
Comprehension-Based Result Snippets
Abhijith Kashyap

University of California at Riverside
Riverside, CA, USA

akash001@ucr.edu

Vagelis Hristidis
University of California at Riverside

Riverside, CA, USA

vagelis@cs.ucr.edu

ABSTRACT

Result snippets are used by most search interfaces to preview
query results. Snippets help users quickly decide the relevance of
the results, thereby reducing the overall search time and effort.
Most work on snippets have focused on text snippets for Web
pages in Web search. However, little work has studied the
problem of snippets for structured data, e.g., product catalogs.
Furthermore, all works have focused on the important goal of
creating informative snippets, but have ignored the amount of user
effort required to comprehend, i.e., read and digest, the displayed
snippets. In particular, they implicitly assume that the
comprehension effort or cost only depends on the length of the
snippet, which we show is incorrect for structured data.

We propose novel techniques to construct snippets of structured
heterogeneous results, which not only select the most informative
attributes for each result, but also minimize the expected user
effort (time) to comprehend these snippets. We create a
comprehension model to quantify the effort incurred by users in
comprehending a list of result snippets. Our model is supported by
an extensive user-study. A key observation is that the user effort
for comprehending an attribute across multiple snippets only
depends on the number of unique positions (e.g., indentations)
where this attribute is displayed and not on the number of
occurrences. We analyze the complexity of the snippet
construction problem and show that the problem is NP-hard, even
when we only consider the comprehension cost. We present
efficient approximate algorithms, and experimentally demonstrate
their effectiveness and efficiency.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User
Interfaces – user-centered design, graphical user interfaces.

Keywords

Query Interfaces, Information Overload, Result Snippets.

1. INTRODUCTION
A large number of databases are heterogeneous in nature.
Examples of such databases include product catalogs (Amazon,
eBay etc.) and medical data (Stanford diabetes study, patient
records, Human Genome project), among many others. Such
heterogeneous data is characterized by a high structural variance
amongst the objects in the database, where objects have different
and usually overlapping sets of attributes. As an example,
consider the Amazon product catalog which consists of objects of
different types including Laptop, Desktop and Camera etc. Each

object type is associated with different and possibly overlapping
schemas. For instance, Laptop has attributes Price, Display Size,
Fingerprint Reader etc., whereas Camera has attributes such as
Price, Shutter Speed, Zoom etc. As another example, a patient
record stores various types of data, e.g., a diabetic patient’s record
includes Blood Pressure, Blood Sugar level and Insulin Dosage,
whereas a patient’s record with Osteoporosis includes Bone
Density, Calcium Level, etc.

Keyword search is the dominant query interface in most such
systems. Hence, naturally the query answer typically consists of a
list of heterogeneous objects, due to the ambiguous nature of
keyword queries. Query interfaces use a variety of methods to
help users find the results that they are most interested in, like
ranking [1-3], categorization (facets) [4-6], and result snippets.

A snippet is a summary of the information contained in a result
and its purpose is to help the user make a decision about the
relevance of the given result. As an example, consider snippets for
the results of the query ‘acer laptop 3gb’ on an e-commerce Web
site, as shown in Figure 1. Amazon.com, as most other similar
systems, uses a fixed hardcoded snippet schema for each type of
object, as in Figure 1b. In particular, Amazon.com always
displays attributes Brand, Model, Display, Model Name and Color
for Laptop results (only Brand and Display are in our result-set).
This is clearly suboptimal, since such snippets do not always
allow differentiating among the displayed results ([7] makes this
point for XML results). For example, the snippets of two Laptop
results (#1 and #3) in Figure 1b show the same attributes and
values. Instead, it is beneficial to include a discriminating
attribute for Acer laptops (e.g. Cover Material) in the snippet,
which may not be important for other results in the query. Further,
this fixed-schema approach is inefficient for diverse result-sets [8-
10] in which the results have few attributes in common.

The only work we are aware of on snippets construction for
structured data, studies snippets of XML results, has focused on
the informativeness of the snippets, which describes how useful
the information on the snippets is to help the user select a result,
e.g., how representative or distinguishable the snippets are [7].

For instance, if many results have Display Size=11.3’’, this

information should be displayed on the snippets. Figure 1c shows
a list of snippets generated with informativeness in mind1.
Comparing Figures 1b and 1c, we observe that the snippets in
Figure 1b appear to have a somewhat uniform schema (at least for
items of the same type), while the ones in Figure 1c look very
jagged and disorganized. The tradeoff is that the more uniform
snippets are easier to read, while the disorganized ones may offer
more useful information about the returned results. The goal of
snippets is to minimize the user effort (time) in finding the results
of interest. Hence, we argue that the user time spent reading the
snippets is important as is the information on the snippets.

1 For this example, you can think of informativeness as the

amount of information. We provide more details in Section 4.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.

Copyright 2012 ACM 978-1-4503-1156-4/12/10...$15.00.

Figure 1d shows an example of a snippet that is both highly
informative (contains a number of attributes) and is easy to
comprehend since the attributes in snippets of results are aligned
and are therefore easy to read.

No work has studied the comprehension cost of structured
snippets, which is the user effort required to read and digest the
information displayed by the snippets. We argue that the
comprehension cost should be taken into consideration during the
snippets generation process. In this paper, we propose a
methodology to construct snippets that simultaneously minimize
the comprehension effort and information loss (i.e. maximize
informativeness). Our work achieves this goal as follows:

First, we propose the first model for the user comprehension cost
of reading structured snippets. We perform user surveys that
confirm our intuition that by indenting the snippet attributes in a
way that common attributes have the same position across the
snippets we reduce the user comprehension cost. In particular, we
show the surprising result that the comprehension cost for an
attribute does not depend on the number of snippets that contain

it, but only on the number of different positions where it appears

in the snippets.

Next, we define a quantitative model for the information content
(termed informativeness) of snippets with respect to complete
results. We leverage previous work on snippet informativeness
and adapt it to structured objects.

We analyze the problem of constructing optimal snippets, i.e.,
minimizing both the comprehension cost and the information loss,
for a list of results and show that this problem is NP-hard. We
present efficient algorithms for snippet construction and evaluate
their performance and efficiency.

Contributions: We make the following specific contributions:

1. A cost model that quantifies the comprehension effort of a
user reading a list of result snippets. We conducted user
surveys using Amazon Mechanical Turk to validate the
model and estimate its parameters (Section 3).

2. Naturally, a snippet only contains a subset of the result’s
attributes. We build upon previous works that characterize
the information content or informativeness of a snippet and
present several measures for structured data (Section 4).

3. A proof that the problem of constructing optimal snippets,
i.e. snippets that simultaneously minimize comprehension
cost and maximize informativeness is NP-Hard (Section 5).

4. Heuristic algorithms to efficiently construct highly
informative snippets which have low comprehension cost
(Section 6).

5. An experimental evaluation to validate the effectiveness of
the constructed snippets using real datasets (Section 7).

Section 2 defines the problem. Related work is discussed in
Section 8 and we conclude in Section 9.

2. FRAMEWORK AND DEFINITIONS
In this section, we formally define the snippets construction
problem. We start by defining the data model.

Database: The database is a single relation �	with � attributes

� = ���, … , �
�. Each attribute �� has an associated active

domain ������� of un-interpreted constants, which includes

the null value. The database �	is sparse and heterogeneous, i.e.

tuples � ∈ � have values for different subsets of �, and have the

null value for the rest of the attributes. We use �� ⊆ �	(typically
|��| ≪ |�|) to denote the set of attributes of a tuple �	.

ID Type Brand Memory Capacity Processor Display Cover Material Price

1 Laptop Acer 4Gb Intel i5 13.3” Aluminum $1299

2 Tablet Acer 16Gb Nvidea Ion 7” Gorilla Glass $380

3 Laptop Acer 3Gb Intel i5 13.3” Carbon Fiber $1250

4 HDD Seagate 500Gb Plastic $200

5 Memory Kingston 2Gb $100

6 Memory Corsair 4Gb $150

1 Brand: Acer Display:13.3”

2 Brand: Acer Capacity: 16Gb Display: 7”

3 Brand: Acer Display:13.3”

4 Brand: Seagate Capacity: 500Gb

5 Brand: Kingston

6 Brand: Corsair

1 Memory:4Gb Processor: Intel i5 Price: $1299

2 Capacity:16Gb Display: 7” Cover: Gorilla Glass

3 Brand: Acer Processor: Intel i5 Display: 13.3”

4 Capacity: 500Gb Cover: Plastic Price: $200

5 Brand: Kingston Memory: 2Gb Price: $100

6 Brand: Corsair Memory: 4Gb Price: $150

1 Cover: Aluminum Memory:4Gb Processor: Intel i5

2 Brand: Acer Display: 7” Processor: Nvidea Ion

3 Cover: Carbon Fiber Display: 13.3”

4 Brand: Seagate Capacity: 500Gb Price: $200

5 Brand: Kingston Memory:2Gb Price: $100

6 Brand: Corsair Memory:4Gb Price: $150

(a) Result-set of query ‘acer laptop 3gb’

(b) Fix Schema Snippet, with high information loss (c) A very informative, but hard to read snippet

(d) An informative and easily comprehensible snippet

Figure 1. A heterogeneous result-set for query ‘acer laptop 3gb’ and three snippets with different characteristics

Result-set: A user exploring � typically submits a query and the

system returns a ranked result-set � = ���, … , ��� ⊆ � of objects

(we use the terms object, tuple and result interchangeably
depending on the context).

Example: Figure 1a shows a subset of the results of query ‘acer
laptop 3gb’ on Amazon.com. Only seven (we do not count Type
as an attribute) of nearly hundred attributes are shown. The query
returns not only Laptops (indicated by the Type attribute), but also
results of type Memory, Tablets and Hard Disk Drives. The
schema of each object depends on its type and can have common
attributes with other types (e.g. Price), but also different attributes
(e.g Laptops and Tablets have a value for attributes Display and
CPU, whereas Memory does not).

A snippet with many attributes can be difficult to present and can
overwhelm the user with details. Therefore we typically require

that the size of each snippet be bounded to � attributes. The

snippets in Figures 1b-d have size � ≤ 3. Note that the size of a
snippet could also be defined in other ways like the number of
characters. However, we have found that the number of attributes
offers a reasonable bound that also allows a structurally uniform
presentation (e.g., in tabular form).

Result Snippet: A snippet ���� for a result � is a k-tuple

< �� = ��, … , �� = �� > 2, where �� ∈ �� is an attribute of � or

is empty, and ��!������ is a value. To simplify the

presentation, we often denote ���� as < ��, … , �� > and use
|����| to denote the number of attributes in ����. E.g., the first

snippet � in Figure 1b is <Brand, null, Display>, and |����| =2.

Result-set Snippet: A result-set snippet "��, �� of a result-set

� = ���, … , ��� is "��, �� = ������, … , ������ where �����	is the

snippet of result ��, and |�����| ≤ �.
Figures 1b-d show example result-set snippets of the result-set in
Figure 1a. It is possible that results of same type have different
attributes in their snippets, e.g. the first and the third Laptop

snippets in Figure 1c. To construct "��, ��, a subset �$ ⊆ �� of
size at-most �	has to be selected for each result �, and the

attributes in �$ have to be ordered as a �-tuple. The order
(position) of the attributes is an important factor for the
comprehension cost, as we explain in Section 3.

Result-set Snippet Construction Problem: Before formally
defining the problem, we must define what a good result-set

snippet is. Let function ℱ�", �, ��, which will be defined below,

be the goodness of "��, ��, given � and �. By goodness, we mean

that "��, �� simultaneously minimizes the comprehension cost
and maximizes the informativeness.

Given a result-set � and snippet size bound �, construct a result-

set snippet "��, �� such that:

"��, �� = ��&��'()�*,��+ℱ�"′��, ��, �, ��-																	�1�	
To capture the comprehension effort, we introduce the following

function predicate: /�0�1ℎ�", �, �� that quantifies the user

effort in reading and understanding the result-set snippet "��, ��.
Analogously, 345���", �, �� captures the informativeness of the
result-set snippet.

The goodness of a result-set snippet decreases with increasing
comprehension effort, i.e.

ℱ�", �, �� 	∝ 1 /�0�1ℎ�", �, ��⁄

and increases with informativeness, i.e.

2 Assuming a prefix of the attributes in �	is in s.

ℱ�", �, �� 	∝ 345���", �, ��
To combine the two competing factors, we formulate the snippet
construction problem as a bi-criteria optimization problem and

introduce a trade-off parameter 8 ∈ [0,1]. The range (and units) of
/�0�1ℎ is different from that of 345��. Therefore, to avoid
having the goodness be dominated by a single factor, we choose
to define the optimization function as a product, instead of the
more common linear combination, as follows:

ℱ��, ", �� = 345���", �, ��<
/�0�1ℎ�", �, ���=< 																						�2�

Intuitively, smaller values of λ lead to result-set snippets with
smaller comprehension cost, which translates to fewer unique
attributes and stricter alignment of same attributes (Section 3),
whereas a large value of λ favors more informative snippets.

3. COMPREHENSION MODEL
In this section we model how users read snippets and present a
comprehension cost model. We start, in Section 3.1, by describing
the process by which a user reads and understands a list of results
and identify the factors that affect comprehension. Next, in
Section 3.2, we describe the details of a user study specifically
designed to study the effect of the aforementioned factors on
comprehension effort. Finally, in Section 3.3, we present the
results of this study and use it to formulate a comprehension
model that quantifies this effort.

3.1 Comprehension Model and Factors
There have been studies [11-13] in the HCI community on the
benefits of tabular presentation of results over a list-based
presentation. Users can read tables horizontally −one snippet at a
time− or vertically –one column at a time. When users view a
result-set snippet, they generally look for attributes of interest and
for each such attribute scan all snippets to see its value in other
results, in order to get a picture of the result-set. E.g., in Figure
1d, the user may scan the result-set snippet and get interested in
attribute Memory, and then scan vertically to examine the value of
Memory in other snippets. Then, the user may pick Brand and
repeat the process. Eventually, the user will have comprehended
the result-set snippet, that is, examine all attributes of interest to
her, in order to make a decision (e.g. select a result or refine the
query). The comprehension cost /�0�1ℎ�", �, �� is the total
user cost during this process.

A key hypothesis, which we test below, is that the effort required
to locate the attributes of interest and their values, depends on
how they are arranged in the result-set snippet. More specifically,
we hypothesize that if all the snippets have the same schema (as in
Figure 1b), then the user first determines the position of a given
attribute that she is interested in and then reads its values for all
snippets. The associated comprehension cost then mainly consists
of the cost to locate the attribute position, since reading
(comparing) a list of aligned values entails an almost fixed effort,
as we show below. However, fixing the schema is not possible for
heterogeneous result-sets when informativeness (e.g., diversity)
must be taken into consideration. This leads to increased user
effort and thereby increased comprehension cost.

Another factor that possibly affects comprehension is the number
of times an attribute	���?	���	 appears in the snippets. For
example, if an attribute appears multiple times in the snippets,
then the user would have to locate each instance of the attribute to
satisfy her information need, thereby increasing the
comprehension effort. For example, if the user is interested in the
Brand attribute in Figure 1c, then she would have to locate its

three occurrences. Based on the above discussion, we identify two
factors that may play a role in the comprehension effort:

1. 4@AAB����� : number of times an attribute appears in the
result-set snippet, e.g., 3 for Memory in Figure 1c.

2. 4C����� : number of unique positions of an attribute in the
result-set snippet, e.g., 2 (first and second) for Memory in
Figure 1c.

Hence, the comprehension cost for an attribute �� in the result-set

snippet "��, ��	is a function:

/�0�1ℎ�", �, �, ��� = 5+4C�����, 4@AAB�����-											�3�
Note that we overload /�0�1ℎ�. � from Section 2.

Given the above discussion on vertical scanning of the snippets,
the overall comprehension cost for "��, �� is approximated by the
sum of the costs of its attributes, that is:

/�0�1ℎ�", �, �� = D /�0�1ℎ�", �, �, ���																	�4�	
FGGH�$I��(,JK�

where AAB��34�", ��� returns true if attribute �� is in at least one

of the snippets in "��, ��.
Equation 4 shows that only two factors affect the comprehension
cost. Although this is supported by our user surveys below, we
acknowledge that there can be several other factors that affect
comprehension cost such as comprehension difficulty of attribute
names and values. For example, understanding a Legal Disclaimer
attribute of results requires more effort than understanding the
Color attribute. Yet another factor could be the format in which
attributes are displayed – e.g. highlighting attributes. However,
such factors cannot be quantitatively modeled in any
straightforward way, e.g. comprehension difficulty is data-
dependent, and highlighting depends on the presentation design.
We leave the study of such additional factors as future work.

What is left is to study are the properties of function 5�. � in
Equation 3. As mentioned above, comprehension of snippets is a
complex activity involving a number of factors such as locating,
reading and understanding the data present in the snippets. The
effort or cost of these actions is subjective and is difficult to
measure. Instead, we propose to measure the overall effort by
measuring the time taken by a user to complete a comprehension
task. Next, we describe the user experiment we conducted to
measure the effort in comprehending an attribute ��, namely,

L5+4C�����, 4@AAB�����-M in a result-set snippet.

Table 1. Combinations of NOPPQR�ST�	UVW	NXYZ�ST�. Each

cell is a task.

4@AAB����� 1 4 8 12 15

4C����� 1 1 1 1 1

	4C����� 2 2 2 2

4C����� 4 4 4 4

4C����� 6 6 6

3.2 User Study Setup
To determine the effect of the parameters of our comprehension
model, namely number of positions 4C����� and occurrences

4@AAB����� in snippet "��, ��, and the relationship between
them, it is necessary to determine the time it takes for users to
comprehend the given attribute for different configurations of
these parameters. More concretely, for a snippet size � and a

result-set size of 4	�> ��, an attribute can be present in snippets

of all or some (between 1 and 4) of the 4 results and can be

placed in any number of positions between 1 and �. Measuring
the time taken by users to comprehend the attribute in these
multiple configurations gives the estimated relative effort.

For this study, we manually constructed snippets for results of
queries on a popular e-commerce website. The snippets were
constructed for first 15 results of each query and the snippet size �
was fixed to k=6. An attribute that appears in 5 or fewer snippets
can appear in at-most as many positions, whereas an attribute that
appears in 6 or more (up to 15) result snippets can appear in

between 1 and 6 positions, giving a total of 75 +∑ \�][�,^] + 10 ×
6� possible configurations of an attribute in a result-set snippet.

Instead of checking for all 75 configurations, we test on a subset
consisting of 16 configurations, as shown in Table 1.

In particular, we chose five different values for the number of
occurrences 4@AAB����� of attribute	��, and for each value, we

consider a number of positions 4C����� of �� according to Table

1. For example, for Table 1 entry �4@AAB�, 4C�� = �8,2�
corresponds to a snippet in which a particular attribute (e.g. Price)
appears in 8 results and in 2 (vertically aligned) positions. The
user is asked a single question about a particular attribute in the
result set. These questions are designed to gauge the overall
comprehension of the attribute. A sample question for the task of
query ‘acer laptop 3gb’ (Figure 1), might be ‘Which product has
the maximum Price?’ For each task, we measure the time taken to

answer the question correctly, which estimates the value of 5�. �.
3.3 User Study Results
We deployed the user study on Amazon Mechanical Turk and
collected 83 valid responses after discounting users who
abandoned the survey mid-way or took multiple attempts to
answer. From these, we eliminated outliers, that is, responses that
took unreasonably long. In particular, we removed entries with
response times that were more than two standard deviations from
the mean, leaving 57 responses on average, per task.

Figure 2 shows the response times of users to answer the question
for different configurations of attribute arrangement. The first row
of Figure 2 (2a-d) shows the plot of response times for differing
number of occurrences of an attribute, while keeping the number
of attribute positions in snippets (4C�), fixed. We observe that
for a given number of positions, the mean response time does not
vary significantly based on the number of occurrences (4@AAB�).
For example, Figure 2b shows that when the number of positions
of an attribute is fixed to 2 (second line, excluding heading, in
Table 1), the mean response times for 4, 8, 12 and 15 occurrences
of the attribute were 44.4, 42.9, 41.1 and 43 seconds, respectively,
indicating that the response times, and therefore effort, does not
depend much on the number of occurrences of the attribute.
Intuitively, the reason is that once the user locates the position, it
is fast to make a vertical scan to check the values of this attribute
in the other snippets. This observation is supported by Figures 2a-
d and also by statistical hypothesis tests for equivalence, as shown
below.

Classical hypothesis testing procedures only provide a way to
check non-equivalence. Since we want to test for equivalence of
mean response times, we used the two one-sided testing (TOST)
procedure, developed by Schuirmann et al. [14], which is widely
used to test the bioequivalences of two drug formulations.

A TOST to test equivalences of means c�, cd of two populations

C�, Cd is formulated as follows:

ef	 = ��c� − cd� ≤ hi 	�	�c� − cd� ≥ hk�

eJ = �hi ≤ �c� − cd� ≤ hk�
where hi and h* are the upper and lower equivalence limits,
respectively, which are defined by the test designer.

This test works by establishing a 100 ∙ �1 − 2m�% confidence
interval (CI) for c� − cd and rejecting the null hypothesis ef in

favor of alternative hypothesis eJ	if the CI falls within the

equivalence limit	[hi, hk]. We performed pairwise TOST
statistical tests for each pair of mean response times for different
number of occurrences �4@AAB�� for a given 4C� with an

equivalence limit of ±5 seconds and found that CI was within the

limit when tested with m = 0.05.

Of course, the above observation assumes that the number of
snippets is reasonably small (15 in our experiment), which is the
case in practice, given that the result-set snippet must fit in the
screen. On the other-hand, as shown in Figures 2e-h, the number
of positions of an attribute does affect navigation cost. This is
because, the user has to expend more effort in navigating the
result and check for each position of the snippet and look for a
particular attribute. In particular, we see that the user time
increases linearly with the number of positions.

We summarize our finding as follows. For a result-set snippet:

Observation 1: The comprehension cost does not depend on the
number of occurrences of an attribute.

Observation 2: The comprehension cost increases linearly with
the number of different positions of the attribute.

Therefore, the per-attribute cost function 5�. �		can now be
expressed as follows:

5+4C�����- = � ∙ 4C���\�+ q														�5�		
To compute � and q we fit the response time against the number
of positions into a linear function and obtained the following
function, where the unit is seconds.

5+4C�����- = 5.17 ∙ 4C����� + 22							�6�		
We also experimented with higher order functions, but observed
that they did not fit well with the data, which confirms our initial
linearity observation. Note that the particular values for � and q
depend on the nature of the result-set snippet, and particularly on
factors like the number of snippets (15 in our experiment) and the
comprehension difficulty of the attributes and values (see
discussion in Section 3.1).

4. INFORMATIVENESS
In this section we present a set of factors that make a result-set
snippet informative. In the example of Figure 1, it is useful to
show the Price attribute since a user at an e-commerce website is
typically very interested in the price of the product. The
importance of an attribute in a result-set is subjective and depends
on factors such as user preferences, global (result-set-
independent) attribute importance or the distribution of attribute
values in the result-set. Furthermore, informativeness could be
defined at the attribute value level, instead of the attribute level.
This is particularly desirable when different values have different
importance for the user. For example, "01A\�s	@551� = t�B1 is

more important than the "01A\�s	@551� = 5�s�1 value since it is
advantageous to display a special offer to the user, if it is available
for the given product.

There is no previous work defining the informativeness (or
usefulness) of tabular snippets. For that, we borrow ideas from
works on faceted navigation [5, 15], results diversity [16, 17, 9,
10], text snippets [24, 25] and XML snippets [7, 18]. These works
define desirable principles for useful attributes or snippets, but do
not provide a quantitative measure to compare the usefulness of
two snippets. Note that this section should not be viewed as a key
contribution of our work, but is included for completeness.

We introduce the function 3�. � → ℝw	 to quantify the
informativeness, and specifically two variants:

0

20

40

60

80

100

8 10 12 14

0

20

40

60

80

100

4 9 14

0

20

40

60

1 6 11

0

20

40

60

80

4 9 14

nPos = 1 nPos = 2 nPos = 4 nPos = 6

T
im

e
 (

se
co

n
d

s)

Number of occurrences of attribute (nOccur)

0

20

40

60

80

0 2 4 6
0

20

40

60

80

100

0 2 4 6

T
im

e
 (

se
co

n
d

s)

0

20

40

60

80

100

0 2 4 6

0

20

40

60

80

100

0 2 4 6

nOccur = 4 nOccur = 8 nOccur = 12 nOccur = 15

Number of positions of attribute (nPos)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Comprehension Cost User Study Results

• 3��� , �� : Informativeness of attribute �� in result-set �

• 3��� , �, x� : Informativeness of value x of �� in �.

Some of the attribute usefulness factors that have been proposed
in previous work are:

• Distinguishability: snippets should show the differences
between results [8, 15, 21].

• Diversity: showing a variety of attributes gives to the user a
broader view of the results [10, 17, 22, 23].

• Importance: show attributes that are more important in the
result-set than in the whole database [7, 8, 20].

Without loss of generality, we assume that 3�. � assigns higher

values to more informative attributes, i.e., if 3��� , �� > 	3+�y , �-,
then it is preferable to include �� 	in the result-set snippet instead

of �y. Next we present concrete ways to quantify 3��� , �� and

3��� , �, x�, which use some of the proposed factors, and we use in
our experiments in Section 7.

We define attribute level informativeness 3��� , �� as the
complement of indistinguishability (INDG) [15], i.e., the
maximum possible indistinguishability minus the attribute's
indistinguishability:

3��� , �� =
z��� , ���z��� , �� − 1�

2 − 3z�{��� , ��						�7�
where z��� , �� is the number of times �� appears in � and

3z�{��� , �� is the indistinguishability score defined as:

3z�{��� , �� = 	 D |���, ��|�|���, ��| − 1�
2

�∈�����\,��

where, ������ , ��	is the active domain of �� in the result-set �

and |���, ��| is the number of times a value � ∈ ������ , ��
appears in �. For example, in Figure 1a, I(Brand,R)=6(6-1)/2 –
3(3-1)/2 (Acer)- 0(Seagate) -0(Kingston) -0(Corsair)=12.

Alternatively, we could use the entropy of these values or a user-
specified global importance of the attributes.

For the value-specific informativeness, we adopt the dominance
score from [7]:

3��� , �, x� =
z�x, �� , ��

z��� , �� |������ , ��|⁄ 						�8�
where z�x, �� , �� is the number of times that x appears for

attribute �� in result-set � and ������ , �� is the domain size of

�� in � and z��� , �� is the number of times �� appears in �.

Next, we define the total informativeness of result-set snippet

"��, �� as the sum of the informativeness of its attributes:

345���", �� = D 3��� , ��																		�9�
JK∈(

For example in Figure 1b, 345���", �� = 6 ∙ 3�}��4~, �� + 2 ∙
3�/�0�A\t?, �� + 3 ∙ 3��\�0s�?, �� = 6 ∙ 3 + 2 ∙ 3 + 3 ∙ 4 = 36.

The above formula assumes that the scores of attributes are
independent from each other, which is a reasonable simplifying
assumption, but clearly not true for all informative definitions.

If we also consider the attribute value-level informativeness

3��� , �, x�, then the above formula can be rewritten as:

345���", �� = D 3��� , ��
�JK]��∈(

3��� , �, x�				�10�

where for each condition ��� = x� in a snippet we multiply the
informativeness of the value with that of the attribute.

5. COMPLEXITY RESULTS
In this section we study the complexity of the Snippet
Construction Problem. We consider a simplified version of the
Snippet Construction Problem, termed Fixed Snippet Construction
(FSC), where the comprehension cost is the number of attribute
positions. The key simplification in FSC is that it does not try to
maximize informativeness. By showing that FSC is NP-hard, we
also show that Snippet Construction Problem is NP-hard.

FSC Problem: Given a result-set �, construct a result-set snippet

"��� (FSC has no snippet size constraint k), such that the

comprehension cost is up to � and each snippet in "��� is non-
empty. The comprehension cost for an attribute is the number of
positions it appears in, and the comprehension cost of "��� is the

sum over all attributes in "���. The informativeness is constant.

� =	 ��, �d, ��, ��, �^	
�� = ��, �d, ��
�d = �d, ��, ��
�� = ��, ��, �^
�� = ��, ��	
�̂ = ��, �d	�� �d �� �� �^

�� × × ×
�d × × ×
�� × × × ×
�� × ×
�̂ ×

Figure 3. Reduction of Set Cover to the Fixed Snippet

Construction (FSC) Problem

Theorem 1: FSC is NP-Complete.

Proof: The problem is obviously in NP. Given a result-set snippet

"���, it is easy to verify that S(R) has comprehension cost �. To
prove that the problem is NP-Complete, we reduce the Set Cover
Problem (SCP) to FSC.

SCP: Given a set of elements � = ���, … , ��� and a set of subsets
� = ���, … , �
�		of � find a subset �) ⊆ � of size at most �, such
that ⋃ �� = ��K∈�) .
Given an arbitrary instance ��, �� of SCP, we construct an

instance of FSC as follows. For each � ∈ �, create a result ��. For

each �� ∈ �, create an attribute ��, and add this attribute to all

results �� whose corresponding element � is in ��. Figure 3 shows
this reduction. Recall that results are heterogeneous, that is, they
have different attributes. Finally, we map Z=L.

We now show that this mapping is indeed a reduction. A solution
"��� to FSC is mapped to a solution �) to SCP by including to �)
the subsets that correspond to the attributes in "���. Note that

when we add an attribute �� 	to "���, we simply add it to the

snippets of all results that contain �� since it does not increase the
comprehension cost and there is no limit k on the size of a snippet.
A solution to FSC is a solution to SCP because every result is
non-empty, which means that every element in the universe in

SCP is selected at least once. The comprehension cost of "���,
which is the number of attributes in "���, is |�)|. Similarly, we
can show the solution mapping in the other direction.

6. SNIPPET CONSTRUCTION

ALGORITHMS
Challenges: Due to the intractability result of Theorem 1, in this
section we propose efficient approximate algorithms for the

Snippet Construction problem. Intuitively, there are two sources
of intractability regarding the comprehension cost:

(a) how to select which attributes to display in each snippet of
the result-set snippet, and

(b) how to arrange them, i.e., assign positions.

To minimize the comprehension cost, we want to select common
attributes across the snippets and assign them the same position,
as in Figure 1d. However, we must also consider informativeness,
which further complicates computation. Note that the
informativeness contribution of an attribute or value in the result-
set snippet S does not depend on the other attributes or values in S,
according to the formulas presented in Section 4, which is clearly
not true for the comprehension cost. Hence, the latter is the main
complexity source that our algorithms must tackle.

Algorithm Overview: To create an efficient approximate
algorithm, we carefully relax both intractability sources listed
above. The result-set snippet construction algorithm, presented in
Figure 4, iteratively constructs a result-set snippet "��, �� by
greedily evaluating and adding one attribute at a time. The
selected attribute is placed in the minimum number of positions
possible in the partially constructed result-set snippet. We can
view the result-set snippet as an initially empty 4 × � matrix. At

each iteration, we select an attribute �� and add it to the row of

each result r that contains ��, i.e., �� ∈ ��. We continue until
either the matrix is full or adding an attribute decreases the
goodness of the result-set snippet, as computed by Equation 2.
The algorithm works by maintaining a 0s of candidate

attributes that can be added to the snippet "��, �� along with
auxiliary information about which results and the number of
positions the attribute can be placed in the snippet matrix and a
heuristic goodness score based on number of positions an attribute

can occupy in "��, ��. The attributes in the 0s are processed in
the decreasing order of score and the remaining entries in the pool
are updated to reflect this addition.

Algorithm Details: As a first step, the algorithm initializes a 0s
of candidates (line 2). Each attribute �� in the result-set � is

represented in the pool by an entry 1� of the form 1�: <
�� , 4@AAB�, 4C�, �A�1 > which includes the number of times
�4@AAB�� and the number of positions �4C�� the attribute will

appear in the final result-set snippet ". The entry also stores the

�A�1 as defined by Equation 2, which is computed by assuming
that the snippet consists solely of the given attribute placed in the
given number of positions	�4C��. Of course, the algorithm also
has knowledge of which results in R contain which attributes.

The 0s is implemented as a priority queue arranged by

decreasing �A�1. The 0s is initialized (lines16-20) with entries
for all attributes in � in their most optimal arrangement, i.e.,
assuming that all values of an attribute are added to the snippet in

perfect alignment (4C� = 1�. Next, in lines 3-14 the snippet is
built iteratively by processing attributes in decreasing order of
�A�1. At each step, the attribute with the maximum score is
chosen (line 7) and added (line 13) to the result-set snippet with
the configuration (places and positions) dictated by the entry.

Given that an attribute is added independently of others, it is
possible that the entry being processed cannot be added to the
snippet in the configuration dictated by the entry, in 4C�

positions occupying 4@AAB� spots in the snippets. This situation
arises when potential spots are filled up by other attributes in
previous iterations. For instance, attribute A5 may be part of the
2nd and 4th result of the result-set, but the result-set snippet matrix

does not have any position (column) for which both the cell of the
2nd and 4th rows are free. This situation is handled in lines 5-6,
where this incompatibility is checked and the 0s is recomputed
(lines 21-26) by adjusting the positions and places the remaining

attributes in the pool can occupy, given the snippet "��, ��
computed thus far.

The algorithm also maintains the global informativeness and
comprehension cost of the partially constructed result-set snippet

"	. It is possible that adding an attribute would decrease the
overall goodness of a snippet. For example, if the attribute being
added has a very low informativeness and it is being added to
many different positions, then the overall informativeness of the
snippet can potentially decrease. To avoid this, the algorithm
checks (lines 11 & 12) to see if adding the attribute would
decrease the overall score. If the global score decreases, not only
is the attribute not added, but the computation stops since any
attribute that is added in future would not increase the score.

Algorithm: SnippetConstructionAlgorithm

Input: Result-set �, snippet size bound � and

 trade-off parameter 8.

Output: Snippet "��, �� of � with size bound �

1. 0�1x"A�1	 = 	0, \45�� = 0, A�0/�t = 0
2. 0s < �� , 4@AAB�, 4C�, �A�1 > ← initPool()

3. while �0s. �\�1 > 0	�4~	"	\�	4t	5Bss�	
4. 		1 ← 0s. 011���'��
5. if (\4A�0�t\qs1�1, "�)
6. recomputePool();

7. 		1 ← 0s. �1�x1��'��;
8. 0�1x"A�1 ← 	 ���F�
�

GF
��F$����
9. 					\45�� ← \45�� + 345���1. 4@AAB��
10. A�0/�t ← A�0/�t + /�0�1ℎ�1. 4C��
11. if L0�1x"A�1 < ���F�
�

GF
��F$����M

12. stop and return ".
13. �~~�1, "� // add 1. 4@AAB� instances of 1. �� to " at

 // 1. 4C� positions

14. end while
15. return ".

Procedure: initPool
Input: Result-set � and trade-off parameter 8.

Output: The 0s of candidate attributes to add to snippets

16. foreach �� ∈ �tt�\qBt1����
17. 4@AAB� ← 4B��1�Bst���� , ��
18. 1 =	< �� , 4@AAB�, 1, I��F�
�JK��

�F
�����JK����
>

19. 0s. �~~�1�
20. endfor

Procedure: recomputePool

Input: A 0s of candidates, the partial result-set snippet ".

Output: The 0s of candidate attributes to add to snippets

21. foreach 1 ∈ 	0s	
22. if +\4A�0�t\qs1�1�-
23. while +\4A�0�t\qs1�1�-
24. Alternately 1. 4C�	++ or 1. 4@AAB�--

25. 1 =	< �� , 4@AAB�, 4C�, I��F�
�J��
�F
�����J���� >

26. endfor

Figure 4. Result-set Snippet Construction Algorithm

The adjustment (line 24) works by increasing the number of

positions �1. 4C�� or decreasing number of results that it can be

placed in �1. 4@AAB��. For example, in the case of A5 above, the
algorithm might decide to place A5 in the snippet of only one of
the result (2nd or 4th), depending on availability or it might choose
to place them in two different positions (columns). The algorithm
prioritizes informativeness over comprehension cost, therefore
attempts to place the attribute in multiple positions (by increasing
4C�) before decreasing informativeness. The score of the
attribute is recomputed (line 25) which might result in a change of

position in the score ordered 0s.
To check if a given configuration (entry) of an attribute is
compatible, the \4A�0�t\qs1�1, "� method (not shown in Figure
4) scans the positions (columns) of the partially constructed

snippet	+"��, ��- in the decreasing order of number of cells

available for coverage of the attribute in results. For example, if
an attribute A6 appears in 10 of (say) 15 results �i. e. 1�. 4@AAB� =
10�, and the configuration dictates that the attribute should be

placed in 2 positions �1�. 4C� = 2�, then the
\4A�0�t\qs1�1�, "� method looks for two positions (columns)
with empty cells that would cover 10 occurrences by scanning
positions (columns) in the snippet matrix in decreasing order of
number of empty cells. The rationale for doing so is to fit the
given attribute in the minimum number of possible positions.

Complexity: Let	z� be the number of attributes in �. The worst

case complexity of the SnippetsConstructionAlgorithm is @��z�d�
since the algorithm (lines 3-13) considers a 0s of z� attributes

to be placed in � positions, giving a complexity of �z�.

Furthermore, in each iteration the 0s can be recomputed, to
give the overall (worst-case) running time. However, this worst-
case running time is misleading as the pool is rarely recomputed,
especially in the first few iterations. We further employ efficient
bit-vector manipulation to check for incompatibility making the

cost of \4A�0�t\qs1 negligible.

SnippetConstructionAlgorithm with Value Informativeness:

The snippet construction algorithm of Figure 4, which uses
attribute-based informativeness (Equation 9) can be easily adapted
to consider attribute-value based informativeness (Equation 10).
Instead of using per placement attribute informativeness (lines 18
and 25), we sum up the informativeness of individual values of
valid configuration of the attribute value, while computing the
scores. The rest of the algorithm remains unchanged.

Table 2. Query Workload

 Query # Categories # Attributes

Q1 toshiba laptop 6 39

Q2 dell laptop 3GB 7 43

Q3 dell printers 4 40

Q4 Asus laptops 7 40

Q5 hard drive 7 42

Q6 dell Intel 6 55

Q7 seagate drive 7 40

Q8 dell 13.3 6 51

Q9 hp printer 7 42

Q10 seagate 1TB 4 52

7. EXPERIMENTAL EVALUATION
In Section 7.1, we describe the experiment setup including the
datasets used, query workload and the comparison baselines. We
present the results of the experiments in Section 7.2 and show that
snippets constructed using our methods effectively balance

comprehension cost and informativeness. Section 7.3 measures
the time requirements of our heuristic algorithm and shows that it
adds an insignificant overhead to overall query processing.

7.1 Experimental Setup
Dataset and Query Workload: We evaluate our approach on a
subset of products data from a popular e-commerce website. The
dataset consists of diverse products types such as Computers
(Desktops, Laptops etc.), Printers (InkJet, LaserJet etc.) among
many others. In total we extracted 63,126 products from 52
categories (types) and 150 unique attributes distributed amongst
the different types. The queries used in the evaluation are shown
in Table 2. Table 2 also shows some characteristics of the result-
set of each query, namely, the number of categories (types) and
the total number of unique attributes in query results.

Baselines: We compare our approach with the following two
commonly used methods to construct snippets:

Baseline 1 (Fixed-Schema): In this snippet construction method,
the schema of the result-set is fixed by choosing the most
commonly occurring attributes in results. In a heterogeneous
result-set, a result-set snippet would have many empty �4Bss�
values, since a result may not have a value for one or more
selected attributes and therefore be less informative. However,
these snippets have a low comprehension cost, since all displayed
attributes are aligned.

Baseline 2 (Popular-attributes): This method chooses the most
informative attributes for each result, as its snippet. The
informativeness of an attribute is computed based on the result-set
using Equation 9. The � selected attributes from each result are
displayed in a tabular format and are ordered by decreasing
informativeness scores. These snippets are highly informative,

since they always select the maximum possible � informative
attributes, for each snippet. However, the comprehension cost
would be high, due to partial non-alignment of attributes across
snippets and inclusion of superfluous or unnecessary attributes.

Evaluation Methodology: For each query, we construct snippets
of one page of the results, i.e. 15 results, using the algorithm
described in Section 6 and for the aforementioned baselines. The
snippets size � was set to 6 in all our experiments. For snippets
constructed using each method, we compute the total
comprehension cost and attribute informativeness using Equations
5 and 7 & 9 respectively and report the absolute numbers. The
results for attribute value informativeness are similar and are
omitted due to space limitations. We also report the combined

cost ℱ, using Equation 2. All experiments were performed by

setting 8 = 0.5, i.e. by giving equal weights to informativeness
and comprehension factors.

7.2 Results
The resulting goodness scores for the snippets of the 10 queries
used in the evaluation are shown in Figure 5. The goodness scores
for our snippet construction algorithm are much better on average
as compared to the other two baselines, with an improvement of
nearly 27% over Fixed-Schema and 32% over Popular-Attributes
approach. Both the Fixed-Schema and Popular-Attributes baseline
have similar scores for these queries, since Fixed-Schema
approach minimizes comprehension cost while Popular-Attributes
maximizes informativeness. Our approach balances both these
factors, thereby achieving higher scores.

Figure 6 shows the overall informativeness of the snippets
constructed using the two baselines and our approach. As
expected, the informativeness of Fixed-Schema approach is

uniformly lower than other two approaches. This is because, by
fixing the schema, a number of places in the snippets remain
empty (as in Figure 1b) or less informative attributes get selected.
In contrast, the informativeness of snippets constructed by the
Popular-Attributes baseline is better than other two approaches
since each position in the snippet is occupied by highly
informative attributes. For our approach, the informativeness is
lower than Popular-Attributes, by about 22%. This is expected,
since we sacrifice informativeness in an effort to make a snippet
more comprehensible. By selecting attributes based on
comprehension cost, in addition to informativeness, results in
selection of some attributes that have low informativeness. Also,
some positions in the snippets might remain unoccupied since
adding additional attributes might result in degrading of the
overall goodness score of the snippet.

Figure 5. Goodness Score (�) of Result-set Snippets

Figure 6. Total Informativeness of Attributes in Snippets

Figure 7. Total Result-set Snippet Comprehension Cost

The loss in informativeness is more than made up (113%
improvement, on average) when we consider the comprehension
cost, in Figure 7, of our snippets to those constructed by the
Popular-Attributes approach. The Popular-Attributes baseline
does not consider comprehension cost and therefore arranges
attributes in jagged or non-aligned order across results resulting in
a high comprehension cost. Additionally, by selecting attributes
independently for each result, the number of attributes that are

selected across snippets is high, thereby adding a huge
comprehension cost overhead.

The snippets constructed using the Fixed-Schema approach have a
fixed comprehension cost (Figure 7). This is the lowest possible
cost, given that all positions in the snippet are occupied. Our
approach, which balances comprehension and informativeness,
constructs snippets with higher comprehension cost (by 20%) but
the resulting snippets are also highly informative (Figure 6).

Figure 8. Snippet Construction Algorithm Performance

7.3 Performance Experiments
Figure 8 compares the execution times of our approach with those
of the two baselines. The Fixed-Schema approach, whose schema
is fixed beforehand, takes almost negligible amount of time
(26ms) on average. Our algorithm takes much longer, 107ms on
average, which is considerably higher than Popular-Attributes
(avg. 63ms), but is still fast and adds a small overhead to the
search and retrieval process since the time to execute the query
and retrieve results is considerably higher.

8. RELATED WORK
Snippets of text documents: There has been much work on
snippets construction for Web documents. Earlier work relied on
query-independent document summarization techniques [24, 25].
More recently, query-specific snippet generation techniques have
been proposed [26]. However, none of these works consider the
problem of comprehension cost across snippets, since each
snippet is just a list of sentences. We could also tailor our
approach to make snippets query-specific by incorporating the
query relevance into the informativeness model.

Faceted Search on Structured Data: Faceted search employed
by most e-commerce websites (Amazon, eBay) typically supports
predefined top-down navigation on the concept hierarchy, where
all the attributes of the currently selected concept are also
displayed. Recent works [6, 15] have studied the problem of what
attributes to display to minimize the user effort, but operate on flat
relations of products without any classification. BioNav [5]
presents the bibliographic results of queries on PubMed on an
ontological hierarchy and allows users to effectively navigate on
that hierarchy. However, attributes are not considered and each
publication is viewed as a result hung on a leaf of the hierarchy.

Search Results Comprehension: Comprehension, as applied to
designing data-driven user interfaces is a subjective measure that
falls into the realm of cognitive psychology [27] and Computer
Human Interaction (HCI) and focuses on identifying design
features of user interfaces and results presentation that maximize
the efficiency of user in understanding the set of results or the
interface in question. We use the methods and techniques from
cognitive psychology and computer human interaction to design

0

0.5

1

1.5

Avg. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

S
n

ip
p

e
t

S
co

re
 (

F
)

Fixed-Schema Popular Attributes Comprehension-Based

0

50

100

150

200

250

300

350

400

Avg. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
o

ta
l
S

n
ip

p
e

t

In
fo

rm
a

ti
v

e
n

e
ss

Fixed-Schema Popular Attributes Comprehension-Based

0

100

200

300

400

500

600

Avg. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
o

ta
l
C

o
m

p
re

h
e

n
si

o
n

 C
o

st

Fixed-Schema Popular Attributes Comprehension-Based

0

20

40

60

80

100

120

140

Avg. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

m
il

li
se

co
n

d
s)

Fixed-Schema Popular Attributes Comprehension-Based

user-studies to develop our comprehension cost model and here
we discuss works that are related to the goals of our user-study.

Dalal et al. [12] propose a design of website’s home pages along
several theoretical guidelines and conduct user studies to measure
the comprehension of web-site home pages along three
dimensions – accuracy, speed and perceived comprehension and
conclude that pages designed with their theorized guidelines
achieve better cognition. We also theorize a model of
comprehension (Section 3) and we use the user study to

parameterize the model (define the function /�0�1ℎ�. �). Some
recent works [11, 13] study the effect of layout of data elements
on their cognition. Our study focuses on measuring the effect of
placement of snippet constituents near each other. [11, 13]
conduct eye-movement studies of pieces of text to conclude with a
direct correlation between placement of target text and
comprehension, measured as answers to questions. We follow a
similar mechanism, but instead use time spent in reading and
answering questions as measure of comprehension.

9. CONCLUSIONS
In this paper, we introduced the problem of incorporating the user
comprehension cost into the construction of snippets for
structured data. In particular, we defined the framework and
identified the criteria for constructing snippets that minimize the
effort required by users in comprehending the set of results. We
presented a complexity analysis of the problem and efficient
algorithms to construct snippets that minimize the comprehension
cost, while maximizing the informativeness of the snippets. Our
results are supported by user studies and quantitative experiments.

10. ACKNOWLEDGMENTS
This project was supported in part by National Science
Foundation grants IIS-1216032 and IIS-1216007.

11. REFERENCES
[1] Balmin, A., Hristidis, V. and Papakonstantinou, Y.

Objectrank: authority-based keyword search in databases. In
Proceedings of VLDB (2004).

[2] Guo, L., Shao, F., Botev, C. and Shanmugasundaram, J.
XRANK: ranked keyword search over XML documents. In
Proceedings of SIGMOD (2003).

[3] He, H., Wang, H., Yang, J. and Yu, P. S. BLINKS: ranked
keyword searches on graphs. In Proceedings of SIGMOD
(2007).

[4] Chakrabarti, K., Chaudhuri, S. and Hwang, S.-w. Automatic
categorization of query results. In Proceedings of SIGMOD
(2004).

[5] Kashyap, A., Hristidis, V. and Petropoulos, M. FACeTOR:
cost-driven exploration of faceted query results. In
Proceedings of CIKM (2010).

[6] Kashyap, A., Hristidis, V., Petropoulos, M. and Tavoulari, S.
BioNav: Effective Navigation on Query Results of
Biomedical Databases. In Proceedings of ICDE, 2009.

[7] Huang, Y., Liu, Z. and Chen, Y. Query biased snippet
generation in XML search. In Proceedings of SIGMOD
(2008).

[8] Liu, Z., Sun, P. and Chen, Y. Structured search result
differentiation. Proceedings of VLDB, 2, 1 (2009), 313-324.

[9] Marcos, R. V., Razente, H. L., Barioni, M. C. N.,
Hadjieleftheriou, M., Srivastava, D., Jr., C. T. and Tsotras,
V. J. On query result diversification. In Proceedings of ICDE
(2011).

[10] Smyth, B. and McClave, P. Similarity vs. Diversity. In
Proceedings of the International Conference on Case-Based
Reasoning. (2001).

[11] Bicknell, K. and Levy, R. Rational eye movements in
reading combining uncertainty about previous words with
contextual probability. In Proceedings of the Conference of
the Cognitive Science Society.(2010).

[12] Dalal, N. P., Quible, Z. and Wyatt, K. Cognitive design of
home pages: an experimental study of comprehension on the
World Wide Web. Information Processing & Management,
36, 4 (2000), 607-621.

[13] Dubey, A., Keller, F. and Sturt, P. The Effect of
Phonological Parallelism in Coordination: Evidence from
Eye-tracking. In Proceedings of European Cognitive Science
Conference (2007).

[14] Schuirmann, D. J. A comparison of the two one-sided tests
procedure and the power approach for assessing the
equivalence of average bioavailability. J Pharmacokinet
Biopharm, 15, 6 (1987), 657-680.

[15] Roy, S. B., Wang, H., Das, G., Nambiar, U. and Mohania, M.
Minimum-effort driven dynamic faceted search in structured
databases. In Proceedings of CIKM (2008).

[16] Agrawal, R., Gollapudi, S., Halverson, A. and Ieong, S.
Diversifying search results. In Proceedings WSDM (2009).

[17] Clarke, C. L. A., Kolla, M., Cormack, G. V., Vechtomova,
O., Ashkan, A., Battcher, S. and MacKinnon, I. Novelty and
diversity in information retrieval evaluation. In Proceedings
of SIGIR (2008).

[18] Chen, H. and Karger, D. R. Less is more: probabilistic
models for retrieving fewer relevant documents. In
Proceedings of SIGIR (2006).

[19] Agrawal, R., Gollapudi, S., Halverson, A. and Ieong, S.
Diversifying search results. In Proceedings of WSDM
(2009).

[20] Das, G., Hristidis, V., Kapoor, N. and Sudarshan, S.
Ordering the attributes of query results. In Proceedings of
SIGMOD (2006).

[21] Roy, S. B., Amer-Yahia, S., Chawla, A., Das, G. and Yu, C.
Constructing and exploring composite items. In Proceedings
of SIGMOD (2010).

[22] Carterette, B. An Analysis of NP-Completeness in Novelty
and Diversity Ranking. In Proceedings of ICTIR (2009).

[23] Jain, A., Sarda, P. and Haritsa, J. Providing Diversity in K-
Nearest Neighbor Query Results. Advances in Knowledge
Discovery and Data Mining, Springer Berlin / Heidelberg,
(2004).

[24] Turpin, A., Tsegay, Y., Hawking, D. and Williams, H. E.
Fast generation of result snippets in web search. In
Proceedings of SIGIR (2007).

[25] White, R. W., Ruthven, I. and Jose, J. M. Finding relevant
documents using top ranking sentences: an evaluation of two
alternative schemes. In Proceedings of SIGIR (2002).

[26] Varadarajan, R. and Hristidis, V. A system for query-specific
document summarization. In Proceedings of CIKM (2006).

[27] Kitajima, M., Blackmon, M. H. and Polson, P. G. A
Comprehension-based Model of Web Navigation and Its
Application to Web Usability Analysis. Proceedings of HCI
(2002).

