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ABSTRACT 

Result snippets are used by most search interfaces to preview 
query results. Snippets help users quickly decide the relevance of 
the results, thereby reducing the overall search time and effort. 
Most work on snippets have focused on text snippets for Web 
pages in Web search. However, little work has studied the 
problem of snippets for structured data, e.g., product catalogs. 
Furthermore, all works have focused on the important goal of 
creating informative snippets, but have ignored the amount of user 
effort required to comprehend, i.e., read and digest, the displayed 
snippets. In particular, they implicitly assume that the 
comprehension effort or cost only depends on the length of the 
snippet, which we show is incorrect for structured data. 

We propose novel techniques to construct snippets of structured 
heterogeneous results, which not only select the most informative 
attributes for each result, but also minimize the expected user 
effort (time) to comprehend these snippets. We create a 
comprehension model to quantify the effort incurred by users in 
comprehending a list of result snippets. Our model is supported by 
an extensive user-study. A key observation is that the user effort 
for comprehending an attribute across multiple snippets only 
depends on the number of unique positions (e.g., indentations) 
where this attribute is displayed and not on the number of 
occurrences. We analyze the complexity of the snippet 
construction problem and show that the problem is NP-hard, even 
when we only consider the comprehension cost. We present 
efficient approximate algorithms, and experimentally demonstrate 
their effectiveness and efficiency.   

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – user-centered design, graphical user interfaces. 

Keywords 

Query Interfaces, Information Overload, Result Snippets. 

1. INTRODUCTION 
A large number of databases are heterogeneous in nature. 
Examples of such databases include product catalogs (Amazon, 
eBay etc.) and medical data (Stanford diabetes study, patient 
records, Human Genome project), among many others. Such 
heterogeneous data is characterized by a high structural variance 
amongst the objects in the database, where objects have different 
and usually overlapping sets of attributes. As an example, 
consider the Amazon product catalog which consists of objects of 
different types including Laptop, Desktop and Camera etc. Each 

object type is associated with different and possibly overlapping 
schemas. For instance, Laptop has attributes Price, Display Size, 
Fingerprint Reader etc., whereas Camera has attributes such as 
Price, Shutter Speed, Zoom etc. As another example, a patient 
record stores various types of data, e.g., a diabetic patient’s record 
includes Blood Pressure, Blood Sugar level and Insulin Dosage, 
whereas a patient’s record with Osteoporosis includes Bone 
Density, Calcium Level, etc. 

Keyword search is the dominant query interface in most such 
systems. Hence, naturally the query answer typically consists of a 
list of heterogeneous objects, due to the ambiguous nature of 
keyword queries. Query interfaces use a variety of methods to 
help users find the results that they are most interested in, like 
ranking [1-3], categorization (facets) [4-6], and result snippets. 

A snippet is a summary of the information contained in a result 
and its purpose is to help the user make a decision about the 
relevance of the given result. As an example, consider snippets for 
the results of the query ‘acer laptop 3gb’ on an e-commerce Web 
site, as shown in Figure 1. Amazon.com, as most other similar 
systems, uses a fixed hardcoded snippet schema for each type of 
object, as in Figure 1b. In particular, Amazon.com always 
displays attributes Brand, Model, Display, Model Name and Color 
for Laptop results (only Brand and Display are in our result-set). 
This is clearly suboptimal, since such snippets do not always 
allow differentiating among the displayed results ([7] makes this 
point for XML results). For example, the snippets of two Laptop 
results (#1 and #3) in Figure 1b show the same attributes and 
values.  Instead, it is beneficial to include a discriminating 
attribute for Acer laptops (e.g. Cover Material) in the snippet, 
which may not be important for other results in the query. Further, 
this fixed-schema approach is inefficient for diverse result-sets [8-
10] in which the results have few attributes in common. 

The only work we are aware of on snippets construction for 
structured data, studies snippets of XML results, has focused on 
the informativeness of the snippets, which describes how useful 
the information on the snippets is to help the user select a result, 
e.g., how representative or distinguishable the snippets are [7]. 

For instance, if many results have Display Size=11.3’’, this 

information should be displayed on the snippets. Figure 1c shows 
a list of snippets generated with informativeness in mind1. 
Comparing Figures 1b and 1c, we observe that the snippets in 
Figure 1b appear to have a somewhat uniform schema (at least for 
items of the same type), while the ones in Figure 1c look very 
jagged and disorganized. The tradeoff is that the more uniform 
snippets are easier to read, while the disorganized ones may offer 
more useful information about the returned results. The goal of 
snippets is to minimize the user effort (time) in finding the results 
of interest. Hence, we argue that the user time spent reading the 
snippets is important as is the information on the snippets. 

                                                                 
1 For this example, you can think of informativeness as the 

amount of information. We provide more details in Section 4. 
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Figure 1d shows an example of a snippet that is both highly 
informative (contains a number of attributes) and is easy to 
comprehend since the attributes in snippets of results are aligned 
and are therefore easy to read. 

No work has studied the comprehension cost of structured 
snippets, which is the user effort required to read and digest the 
information displayed by the snippets. We argue that the 
comprehension cost should be taken into consideration during the 
snippets generation process.  In this paper, we propose a 
methodology to construct snippets that simultaneously minimize 
the comprehension effort and information loss (i.e. maximize 
informativeness). Our work achieves this goal as follows:  

First, we propose the first model for the user comprehension cost 
of reading structured snippets. We perform user surveys that 
confirm our intuition that by indenting the snippet attributes in a 
way that common attributes have the same position across the 
snippets we reduce the user comprehension cost. In particular, we 
show the surprising result that the comprehension cost for an 
attribute does not depend on the number of snippets that contain 

it, but only on the number of different positions where it appears 

in the snippets.  

Next, we define a quantitative model for the information content 
(termed informativeness) of snippets with respect to complete 
results. We leverage previous work on snippet informativeness 
and adapt it to structured objects.  

We analyze the problem of constructing optimal snippets, i.e., 
minimizing both the comprehension cost and the information loss, 
for a list of results and show that this problem is NP-hard. We 
present efficient algorithms for snippet construction and evaluate 
their performance and efficiency.  

Contributions: We make the following specific contributions: 

1. A cost model that quantifies the comprehension effort of a 
user reading a list of result snippets. We conducted user 
surveys using Amazon Mechanical Turk to validate the 
model and estimate its parameters (Section 3). 

2. Naturally, a snippet only contains a subset of the result’s 
attributes. We build upon previous works that characterize 
the information content or informativeness of a snippet and 
present several measures for structured data (Section 4). 

3. A proof that the problem of constructing optimal snippets, 
i.e. snippets that simultaneously minimize comprehension 
cost and maximize informativeness is NP-Hard (Section 5).  

4. Heuristic algorithms to efficiently construct highly 
informative snippets which have low comprehension cost 
(Section 6). 

5. An experimental evaluation to validate the effectiveness of 
the constructed snippets using real datasets (Section 7). 

Section 2 defines the problem. Related work is discussed in 
Section 8 and we conclude in Section 9.  

2. FRAMEWORK AND DEFINITIONS 
In this section, we formally define the snippets construction 
problem. We start by defining the data model.  

Database: The database is a single relation �	with � attributes 

� = ���, … , �
�. Each attribute �� has an associated active 

domain ������� of un-interpreted constants, which includes 

the null value. The database �	is sparse and heterogeneous, i.e. 

tuples � ∈ � have values for different subsets of �, and have the 

null value for the rest of the attributes. We use �� ⊆ �	(typically 
|��| ≪ |�|) to denote the set of attributes of a tuple �	.   

ID Type Brand Memory Capacity Processor Display Cover Material Price

1 Laptop Acer 4Gb Intel i5 13.3” Aluminum $1299

2 Tablet Acer 16Gb Nvidea Ion 7” Gorilla Glass $380

3 Laptop Acer 3Gb Intel i5 13.3” Carbon Fiber $1250

4 HDD Seagate 500Gb Plastic $200

5 Memory Kingston 2Gb $100

6 Memory Corsair 4Gb $150

1 Brand: Acer Display:13.3”

2 Brand: Acer Capacity: 16Gb Display: 7”

3 Brand: Acer Display:13.3”

4 Brand: Seagate Capacity: 500Gb

5 Brand: Kingston

6 Brand: Corsair

1 Memory:4Gb Processor: Intel i5 Price: $1299

2 Capacity:16Gb Display: 7” Cover: Gorilla Glass

3 Brand: Acer Processor: Intel i5 Display: 13.3”

4 Capacity: 500Gb Cover: Plastic Price: $200

5 Brand: Kingston Memory: 2Gb Price: $100

6 Brand: Corsair Memory: 4Gb Price: $150

1 Cover: Aluminum Memory:4Gb Processor: Intel i5

2 Brand: Acer Display: 7” Processor: Nvidea Ion

3 Cover: Carbon Fiber Display: 13.3”

4 Brand: Seagate Capacity: 500Gb Price: $200

5 Brand: Kingston Memory:2Gb Price: $100

6 Brand: Corsair Memory:4Gb Price: $150

(a) Result-set of query ‘acer laptop 3gb’

(b) Fix Schema Snippet, with high information loss (c) A very informative, but hard to read snippet

(d) An informative and easily comprehensible snippet

Figure 1.  A heterogeneous result-set for query ‘acer laptop 3gb’ and three snippets with different characteristics 



Result-set: A user exploring � typically submits a query and the 

system returns a ranked result-set � = ���, … , ��� ⊆ � of objects 

(we use the terms object, tuple and result interchangeably 
depending on the context).  

Example: Figure 1a shows a subset of the results of query ‘acer 
laptop 3gb’ on Amazon.com. Only seven (we do not count Type 
as an attribute) of nearly hundred attributes are shown. The query 
returns not only Laptops (indicated by the Type attribute), but also 
results of type Memory, Tablets and Hard Disk Drives. The 
schema of each object depends on its type and can have common 
attributes with other types (e.g. Price), but also different attributes 
(e.g Laptops and Tablets have a value for attributes Display and 
CPU, whereas Memory does not).  

A snippet with many attributes can be difficult to present and can 
overwhelm the user with details. Therefore we typically require 

that the size of each snippet be bounded to � attributes. The 

snippets in Figures 1b-d have size � ≤ 3. Note that the size of a 
snippet could also be defined in other ways like the number of 
characters. However, we have found that the number of attributes 
offers a reasonable bound that also allows a structurally uniform 
presentation (e.g., in tabular form). 

Result Snippet: A snippet ���� for a result � is a k-tuple 

< �� = ��, … , �� = �� > 2, where �� ∈ �� is an attribute of � or 

is empty, and ��!������  is a value. To simplify the 

presentation, we often denote ���� as < ��, … , �� > and use 
|����| to denote the number of attributes in ����. E.g., the first 

snippet � in Figure 1b is <Brand, null, Display>, and |����| =2. 

Result-set Snippet: A result-set snippet "��, �� of a result-set 

� = ���, … , ��� is "��, �� = ������, … , ������ where �����	is the 

snippet of result ��, and |�����| ≤ �.  
Figures 1b-d show example result-set snippets of the result-set in 
Figure 1a. It is possible that results of same type have different 
attributes in their snippets, e.g. the first and the third Laptop 

snippets in Figure 1c. To construct "��, ��, a subset �$ ⊆ �� of 
size at-most �	has to be selected for each result �, and the 

attributes in �$ have to be ordered as a �-tuple. The order 
(position) of the attributes is an important factor for the 
comprehension cost, as we explain in Section 3. 

Result-set Snippet Construction Problem: Before formally 
defining the problem, we must define what a good result-set 

snippet is. Let function ℱ�", �, ��, which will be defined below, 

be the goodness of "��, ��, given � and �. By goodness, we mean 

that "��, �� simultaneously minimizes the comprehension cost 
and maximizes the informativeness.  

Given a result-set � and snippet size bound �, construct a result-

set snippet "��, �� such that: 

"��, �� = ��&��'()�*,��+ℱ�"′��, ��, �, ��-																	�1�	
To capture the comprehension effort, we introduce the following 

function predicate: /�0�1ℎ�", �, �� that quantifies the user 

effort in reading and understanding the result-set snippet "��, ��. 
Analogously, 345���", �, �� captures the informativeness of the 
result-set snippet.  

The goodness of a result-set snippet decreases with increasing 
comprehension effort, i.e.  

ℱ�", �, �� 	∝ 1 /�0�1ℎ�", �, ��⁄  

and increases with informativeness, i.e. 

                                                                 

2 Assuming a prefix of the attributes in �	is in s. 

ℱ�", �, �� 	∝ 345���", �, �� 
To combine the two competing factors, we formulate the snippet 
construction problem as a bi-criteria optimization problem and 

introduce a trade-off parameter 8 ∈ [0,1]. The range (and units) of 
/�0�1ℎ is different from that of 345��. Therefore, to avoid 
having the goodness be dominated by a single factor, we choose 
to define the optimization function as a product, instead of the 
more common linear combination, as follows:  

ℱ��, ", �� = 345���", �, ��<
/�0�1ℎ�", �, ���=< 																						�2� 

Intuitively, smaller values of λ lead to result-set snippets with 
smaller comprehension cost, which translates to fewer unique 
attributes and stricter alignment of same attributes (Section 3), 
whereas a large value of λ favors more informative snippets. 

3. COMPREHENSION MODEL 
In this section we model how users read snippets and present a 
comprehension cost model. We start, in Section 3.1, by describing 
the process by which a user reads and understands a list of results 
and identify the factors that affect comprehension. Next, in 
Section 3.2, we describe the details of a user study specifically 
designed to study the effect of the aforementioned factors on 
comprehension effort. Finally, in Section 3.3, we present the 
results of this study and use it to formulate a comprehension 
model that quantifies this effort. 

3.1 Comprehension Model and Factors 
There have been studies [11-13] in the HCI community on the 
benefits of tabular presentation of results over a list-based 
presentation. Users can read tables horizontally −one snippet at a 
time− or vertically –one column at a time. When users view a 
result-set snippet, they generally look for attributes of interest and 
for each such attribute scan all snippets to see its value in other 
results, in order to get a picture of the result-set. E.g., in Figure 
1d, the user may scan the result-set snippet and get interested in 
attribute Memory, and then scan vertically to examine the value of 
Memory in other snippets. Then, the user may pick Brand and 
repeat the process. Eventually, the user will have comprehended 
the result-set snippet, that is, examine all attributes of interest to 
her, in order to make a decision (e.g. select a result or refine the 
query). The comprehension cost /�0�1ℎ�", �, �� is the total 
user cost during this process. 

A key hypothesis, which we test below, is that the effort required 
to locate the attributes of interest and their values, depends on 
how they are arranged in the result-set snippet. More specifically, 
we hypothesize that if all the snippets have the same schema (as in 
Figure 1b), then the user first determines the position of a given 
attribute that she is interested in and then reads its values for all 
snippets. The associated comprehension cost then mainly consists 
of the cost to locate the attribute position, since reading 
(comparing) a list of aligned values entails an almost fixed effort, 
as we show below. However, fixing the schema is not possible for 
heterogeneous result-sets when informativeness (e.g., diversity) 
must be taken into consideration. This leads to increased user 
effort and thereby increased comprehension cost.  

Another factor that possibly affects comprehension is the number 
of times an attribute	���?	���	 appears in the snippets. For 
example, if an attribute appears multiple times in the snippets, 
then the user would have to locate each instance of the attribute to 
satisfy her information need, thereby increasing the 
comprehension effort. For example, if the user is interested in the 
Brand attribute in Figure 1c, then she would have to locate its 



three occurrences. Based on the above discussion, we identify two 
factors that may play a role in the comprehension effort: 

1. 4@AAB����� : number of times an attribute appears in the 
result-set snippet, e.g., 3 for Memory in Figure 1c.   

2. 4C����� : number of unique positions of an attribute in the 
result-set snippet, e.g., 2 (first and second) for Memory in 
Figure 1c.   

Hence, the comprehension cost for an attribute �� in the result-set 

snippet "��, ��	is a function: 

/�0�1ℎ�", �, �, ��� = 5+4C�����, 4@AAB�����-											�3� 
Note that we overload /�0�1ℎ�. � from Section 2.  

Given the above discussion on vertical scanning of the snippets, 
the overall comprehension cost for "��, �� is approximated by the 
sum of the costs of its attributes, that is: 

/�0�1ℎ�", �, �� = D /�0�1ℎ�", �, �, ���																	�4�	
FGGH�$I��(,JK�

 

where AAB��34�", ��� returns true if attribute �� is in at least one 

of the snippets in "��, ��.  
Equation 4 shows that only two factors affect the comprehension 
cost. Although this is supported by our user surveys below, we 
acknowledge that there can be several other factors that affect 
comprehension cost such as comprehension difficulty of attribute 
names and values. For example, understanding a Legal Disclaimer 
attribute of results requires more effort than understanding the 
Color attribute. Yet another factor could be the format in which 
attributes are displayed – e.g. highlighting attributes. However, 
such factors cannot be quantitatively modeled in any 
straightforward way, e.g. comprehension difficulty is data-
dependent, and highlighting depends on the presentation design. 
We leave the study of such additional factors as future work. 

What is left is to study are the properties of function 5�. � in 
Equation 3. As mentioned above, comprehension of snippets is a 
complex activity involving a number of factors such as locating, 
reading and understanding the data present in the snippets. The 
effort or cost of these actions is subjective and is difficult to 
measure. Instead, we propose to measure the overall effort by 
measuring the time taken by a user to complete a comprehension 
task. Next, we describe the user experiment we conducted to 
measure the effort in comprehending an attribute ��, namely,  

L5+4C�����, 4@AAB�����-M in a result-set snippet. 

Table 1. Combinations of NOPPQR�ST�	UVW	NXYZ�ST�. Each 

cell is a task. 

4@AAB����� 1 4 8 12 15 

4C����� 1 1 1 1 1 

	4C�����  2 2 2 2 

4C�����  4 4 4 4 

4C�����   6 6 6 

3.2 User Study Setup 
To determine the effect of the parameters of our comprehension 
model, namely number of positions 4C����� and occurrences 

4@AAB����� in snippet "��, ��, and the relationship between 
them, it is necessary to determine the time it takes for users to 
comprehend the given attribute for different configurations of 
these parameters. More concretely, for a snippet size � and a 

result-set size of 4	�> ��, an attribute can be present in snippets 

of all or some (between 1 and 4) of the 4 results and can be 

placed in any number of positions between 1 and �. Measuring 
the time taken by users to comprehend the attribute in these 
multiple configurations gives the estimated relative effort.  

For this study, we manually constructed snippets for results of 
queries on a popular e-commerce website. The snippets were 
constructed for first 15 results of each query and the snippet size � 
was fixed to k=6. An attribute that appears in 5 or fewer snippets 
can appear in at-most as many positions, whereas an attribute that 
appears in 6 or more (up to 15) result snippets can appear in 

between 1 and 6 positions, giving a total of 75 +∑ \�][�,^] + 10 ×
6�  possible configurations of an attribute in a result-set snippet. 

Instead of checking for all 75 configurations, we test on a subset 
consisting of 16 configurations, as shown in Table 1. 

In particular, we chose five different values for the number of 
occurrences 4@AAB����� of attribute	��, and for each value, we 

consider a number of positions 4C����� of �� according to Table 

1. For example, for Table 1 entry �4@AAB�, 4C�� = �8,2� 
corresponds to a snippet in which a particular attribute (e.g. Price) 
appears in 8 results and in 2 (vertically aligned) positions. The 
user is asked a single question about a particular attribute in the 
result set. These questions are designed to gauge the overall 
comprehension of the attribute. A sample question for the task of 
query ‘acer laptop 3gb’ (Figure 1), might be ‘Which product has 
the maximum Price?’ For each task, we measure the time taken to 

answer the question correctly, which estimates the value of 5�. �.  
3.3 User Study Results 
We deployed the user study on Amazon Mechanical Turk and 
collected 83 valid responses after discounting users who 
abandoned the survey mid-way or took multiple attempts to 
answer. From these, we eliminated outliers, that is, responses that 
took unreasonably long. In particular, we removed entries with 
response times that were more than two standard deviations from 
the mean, leaving 57 responses on average, per task. 

Figure 2 shows the response times of users to answer the question 
for different configurations of attribute arrangement. The first row 
of Figure 2 (2a-d) shows the plot of response times for differing 
number of occurrences of an attribute, while keeping the number 
of attribute positions in snippets (4C�), fixed. We observe that 
for a given number of positions, the mean response time does not 
vary significantly based on the number of occurrences (4@AAB�). 
For example, Figure 2b shows that when the number of positions 
of an attribute is fixed to 2 (second line, excluding heading, in 
Table 1), the mean response times for 4, 8, 12 and 15 occurrences 
of the attribute were 44.4, 42.9, 41.1 and 43 seconds, respectively, 
indicating that the response times, and therefore effort, does not 
depend much on the number of occurrences of the attribute. 
Intuitively, the reason is that once the user locates the position, it 
is fast to make a vertical scan to check the values of this attribute 
in the other snippets. This observation is supported by Figures 2a-
d and also by statistical hypothesis tests for equivalence, as shown 
below.   

Classical hypothesis testing procedures only provide a way to 
check non-equivalence. Since we want to test for equivalence of 
mean response times, we used the two one-sided testing (TOST) 
procedure, developed by Schuirmann et al. [14], which is widely 
used to test the bioequivalences of two drug formulations. 

A TOST to test equivalences of means c�, cd of two populations 

C�, Cd is formulated as follows:  

ef	 = ��c� − cd� ≤ hi 	�	�c� − cd� ≥ hk� 



eJ = �hi ≤ �c� − cd� ≤ hk� 
where hi and h* are the upper and lower equivalence limits, 
respectively, which are defined by the test designer.  

This test works by establishing a 100 ∙ �1 − 2m�% confidence 
interval (CI) for c� − cd and rejecting the null hypothesis ef in 

favor of alternative hypothesis eJ	if the CI falls within the 

equivalence limit	[hi, hk]. We performed pairwise TOST 
statistical tests for each pair of mean response times for different 
number of occurrences �4@AAB�� for a given 4C� with an 

equivalence limit of ±5 seconds and found that CI was within the 

limit when tested with m = 0.05. 

Of course, the above observation assumes that the number of 
snippets is reasonably small (15 in our experiment), which is the 
case in practice, given that the result-set snippet must fit in the 
screen. On the other-hand, as shown in Figures 2e-h, the number 
of positions of an attribute does affect navigation cost. This is 
because, the user has to expend more effort in navigating the 
result and check for each position of the snippet and look for a 
particular attribute. In particular, we see that the user time 
increases linearly with the number of positions.  

We summarize our finding as follows. For a result-set snippet:   

Observation 1: The comprehension cost does not depend on the 
number of occurrences of an attribute. 

Observation 2: The comprehension cost increases linearly with 
the number of different positions of the attribute. 

Therefore, the per-attribute cost function 5�. �		can now be 
expressed as follows: 

5+4C�����- = � ∙ 4C���\�+ q														�5�		 
To compute � and q we fit the response time against the number 
of positions into a linear function and obtained the following 
function, where the unit is seconds.   

5+4C�����- = 5.17 ∙ 4C����� + 22							�6�		  
We also experimented with higher order functions, but observed 
that they did not fit well with the data, which confirms our initial 
linearity observation. Note that the particular values for � and q 
depend on the nature of the result-set snippet, and particularly on 
factors like the number of snippets (15 in our experiment) and the 
comprehension difficulty of the attributes and values (see 
discussion in Section 3.1). 

4. INFORMATIVENESS 
In this section we present a set of factors that make a result-set 
snippet informative. In the example of Figure 1, it is useful to 
show the Price attribute since a user at an e-commerce website is 
typically very interested in the price of the product. The 
importance of an attribute in a result-set is subjective and depends 
on factors such as user preferences, global (result-set-
independent) attribute importance or the distribution of attribute 
values in the result-set. Furthermore, informativeness could be 
defined at the attribute value level, instead of the attribute level. 
This is particularly desirable when different values have different 
importance for the user. For example, "01A\�s	@551� = t�B1 is 

more important than the "01A\�s	@551� = 5�s�1 value since it is 
advantageous to display a special offer to the user, if it is available 
for the given product.  

There is no previous work defining the informativeness (or 
usefulness) of tabular snippets. For that, we borrow ideas from 
works on faceted navigation [5, 15], results diversity [16, 17, 9, 
10], text snippets [24, 25] and XML snippets [7, 18]. These works 
define desirable principles for useful attributes or snippets, but do 
not provide a quantitative measure to compare the usefulness of 
two snippets. Note that this section should not be viewed as a key 
contribution of our work, but is included for completeness. 

We introduce the function 3�. � → ℝw	 to quantify the 
informativeness, and specifically two variants:  
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Figure 2.  Comprehension Cost User Study Results 



• 3��� , ��     :  Informativeness of attribute �� in result-set �  

• 3��� , �, x� :  Informativeness of value x of �� in �.  

Some of the attribute usefulness factors that have been proposed 
in previous work are: 

• Distinguishability: snippets should show the differences 
between results [8, 15, 21]. 

• Diversity: showing a variety of attributes gives to the user a 
broader view of the results [10, 17, 22, 23]. 

• Importance: show attributes that are more important in the 
result-set than in the whole database [7, 8, 20]. 

Without loss of generality, we assume that 3�. � assigns higher 

values to more informative attributes, i.e., if 3��� , �� > 	3+�y , �-, 
then it is preferable to include �� 	in the result-set snippet instead 

of �y. Next we present concrete ways to quantify 3��� , �� and 

3��� , �, x�, which use some of the proposed factors, and we use in 
our experiments in Section 7. 

We define attribute level informativeness 3��� , �� as the 
complement of indistinguishability (INDG) [15], i.e., the 
maximum possible indistinguishability minus the attribute's 
indistinguishability: 

3��� , �� =
z��� , ���z��� , �� − 1�

2 − 3z�{��� , ��						�7� 
where z��� , �� is the number of times �� appears in � and 

3z�{��� , �� is the indistinguishability score defined as: 

3z�{��� , �� = 	 D |���, ��|�|���, ��| − 1�
2

�∈�����\,��
 

where, ������ , ��	is the active domain of �� in the result-set � 

and  |���, ��| is the number of times a value � ∈ ������ , �� 
appears in �. For example, in Figure 1a, I(Brand,R)=6(6-1)/2 – 
3(3-1)/2 (Acer)- 0(Seagate) -0(Kingston) -0(Corsair)=12.  

Alternatively, we could use the entropy of these values or a user-
specified global importance of the attributes.  

For the value-specific informativeness, we adopt the dominance 
score from [7]:  

3��� , �, x� =
z�x, �� , ��

z��� , �� |������ , ��|⁄ 						�8� 
where z�x, �� , �� is the number of times that x appears for 

attribute �� in result-set � and ������ , �� is the domain size of 

�� in � and z��� , �� is the number of times �� appears in �. 

Next, we define the total informativeness of result-set snippet 

"��, �� as the sum of the informativeness of its attributes: 

345���", �� = D 3��� , ��																		�9�
JK∈(

 

For example in Figure 1b, 345���", �� = 6 ∙ 3�}��4~, �� + 2 ∙
3�/�0�A\t?, �� + 3 ∙ 3��\�0s�?, �� = 6 ∙ 3 + 2 ∙ 3 + 3 ∙ 4 = 36. 

The above formula assumes that the scores of attributes are 
independent from each other, which is a reasonable simplifying 
assumption, but clearly not true for all informative definitions.  

If we also consider the attribute value-level informativeness 

3��� , �, x�, then the above formula can be rewritten as: 

345���", �� = D 3��� , ��
�JK]��∈(

3��� , �, x�				�10� 

where for each condition ��� = x� in a snippet we multiply the 
informativeness of the value with that of the attribute.  

5. COMPLEXITY RESULTS 
In this section we study the complexity of the Snippet 
Construction Problem. We consider a simplified version of the 
Snippet Construction Problem, termed Fixed Snippet Construction 
(FSC), where the comprehension cost is the number of attribute 
positions. The key simplification in FSC is that it does not try to 
maximize informativeness. By showing that FSC is NP-hard, we 
also show that Snippet Construction Problem is NP-hard. 

FSC Problem: Given a result-set �, construct a result-set snippet 

"��� (FSC has no snippet size constraint k), such that the 

comprehension cost is up to � and each snippet in "��� is non-
empty.  The comprehension cost for an attribute is the number of 
positions it appears in, and the comprehension cost of "��� is the 

sum over all attributes in "���. The informativeness is constant. 

� =	 ��, �d, ��, ��, �^	
�� = ��, �d, ��
�d = �d, ��, ��
�� = ��, ��, �^
�� = ��, ��	
�̂ = ��, �d	�� �d �� �� �^

�� × × ×
�d × × ×
�� × × × ×
�� × ×
�̂ ×

 

Figure 3. Reduction of Set Cover to the Fixed Snippet 

Construction (FSC) Problem 

Theorem 1: FSC is NP-Complete.  

Proof: The problem is obviously in NP. Given a result-set snippet 

"���, it is easy to verify that S(R) has comprehension cost �. To 
prove that the problem is NP-Complete, we reduce the Set Cover 
Problem (SCP) to FSC. 

SCP: Given a set of elements � = ���, … , ��� and a set of subsets 
� = ���, … , �
�		of � find a subset �) ⊆ � of size at most �, such 
that ⋃ �� = ��K∈�) . 
Given an arbitrary instance ��, �� of SCP, we construct an 

instance of FSC as follows. For each � ∈ �, create a result ��. For 

each �� ∈ �, create an attribute ��, and add this attribute to all 

results �� whose corresponding element � is in ��. Figure 3 shows 
this reduction. Recall that results are heterogeneous, that is, they 
have different attributes. Finally, we map Z=L.   

We now show that this mapping is indeed a reduction. A solution 
"��� to FSC is mapped to a solution �) to SCP by including to �) 
the subsets that correspond to the attributes in "���. Note that 

when we add an attribute �� 	to "���, we simply add it to the 

snippets of all results that contain �� since it does not increase the 
comprehension cost and there is no limit k on the size of a snippet. 
A solution to FSC is a solution to SCP because every result is 
non-empty, which means that every element in the universe in 

SCP is selected at least once. The comprehension cost of "���, 
which is the number of attributes in "���, is |�)|. Similarly, we 
can show the solution mapping in the other direction. 

6. SNIPPET CONSTRUCTION 

ALGORITHMS 
Challenges: Due to the intractability result of Theorem 1, in this 
section we propose efficient approximate algorithms for the 



Snippet Construction problem. Intuitively, there are two sources 
of intractability regarding the comprehension cost:  

(a) how to select which attributes to display in each snippet of 
the result-set snippet, and  

(b) how to arrange them, i.e., assign positions.  

To minimize the comprehension cost, we want to select common 
attributes across the snippets and assign them the same position, 
as in Figure 1d. However, we must also consider informativeness, 
which further complicates computation. Note that the 
informativeness contribution of an attribute or value in the result-
set snippet S does not depend on the other attributes or values in S, 
according to the formulas presented in Section 4, which is clearly 
not true for the comprehension cost. Hence, the latter is the main 
complexity source that our algorithms must tackle. 

Algorithm Overview: To create an efficient approximate 
algorithm, we carefully relax both intractability sources listed 
above. The result-set snippet construction algorithm, presented in 
Figure 4, iteratively constructs a result-set snippet "��, �� by 
greedily evaluating and adding one attribute at a time. The 
selected attribute is placed in the minimum number of positions 
possible in the partially constructed result-set snippet. We can 
view the result-set snippet as an initially empty 4 × � matrix. At 

each iteration, we select an attribute �� and add it to the row of 

each result r that contains ��, i.e.,  �� ∈ ��. We continue until 
either the matrix is full or adding an attribute decreases the 
goodness of the result-set snippet, as computed by Equation 2. 
The algorithm works by maintaining a 0s of candidate 

attributes that can be added to the snippet "��, �� along with 
auxiliary information about which results and the number of 
positions the attribute can be placed in the snippet matrix and a 
heuristic goodness score based on number of positions an attribute 

can occupy in "��, ��. The attributes in the 0s are processed in 
the decreasing order of score and the remaining entries in the pool 
are updated to reflect this addition. 

Algorithm Details: As a first step, the algorithm initializes a 0s 
of candidates (line 2). Each attribute �� in the result-set � is 

represented in the pool by an entry 1� of the form 1�: <
�� , 4@AAB�, 4C�, �A�1 > which includes the number of times 
�4@AAB�� and the number of positions �4C�� the attribute will 

appear in the final result-set snippet ". The entry also stores the 

�A�1 as defined by Equation 2, which is computed by assuming 
that the snippet consists solely of the given attribute placed in the 
given number of positions	�4C��. Of course, the algorithm also 
has knowledge of which results in R contain which attributes.   

The 0s is implemented as a priority queue arranged by 

decreasing �A�1. The 0s is initialized (lines16-20) with entries 
for all attributes in � in their most optimal arrangement, i.e., 
assuming that all values of an attribute are added to the snippet in 

perfect alignment (4C� = 1�. Next, in lines 3-14 the snippet is 
built iteratively by processing attributes in decreasing order of 
�A�1.  At each step, the attribute with the maximum score is 
chosen (line 7) and added (line 13) to the result-set snippet with 
the configuration (places and positions) dictated by the entry.  

Given that an attribute is added independently of others, it is 
possible that the entry being processed cannot be added to the 
snippet in the configuration dictated by the entry, in 4C� 

positions occupying 4@AAB� spots in the snippets. This situation 
arises when potential spots are filled up by other attributes in 
previous iterations. For instance, attribute A5 may be part of the 
2nd and 4th result of the result-set, but the result-set snippet matrix 

does not have any position (column) for which both the cell of the 
2nd and 4th rows are free. This situation is handled in lines 5-6, 
where this incompatibility is checked and the 0s is recomputed 
(lines 21-26) by adjusting the positions and places the remaining 

attributes in the pool can occupy, given the snippet "��, �� 
computed thus far. 

The algorithm also maintains the global informativeness and 
comprehension cost of the partially constructed result-set snippet 

"	. It is possible that adding an attribute would decrease the 
overall goodness of a snippet. For example, if the attribute being 
added has a very low informativeness and it is being added to 
many different positions, then the overall informativeness of the 
snippet can potentially decrease. To avoid this, the algorithm 
checks (lines 11 & 12) to see if adding the attribute would 
decrease the overall score. If the global score decreases, not only 
is the attribute not added, but the computation stops since any 
attribute that is added in future would not increase the score. 

Algorithm: SnippetConstructionAlgorithm  

Input: Result-set �, snippet size bound � and  

 trade-off parameter 8.  

Output: Snippet "��, �� of � with size bound � 

1. 0�1x"A�1	 = 	0, \45�� = 0, A�0/�t = 0 
2. 0s < �� , 4@AAB�, 4C�, �A�1 > ← initPool()  

3. while �0s. �\�1 > 0	�4~	"	\�	4t	5Bss�	 
4.     		1 ← 0s. 011���'��  
5.       if (\4A�0�t\qs1�1, "�)  
6.           recomputePool(); 

7.      		1 ← 0s. �1�x1��'��; 
8.         0�1x"A�1 ← 	 ���F�
�

GF
��F$���� 
9.     					\45�� ← \45�� + 345���1. 4@AAB�� 
10. A�0/�t ← A�0/�t + /�0�1ℎ�1. 4C�� 
11.   if L0�1x"A�1 < ���F�
�

GF
��F$����M 

12.            stop and return ".   
13. �~~�1, "� // add 1. 4@AAB� instances of 1. �� to " at              

                  //  1. 4C� positions 

14. end while 
15. return ".  

Procedure: initPool 
Input: Result-set � and trade-off parameter 8. 

Output: The 0s of candidate attributes to add to snippets 

16. foreach �� ∈ �tt�\qBt1����  
17.       4@AAB� ← 4B��1�Bst���� , �� 
18.       1 =	< �� , 4@AAB�, 1, I��F�
�JK��

�F
�����JK����
> 

19.       0s. �~~�1� 
20. endfor    

Procedure: recomputePool 

Input: A 0s of candidates, the partial result-set snippet ".  

Output: The 0s of candidate attributes to add to snippets 

21. foreach 1 ∈ 	0s	 
22.    if +\4A�0�t\qs1�1�-  
23.            while +\4A�0�t\qs1�1�- 
24.                Alternately 1. 4C�	++ or  1. 4@AAB�--  

25.                1 =	< �� , 4@AAB�, 4C�, I��F�
�J��
�F
�����J���� > 

26. endfor 

Figure 4. Result-set Snippet Construction Algorithm 

The adjustment (line 24) works by increasing the number of 

positions �1. 4C�� or decreasing number of results that it can be 



placed in �1. 4@AAB��. For example, in the case of A5 above, the 
algorithm might decide to place A5 in the snippet of only one of 
the result (2nd or 4th), depending on availability or it might choose 
to place them in two different positions (columns). The algorithm 
prioritizes informativeness over comprehension cost, therefore 
attempts to place the attribute in multiple positions (by increasing 
4C�) before decreasing informativeness. The score of the 
attribute is recomputed (line 25) which might result in a change of 

position in the score ordered 0s. 
To check if a given configuration (entry) of an attribute is 
compatible, the \4A�0�t\qs1�1, "� method (not shown in Figure 
4) scans the positions (columns) of the partially constructed 

snippet	+"��, ��- in the decreasing order of number of cells 

available for coverage of the attribute in results. For example, if 
an attribute A6 appears in 10 of (say) 15 results �i. e. 1�. 4@AAB� =
10�, and the configuration dictates that the attribute should be 

placed in 2 positions �1�. 4C� = 2�, then the 
\4A�0�t\qs1�1�, "� method looks for two positions (columns) 
with empty cells that would cover 10 occurrences by scanning 
positions (columns) in the snippet matrix in decreasing order of 
number of empty cells. The rationale for doing so is to fit the 
given attribute in the minimum number of possible positions.  

Complexity: Let	z� be the number of attributes in �. The worst 

case complexity of the SnippetsConstructionAlgorithm is @��z�d� 
since the algorithm (lines 3-13) considers a 0s of z� attributes 

to be placed in � positions, giving a complexity of �z�. 

Furthermore, in each iteration the 0s can be recomputed, to 
give the overall (worst-case) running time. However, this worst-
case running time is misleading as the pool is rarely recomputed, 
especially in the first few iterations. We further employ efficient 
bit-vector manipulation to check for incompatibility making the 

cost of  \4A�0�t\qs1 negligible. 

SnippetConstructionAlgorithm with Value Informativeness: 

The snippet construction algorithm of Figure 4, which uses 
attribute-based informativeness (Equation 9) can be easily adapted 
to consider attribute-value based informativeness (Equation 10). 
Instead of using per placement attribute informativeness (lines 18 
and 25), we sum up the informativeness of individual values of 
valid configuration of the attribute value, while computing the 
scores. The rest of the algorithm remains unchanged.  

Table 2. Query Workload 

 Query # Categories # Attributes 

Q1 toshiba laptop 6 39 

Q2 dell laptop 3GB 7 43 

Q3 dell printers 4 40 

Q4 Asus laptops 7 40 

Q5 hard drive 7 42 

Q6 dell Intel 6 55 

Q7 seagate drive 7 40 

Q8 dell 13.3 6 51 

Q9 hp printer  7 42 

Q10 seagate 1TB  4 52 

7. EXPERIMENTAL EVALUATION 
In Section 7.1, we describe the experiment setup including the 
datasets used, query workload and the comparison baselines. We 
present the results of the experiments in Section 7.2 and show that 
snippets constructed using our methods effectively balance 

comprehension cost and informativeness. Section 7.3 measures 
the time requirements of our heuristic algorithm and shows that it 
adds an insignificant overhead to overall query processing.  

7.1 Experimental Setup 
Dataset and Query Workload: We evaluate our approach on a 
subset of products data from a popular e-commerce website. The 
dataset consists of diverse products types such as Computers 
(Desktops, Laptops etc.), Printers (InkJet, LaserJet etc.) among 
many others. In total we extracted 63,126 products from 52 
categories (types) and 150 unique attributes distributed amongst 
the different types. The queries used in the evaluation are shown 
in Table 2. Table 2 also shows some characteristics of the result-
set of each query, namely, the number of categories (types) and 
the total number of unique attributes in query results.  

Baselines: We compare our approach with the following two 
commonly used methods to construct snippets:  

Baseline 1 (Fixed-Schema): In this snippet construction method, 
the schema of the result-set is fixed by choosing the most 
commonly occurring attributes in results. In a heterogeneous 
result-set, a result-set snippet would have many empty �4Bss� 
values, since a result may not have a value for one or more 
selected attributes and therefore be less informative. However, 
these snippets have a low comprehension cost, since all displayed 
attributes are aligned.  

Baseline 2 (Popular-attributes): This method chooses the most 
informative attributes for each result, as its snippet. The 
informativeness of an attribute is computed based on the result-set 
using Equation 9. The � selected attributes from each result are 
displayed in a tabular format and are ordered by decreasing 
informativeness scores. These snippets are highly informative, 

since they always select the maximum possible � informative 
attributes, for each snippet. However, the comprehension cost 
would be high, due to partial non-alignment of attributes across 
snippets and inclusion of superfluous or unnecessary attributes. 

Evaluation Methodology: For each query, we construct snippets 
of one page of the results, i.e. 15 results, using the algorithm 
described in Section 6 and for the aforementioned baselines. The 
snippets size � was set to 6 in all our experiments. For snippets 
constructed using each method, we compute the total 
comprehension cost and attribute informativeness using Equations 
5 and 7 & 9 respectively and report the absolute numbers. The 
results for attribute value informativeness are similar and are 
omitted due to space limitations. We also report the combined 

cost ℱ, using Equation 2. All experiments were performed by 

setting 8 = 0.5, i.e. by giving equal weights to informativeness 
and comprehension factors.  

7.2 Results 
The resulting goodness scores for the snippets of the 10 queries 
used in the evaluation are shown in Figure 5. The goodness scores 
for our snippet construction algorithm are much better on average 
as compared to the other two baselines, with an improvement of 
nearly 27% over Fixed-Schema and 32% over Popular-Attributes 
approach. Both the Fixed-Schema and Popular-Attributes baseline 
have similar scores for these queries, since Fixed-Schema 
approach minimizes comprehension cost while Popular-Attributes 
maximizes informativeness. Our approach balances both these 
factors, thereby achieving higher scores.   

Figure 6 shows the overall informativeness of the snippets 
constructed using the two baselines and our approach. As 
expected, the informativeness of Fixed-Schema approach is 



uniformly lower than other two approaches. This is because, by 
fixing the schema, a number of places in the snippets remain 
empty (as in Figure 1b) or less informative attributes get selected. 
In contrast, the informativeness of snippets constructed by the 
Popular-Attributes baseline is better than other two approaches 
since each position in the snippet is occupied by highly 
informative attributes. For our approach, the informativeness is 
lower than Popular-Attributes, by about 22%. This is expected, 
since we sacrifice informativeness in an effort to make a snippet 
more comprehensible. By selecting attributes based on 
comprehension cost, in addition to informativeness, results in 
selection of some attributes that have low informativeness. Also, 
some positions in the snippets might remain unoccupied since 
adding additional attributes might result in degrading of the 
overall goodness score of the snippet. 

 

Figure 5. Goodness Score (�) of Result-set Snippets 

 

Figure 6. Total Informativeness of Attributes in Snippets 

 

Figure 7. Total Result-set Snippet Comprehension Cost 

The loss in informativeness is more than made up (113% 
improvement, on average) when we consider the comprehension 
cost, in Figure 7, of our snippets to those constructed by the 
Popular-Attributes approach. The Popular-Attributes baseline 
does not consider comprehension cost and therefore arranges 
attributes in jagged or non-aligned order across results resulting in 
a high comprehension cost. Additionally, by selecting attributes 
independently for each result, the number of attributes that are 

selected across snippets is high, thereby adding a huge 
comprehension cost overhead.  

The snippets constructed using the Fixed-Schema approach have a 
fixed comprehension cost (Figure 7). This is the lowest possible 
cost, given that all positions in the snippet are occupied. Our 
approach, which balances comprehension and informativeness, 
constructs snippets with higher comprehension cost (by 20%) but 
the resulting snippets are also highly informative (Figure 6).  

 

Figure 8. Snippet Construction Algorithm Performance 

7.3 Performance Experiments 
Figure 8 compares the execution times of our approach with those 
of the two baselines.  The Fixed-Schema approach, whose schema 
is fixed beforehand, takes almost negligible amount of time 
(26ms) on average. Our algorithm takes much longer, 107ms on 
average, which is considerably higher than Popular-Attributes 
(avg. 63ms), but is still fast and adds a small overhead to the 
search and retrieval process since the time to execute the query 
and retrieve results is considerably higher.  

8. RELATED WORK 
Snippets of text documents: There has been much work on 
snippets construction for Web documents. Earlier work relied on 
query-independent document summarization techniques [24, 25]. 
More recently, query-specific snippet generation techniques have 
been proposed [26]. However, none of these works consider the 
problem of comprehension cost across snippets, since each 
snippet is just a list of sentences. We could also tailor our 
approach to make snippets query-specific by incorporating the 
query relevance into the informativeness model. 

Faceted Search on Structured Data: Faceted search employed 
by most e-commerce websites (Amazon, eBay) typically supports 
predefined top-down navigation on the concept hierarchy, where 
all the attributes of the currently selected concept are also 
displayed. Recent works [6, 15] have studied the problem of what 
attributes to display to minimize the user effort, but operate on flat 
relations of products without any classification. BioNav [5] 
presents the bibliographic results of queries on PubMed on an 
ontological hierarchy and allows users to effectively navigate on 
that hierarchy. However, attributes are not considered and each 
publication is viewed as a result hung on a leaf of the hierarchy. 

Search Results Comprehension: Comprehension, as applied to 
designing data-driven user interfaces is a subjective measure that 
falls into the realm of cognitive psychology [27] and Computer 
Human Interaction (HCI) and focuses on identifying design 
features of user interfaces and results presentation that maximize 
the efficiency of user in understanding the set of results or the 
interface in question. We use the methods and techniques from 
cognitive psychology and computer human interaction to design 
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user-studies to develop our comprehension cost model and here 
we discuss works that are related to the goals of our user-study.  

Dalal et al. [12] propose a design of website’s home pages along 
several theoretical guidelines and conduct user studies to measure 
the comprehension of web-site home pages along three 
dimensions – accuracy, speed and perceived comprehension and 
conclude that pages designed with their theorized guidelines 
achieve better cognition. We also theorize a model of 
comprehension (Section 3) and we use the user study to 

parameterize the model (define the function /�0�1ℎ�. �). Some 
recent works [11, 13] study the effect of layout of data elements 
on their cognition. Our study focuses on measuring the effect of 
placement of snippet constituents near each other. [11, 13] 
conduct eye-movement studies of pieces of text to conclude with a 
direct correlation between placement of target text and 
comprehension, measured as answers to questions. We follow a 
similar mechanism, but instead use time spent in reading and 
answering questions as measure of comprehension. 

9. CONCLUSIONS  
In this paper, we introduced the problem of incorporating the user 
comprehension cost into the construction of snippets for 
structured data. In particular, we defined the framework and 
identified the criteria for constructing snippets that minimize the 
effort required by users in comprehending the set of results. We 
presented a complexity analysis of the problem and efficient 
algorithms to construct snippets that minimize the comprehension 
cost, while maximizing the informativeness of the snippets. Our 
results are supported by user studies and quantitative experiments. 
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