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Abstract--Embedded systems commonly execute one 
program for their lifetime. Designing embedded system 
architectures with configurable components, such that 
those components can be tuned to that one program based 
on a program pre-analysis, can yield significant power 
and performance benefits. We illustrate such benefits by 
designing a loop cache specifically with tuning in mind. 
Our results show a 70% reduction in instruction memory 
access, for MIPS and 8051 processors – representing 
twice the reduction from a regular loop cache, translating 
to good power savings.   
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I. INTRODUCTION 

Microprocessor usage in many embedded systems has an 
important feature distinct from usage in “desktop” computing 
systems like personal computers, laptop computers, and 
servers.  In desktop systems, the microprocessor executes 
many different programs over the system’s lifetime. In 
contrast, in many embedded systems such as digital cameras 
or automobile control systems, the microprocessor may 
execute one program for the system’s lifetime – the program 
is fixed.1 

Microprocessor architects have long been aware of this 
fixed program feature. They have thus incorporated certain 
configurable features into the microprocessor architectures. 
For example, a microprocessor chip may support two 
configurations: one using an external program memory, 
another using a smaller on-chip memory, which frees the 
external pins for parallel I/O use.  The embedded system 
developer configures the chip during system initialization, 
using the second configuration only if the fixed program fits 
in on-chip memory. Architects also identify classes of 
programs, and develop separate architectures for each class – 
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perhaps differing in the amount of on-chip memory, on-chip 
peripherals, supported interrupts, etc. 

Continued increases in chip capacity have enabled far 
more extensive incorporation of configurable features into a 
microprocessor architecture. One reason is because 
developers today often acquire a microprocessor architecture 
in the form of intellectual property, known as a core, and 
they then integrate the microprocessor into a system-on-a-
chip. Thus, they can tune the core’s configurable components 
to match the fixed program, before fabricating the chip. For 
example, they can create just the right amount of on-chip 
cache or choose between direct-mapped or set-associative 
cache. A second reason is that the cost of including 
additional transistors onto pre-fabricated microprocessor 
chips has decreased – an important point in the cost 
hypersensitive embedded systems market. Transistors are by 
no means free, but the cost equations have changed such that 
including some additional transistors may not impact the 
chip cost as much as it did in the past. Thus, we are seeing an 
increase in on-chip configurable components, such as 
configurable on-chip cache [9]. 

Microprocessor architects can therefore increasingly 
consider creating aggressively parameterized components for 
allowing an embedded system developer to tune those 
components to a fixed program. We will demonstrate the 
effectiveness of such aggressive parameterization using a 
loop cache. We will show one way to redesign a basic loop 
cache to exploit the fixed program feature. We provide 
results showing excellent reductions in instruction memory 
access, translating to reduced power.  

II. ARCHITECTURE TUNING 

We first describe the basic steps that a developer might 
follow in tuning an architecture to a fixed program. Such 
tuning is the complement of the common task of tuning a 
program to an architecture – something that has long been 
done in both embedded and desktop systems.  

Architecture tuning is a step added to the end of the 
program development process. Architecture tuning is the task 
of selecting the best configuration for a particular fixed 



program, where best is a user-defined combination of power, 
performance, size, and other metrics. We define a 
configuration as a particular setting of all parameters in all 
parameterized components in an architecture. Architecture 
tuning can be done pre-fabrication (in the case of cores) or 
post-fabrication. Architecture tuning consists of several sub-
tasks [12]: 

• Profiling consists of characterizing the program as it 
executes with representative input vectors. 

• Evaluation consists of determining the power and 
performance (and size for pre-fabrication tuning) metrics 
for a given program and configuration. Evaluation can 
be done by in-system execution and measurement, or by 
simulation-based methods.  

• Exploration consists of strategies to efficiently explore 
the potentially enormous set of possible configurations in 
an effort to find the set of configurations representing 
interesting power/performance tradeoffs. Iteration 
among the evaluation and exploration phases is likely.  

A very aggressive form of architecture tuning involves 
creating customized instructions, either pre-fabrication [3][4] 
or post-fabrication [6]. Our focus is on tuning that does not 
modify the instruction set. 

After architecture tuning, a developer will likely need to 
modify the original program boot sequence to include 
configuration of the architectural parameters with the 
selected configuration. In a post-fabrication approach, the 
developer then downloads the new program into existing 
chips.  In a pre-fabrication approach, the developer creates a 
customized version of the microprocessor and proceeds with 
chip fabrication steps. The developer may choose to iterate 
between architecture tuning and program tuning, as they are 
interdependent. 

III. A LOOP CACHE EXAMPLE 

An embedded microprocessor architect, aware that the 
eventual developer will perform architecture tuning, can 
design tunable components to provide power and 
performance benefits, as we will now demonstrate.  

A. Dynamically Loaded Loop Cache 

We use a loop cache as an example. We’ll focus in this 
paper on a loop cache’s ability to reduce power, but 
improving performance could also be considered. Fetches to 
the first level of instruction memory (whether cache or 
regular memory, whether on-chip or off-chip) typically 
account for much of a system’s power consumption [4], 
because such fetches occur frequently, require driving high-
capacitance bus lines (especially when off-chip), and may 
involve numerous tag comparisons.  

At the same time, many embedded system programs 
spend much of their time in small, tight loops [7][13]. Thus, 
numerous approaches to reducing instruction fetch power 

focus on caching such small loops in a very small and hence 
very low-power loop cache, having perhaps only 16-64 
entries. Power per access may be 50-100 times less than 
access to regular instruction memory [8].  

The problem remains as to how and when to fill and fetch 
from a loop cache. Some architectures have special 
instructions for forming loops [1][11], which can be used to 
trigger loop cache fills and to know when the loop 
terminates, but such approaches are not applicable to existing 
architectures without such instructions, and also limit loop 
forms. Kin [5] proposed a very small regular cache called a 
filter cache, having tag comparison and miss logic, placed 
before instruction memory. To reduce the many misses of a 
filter cache, Bellas [2] proposed a modified architecture 
coupled with program tuning, wherein a profile-guided 
compiler would map only the most frequent instructions to a 
special memory region recognized by the architecture as 
destined for the filter cache; all other instruction accesses 
would bypass the filter cache. The result was fewer misses 
and thus less performance overhead and greater power 
savings. 

Lee [7][8] introduced a loop cache with no performance 
overhead and requiring no profile-guided compilation. A 
loop cache controller fills the cache after detecting a simple 
loop – defined as any short backwards branch instruction. 
The fill occurs by copying the dynamic instruction stream – 
no stall is generated. Once the fill is a complete, the loop 
cache controller seamlessly switches to loop cache fetching, 
shutting down all logic associated with regular instruction 
memory fetching. The controller conservatively aborts the fill 
or exits loop cache fetching if a jump is taken within the 
loop, since a taken jump means we may not fill the entire 
loop or we may actually be leaving the loop. Note that 
predicated instructions increase the number of loops without 
internal jumps. The loop cache controller uses a simple wrap-
around counter for indexing into the cache, and requires no 
tags. Average instruction memory access reductions were 
40% using a 32-entry loop cache with an M*CORE processor 
(larger sizes did not yield further improvements since most 
loops were small), with overall system power reductions of 
14% [8].  

B. A Pre-Loaded “Tunable” Loop Cache 

1) Overview 
We use the Lee-style loop cache as our starting point. 

While that loop cache reduces average instruction access 
power in many examples, it could reduce power further in 
several examples. Some limitations reduce a dynamically 
loaded loop cache’s power savings:  
• Many loops contain internal branches – especially in 

architectures without predicated instructions.  
• Some loops are not formed by a single backwards branch 

– they may consist of several backwards branches 
pointing to the loop start. 



• Nested loops could cause loop cache thrashing. 
• Some programs have subroutines that contribute to much 

execution time. 
If we know architecture tuning to a fixed program will 

occur, we can design a loop cache that largely overcomes 
these limitations. We design a loop cache that gets pre-
loaded with the best loops as determined by profiling. Thus, 
during program execution, the loop cache contents will not 
change. Pre-loading the loop cache comprises the 
architecture-tuning step of development. Pre-loading can be 
carried out by several alternative means, one of which is to 
create a memory-mapped register that can be used to push 
items into the loop cache, and then filling the loop cache as 
part of program initialization. 

Pre-loading has several advantages. First, loops with 
branches can be pre-loaded, since the fill is occurring offline 
and not during dynamic program execution – we simply load 
all instructions within an address range. Second, loops 
constructed with multiple backwards branches can be 
detected through pre-analysis and included in the cache. 
Third, only the best loops can be pre-loaded, including the 
best level of a nested loop sequence. Fourth, subroutines can 
be included. Like a Lee-style loop cache, a pre-loaded loop 
cache requires no special compiler or binary modification 
tool. 

A pre-loaded loop cache has a disadvantage of limiting 
the number of loops that can be cached. In some cases, two or 
three small loops contribute to the majority of program 
execution, so this disadvantage sometimes is not an issue 
[13]. A second disadvantage is that a simple counter-based 
indexing approach won’t work due to the branches. We solve 
this by computing the index for a loop L as (PC – Lma) + 
Lca, where Lma is the loop’s start address in memory, and 
Lca is the loop’s start address in the loop cache. Although we 
pre-compute Lma – Lca, this subtraction-based approach 
consumes a bit more power than the counter approach. A 
third disadvantage is the need for the tuning step. 

2) Pre-Loaded Loop Cache Control 
A key difference between a dynamically loaded loop 

cache and pre-loaded one lies in how the loop cache 
controller decides to enter and exit the loop cache fetching 
state.  

As for entering, in a pre-loaded loop cache, rather than 
switching to loop cache operation upon detecting a short-
backwards branch, the controller instead, upon execution of 
any taken jump instruction, switches if the next address falls 
within the starting and ending addresses of one of the loops 
in the cache. Thus, the program initialization sequence must 
write the starting and ending addresses of the loops in the 
cache into a set of registers in the controller, which are 
connected to comparators. Such comparison does consume 
additional power, but that power is moderated by two factors. 
First, there are only a few such registers, perhaps with only 
three or four. Second, the comparisons only occur when we 

are not fetching from the loop cache, which ideally is only a 
small percentage of time.  

As for exiting, the controller must quickly determine 
whether a branch in a loop causes a loop exit. We use pre-
analysis to compute the branch target when possible. We 
associate two extra bits with each instruction in the loop 
cache. One bit configuration indicates that the instruction can 
never exit the loop. A second bit configuration indicates that 
the instruction is a jump that exits the loop if the jump is 
taken. A third configuration indicates that the instruction is a 
jump that exits the loop when not taken (i.e., the end of the 
loop). A fourth configuration indicates that loop cache 
operation should always terminate after this instruction. This 
fourth option is present because sometimes we cannot 
determine the target address of a branch, such as in the case 
of an indirect jump. In those cases, we conservatively exit 
loop cache operation. Interrupts also cause the controller to 
terminate loop cache operation for the current loop until the 
next loop is detected – a loop that could even be part of the 
interrupt service routine itself. 

IV. EXPERIMENTS 

We evaluated examples to determine the advantages of 
using a pre-loaded loop cache over a dynamically loaded one. 
We evaluated instruction access reductions for two popular 
embedded microprocessors, a 32-bit MIPS and an 8-bit 8051 
processor. We modified MIPS and 8051 instruction-set 
simulators to generate trace files, and developed loop-cache 
simulators to process those traces and record the activity 
related to loop cache filling and fetching, the loop cache 
controller operations, and the instruction memory accesses. 
We used examples from the PowerStone benchmarks [9], 
with TABLE 1 providing their names, size in bytes, and a 
short description of each. The figure shows that some of the 

TABLE 1 
BENCHMARK DESCRIPTIONS 

 Size of assembly in bytes 
Benchmark 

MIPS 8051 
Description 

adpcm 7648 na Voice Encoding 

bcnt 3884 5430 Bit Manipulation 

binary 3696 403 Binary Insertion 

blit 4180 5969 Graphics Application 

brev 3976 2497 Shifting and Or Operations 

compress 7480 na Data Compression Program 

crc 4248 831 Cyclic Redundancy Check 

des 6124 na Data Encryption Standard 

engine 4440 na Engine Controller 

fir 4232 na FIR Filtering 

g3fax 4384 8308 Group Three Fax Decode 

jpeg 5968 na JPEG Compression 

matmul 3796 843 Matrix Multiplication 

summin 4144 1648 Handwriting Recognition 

ucbqsort 4848 3066 U.C.B Quick Sort 

v42 6396 na Modem Encoding/Decoding 

 



benchmarks were not run on the 8051, mostly due to the data 
memory limitations of the 8051. 

Fig. 1(a) shows results for one benchmark, for a 
dynamically loaded loop cache versus pre-loaded caches 
supporting one, two or three loops, for cache sizes ranging 
from 8 to 256 entries. Fig. 1(b) shows the average results for 
all the benchmarks on the MIPS, and Fig. 1(c) the average 
results for the 8051. On average, the dynamically loaded loop 
cache shows a 30-35% reduction in instruction memory 
accesses, slightly less than the 40% in [8] due to the lack of 
predicated instructions in the MIPS and 8051. We observed 
the same leveling off of improvement beyond size 32 as 
observed in [8]. The pre-loaded loop cache, in contrast, 
reduces instruction memory access by 70-80%, for both the 
MIPS and 8051 processors. These reductions come mostly 
from support of loops with internal branches and the 
inclusion of subroutines. 

We evaluated the impact of such reductions on instruction 
fetch power savings, considering instruction memory access, 
loop cache fills and fetches, and loop cache controller 
operation, from a combination of gate-level power 
measurements using Synopsys synthesis and evaluation tools 
[10] and processor power evaluators based on instruction-
level simulators.  We ranged the power ratio of internal net 
switching to bus/memory activity from 50:1 to 400:1 to 
account for different technologies. The instruction fetch 
power savings for a dynamically loaded cache ranged from 
20% to 30% for all cache sizes and ratios. The savings for a 
pre-loaded cache ranged from 30-35% for size 32 to 50-65% 
for size 256. As instruction fetch power often accounts for a 
large percentage of total power (e.g., 50% in [8]), reductions 
in instruction fetch power can yield good overall power 
reductions. 

By performing analysis similar to above, a microprocessor 
architect may decide on a particular size and number of loops 
for a pre-loaded loop cache, possibly creating a multi-
segment loop cache store where segments could be 
deactivated. An embedded system developer could choose 
among a dynamically loaded and pre-loaded loop cache 
depending on the fixed program, and could configure the 
cache to use the most appropriate size and number of loops. 

V. CONCLUSIONS 

Our results illustrate the benefits of microprocessor 
architect designers exploiting the fixed program feature of 
embedded systems, and of developers adding an architecture-
tuning task to the development process. Extensive future 
work remains in this area of architecture tuning based on 
program pre-analysis. We are currently investigating results 
for larger benchmarks (e.g., MediaBench), and extensions to 
efficiently support more loops, including a hybrid 
dynamic/pre-loaded approach, a two-level pre-loaded loop 
cache, and efficient loop address detections using multi-stage 
comparisons. 
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Fig. 1. Instruction memory access reductions for (a) one benchmark on the MIPS, (b) MIPS averages, (c) 8051 averages 
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