Some programs have subroutines that contribute to much

execution time.
If we know architecture tuning to a fixed program will

occur, we can design a loop cache that largely overcomes
these limitations. We design a loop cache that gets pre-
loaded with the best loops as determined by profiling. Thus,
during program execution, the loop cache contents will not
change. Pre-loading the loop cache comprises the
architecture-tuning step of development. Pre-loading can be
carried out by several alternative means, one of which is to
create a memory-mapped register that can be used to push
items into the loop cache, and then filling the loop cache as
part of program initialization.

Pre-loading has several advantages. First, loops with
branches can be pre-loaded, since the fill is occurring offline
and not during dynamic program execution – we simply load
all instructions within an address range. Second, loops
constructed with multiple backwards branches can be
detected through pre-analysis and included in the cache.
Third, only the best loops can be pre-loaded, including the
best level of a nested loop sequence. Fourth, subroutines can
be included. Like a Lee-style loop cache, a pre-loaded loop
cache requires no special compiler or binary modification
tool.

A pre-loaded loop cache has a disadvantage of limiting
the number of loops that can be cached. In some cases, two or
three small loops contribute to the majority of program
execution, so this disadvantage sometimes is not an issue
[13]. A second disadvantage is that a simple counter-based
indexing approach won’t work due to the branches. We solve
this by computing the index for a loop L as (PC – Lma) +
Lca, where Lma is the loop’s start address in memory, and
Lca is the loop’s start address in the loop cache. Although we
pre-compute Lma – Lca, this subtraction-based approach
consumes a bit more power than the counter approach. A
third disadvantage is the need for the tuning step.

2) Pre-Loaded Loop Cache Control
A key difference between a dynamically loaded loop

cache and pre-loaded one lies in how the loop cache
controller decides to enter and exit the loop cache fetching
state.

As for entering, in a pre-loaded loop cache, rather than
switching to loop cache operation upon detecting a short-
backwards branch, the controller instead, upon execution of
any taken jump instruction, switches if the next address falls
within the starting and ending addresses of one of the loops
in the cache. Thus, the program initialization sequence must
write the starting and ending addresses of the loops in the
cache into a set of registers in the controller, which are
connected to comparators. Such comparison does consume
additional power, but that power is moderated by two factors.
First, there are only a few such registers, perhaps with only
three or four. Second, the comparisons only occur when we

are not fetching from the loop cache, which ideally is only a
small percentage of time.

As for exiting, the controller must quickly determine
whether a branch in a loop causes a loop exit. We use pre-
analysis to compute the branch target when possible. We
associate two extra bits with each instruction in the loop
cache. One bit configuration indicates that the instruction can
never exit the loop. A second bit configuration indicates that
the instruction is a jump that exits the loop if the jump is
taken. A third configuration indicates that the instruction is a
jump that exits the loop when not taken (i.e., the end of the
loop). A fourth configuration indicates that loop cache
operation should always terminate after this instruction. This
fourth option is present because sometimes we cannot
determine the target address of a branch, such as in the case
of an indirect jump. In those cases, we conservatively exit
loop cache operation. Interrupts also cause the controller to
terminate loop cache operation for the current loop until the
next loop is detected – a loop that could even be part of the
interrupt service routine itself.

IV. EXPERIMENTS

We evaluated examples to determine the advantages of
using a pre-loaded loop cache over a dynamically loaded one.
We evaluated instruction access reductions for two popular
embedded microprocessors, a 32-bit MIPS and an 8-bit 8051
processor. We modified MIPS and 8051 instruction-set
simulators to generate trace files, and developed loop-cache
simulators to process those traces and record the activity
related to loop cache filling and fetching, the loop cache
controller operations, and the instruction memory accesses.
We used examples from the PowerStone benchmarks [9],
with TABLE 1 providing their names, size in bytes, and a
short description of each. The figure shows that some of the

TABLE 1
BENCHMARK DESCRIPTIONS

 Size of assembly in bytes
Benchmark

MIPS 8051
Description

adpcm 7648 na Voice Encoding

bcnt 3884 5430 Bit Manipulation

binary 3696 403 Binary Insertion

blit 4180 5969 Graphics Application

brev 3976 2497 Shifting and Or Operations

compress 7480 na Data Compression Program

crc 4248 831 Cyclic Redundancy Check

des 6124 na Data Encryption Standard

engine 4440 na Engine Controller

fir 4232 na FIR Filtering

g3fax 4384 8308 Group Three Fax Decode

jpeg 5968 na JPEG Compression

matmul 3796 843 Matrix Multiplication

summin 4144 1648 Handwriting Recognition

ucbqsort 4848 3066 U.C.B Quick Sort

v42 6396 na Modem Encoding/Decoding

benchmarks were not run on the 8051, mostly due to the data
memory limitations of the 8051.

Fig. 1(a) shows results for one benchmark, for a
dynamically loaded loop cache versus pre-loaded caches
supporting one, two or three loops, for cache sizes ranging
from 8 to 256 entries. Fig. 1(b) shows the average results for
all the benchmarks on the MIPS, and Fig. 1(c) the average
results for the 8051. On average, the dynamically loaded loop
cache shows a 30-35% reduction in instruction memory
accesses, slightly less than the 40% in [8] due to the lack of
predicated instructions in the MIPS and 8051. We observed
the same leveling off of improvement beyond size 32 as
observed in [8]. The pre-loaded loop cache, in contrast,
reduces instruction memory access by 70-80%, for both the
MIPS and 8051 processors. These reductions come mostly
from support of loops with internal branches and the
inclusion of subroutines.

We evaluated the impact of such reductions on instruction
fetch power savings, considering instruction memory access,
loop cache fills and fetches, and loop cache controller
operation, from a combination of gate-level power
measurements using Synopsys synthesis and evaluation tools
[10] and processor power evaluators based on instruction-
level simulators. We ranged the power ratio of internal net
switching to bus/memory activity from 50:1 to 400:1 to
account for different technologies. The instruction fetch
power savings for a dynamically loaded cache ranged from
20% to 30% for all cache sizes and ratios. The savings for a
pre-loaded cache ranged from 30-35% for size 32 to 50-65%
for size 256. As instruction fetch power often accounts for a
large percentage of total power (e.g., 50% in [8]), reductions
in instruction fetch power can yield good overall power
reductions.

By performing analysis similar to above, a microprocessor
architect may decide on a particular size and number of loops
for a pre-loaded loop cache, possibly creating a multi-
segment loop cache store where segments could be
deactivated. An embedded system developer could choose
among a dynamically loaded and pre-loaded loop cache
depending on the fixed program, and could configure the
cache to use the most appropriate size and number of loops.

V. CONCLUSIONS

Our results illustrate the benefits of microprocessor
architect designers exploiting the fixed program feature of
embedded systems, and of developers adding an architecture-
tuning task to the development process. Extensive future
work remains in this area of architecture tuning based on
program pre-analysis. We are currently investigating results
for larger benchmarks (e.g., MediaBench), and extensions to
efficiently support more loops, including a hybrid
dynamic/pre-loaded approach, a two-level pre-loaded loop
cache, and efficient loop address detections using multi-stage
comparisons.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation (grant #CCR-9876006).

REFERENCES

[1] ADSP-2106x User’s Manual, Analog Devices, 1998.
[2] Bellas, N., Hajj, I., Polychronopoulos, C., Stamoulis, G. Energy and

Performance Improvements in Microprocessor Design Using a Loop
Cache. Int. Conf. on Computer Design, pp. 378-383, 1999.

[3] Fisher, J. A., Customized Instruction Sets for Embedded Processors. DAC,
pp 253-257, 1999

[4] Gonzalez, R.E. Xtensa: A Configurable and Extensible Processor. IEEE
Micro, pp. 60-70, 2000.

[5] Kin, J., M. Gupta, W. Mangione-Smith. The Filter Cache: An Energy
Efficient Memory Structure. Int. Symp. on Microarchitecture, pp. 184-
193, Dec. 1997.

[6] Kucukcakar, K. An ASIP Design Methodology for Embedded Systems.
Int. Workshop on Hardware/Software Codesign, pp. 17-21, 1999.

[7] Lee, L. H., W. Moyer, J. Arends. Instruction Fetch Energy Reduction
Using Loop Caches for Embedded Applications with Small Tight Loops.
Int. Symp. on Low Power Electronics and Design (ISLPED), August
1999.

[8] Lee, L. H., W. Moyer, J. Arends. Low-Cost Embedded Program Loop
Caching – Revisited. Univ. of Michigan Technical Report CSE-TR-411-
99, December 1999.

[9] Malik, A., B. Moyer B. and D. Cermak. A Low Power Unified Cache
Architecture Providing Power and Performance Flexibility. International
Symposium on Low Power Electronics and Design. June 2000.

[10] Synopsys, http://www.synopsys.com.
[11] TMS320C2x User’s Guide, Texas Instruments, 1993.
[12] Vahid, F., T. Givargis. Platform Tuning for Embedded System Design.

IEEE Computer, Vol. 34, No. 3, pp. 112-114, March 2001.
[13] Villarreal, J., R. Lysecky, S. Cotterell, and F. Vahid. Loop Analysis of

Embedded Applications. UC Riverside Tech Report UCR-CSE-01-03.

Fig. 1. Instruction memory access reductions for (a) one benchmark on the MIPS, (b) MIPS averages, (c) 8051 averages

%
 R

ed
uc

tio
n

in
 I

ns
tr

uc
tio

n
M

em
or

y
A

cc
es

se
s (c) 8051 Averages

Dynamically-
loaded

Pre-loaded, 1
loop

Pre-loaded, 2
loops

Pre-loaded, 3
loops

(b) MIPS Averages (a) G3fax for MIPS

0
10
20
30
40
50
60
70
80
90

100

8 16 32 64 128 256

size (bytes)

0
10

20
30
40
50
60
70
80
90

100

8 16 32 64 128 256

size (bytes)

0
10
20
30
40
50
60
70
80
90

100

8 16 32 64 128 256

size (bytes)

