
Leveraging Collaborative Tagging for Web Item Design

Mahashweta Das, Gautam Das
∗

Department of Computer Science & Engineering
University of Texas at Arlington

mahashweta.das@mavs.uta.edu, gdas@uta.edu

Vagelis Hristidis
†

School of Computing & Information Sciences
Florida International University

vagelis@cis.fiu.edu

ABSTRACT
The popularity of collaborative tagging sites has created new
challenges and opportunities for designers of web items, such
as electronics products, travel itineraries, popular blogs, etc.
An increasing number of people are turning to online re-
views and user-specified tags to choose from among com-
peting items. This creates an opportunity for designers to
build items that are likely to attract desirable tags when
published. In this paper, we consider a novel optimization
problem: given a training dataset of existing items with their
user-submitted tags, and a query set of desirable tags, de-
sign the k best new items expected to attract the maximum
number of desirable tags. We show that this problem is NP-
Complete, even if simple Naive Bayes Classifiers are used
for tag prediction. We present two principled algorithms
for solving this problem: (a) an exact “two-tier” algorithm
(based on top-k querying techniques), which performs much
better than the naive brute-force algorithm and works well
for moderate problem instances, and (b) a novel polynomial-
time approximation algorithm with provable error bound for
larger problem instances. We conduct detailed experiments
on synthetic and real data crawled from the web to evaluate
the efficiency and quality of our proposed algorithms.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
collaborative tagging, item design, naive bayes, optimization

∗Partially supported by NSF grants 0812601, 0915834,
1018865, a NHARP grant from the Texas Higher Education
Coordinating Board, and grants from Microsoft Research
and Nokia Research.
†Partially supported by NSF grants IIS-0811922, IIS-
0952347, HRD-0833093 and Google Research Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

1. INTRODUCTION
Motivation: The widespread use and popularity of online
collaborative tagging sites has created new challenges and
opportunities for designers of “web items” such as electron-
ics products, travel itineraries, popular blogs, etc. Various
websites today (e.g., Flickr for photos, YouTube for videos,
Amazon for different products) encourage users to actively
participate by assigning labels or “tags” to online resources
with a purpose to promote their contents and allow users to
share, discover and organize them. An increasing number
of people are turning to online reviews and user-specified
tags to choose from among competing items. For example,
a cell phone that has been tagged lightweight by several
users is likely to influence a prospective customer decision
in its favor. This creates an opportunity for designers to
build items that are likely to attract desirable tags when
published. In addition to traditional marketplaces like elec-
tronics, autos or apparel, tag desirability also extends to
other diverse domains. For example, music websites such as
Last.fm use social tags to guide their listeners in browsing
through artists and music. An artist creating a new musical
piece can leverage the tags that users have selected, in or-
der to select the piece’s attributes (e.g. acoustic and audio
features) that will increase its chances of becoming popular.
Similarly, a blogger can select a topic based on the tags that
other popular topics have received.

Our paper investigates this novel tag maximization prob-
lem, i.e., how to decide the attribute values of new items
and to return the top-k “best” items that are likely to at-
tract the maximum number of desirable tags. We provide
more details as follows.

Tag Maximization Problem: Assume we are given a set
of items, each having a set of attributes and a set of user-
submitted tags (e.g., cell phones on Amazon’s website, each
described by a set of attributes, and associated user tags).
From this training data, for each distinct tag, we assume a
classifier has been constructed for predicting the tag given
the attributes. Tag prediction is a recent area of research
(see Section 6 for discussion of related work), and the exis-
tence of such classifiers is a key assumption in our work. In
addition to the item’s explicitly specified attributes, other
implicit factors also influence tagging behavior, such as the
perceived utility and quality of an item to the user, the
tagging behavior of the user’s friends, etc. However, pure
“content-based” tag prediction approaches are often quite
effective − e.g., in the context of laptops, attributes such as
smaller dimensions and the absence of a built-in DVD drive
may attract tags such as portable.

Given a query consisting of a subset of tags that are con-
sidered “desirable”, our task is to suggest a new item (i.e.,
a combination of attribute values) such that the expected
number of desirable tags for this potential item is maxi-
mized. This can be extended to the top-k version, where
the task is to suggest the k potential items with the highest
expected number of desirable tags.
This information can assist web item designers in design-

ing new items (or fine-tuning existing web content) to make
them more attractive to users. Moreover, designers can ex-
plore the dataset in an interactive manner by picking and
choosing different sets of desirable tags to get insight on how
to build new items that target different user populations −
e.g., in the context of cell phones, tags such as lightweight
and powerful target professionals, whereas tags such as
cheap, cool target younger users.

Novelty, Technical Challenges and Approaches: The
dynamics of social tagging has been an active research area
in recent years. However related literature primarily focuses
on the problems of tag prediction, including cold-start rec-
ommendation to facilitate web-based activities. To our best
knowledge, tags have not been studied in the context of web
item design before. Of course, real-world item design is a
complex task, and is an area that has been heavily studied
in economics, marketing, industrial engineering and more
recently in computer science. Many factors like the cost
and return on investment are currently considered. We ar-
gue that the user feedback (in the form of tags of existing
competing items) should be taken into consideration in the
design process, especially since online user tagging is ex-
tremely widespread and offers unprecedented opportunities
for understanding the collective opinion and preferences of
a huge consumer base. We envision user tags to be one of
the several factors in item design that can be used in con-
junction with more traditional factors - e.g., our algorithms
return k potential new items that maximize the number of
desirable tags; and this information can assist web item de-
signers, who can then further post-process the returned re-
sults using additional constraints such as profitability, price,
resource constraints, item diversity, etc.
Solving the tag maximization problem is technically chal-

lenging. In most item sets, complex dependencies exist among
the tags and items, and it is difficult to determine a combina-
tion of attribute values that maximizes the expected number
of desirable tags. In this paper we consider the very pop-
ular Naive Bayes Classifier for tag prediction, although our
problem framework also extends to other classifiers. As one
of our first results, we show that even for this classifier (with
its simplistic assumption of conditional independence), the
tag maximization problem is NP-Complete. Given this in-
tractability result, it is important to develop algorithms that
work well in practice. A highlight of our paper is that we
have avoided resorting to heuristics, and instead have de-
veloped principled algorithms that are practical and at the
same time possess compelling theoretical characteristics.
Our first algorithm is a novel exact top-k algorithm ETT

(Exact Two-Tier Top-k algorithm) that performs signifi-
cantly better than the naive brute-force algorithm (which
simply builds all possible items and determines the best
ones), for moderate problem instances. Our algorithm is
based on nontrivial adaptations of top-k query processing
techniques (e.g., [4]), and has an interesting two-tier archi-
tecture. At the bottom tier, we develop a sub-system for

each distinct tag, such that each sub-system has the ability
to compute on demand a stream of items in order of decreas-
ing probability of attracting the corresponding tag, without
having to pre-compute all possible items in advance. This
is achieved by partitioning the set of attributes into smaller
groups (thus, each group represents a “partial” item), and
running a separate merge algorithm over all the groups. The
top tier considers the items retrieved from each sub-system
in a round-robin manner, computes the expected number
of desirable tags for each retrieved item, and stops when a
threshold condition is reached. Although in the worst case
this algorithm can take exponential time, for many datasets
with strong correlations between attributes and tags, the
stopping condition is reached much earlier.

However, although the exact algorithm performs well for
moderate problem sizes, it did not easily scale to much
larger sized datasets. Heuristic techniques like hill-climbing,
branch and bound, etc. does not guarantee any sort of worst
case behavior, either in running time or in item quality and
thus we also develop a novel approximation algorithm PA
(Poly-Time Approximation algorithm) that runs in worst
case polynomial time, and also guarantees a provable bound
on the approximation factor in item quality. The principal
idea is to group the desirable tags into constant-sized groups,
find the top-k items for each sub-group, and output the over-
all top-k items from among these computed items. For each
sub-problem thus created, we show that it can be solved by
a polynomial time approximation scheme (PTAS) given any
user-defined approximation factor. The algorithm’s overall
running time is exponential only in the (constant) size of the
groups, thus giving overall a polynomial time complexity.

We experiment with synthetic as well as real datasets
crawled from the web to compare our algorithms. User study
on the real dataset demonstrates that the items suggested
by our algorithms appear to be meaningful. With regard
to efficiency, the exact algorithm performs well on moder-
ate problem instances, whereas the approximation algorithm
scaled very well for larger datasets.

In summary, we make the following main contributions:

• We introduce the novel problem of top-k item design
based on user-submitted tags and show that this prob-
lem is NP-complete, even if tag prediction is modeled
using simple Naive Bayes Classifiers.

• We develop an exact two-tier algorithm (ETT) to com-
pute the top-k best items that works well for moderate
problem instances.

• We also design an approximation algorithm (PA) based
on a polynomial time approximation scheme (PTAS),
with provable error bounds, for larger datasets.

• We perform detailed experiments on synthetic and real
datasets crawled from the web to demonstrate the ef-
fectiveness of our developed algorithms.

2. PROBLEM FRAMEWORK
Let D = {o1, o2, ..., on} be a collection of n items, where

each item entry is defined over the attribute set A = {A1,
A2, ..., Am} and the tag dictionary space T = {T1, T2, ...,
Tr}. Each attribute Ai can take one of several values ai

from a multi-valued categorical domain Di, or one of two
values 0, 1 if a boolean dataset is considered.1 A tag Tj is

1Our framework allows numeric attributes, but as is com-

a bit where a 0 implies the absence of a tag and a 1 implies
the presence of a tag for item o. Each item is thus a vector
of size (m + r), where the first m positions correspond to
a vector of attribute values, and the remaining r positions
correspond to a boolean vector.2

We assume such a dataset has been used as a training set
to build Naive Bayes Classifiers (NBC), that classify tags
given the attribute values (one classifier per tag). The clas-
sifier for tag Tj defines the probability that a new item o is
annotated by the tag Tj :

Pr(Tj | o) = Pr(Tj | a1, a2, ..., am)

=
Pr(Tj).Π

m
i=1Pr(ai | Tj)

Pr(a1, a2, ..., am)
(1)

where ai is the value of o for attribute Ai, ai ϵ Di. The
probabilities Pr(ai | Tj) are computed using the dataset. In
particular, Pr(ai | Tj) is the proportion3 of items tagged by
Tj that have Ai = ai. Pr(Tj) is the proportion of items in
the dataset that has Tj .
Similarly, we compute the probability Pr(Tj

′ | o) of an
item o not having tag Tj :

Pr(Tj
′ | o) =

Pr(Tj
′).Πm

i=1Pr(ai | Tj
′)

Pr(a1, a2, ..., am)
(2)

We know that Pr(Tj | o) + Pr(Tj
′ | o) = 1; hence from

Equations 1, 2 we get :

Pr(a1, a2, ..., am) = Pr(Tj).Π
m
i=1Pr(ai | Tj) +

Pr(Tj
′).Πm

i=1Pr(ai | Tj
′) (3)

From Equations 1, 3,

Pr(Tj | o) = Pr(Tj | a1, a2, ..., am)

=
Pr(Tj).Π

m
i=1Pr(ai | Tj)

Pr(Tj).Πm
i=1Pr(ai | Tj) + Pr(Tj

′).Πm
i=1Pr(ai | Tj

′)

=
1

1 +
Pr(Tj

′)
Pr(Tj)

Πm
i=1

Pr(ai|Tj
′)

Pr(ai|Tj)

For convenience we use the notation

Rj =
Pr(Tj

′)

Pr(Tj)
Πm

i=1
Pr(ai | Tj

′)

Pr(ai | Tj)
(4)

Consider a query which picks a set of desirable tags T d =
{T1, . . . , Tz} ⊆ T .
The expected number of desirable tags Tj ∈ T d that a new

item o, characterized by (a1, a2, ..., am) ∈ A is annotated
with, is given by:

E(o, T d) = Σz
j=1

1

1 +Rj
(5)

We are now ready to formally define the main problem.

TAG MAXIMIZATION PROBLEM Given a dataset
of tagged items D = {o1, o2, ..., on}, and a query T d, de-
sign k new items that have the highest expected number of
desirable tags they are likely to receive, given by Equation 5.

mon with Naive Bayes Classifiers, we assume that they have
been appropriately binned into discrete ranges.
2A more complex framework which leverages the frequencies
of tags is left for future work.
3The observed probabilities are smoothened using the
Bayesian m-estimate method [3]. We note that more so-
phisticated Bayesian methods that use an informative prior
may be employed instead.

For the rest of the paper, we explain our algorithms in
a boolean framework, which can be readily generalized to
handle the case of categorical data. We also assume that all
tags are of equal“weight”− if tags are of varying importance,
Equation 5 can be re-written as a weighted sum, and all our
proposed algorithms can be modified accordingly.

3. COMPLEXITY ANALYSIS AND EXACT
ALGORITHMS

Our first result is on the NP-completeness of the Tag Max-
imization problem.

Theorem 1. The Tag Maximization problem is NP-Complete
even for boolean datasets and for k = 1.

Proof : The membership of the decision version of the
problem in NP is obvious. To verify NP-hardness, we re-
duce the 3SAT problem to the decision version of our prob-
lem. We first reduce the 3SAT problem to the minimization
version of the optimization problem, represented as Emin(o,
T d) and then reduce Emin(o, T d) to E(A, T d).

Reduction of 3SAT to decision version of Emin(o, T d) :
3SAT is the popular NP-complete boolean satisfiability

problem in computational complexity theory, an instance of
which concerns a boolean expression in conjunctive normal
form, where each clause contains exactly 3 literals. Each
clause Cj is mapped to a tag Tj in the instance of Emin(o,
T d) and each variable xi is mapped to attribute value ai. We
make the following assignments so that if there is a boolean
assignment vector a⃗ = [a1, ..., am] that satisfies 3SAT, then
Emin(o, T d) equals zero (and if a⃗ does not satisfy 3SAT,
then Emin(o, T d) has a non-zero sum).

• For a variable xi specified as positive literal in 3SAT,
set Pr(ai = 0 | Tj) = 1

• For a variable xi specified as negative literal in 3SAT,
set Pr(ai = 1 | Tj) = 1

• For a particular clause and for the unspecified attributes
(variables), set Pr(ai = 0 | Tj) = Pr(ai = 1 | Tj) = 1

For example, consider 3SAT instance (¬x1 ∨ x2 ∨ ¬x3) ∧
(x1 ∨ ¬x2 ∨ ¬x4). For each tag, we create two products.
For instance for the first tag, x1 (that corresponds to A1)
is negative and hence for both the first and second product
it is A1 = 1. x4 is missing from the first tag, hence for the
first product it is A4 = 0 and for the second it is A4 = 1.

Table 1: Table of boolean attributes and tags

Attributes Tags
A1 A2 A3 A4 T1 T2

1 0 1 0 1 0
1 0 1 1 1 0
0 1 0 1 0 1
0 1 1 1 0 1

Reduction of Emin(A, T d) to E(A, T d) :
If we have a boolean assignment vector a⃗ = [a1, ..., am]

that minimizes the expected number of tags being present,
we have the corresponding Pr(Tj

′ | a1, a2, ..., am). Hence,
we get Pr(Tj | a1, a2, ..., am) = 1 - Pr(Tj

′ | a1, a2, ..., am)
that maximizes the expected number of tags being present.
2

A brute-force exhaustive approach (henceforth, referred to
as Naive) to solve the Tag Maximization problem requires
us to design all possible 2m number of items and compute
E(o, T d) for each possible item. Note that the number of
items in the dataset is not important for the execution cost,
since an initialization step can calculate all the conditional
tag-attribute probabilities by a single scan of the dataset.
Although general purpose pruning-based optimization tech-
niques (such as branch-and-bound algorithms) can be used
to solve the problem more efficiently than Naive, such ap-
proaches are only limited to constructing the top-1 item, and
it is not clear how they can be easily extended for k > 1.
In the following subsection, we propose a novel exact algo-

rithm for any k based on interesting and nontrivial adapta-
tions of top-k query processing techniques. This algorithm is
shown in practice to explore far fewer item candidates than
Naive, and works well for moderate problem instances.

3.1 Exact Two-Tier Top-k Algorithm
We develop an exact two tier top-k algorithm (ETT) for

the Tag Maximization problem. For simplicity, henceforth
we refer to desirable tags as just tags. The main idea of ETT
is to determine the “best” items for each individual tag in
tier-1 and then match these items in tier-2 to compute the
globally best items (across all tags). Both tiers use pipelined
techniques to minimize the amount of accesses, as shown
in Figure 1. The output of tier-1 is z unbounded buffers
(one for each tag) of complete items, ordered by decreasing
probability for the corresponding tag. These buffers are not
fully materialized, but may be considered as “sub-systems”
that can be accessed on demand in a pipelined manner.

Figure 1: Two-Tier Top-K Algorithm Framework

In tier-2, the top items from the z buffers are combined in
a pipelined manner to produce the global top-k items, akin
the Threshold Algorithm (TA) [4]. In turn, tier-2 makes
GetNext() requests (see Figure 1) to various buffers in tier-
1 in round-robin manner. In tier-1, for each specific tag,
we partition the set of attributes into subsets, and for each
subset of attributes we precompute a list of all possible par-
tial attribute value assignments, ordered by their “score” for
the specific tag (the score will be defined later). The par-
tial items are then scanned and joined, leveraging results
from Rank-Join algorithms [9] that support top-k ranked
join queries in relational databases, in order to feed infor-
mation to tier-2. We provide more details below.

3.1.1 Tier-1
Suppose we partition them attributes into l subsets, where

each subset has m′ = m
l
attributes as follows: {a1, . . . , am′},

{am′+1, . . . , a2m′}, . . ., {am−m′+1, . . . , am}. We create par-
tial item lists Lj1, . . . , Ljl for each tag Tj . Each list Lji

has 2m
′
entries (partial items). Consider the first list Lj1.

The score of a partial item op ∈ Lj1 with attribute values
a1, . . . , am′ for Tj is

Epartial(o
p, {Tj}) = l

√
Pj .Π

m′
i=1

Pr(ai | Tj
′)

Pr(ai | Tj)
(6)

where Pj=
Pr(Tj

′)
Pr(Tj)

. Note that the l-th root of Pj is used in

order to distribute the effect of Pj from Equation 4 to the l
lists, such that when they are combined using multiplication,
we get Pj .

Lists Ljl are ordered by descending 1
Epartial

, since Rj ap-

pears on the denominator of Equation 5. The l lists are
accessed in round-robin fashion and for every combination
of partial items from the lists, we join them to build a com-
plete item and resolve its exact score by Equation 5.

An item is returned as a result of GetNext() to tier-2 if its
score is higher than the MPFS (Maximum Possible Future
Score), which is the upper bound on the score of an unseen
item. To compute MPFS, we assume that the current entry
from a list is joined with the top entries from all other lists :

MPFS =
1

1 + max((sj1.hj2.. · hjl), (hj1.sj2.. · hjl), .., (hj1.hj2.. · sjl))
(7)

where sji and hji are the last seen and top entries from list
Lji respectively.

3.1.2 Tier-2
In this tier, the z unbounded buffers, one for each tag, are

combined using the summation function, as shown in Equa-
tion 5. Each item from one buffer matches exactly one entry
(the identical item) from each of the other buffers. Items are
retrieved from each buffer using GetNext() operations, and
once retrieved we directly compute its score for all other
tags by running each Naive Bayes classifier, without using
the process of tier-1. An item is output if its score is higher
than the threshold, which is the sum of the last seen scores
from all z buffers. A bounded buffer with the k best results
so far is maintained. On termination, this buffer is returned
as the top-k items.
The pseudocode of ETT is shown in Algorithm 1.

Table 2: Example tagged items dataset

Attribute Tag
ID A1 A2 A3 A4 T1 T1

1 0 0 0 1 0 0
2 0 1 0 0 0 1
3 0 1 0 1 0 0
4 0 1 1 1 1 1
5 1 0 0 0 1 0
6 1 0 0 1 0 1
7 1 0 1 1 1 1
8 1 1 0 1 0 1

Example 1. Consider the boolean dataset of 10 objects,
each entry having 4 attributes and 2 tags in Table 2. We
partition the 4 attributes into groups of 2 attributes : (A1,
A2) form list Lj1 and (A3, A4) form list Lj2. We run NBC

Algorithm 1 ETT (Naive Bayes probabilities, at-
tributes per group m′, k): top-k exact items

//Main Algorithm

1: Top-k-Buffer ← {}
2: for j = 1 to z do
3: Bj ← {} // unbounded buffer of candidate results-

items per tag
4: for i = 1 to l do
5: sji, hji ← top entry from list Lji

6: end for
7: end for
8: Call Threshold()

//Method Threshold() – Tier-2

1: while true do
2: for j = 1 to z do
3: (oj , scorej(oj) ← GetNext(j)
4: ExactScore(oj) ← Compute for oj by Equation 5
5: end for
6: Update Top-k-Buffer with new items if necessary
7: MinK ← lowest score in Top-k buffer
8: α ←

∑
j scorej(oj) // Threshold

9: if MinK ≥ α then
10: return top-k items
11: end if
12: end while

//Method GetNext(j) : (oj , scorej(oj)) – Tier-1

1: while true do
2: Compute MPFS by Equation 7
3: // scorej(o) for item o is defined as 1/(1 + Rj) (Rj

defined by Equation 4)
4: if Bj has an item o with scorej(o) > MPFS then
5: return (o, scorej(o)) AND remove it from Bj

6: end if
7: Retrieve next entry op from a list Lji in round robin

and advance sji
8: Join op with all combinations of partial items from

other lists and create all items NewItems
9: Add NewItems to buffer Bj of candidate results-

items
10: end while

and calculate all conditional tag-attribute probabilities. The
algorithm framework for the running example is presented
in Figure 2. List L11 and L12 under tag T1 is sorted in
decreasing order of 1

Epartial
, given by Equation 6 (and, sim-

ilarly for L21 and L22 under tag T2).
In iteration 1, call to Threshold() in tier-2 calls GetNext()

for T1 and T2 respectively in tier-1. During GetNext(T1),
join-1 builds item 1010, whose score1(1010) = 0.95 and
MPFS(1010) =0.95. Since score1 ≥ MPFS, (1010,0.95) is
returned to tier-2. GetNext(T2) returns (1111,0.93) to tier-
2. In tier-2, call to Threshold() returns ExactScore(1010)
=1.70, ExactScore(1111) =1.75. Now, top-k-buffer gets 1111;
MinK=1.75 and α=1.88. Since MinK ≤ α, we continue to it-
eration 2. In iteration 2, we proceed similarly. GetNext(T1)
returns (1011, 0.92) and GetNext(T2) returns (1110,0.88) to
tier-2. Call to Threshold() in tier-2 gives ExactScore(1011)
=1.76, ExactScore(1110) =1.77. The top-k-buffer is up-

dated to 1110; MinK=1.77 and α=1.79. Since MinK≤ α, we
continue to iteration 3. In tier-1 of iteration 3, GetNext(T1)
returns (0010,0.89) and GetNext(T2) returns (0111,0.84) to
tier-2. Then Threshold() is called and we get ExactScore(0010)
=1.76, ExactScore(0111) =1.77. The Bounded Buffer con-
tinues to be 1110; MinK=1.77 and α=1.74. We see that
MinK ≥ α. Hence, ETT terminates and returns 1110 as the
top-1 item. Thus, ETT returns the best item by just looking
up 6 items, instead of 16 items (as in Naive algorithm). 2

Figure 2: Iteration 1: Exact Two-Tier Top-K Algo-
rithm for Example in Table 2

4. APPROXIMATION ALGORITHM
The exact algorithm of Section 3.1 is feasible only for mod-

erate instances of the Tag Maximization problem. For larger
problem instances, in this section we discuss a principled
approximation algorithm (PA, or polynomial time approxi-
mation algorithm) that provides guarantee in the quality of
the top-k results as well as running time.

The main idea is to group the desirable tags into constant-
sized groups of z′ tags each, find the top-k items for each
subgroup, and output the overall top-k items from among
these computed items.4 For each sub-problem thus created,
we show that it can be solved by a polynomial time approxi-
mation scheme (PTAS) [5], i.e., can be solved in polynomial
time given any user-defined approximation factor. The over-
all running time of the algorithm is exponential only in the
(constant) size of the groups, thus giving overall a polyno-
mial time complexity.

We now consider a sub-problem consisting of only a con-
stant number of tags, z′. We also restrict our discussion
to the case k = 1 (more general values of k are discussed
later). We shall design a polynomial time approximation
scheme (PTAS) for this sub-problem. A PTAS is defined as
follows. Let ϵ > 0 be any user-defined parameter. Given any
instance of the sub-problem, let PTAS return the item oa.

4Interestingly, we note that in this algorithm we create
(z/z′) sub-problems by grouping tags; in contrast in our
exact ETT algorithm we create sub-problems (i.e., subsys-
tems) by grouping attributes.

Let the optimal item be og. The PTAS should run in poly-
nomial time, and ExactScore(oa) ≥ (1− ϵ)ExactScore(og).
In describing the PTAS, we first discuss a simple expo-

nential time exact top-1 algorithm for the sub-problem, and
then show how it can be modified to the PTAS. Given m
boolean attributes and z′ tags, the exponential time algo-
rithm makes m iterations as follows: As an initial step, it
produces the set S0 consisting of the single item {0m} along
with its z′ scores, one for each tag. In the first iteration,
it produces the set containing two items S1 = {0m, 10m−1}
each accompanied by its z′ scores, one for each tag. More
generally, in the ith iteration, it produces the set of items
Si = {{0, 1}i×0m−1} along with their z′ scores, one for each
tag. Each set can be easily derived from the set computed
in the previous iteration. Once m iterations have been com-
pleted, the final set Sm contains all 2m items along with their
exact scores, from which the top-1 item can be returned,
which is that product for which the sum of the z′ scores is
the largest. However, this algorithm takes exponential time,
as in each iteration the sets double in size.
The main idea of the PTAS is to not allow the sets to be-

come exponential in size. This is done by compressing each
set Si produced by each iteration to another smaller set S′

i,
so that they remain polynomial in size. Each item entry in
Si can be viewed as points in a z′-dimensional space,whose
z′ co-ordinates correspond to the item scores for z′ individ-
ual tags respectively, by Equation 5. Essentially, we use a
clustering algorithm in z′-dimensional space, and for each
cluster, only the representative item is retained, while all
other items in the cluster are deleted. The clustering has
to be done in a careful way so as to guarantee that for the
items that are deleted, the representative item’s exact score
should be close to the deleted item’s exact score. Thus when
the top-1 item of the final compressed set S′

m is returned,
its exact score should not be too different from exact score
of the top-1 item assuming no compression was done.

The pseudocode of PA is shown in Algorithm 2.

Example 2. We execute PA on the example in Table 2
without any grouping of tags (i.e., z = z′ = 2): Let the
compression factor σ be 0.5. We start with S′

0 = {0000}.
In iteration 1, S1 = {0000, 1000} with each item having
two-dimensional co-ordinates (0.31, 0.20) and (0.51, 0.38)
respectively. After compression, we get S′

1 = {1000}. In
iteration 2, S2 = {1000, 1100} with two-dimensional co-
ordinates (0.51, 0.38) and (0.31, 0.58) respectively. Af-
ter compression we get S′

2 = {1000, 1100}. In iteration 3,
S3 = {1000, 1100, 1010, 1110} with co-ordinates (0.51, 0.38),
(0.31, 0.58), (0.95, 0.75) and (0.89, 0.88) respectively. After
compression we get S′

3 = {1000, 1100, 1110}. In the final
iteration 4, S4 = {1000, 1100, 1110, 1001, 1101, 1111} with
co-ordinates (0.51, 0.38), (0.31, 0.58), (0.89, 0.88), (0.37,
0.52), (0.20, 0.72) and (0.82, 0.93). After compression we
get S′

4 = {1000, 1100, 1111}. The top-1 approximate item is
1111 with score 1.75 while the optimal item is 1110 with
score 1.77. Figure 3 shows the compression in the four
iterations. The boolean items in red font are the cluster
representatives.2

Theorem 2. Given a user defined approximation factor
ϵ, if we group the tags into z/z′ groups of z′ tags per group,
and set the compression factor σ = ϵ/2m then

1. The output of PA has an exact score that is at least
z′

z(1+ϵ)
times the exact score of the optimal item

Algorithm 2 PA (Naive Bayes probabilities, at-
tributes per group z′, compression factor σ): top-1
approximate item in polynomial time

//Main Algorithm

1: Partition tags T into z/z′ groups T1, . . . , Tz/z′

2: for r = 1 to z
z′ do

3: or ← PTAS(Tr)
4: Compute ExactScore(or) by Equation 5
5: end for
6: return or with max ExactScore

//Method PTAS(Tr) : o)

1: S′
0 ← {0m} // boolean vector of size m with all 0’s

2: for i = 1 to m do
3: Si = S′

i−1 ∪ S′′
i−1 // S′′

i−1 : S′
i−1 with ith bit set to 1

4: // Compress Si to S′
i using compression factor σ

5: S′
i ← {}

6: repeat
7: o ← any selected item in S′

i−1

8: S′
i ← S′

i ∪ {o}
9: Delete from Si all items o′ such that ∀Tj ∈ Tr,

|E(o, {Tj})− E(o′, {Tj})| ≤ σE(o, {Tj})
10: until Si is empty
11: end for
12: return item o in S′

m with largest |E(o, Tr)|

Figure 3: Compression in PA Algorithm for Exam-
ple Dataset of Two Tags in Table 2

2. PA runs in polynomial time

Proof of Part 1: Consider any tag group Tr, and let oOPT

be the optimal item for this group, and oAPP be the item
returned by PTAS. For every item o in the set Sm (assuming
no compression was used in any iterations), there is an item
oa in the compressed set S′

m that satisfies

E(o, Tr) ≤ (1 + σ)mE(oa, Tr) (8)

In particular, the following holds

E(oOPT , Tr) ≤ (1 + σ)mE(oAPP , Tr) (9)

Since σ = ϵ/2m, some algebraic simplifications results in:

E(oOPT , Tr) ≤ (1 + ϵ)E(oAPP , Tr) (10)

The above analysis is for a single tag group. Since there
are z/z′ tag groups, it is easy to see that this introduces an
additional factor of z′/z to the overall approximation factor.

Proof of Part 2 (sketch): To show that PA is a polynomial
time algorithm, the main task is to show that the compressed
lists are always polynomial in length. We first observe that
probability quantities such as Pr(ai | Tj) are rational num-
bers, where both the numerator as well as the denominator
are integers bounded by n (number of items in the dataset).
If we then consider Equation 5, we can conclude that the
score of any item for any single tag can be represented as a
rational number, where the numerator and denominator are
integers bounded by O(nm). Thus, we can normalize each
such score into an integer by multiplying it with O(nm).
Next, consider a z′-dimensional cube with each side of

length L = O(nm). We partition the cube into z′-dimensional
cells as follows: Along each axis, start with the furthest
value L, and then proceed towards the origin by mark-
ing the points L/(1 + σ), L/(1 + σ)2, and so on. The
number of points marked along each axis is log(1+σ) L =
O(m log(1+σ) n) which is a polynomial in m and n. Then at

each marked point we pass (z′−1)-dimensional hyperplanes
perpendicular to the corresponding axis. Their intersections

creates O(poly(m,n)z
′
) cells within cube Lz′ .

Due to this skewed method of partitioning cube into cells,
we see that the cells that are further away from the origin
are larger. Consider the ith iteration of the PTAS algorithm.
Each item in Si may be represented as a point in this cube.
Though within any cell there may be several points corre-
sponding to items of Si, after compression there can be at
most only one point corresponding to an item of S′

r, because
two or more points could not have survived the compression
process as the score between them is too small.
The length of any compressed list in the PTAS algorithm

is at mostO(poly(m,n)z
′
). When z′ is a constant, this trans-

lates to an overall polynomial running time for PA. 2

Extending from Top-1 to Top-k: Our PA algorithm can
be modified to return top-k items instead of just the best
item. For the tag group Tr, once a set of items Si is built, we
compress to form the set S′

i. However, every time a cluster
representative is selected, instead of deleting all the remain-
ing points in the cluster, we remember k − 1 items within
the cluster and associate them with the cluster representa-
tive (and if the cluster has less than k items, we remember
and associate all the items with the cluster representative).
When all the m iterations are completed, we can return

the top-k items as follows: we first return the best item of S′
m

along with the k− 1 items associated with it. If the number
of associated items are less than k−1, the second best cluster
representative of S′

m and the set of items associated with it
are returned, and so on.
When the approximate top-k items from all tag groups

have been returned, the main algorithm returns the overall
best top-k items from among them. It can be shown that
this approach guarantees an approximation factor for the
score of the top-k items returned.

5. EXPERIMENTS
We conduct a set of comprehensive experiments using

both synthetic and real datasets for quantitative and qual-
itative analysis of our proposed algorithms. Our quantita-
tive performance indicators are (a) efficiency of the proposed

exact and approximation algorithm, and (b) approximation
factor of results produced by the approximation algorithm.
The efficiency of our algorithms is measured by the overall
execution time and the number of items that are considered
from the pool of all possible items, whereas approximation
factor is measured as the ratio of the acquired approximate
result score to the actual optimal result score. We also con-
duct a user study through Amazon Mechanical Turk study
to qualitatively assess the results of our algorithms.

System configuration : Our prototype system is imple-
mented in Java with JDK 5.0. All experiments were con-
ducted on an Windows XP machine with 3.0Ghz Intel Xeon
processor and 2GB RAM. The JVM size is set to 512MB.
All numbers are obtained as the average over three runs.

Real Camera Dataset : We crawl a real dataset of 100
cameras5 listed at Amazon (http://www.amazon.com). The
products contain technical details (attributes), besides the
tags customers associate with each product. The tags are
cleaned by domain experts to remove synonyms, unintelli-
gent and undesirable tags such as nikon coolpix, quali,
bad, etc. Since the camera information crawled from Ama-
zon lacks well-defined attributes, we look up Google Prod-
ucts (http://www.google.com/products) to retrieve a rich
collection of technical specifications for each product. Each
product has 40 boolean attributes, such as self-timer,

face-detection, red-eye fix, etc; while the tag dictio-
nary includes 40 unique keywords like lightweight, ad-

vanced, easy, etc.

Synthetic Dataset : We generate a large boolean matrix
of dimension 10,000 (items)×100 (50 attributes + 50 tags)
and randomly choose submatrices of varying sizes, based on
our experimental setting. We split the 50 independent and
identically distributed attributes into four groups, where the
value is set to 1 with probabilities of 0.75, 0.15, 0.10 and 0.05
respectively. For each of the 50 tags, we pre-define relations
by randomly picking a set of attributes that are correlated
to it. A tag is set to 1 with a probability p if majority of the
attributes in its pre-defined relation have boolean value 1.

We use the synthetic datasets for quantitative experiments,
while the real dataset is used in the user study.

5.1 Quantitative Results: Performance
Exact Algorithm : We first compare the Naive approach
with our ETT. Since the Naive algorithm can only work for
small problem instances, we a pick a subset from the syn-
thetic dataset having 1000 items, 16 attributes and 8 tags.
Figures 4 and 5 compare the execution time and the number
of candidate items considered, for Naive and ETT respec-
tively, when the number of attributes (m) varies (number of
items = 1000, number of tags = 8). The Naive algorithm
considers all 2m items. We used as number of attributes per
group m′ = 2, 2, 4, 5, 4, 7, 4, 6 for m = 4, 6, 8, 10, 12, 14, 16, 18
respectively in ETT (more analysis of m′ in Figure 6). As
can be seen, Naive is orders of magnitude slower than ETT.

Next, we study the behavior of attribute groupings on
ETT. For a sub-sample picked from our synthetic dataset
having 20 attributes, 1000 items and 8 tags, we experiment
with different possible attribute groupings, m′ = 1, 2, 4, 5,
10, 20. Figure 6 shows the effect of m′ on the performance
of ETT. The execution time and number of items considered

5As discussed earlier, the number of items in the dataset is
not important for the execution cost; analysis in Figure 8.

Figure 4: Execution time for vary-

ing m (Synthetic data)

Figure 5: Number of items built

for varying m (Synthetic data)

Figure 6: ETT behavior for vary-

ing m′ (Synthetic data)

Figure 7: Execution time for vary-

ing z (Synthetic data)

Figure 8: Execution time for vary-

ing n (Synthetic data)

Figure 9: Execution time for vary-

ing m (Synthetic data)

for m′ = 1 is not reported in Figure 6 as it was too slow.
The trade-off of choosing m′ is: a small m′ means there are
many short lists in tier-1, so that the cost of joining the lists
is high. In contrast, a large m′ indicates fewer but longer
lists in tier-1 resulting in increased cost of creating the lists.
We observe that the best balance is struck when m′ = 4
attributes forming 5 lists, each having 24=16 items.
We also vary the number of tags z and number of items

n in the dataset to study the behavior of ETT. We pick
a subset from the synthetic dataset having 1000 items, 16
attributes and 16 tags, and consider further subsets of this
dataset. Figure 7 reflects the change in execution time with
increasing number of tags for the synthetic data (number of
items = 1000, number of attributes = 12, attribute grouping
= 3). The increase in number of tags increases the num-
ber of GetNext() operations in ETT, and hence the running
time rises steadily. Figure 8 depicts how an increase in the
number of items in the dataset (number of attributes = 12,
number of tags = 8, attribute grouping = 3) barely affects
the running time of ETT since an initialization step calcu-
lates all conditional tag-attribute probabilities.

Table 3: PA Performance (Synthetic data)

User-Defined Execution Time Obtained

Approx Factor(ϵ) (in ms) Approx Factor

0.5 406.0 0.93
0.4 749.0 0.94
0.3 2796.0 0.97
0.2 41094.0 0.98

Approximation Algorithm : We observe in Figure 4
that the execution time of ETT outperforms that of Naive,
for moderate data instances. Figure 9 reveals that while
ETT is extremely slow beyond number of attributes (m) =
16, PA with an approximation factor ϵ=0.5, continues to
return guaranteed results in reasonable time with increasing
number of attributes m for a subset of the synthetic data
(number of items = 1000, number of tags = 8). Therefore,
PA performs better than ETT for larger datasets having
many attributes and tags.

Table 3 depicts how the execution time and the obtained
approximation factor vary with change in the user-defined
approximation factor ϵ, for a subset of the synthetic dataset
having 1000 items, 20 attributes and 8 tags . Note that, in
this experimental set-up, z=z′=8 so that the number of tag
groups = 1. The obtained approximation factor is the ratio
of the score for top-1 item obtained by PA to the score of
the optimal item obtained by an extended run of ETT.

5.2 Qualitative Results: User Study
We now validate how designers can leverage existing item

information to design new items catering different groups
of people in a user study conducted on Amazon Mechanical
Turk (https://www.mturk.com) on the real camera dataset.
We also consult DPreview (http://www.dpreview.com), a
website about digital cameras and digital photography. There
are two parts to our user study. Each part of the study in-
volves thirty independent single-user tasks. Each task is
conducted in two phases: User Knowledge Phase where we
estimate the users’ background and User Judgment Phase
where we collect users’ responses to our questions.

In the first part of our study, we build four new cameras
(two digital compact and two digital slr) using our PA al-
gorithm with an approximation factor ϵ=0.5, by considering
tag sets corresponding to compact cameras and slr cameras
respectively. We present these four new cameras along with
four existing popular cameras (presented anonymously) and
observe that 65% of users choose the new cameras, over the
existing ones. For example, users overwhelmingly prefer our
new compact digital camera over Nikon Coolpix L22 because
the former supports both automatic and manual focus while
the latter does not, thus validating how our techniques can
benefit designers.

The second part of the study concerns six new cameras
designed for three groups of people : young students, old re-
tired and professional photographers. Domain experts iden-
tify and label three overlapping sets of tags from the camera
dataset’s complete tag vocabulary, one set for each group
and we then build two potential new cameras for each of the
three groups. For each of the six new cameras thus built, we

ask users to assign at least five tags by looking up the com-
plete camera tag vocabulary, provided to them. We observe
that majority of the users rightly classify the six cameras
into the three groups. The correctness of the classification
is validated by comparing the tags received for a camera to
the three tag sets identified by domain experts; we also val-
idate the correctness by consulting data available in Dpre-
view. As an example, the cameras designed by leveraging
tags corresponding to professional photographers draw tags
like advanced, high iso, etc. while cameras designed by
leveraging tags corresponding to old retired draw tags like
lightweight, easy, etc. Figure 10 shows the percentage of
users classifying the six cameras correctly. Thus, our tech-
nique can benefit designers build new items that are likely
to attract desirable tags from different groups of people.

Figure 10: Users Classify Cameras Correctly

6. RELATED WORK
The dynamics of social tagging has been an active research

area in recent years, with several papers focusing on the tag
prediction problem. A recent work [16] proposes a proba-
bilistic model for personalized tag prediction and employs
the Naive Bayes classifier. Related research in text min-
ing [12] found that the Naive Bayes classifier performs better
than SVM and CRF in classifying blog sentiments. Another
study that indirectly supports the use of Naive Bayes for tag
prediction is done by Heymann et al. [7], who found that
tag-based association rules can produce very high-precision
predictions. The process of collaborative tagging has been
studied in [6]. Other related work investigates tag sugges-
tion, usually from a collaborative filtering and UI perspec-
tive; for example with URLs [15] and blog posts [11].
The problem of item design has been studied by many

disciplines including economics, industrial engineering and
computer science [13]. Optimal item design or positioning is
a well studied problem in Operations Research and Market-
ing. Shocker et al. [14] first represented products and con-
sumer preferences as points in a joint attribute space. Later,
several techniques [1, 2] were developed to design/position a
new item. Work in this domain requires direct involvement
of consumers, who choose preferences from a set of existing
alternative products. Miah et al. [10] study the problem of
selecting product snippets given a user query log, in order
for the designed snippet to be returned by the maximum
number of queries. However, none of these works has stud-
ied the problem of item design in relation to social tagging.
Our top-k pipelined algorithm is inspired by the rich work

on top-k algorithms ([4, 9]). A recent survey by Ilyas et
al. [8] covers many of the important results in this area.

7. CONCLUSIONS
In this paper we consider the novel problem of leverag-

ing online collaborative tagging in product design. We for-
mally define the Tag Maximization problem, investigate its
computational complexity, and propose several principled
algorithms that are shown to work well in practice. Our
work is a preliminary look at a very novel area of research,
and there appear to be many exciting directions of future re-
search. Our immediate focus is to extend our work to include
tag prediction using other classifiers, such as decision trees,
SVMs, and regression trees (the latter is applicable when
we wish to predict the frequency of occurrence of desirable
tags attracted by products). We also intend to evaluate the
applicability of our proposed framework to other novel appli-
cations, e.g., guide recommender systems recommend better
vacation travel itineraries by tracking tag history, help on-
line authors write better blogs, and others.

8. REFERENCES
[1] S. Albers and K. Brockhoff. Optimal product attributes in

single choice models. Journal of the Operational Research
Society, 31, 647-655, 1980.

[2] M. D. Albritton and P. R. McMullen. Optimal product
design using a colony of virtual ants. European Journal of
Operational Research, 176(1):498–520, January 2007.

[3] B. Cestnik. Estimating probabilities: A crucial task in
machine learning. In ECAI, pages 147–149, 1990.

[4] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, 2001.

[5] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA, 1990.

[6] S. A. Golder and B. A. Huberman. Usage patterns of
collaborative tagging systems. J. Inf. Sci., 32(2):198–208,
2006.

[7] P. Heymann, D. Ramage, and H. Garcia-Molina. Social tag
prediction. In SIGIR, pages 531–538, 2008.

[8] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems. ACM Comput. Surv., 40(4):1–58, 2008.

[9] I. F. Ilyas, D. Martinenghi, and M. Tagliasacchi. Rank-join
algorithms for search computing. In SeCO Workshop, pages
211–224, 2009.

[10] M. Miah, G. Das, V. Hristidis, and H. Mannila.
Determining attributes to maximize visibility of objects.
IEEE Transactions on Knowledge and Data Engineering,
21:959–973, 2009.

[11] G. Mishne. Autotag: a collaborative approach to automated
tag assignment for weblog posts. In WWW ’06: Proceedings
of the 15th international conference on World Wide Web,
pages 953–954, New York, NY, USA, 2006. ACM Press.

[12] A. Pak and P. Paroubek. Twitter as a corpus for sentiment
analysis and opinion mining. In LREC, 2010.

[13] T. Selkar and W. Burlesson. Context-aware design and
interaction in computer systems. IBM Syst. J., 39:880–891,
July 2000.

[14] A. D. Shocker and V. Srinivasan. A Consumer-Based
Methodology for the Identification of New Product Ideas.
MANAGEMENT SCIENCE, 20(6):921–937, 1974.

[15] Z. Xu, Y. Fu, J. Mao, and D. Su. Towards the semantic
web: Collaborative tag suggestions. In Proceedings of the
Collaborative Web Tagging Workshop at the WWW 2006,
Edinburgh, Scotland, 2006.

[16] D. Yin, Z. Xue, L. Hong, and B. D. Davison. A
probabilistic model for personalized tag prediction. In
Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD
’10, pages 959–968, New York, NY, USA, 2010. ACM.

