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ABSTRACT

There has been a great deal of interest in the past few yeaasikn
ing of results of queries on structured databases, inajudiark
on probabilistic information retrieval, rank aggregatiamd algo-
rithms for merging of ordered lists. In many applicatiorws,éxam-
ple sales of homes, used cars or electronic goods, data ftanes
a very large number of attributes. When displaying a (rapketl
of items to users, only a few attributes can be shown. Tiauidly,
these are selected manually. We argue that automatic iselext
attributes is required to deal with different requiremeottsliffer-
ent users. We formulate the problem as an optimization proluf
choosing the most “useful” set of attributes, that is, thelattes
that are most influential in the ranking of the items. We déscu
different variants of our notion of attribute usefulness] @ropose
a hybrid Split-Pane approach that returns a composite ofape
attributes of each variant. We conduct both a performandeaan
user study illustrating the benefits of our algorithms imteof ef-
ficiency and quality of explanation.

1. INTRODUCTION

In recent years, there has been a great deal of interest @hogévg
effective techniques for ad-hoc search and retrieval inctired
data repositories such as relational databases. In partieuarge
number of emerging applications require exploratory qgugrpn
such databases; examples include users wishing to sedatiadas
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ous attributes that describe details of the car, such asd?idake,
Model, Age, Zipcode, Mileage, EngineSize, NumCylindetsj-A
dentHistory, SecuritySystem, AirConditioning, and so on.

Current database query languages such as SQL follow the
Boolean retrieval model, i.e., tuples that exactly sattbfy selec-
tion conditions laid out in the query are returned - no more @m
less. While extremely useful for the expert user, this egai model
is inadequate for ad-hoc retrieval by exploratory users oduo-
not articulate the perfect query for their needs - eitheir ingeries
are very specific, resulting in no (or too few) answers, onamy
broad, resulting in too many answers. In the example abosiepa
ple conjunctive query such as “Select * from T where Modettese
and Price< 16000 and Mileagel 20000” may overwhelm the user
with too many answers.

To address the limitations of the Boolean retrieval modestah
queries, a technique that has received widespread attentiecent
years is that ofanking of database query results. Ranking systems
typically compute acoreof a tuple which represents the degree to
which the tuple is “relevant” for the query, and return a feples
with high scores (e.g., top-tuples where: is a small number such
as 10 or 100) to the user.

The ranking problem in databases has been extensivelytinves
gated in recent years [11, 15, 10, 1, 9, 6]. The various rankin
techniques for database queries range from simple scouimgt f
tions (e.g., similarity functions based on Euclidean diseés with
pre-defined weights on attributes), to more sophisticatesbry-

and catalogs of products such as homes, cars, cameragj-resta specific functions developed by domain experts or autormiftic

rants, and so on. The following running example is frequyemsked
throughout the paper to illustrate key concepts.

Example 1: Consider an inventory database of an auto dealer,
which contains a single tabl& with N rows and M attributes

derived user preferences from previously available wato(e.g.
[1, 6]). These sophisticated approaches hinge on theiityahil
convert user queries - which typically specify simple sttgrcon-
ditions on a small set of attributes - into comprehensiveisgo

where each tuple represents a car for sale. The table has rume functions that also involve many other attributesaddition tothe
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ones specified in the original query. In other words, theaking
systems “extend” the original query by drawing on availdiew!-
edge of previous user preferences for the unspecified watttrial-
ues, much as a knowledgeable salesperson may suggeseseatur
potential interest to a customer who has given some ingigliire-
ments. In the auto database example above, for users saedddg
cars in New York, the ranking system may give higher scores to
cars with theft prevention systems, whereas for users sgeised
cars in Texas, cars with air conditioning systems may berélo
Sections 2.2 and 5 contains further discussion on databakeg
methods.

However, the focus of this paper is not on new ranking models.
Rather, the main thrust of this paper is the introductiomadhog-
onal problem in ad-hoc exploratory querying of databaset difi
selecting the topn attributesof query results (wherex << M).



This problem is motivated by the fact that many domains adrint
est have a very large number of attributes: for example, tineer
of attributes in typical automotive and home databasesasafrgm
25 to a hundred or more, as can be easily verified from car sales
or homes web sites. With such a large number of attributds, it
usually not possible to display all attributes for the topnswers
to a query. Tabular displays of answers on web sites ther¢ypr
ically display only a few attributes that are considered eontost
“useful” to the user. However, the decision on what attiéisuto
display is usually made manually, and fixed for all usersaréigss
of what attributes are likely to be useful to a particularrugeon-
sequently, the answer tuples to a query may get displayed awit
fixed set of attributes that do not reveal important reledatails,
leading to a less-than-satisfying experience for the uéé.thus
pose the following problem:

The Attribute Selection Problem Intuitively, the attribute se-
lection problem can be defined as follow&iven a query and a
ranking function for query results, return the tep-most useful
attributes of the answer tuples, wheteis a small number (e.g.,
m < 15).

Of course, any principled approach for solving this probieith
have to make reasonable assumptions about what it meana for a
attribute to be useful to a user. In this paper we focus on oilRe p
mary notion of attribute usefulness, which may be intulfivee-
scribed as:an attribute is considered useful if it plays an influen-
tial role in the computation of the top-ranked answer tuples of a
query. In other words, we seek to determine those attributes that
best “explain” the top: tuples returned by the ranking function.
Intuitively, these would correspond to the attributes dnaexpert
would find useful in ranking tuples. Although a naive user may
have thought of specifying such attributes in the initiabgu the
user is likely to find the attributes useful after seeing tharthe
result.

In the auto example above, for New York customers the top at-
tributes may include SecuritySystem, whereas for Texa®mers
the top attributes may include AirConditioning. We belighat
this notion of attribute usefulness is simple, intuitivedacovers
many important scenarios. Continuing to develop otherongtiof
attribute usefulness - e.g., scenarios where attributgsomaseful
to users, yet have nothing to do with how the top tuples asscted
- is an intriguing research area that is left for future wosle (dis-
cuss this issue briefly again in Section 2).

Our notion of attribute usefulness is quite broad, and sé¢ver
teresting variants can be developed, each variant conyaljifer-
ent types of information. We discuss these variants belosyding
on their differences at an intuitive level - more precise rdgéins
are presented in Section 2.

1. Score-Based Attribute Selectiom this variant of attribute
selection, we are interested in determining thetopttributes
that have the most influence in the compusedresof the
top-n returned tuples of a query. To motivate this, consider
a query which seeks late model two-door sports cars. A rea-
sonable ranking function for such cars may be one where
Price and EngineSize have the largest influences in comput-
ing their scores. The task is thus to determine and return
these attributes.

. Rank-Based Attribute Selectiomhis variant of attribute se-
lection is subtly different from the previous variant. Here
we are interested in determining the topattributes that are
most influential in ranking the top-tuples higher than the
rest of the tuples also satisfying the query conditions. éf w
consider the above query again, although Price and Engine-

Size may influence the scores the most, it may happen that
most tupleseven those outside the tep-have similar prices
and engine sizes. Thus other attributes (such as Make or Age)
may have been critical in differentiating between the top-
tuples and the rest.

. Relative Rank-Based Attribute Selectidn: this variant of
attribute selection, we wish to know the taepattributes that
are most influential in preserving the relative rankingshef t
returned topr tuples amongst each other. Note that this third
variant is quite different from the second - there we wished
to know which attributes separated the topdples from the
rest of the tuples, whereas here we wish to know which at-
tributes are most responsible for determining the pasdicul
permutation in which the top-tuples are returned. For ex-
ample, the relative ranks of the toptuples may most closely
match the relative ranks of the corresponding Mileage and
NumCylinders attribute values of these tuples.

The returned top attributes for each of the above variants co
vey different types of information, each of which has a rolplay
in helping the users compare the ranked answers to a quaty, an
in understanding why these answers were returned. We tneref
propose a hybrid approach, which we call 8@it-Paneapproach,
which returns and displays the top attributes from each e$eh
variants side-by-side. We show experimentally that thisra@ach
is clearly more intuitive to users than the individual caugint ap-
proaches underlying Split-Pane, as well as other basetiribude-
selection techniques considered.

Technical Challenges The key technical challenge is to automat-
ically come up with a selection of the top-attributes that best
explain the score, rank or relative rank of tuples, basedhers¢or-
ing/ranking function, without any user intervention. Inrtpaular,
our user study shows that attribute selections must be hastte
query, and a pre-defined query-independent selection htedi
performance; instead, the attribute selections must beuted au-
tomatically based on the scores/ranks of the query results.

The score-based attribute selection is perhaps the singblése
above variants in terms of algorithmic complexity, becaifiske
scoring function is known in advance, determining the inftisd
attributes is relatively straightforward - however, thielpem be-
comes more interesting if we are not privy to the innards efabt-
tual scoring function used, i.e., if the scoring functiowiewed as
a black box. The other variants are more involved, becauseawe
to determine useful attributes by analyzing how they affieetfinal
rankings of the result tuples. One way of measuring the effea
set A of attributes on the rank (or relative rank) is to consider th
rankings that would be produced if only attributesdrwere used.
We make this notion more precise later, and show that thetsate
of a set of attributes that minimizes the rank error is NRdHar
both the score- and the rank-based variants. We presemithige
for these variants, based on a combination of greedy hasrias
well as non-trivial partial computations of the attribuedestions.

The Attribute Orderingproblem has the additional requirement
of ordering the (selected) attributes in decreasing ortiérair use-
fulness. Such an ordering can be quite useful: for exampldet
signing a tabular interface, where it may be preferable daogthe
attributes from left to right in decreasing order of useéds. We
use the ternvertical rankingto denote the order in which tuples
appear, and the terfrorizontal orderingto denote the ordering of
attributes.

Defining an attribute ordering is complicated by the fact tha
usefulness of an attribute (i.e., its influence on the velrtianking)
is affected by what other attributes have been selected.régept



two greedy heuristics, based on two different ways of defjtire

usefulness of an attribute, either ignoring or taking irdoccunt the
choice of other attributes. These greedy heuristics cantasised
for the attribute selection problem by selecting thextopttributes
from the attribute orderings they generate. We emphasizecVer,

that the technical focus of this paper lies in the area ofbaiie

selection, with attribute ordering being an extension aof care

results on attribute selection.

alphabets such as and A, to refer to subsets of the attributes set
A).

In the following subsection we first review various tuplekan
ing functions. Later we formally introduce the attributéestion
problem, which is the main focus of this paper.

2.1 Review of Tuple Ranking Functions
Most common methods to rank the result tuples of qugrgre

Contributions We summarize the main contributions of our paper Ccéntered around developing a scoring functi, ¢) that assigns

as follows

1. We introduceattribute selection/orderings a new database

relevance scores to tuple A few (top-n) of the most relevant
tuples are then returned in decreasing order of relevarare $o
the user. Numerous scoring functions have been developt in

retrieval model that complements the tuple ranking model, literature, ranging from Euclidean distance functionénarily for

yetis orthogonal to the specifics of the ranking functiorduse
2. We present several interesting variants of the attribetec-

tion problem, where each variant conveys different inferma

tion to the user. We also present tBplit-Paneapproach,

which combines the top attributes from each of these vari-

ants.

numeric data), cosine similarity functions, as well as claxfunc-
tions based on probabilistic retrieval models. We brieflscdss
some common scoring functions here; also see Section 5 and th
references therein. Some of these scoring functions ordyabe

on the attributes specified by the query - i.e., on a projaaticer

the Ag columns - while others try and extend the query with ad-
ditional query conditions such that all attributes are pest; yet

3. We analyze the computational complexity of the different others attempt to directly seek out correlations betweerqtrery
variants of the attribute selection problem, and show that values and the unspecified attribute values of the tuple.

most of them are NP-complete.
4. We present algorithms for the different variants of htite

In solving our problem, it is often necessary for us to deteem
the “contribution” of certain attributes in scoring. Cogsently,

selection, based on a combination of greedy heuristics as We assume scoring functions to be of the fofifQ, 4, ), where

well as non-trivial partial computations of attribute sele

A'is an optional set of attributes that specifies which attebare

tions. In some instances we prove that our algorithms are © e utilized when computing the score of the tuple - i.ee, riir

optimal.

maining attributes are “masked out”, or ignored from therisp
calculations. (The sed is not to be confused with the sdty; the

5. We performed user studies and detailed performance-evalu |5iter is the subset of attributes specified by the queryg dtility

ations to show that the attribute selection problem is usefu

and can be efficiently solved by the Split-Pane approach.

to mask certain attributes is a reasonable requirement amngc
functions, and as we shall see below, most common scorirg fun
tions possess this property. Moreover, attributes masikingsed

Related Work The most closely related works to ours are in the for the primary purpose of solving our attribute selectioolgpem,

areas of ranking of query results, feature selection, atahdsual-
ization. We describe related work in detail in Section 5,duttine
key differences here. Work in the area of ranking of queryltes

and is not used in the tuple ranking problem.
A simple class of scoring functions is theditivescoring func-
tion, defined as follows. Let weights; be associated with each

(such as [11, 15, 10, 1, 9, 6]) do not consider the problem of or attributea;, and let functionf;(z, y) return a value if0..1] in-

dering/choosing important attributes from a large set tftattes.
Although the problem of choosing attributes is related &oatea of
feature selection ([14]), our work differs from the exteesbody
of work on feature selection in several ways: (1) our goabiex-
plain the ranking of results to end users, not to reduce tseafo
building a mining model such as classification or clusterimgd
(2) our approaches measure the amount by whichiahksof the

dicating how related value is to y for values in the domain of
attributea;. Let @ specify equality conditions on some set of at-
tributes A, and let the value specified for amy € Ag bewv;.
Then

S@A )= Y (wix filtlad,vi)) (€

a;EAQNA

topn tuples changes when a subset of attributes are used in score 5, example of an additive scoring (used in our experimersts) i

computations, whereas feature selection approaches titmsed
on changes in ranks. Data visualization systems form anotte-
gory of related work, but to our knowledge none of the relateck
in this area (e.g. [16, 20, 2]) has considered the problenhobs-
ing what attributes to display that influence the rankingsestilts.
See Section 5 for more details on related work.

The rest of this paper is organized as follows. Section 2rideesc
the problem framework and notation. Section 3 presentdtsasu
complexity, while greedy algorithms are presented in $ect.
Section 5 describes related work. Section 6 presents i
performance studies, and Section 7 concludes the paper.

2. SYSTEM FRAMEWORK

Our dataset consists of a relation (or viefvhich hasN tuples
t1,...,tn andM attributesA = aq, ..., an. Lett[a;] denote the
value of tuplet for attributea,. Let query@ specify conditions on
some subset of attribute$y (we shall frequently use upper-case

a weighted version of the Euclidean function (hencefortbrred
to asWeightedL®, defined as follows. For categorical attributes
fi(z,y) = 1if x = y (orz € y if we allow y to be a set of
values), and i$) otherwise. For numerical attributes = 1 —
(nz — ny)?, wheren, andn, are the normalizédvalues ofz and
y in the rangef0..1]. Such scoring functions are usually defined
by domain experts, although in certain applications the sy
specify some of the weights in addition to some attributeiesl
Some applications may even automatically extend a usey qaer
that all attributes get assigned weights as well as quenesal
Another common example of additive scoring functions is the
cosine similarityfunction (used in [1] for ranking database query
results) which computes the normalized dot product betviken
query and the tuple values. In certain applications (egywerd

We normalize using the minimum and maximum values for the
domain ofa;; other standard normalization techniques are also pos-
sible.
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Figure 1: Execution Interfaces.

queries in [3]), scoring functions araultiplicative i.e., the final
score is a product of the contributions of the scores of etidbuate.
Multiplicative scoring functions can be converted to addifunc-
tions by viewing the scores on a log-scale.

A generalscoring function is a more complex function in which
terms cannot be separated according to the attribute therytce
An example of such a scoring function, which is used in oueexp
iments, is theConditional scoring function based on probabilistic
information retrieval models (defined in Chaudhuri et a]) [6

S(@ Aty =[] p(tlas]) = II

a;€C a;€C,a;€AQNA

p(vi,tlaj]) (2

whereC = A — (Ag U A) andp() is a function defining the
popularity (for one argument) and correlation (for two argunts)
of values in the query workload and database. More detaitb®n
Conditional scoring function can be found in [6].

Execution Model for Tuple Ranking Functions Although we as-
sume that we are provided with a black box vertical scoringefu
tion S(Q, A, t), the way such a scoring function is implemented
greatly affects the performance of our attribute seleaigorithms,
since it determines which algorithms are feasible and efficiwe
define two interfaces (Figure 1) for the vertical rankingcklaox,
which are natural and supported by previous works like Fagat.
[11], Chaudhuri et al. [6], the PREFER system [15] and Bruno e
al. [4].

In particular, thepipelining interfaceS(Q, A) inputs the query
Q, a setA of attributes to be utilized (i.e., not masked out) and a
relation R and outputs a stream of tupléess R ranked descend-
ing according taS(Q, A, t) along with their scores (scores are not
needed in some cases). The cost incurred in using this acterf
is the number of tuples retrieved (we can stop retrievindetupat
any time). Thesingle-result interface (Q, A, t) inputsQ, A and a
tuplet¢ and outputs the scot®(Q@, A, t). This interface incurs unit
cost.

2.2 The Attribute Selection Problem

As we have emphasized in the introduction, our focus is on the

attribute selection problemGiven a relationR, a scoring function
S(Q, A, t), a numbem of requested result-tuples, and a number
m of requested attributes, we are concerned with the problem o
selecting a subset of m attributes that were the “most influential”
in the computation of the top-ranked answer tuples. A design
goal for our techniques is that they should be able to work wit
any scoring function. We now formally define the three proble
variants mentioned in the introduction.

1. Score-Based Attribute Selectidn this version of the problem,
we are interested in determining the topattributes that have the

most influence in the computesdoresof the top+ returned tuples
of a query. LetTopnbe the set of top: tuples returned by the
query. LetA be any subset ofn attributes. Thescore distance

SDist(A, A) is defined as

SDis(A, A) = Y (S(Q,At)—S(Q, A1)  (3)

teTopn

Intuitively, SDist(A, .A) measures how close the scores of the
top tuples are to the true scores if only a subset of attribdte
were involved in the calculations. The objective is to dmiee
the subsetd that minimizesS Dist. Although this problem vari-
ant is simpler than the others, we argue that it is not triviadr
example, even in the case of the additive scoring model wihere
weights may be known beforehand, we cannot pre-deterrhibg
simply taking them attributes with the largest weights. This is be-
cause as Equation 1 shows, the contribution ofitheattribute to
the score of a tuple is w; * f;(t[a:], v:), and the second factor
can only be determined at runtime. For example, the weigttief
Price attribute may be more than the weight of Mileage, harev
for a specific query the top tuples returned may contain cacse/
prices differ greatly from the desired price, but whose magles
are very close to the desired mileage (see Section 6 for agriexp
mental comparison of score-based versus simpler weigtgebat-
tribute selection approaches). This problem is exacedbat¢he
case where weights are not known beforehand and where gcorin
schemes assign “query specific” weights to unspecifiedbates
(e.g., for users seeking late model sports cars, EngineSézeget
higher weight than for users seeking economy cars). Likevtigs
problem is more involved for more general scoring functiohere
the contributions of each attribute cannot be easily sépdifaom
the others.

2. Rank-Based Attribute Selectidm this version of the problem,
we are interested in determining the topattributes that are most
influential in ranking the topn tuples higher than the rest of the
tuples. LetL be the ranked list (or permutation) of all tuples when
ranked by the scoring function with all attributes conttibg to the
scoring - i.e., when the database is rankedS, A, t). Let La

be the ranked list when only a subséof m attributes contribute
to the scoring - i.e., when the database is rankef (@Y, A, t). The
rank distance RDist(.A, A) is defined as

RDIs(A, A) = > |L(t) — La(t)]

teTopn

4)

whereL(t) denotes the position (or rank) of elemerim L.

Intuitively, L is the “ground truth” ranking, andDist(A, .A)
measures how closelly 4 approximated. with respect to the top-
n tuples. Note that this measure of comparing ranked listaset
on Spearman’footrule formulafor comparing ranked lists [7], the
only difference being it only considers tiiepnsubset of the ele-
ments of the two permutatiodsThe objective is to determine the
subsetA that minimizesS Dist.

This version of the problem is subtly different from the seor
based version. For example, if we consider a user seekieg lat
model sports cars, although Price and EngineSize may imdéuen
the scores the most, it may happen thatst tupleghat satisfy the

2We could have used other metrics suchKasdall Tay but Spear-
man'’s footrule is more appropriate for our more problem hsea
the ranks of subsets of the tuples are used in comparingngski
Our metrics can also be extended using the partial rankirtgesse
defined by Fagin et al [9] in case the scoring function produce
many ties. Likewise, our metrics can also be extended torgives
importance to tuples at higher positions in the lists (a21j)[



query condition, even those outside the tgphave similar prices
and engine sizes. Thus other attributes (such as Make orAgg)
have been critical in differentiating between the topuples and
the rest.

This problem is also related to tlieature selectioproblem in
classification algorithms in machine learning - the sinitiles and
differences are discussed in more detail in Section 5 (aewsr
experiments in Section 6).

3. Relative-Rank Based Attribute Selectidn this problem, we
wish to know the topn attributes that are most influential in pre-
serving the relative rankings of the returned topuples amongst
each other. The formal specification of the problem is vemjlar

to the second problem variant - except that we replace thigeent
database with the top-tuples only. LetZ’ be the corresponding
ranked list for the setfopn i.e., when the tuples dfopnare ranked
by the scoring function with all attributes contributingtte scor-
ing. Let L/, be the ranked list (permutation d@f') when only a
subsetA of the m attributes contributes to the scoring - i.e., when
the database is ranked Y@, A, ¢). Therelative-rank distance
RRDist(A, A) is defined as

RRDistA, A) = > |L'(t) — La(t)]

teTopn

®)

whereL’(t) denotes the position (or rank) of elemern L'.

The semantics of this problem variant are quite differeamfr
the second variant - there we wished to know which attribsiégs
arated the topz tuples from the rest of the tuples, whereas here we
wish to know which attributes are most responsible for deteing
the particular permutation in which the teptuples are returned.
Thus, these attributes serve to more carefully differémtzanong
the returned tuples than any of the previous problems. Famex
ple, the relative ranks of the toptuples may most closely match
the relative ranks of the corresponding Mileage and Nuncigis
attribute values.

Discussion While the above problem variants are the main focus
of this paper, we take the opportunity to briefly discuss sehather
interesting variations which are part of our ongoing workwwe do
not describe here due to lack of space. One such variant Rethe
Tuple Attribute Selection problemwhere instead of being restricted
to choosing the same set of attributes for all the top: returned
tuples, we can choose to display attributes on a per-tupis bthat
is, different attributes can be chosen for each returnek tuphis
allows a more detailed look into each returned tuple thanldvou
otherwise be achievable with the previous variants. Fomgike,
fuel efficiency may not be considered useful enough to dyspla
general, but it may be worth mentioning for a car with exaaudily
good fuel efficiency.

In fact, the per-tuple attribute selection problem has derast-
ing sub-variant - determininigad as well asggoodattributes. Intu-
itively, an attribute for a tuple is bad (respectively goddvithout
its influence, the tuple’s ranking improves (respectivedgmrhdes).
Knowledge of such attributes provides more fine-grainedetnd
standing of the reasons behind a specific tuple’s final raak th
would otherwise be overlooked by the more aggregated warian
e.g., it is useful to know that a specific car has poor gas gdea
even if it is exemplary in other respects.

The Multiple Queries Attribute Selectigoroblem is yet another
variant where, given a set of queries - such as a representptery
workload indicative of the type of users of the system - tis& ta to
choose the topr attributes that areollectivelythe most influential
in rankings the results of these queries. As an examplejd=msn
auto dealer preparing an advertisement listing a numbearsfia

a tabular fashion, highlighting the attributes that theleleteels
would be most important for the typical customer.

Finally, we mention that in some applications users may fard c
tain attributes to be useful even if they havery little to do with
the ranking of tuples. E.g., users may be always interestseding
attributes of products such as Vehicle Identification NurnléN)
and Price - perhaps for looking up more information from an ex
ternal database - whereas in most applications rankingtifurs
ignore serial numbers, and in some applications price map&o
an influential attribute in ranking. Continuing to develdystand
other notions of attribute usefulness is an intriguing aesle area
that is left for future work.

3. COMPLEXITY RESULTS

In this section we analyze the computational complexityhef t
variants of the attribute selection problem. We show thatesof
the variants are NP-Complete, and outline several greeaiysties
that are shown to be optimal in certain cases.

3.1 Rank-Based Attribute Selection

In this subsection we shall show that the rank-based atériber
lection problem is intractable, thus necessitating theeb@ment
of heuristic and approximation methods for finding the besit-
tributes. To prove intractability, we shall consider a dlifigd ver-
sion of our problem, which we call thEopOneTuplgroblem.

Recall thatR is a relation withN tuples over an attribute set
A with | A| = M. Consider only querie§ that specify equality
conditions on the specified sdtof attributes, i.e., conditions such
asa;, = v; for all a; € A. Let the scoring function be the simple
additive function defined as thiot productbetween the query and
the tuple, i.e.,

S(Q7A7 t) = Z t[ai] * Vg

a; €A

TopOneTuple Problem: Given a queryQ, let ¢ be the highest
ranked tuple by the above scoring function. Given an integex

M, is there a subsett C A of m attributes, such that when all
attributes other thaml are masked out, the highest ranked tuple
remains ag?

THEOREM 1. The TopOneTuple problem is NP-Complete.

Proof: Clearly the problem is itV P as a solution can be easily ver-
ified in polynomial time. To prove NP-Hardness, we shall m@xu
from the Vertex-Coverproblem [13], which is defined as follows:
Given a graphG = (V, E) consisting ofv vertices and: edges,
and an integek, is there a subset df vertices such that each edge
has an endpoint in this set?

Given an instance of the Vertex-Cover problem, we shall con-
struct an instance of the TopOneTuple problem as followsn-Co
sider a relationR with v attributes ana: + 1 tuples. Each edge
(p, q) is represented as a tuple where the values of attriuées
g are eacly and the remaining attribute values are ea¢fv — 1).

In addition, there is a special tuplen which all attribute values
arel. We define a query) that specified for all attribute values.
We complete the instance of TopOneTuple by setting- k.

Clearly, when no attributes are masked ois,the highest ranked
tuple for this queny, since its score is, whereas the score of any
of the other tuples igv — 2)v/(v — 1).

Now suppose the instance of Vertex-Cover has a solution. Let
Agq be the subset of vertices such that all edges i have an
endpoint inAg. Suppose we mask out the attributes notlig. It
is easy to see thatwill remain the highest ranked tuple as its score



will be k, whereas each of the other tuples will have at least one
0 among the values of the attributes 4f, and hence will have a
maximum score ofk — 1)v/(v — 1).

To prove the reverse, assume that the instance of TopOreTupl
has a solution. Letlg be the set of thé attributes that have not
been masked out, thenwill remain the highest ranked tuple with
a score of. This is only possible if each of the other tuples has at
least a0 in one of the attributes afl. If this was not so, then the
score of such a tuple would have béary (v — 1), which is larger
than the score of which is a contradiction. Hencé represents
a solution for the Vertex-Cover instanda.

Thus, rank-based attribute selection is NP-complete.

3.2 Score-Based Attribute Selection

It intuitively appears that score-based attribute sededs easier
than rank-based attribute selection, and indeed, as wessiwatly
show, unlike rank-based attribute selection which is NPaQGlete
even for additive scoring functions, simple optimal scbased
attribute selection algorithms exist for additive scorfogctions.
However, if we allowarbitrarily complexscoring functions, score-
based attribute selection can easily be seen to be NP-Ctaniple
a simple reduction from TopOneTuple.

THEOREM 2. The score-based attribute selection problem is
NP-Complete for general scoring functions

Proof: (sketch) Given a TopOneTuple problem instance, create a
score-based attribute selection instance where the s€aréuple

is its rankin the TopOneTuple’s database. I.e., scores of tuples are
in the range [1..N]. It is trivial to see that the score-baagdbute
selection problem is NP-Complet@.

Note that in the above proof, the scoring function was veryco
trived, as it had to examine the entire database to deterthime
score of a tuple. In practice, scoring functions are muchpEm
and we shall show in the next section that for additive sepftimc-
tions, simple greedy algorithms suffice. (In contrast, rhaked
attribute selection is NP-Complete even for additive sapfunc-
tions).

4. ALGORITHMSFORATTRIBUTE SELEC-
TION

In this section we present algorithms to solve the diffelant
tribute selection problem variants. In particular, we fpstsent
at a high level the optimal and two greedy algorithms. In Sec-
tion 4.1, we specify when the greedy algorithms are optifiaén
we describe the implementation of the greedy algorithmsliféer-
ent variants of the attribute selection problem, given tkecation
interfaces of Figure 1. In Section 4.2, we present algorstlian
rank-based as well as relative rank-based attribute smheend in
Section 4.3 we present algorithms for score-based attribeiiec-
tion.

Optimal Algorithm  Due to lack of space we simply sketch the
details of theoptimal algorithm For example, in the case of rank-
based selection, the optimal algorithm calculates all doattons

of M attributes in groups of up te and for each group invokes
a pipelining interface to fetch answers and calculate thé ohf-
ference. The complexity i¥ C,,,, that is, exponential om. The
same (or worse) complexity applies for the other versionsels

Greedy Algorithms Let Dist(.A, A) be generic notation for
SDist(A, A), RDist(A, A) or RRDist(A, A). TheNon Cumu-
lative Greedy Algorithnstarts with an empty set, and in each it-
eration, adds attribute; not already inA that minimizes the value

Algorithm Rank-GreedyCunk, Q, m, n)

{
01. Invoke pipelining interfac&(Q, .A) with output streani.
and store tops tuples ofL in list L'
02. A = () I* Ais the set of attributes selected so far*/
03. foreachyin1,...,mdo
{ I*repeat until we find top= attributes*/
04. for eachu; in A — Ado
{ *Invoke M — | A| pipelining interfaces*/
Invoke pipelining interfaceS(Q, A U {a;})
with output streamg.;
P(L;) =10
I*P(L;) is the prefix ofL; retrieved so far*/

05.
06.

07. foreachinl,...,M — |A|do
{ I*retrieve tuples in parallel*/
08.  Ifnotall tuples inL’ are inP(L;) then
09.

10.

Retrieve top tuple froni; and add it taP(L;)
CalculateMinPossibleRDidtL, L;) /* Equation 6 */
}
11.  IfalltuplesinL’ are inP(L;) andRDist(A, A U {a;})
< miniz;MinPossibleRDistL, L;) then

12. adda; to A, and break

}

}
13. returnA
}

Figure 2: Cumulative Greedy Algorithm for Rank-based At-
tribute Selection

of Dist(A,{a:}), stopping whenn attributes have been picked.
In contrast, th&Cumulative Greedy Algorithrstarts with an empty
setA, and in each iteration, adds attributenot already inA that
minimizes Dist(A, A U {a;}), stopping whenn attributes have
been picked.

4.1 Optimality of Greedy Algorithms

We show that in the special case of score-based attribute-sel
tion for additive scoring functions, both the greedy algoris are
optimal.

THEOREM 3. Both cumulative and non-cumulative score-based
greedy algorithms are optimal for additive scoring funaso

Proof: The scoring function is shown in Equation 1. Far= 1
the greedy is obviously optimal. We assume it is optimahfore=
[, that is, we have selected a sétof [ attributes that minimize
SDist(A, A). If we add attribute a; to A then
SDist(A, AU{a;}, S) - SDist(A, A) = SDist(A, {a:}). Hence,
we must choose; that minimizesSDist(A, {a;}). That s, the
non-cumulative greedy algorithm is optimal. Also, maximg
SDist(A, {a;}) is equivalent to maximizing Dist(A, AU{a;})
in the additive case, so the cumulative greedy is also optimna

Notice that none of the greedy algorithms are optimal for the
score-based attribute selection problem for general sgdtinc-
tions (e.g., Equation 2).

Both greedy algorithms can also be designed to operate in re-
verse, i.e., start with the complete attribute set and rematy
tributes one by one. While such a procedure has the potdatial
greater stability, it is significantly less efficient when w@nsider
thatm << M, and thus we do not pursue it any further.



4.2 Rank-Based Attribute Selection Algorithm

We present the cumulative greedy algorithm for the ranletias
attribute selection problem, which is the most complex ieers
This algorithm exploits the pipelining interfaces and agts mini-
mal prefixes from the output streams to perform attributectin.
The non-cumulative greedy is a straightforward modificafgim-
plification) and is not presented due to space concerns.

The intuition of the algorithm, which is shown in Figure 2, is
the following. First, we compute the tap+esults from the query
output streand. (i.e., with all attributesA4 utilized), and store them

in list L'. Then we compare a set of candidate combinations of at-

tributes (to be utilized) with respect to thaiDist distance from
A, by invoking a pipelining interface for each of them andisstr
ing a minimal prefix from each that guarantees that our chisice
correct. One attribute at a time is greedily added to the ¢omb
tions of attributes forn iterations. Figure 3 shows an instance of
the execution of the algorithm.

In more detail, the algorithm starts by computing thelisof the
top-n results of@Q by invoking the pipelining interfac&(Q, A),
i.e., by utilizing all attributes. Then we retrieve tuplesrh M
pipelining interfaces$ (@, {a1}), ..., S(Q,{an}) in parallel. For
each streanml,;, we maintain the minimum possible rank-based
distanceMinPossibleRDistA, {a;}), which is the tightest lower
bound orRDist( A, {a;}) given the prefixP(L;) that has currently
been retrieved.

The parallel retrieval from thd;’s terminates when all tuples
t € L' have been retrieved from a streafp and the value of
RDist(A, {a;}) is smaller thatMinPossibleRDistL, ;) for all I #

1. At this point,a; is added to the set.

In the (j + 1)-th iteration, wherg attributes have already been
chosen, the next attribute is chosen by considering\the ; al-
ternatives created by adding each remaining attributegtatinrent
A. We repeat untiln attributes have been added4o

Calculation of MinPossibleRDist MinPossibleRDists calculated
by Equation 6.
MinPossibleRDistLg, L;, S) =

> " minTupleDist(L(t), Li(t))
teL’

(6)

where recall thatL(t) is the position of tuplet in list L, and
minTupleDist(L(t), Li(t)), which is defined in Equation 7, de-
notes the minimum possible distance between the positidople

tin L andL;.
minTupleDist(L(t), L;(t)) =

IL() — Li(t)), if tuple t € P(L;)

0, if tuplet € P(L;) and |P(L;)| < L(t) 7

|L(8) — |P(L)| — 1], if tuple t € P(L;) @
and |P(L;)| > L(t)

whereP(L;) denotes the prefix of the lidt; that has been retrieved
so far.

The three branches of the equation correspond to the casge wh
tuplet has already been retrieved fral, has not been retrieved
and less thatL(t) tuples have been retrieved fralm, and has not
been retrieved but more thdn(¢) tuples have been retrieved from
L;, respectively.

The astute reader will notice that Equation 6 does not always

compute the tightest minimum possible score, because thihg
branch of Equation 7 is used faf of then tuples ofL’, it is not
possible that alk’ of them will be found on theP(L;)| + 1-st

position of L;. Hence, we ad{:l":/1 [ to the third branch of Equa-
tion 7.

Pipelining |
Interface >
SQAva,) B Rank-
GreedyCumul
Execution
Pipelining | Module
Interface —

SQAva,)

Figure 3: Instance of execution of rank-based cumulative
greedy algorithm.

Algorithm Score-GreedyCun®, @, m, n)

{
1. Invoke pipelining interfacé&(Q, .A) with output streanL
and store tops tuples ofL in list L’
2. A = () /* Ais the set of attributes selected so far*/
3.foreachjin1,...,mdo
{/*repeat until we find top= attributes*/
for eachu; in A — A do

[*Invoke n single-result interfaces*/
Invoke single-result interfacet(Q, AU {a;}, t)
SDis(A, AU{ai})=32c 1/ 1S(Q, A t) = S(Q, A, 1))

7. finda; with minimumSDis{(A, A U {a;}) and add it toA

4
{

5. foreach tupleé € L' do

6

7

}
8. returnA

}

Figure 4: Cumulative Greedy Algorithm for Score-Based At-
tribute Selection

Also notice that at an intermediate stage of the algorithny i
possible that by adding any attribute #y the distance will in-
crease. That is, thR&Dist(.A, A) calculated in line 11 is larger
than the one calculated in the previous iteration. In thsecave
terminate the algorithm and outpdt(|A| < m).

The relative rank-based version of the algorithm differghat
once the Topz results ofQ are calculated, the execution interfaces
view them as the database insteadrof

Time Complexity The algorithm invokes\/ + (M — 1) +---+
(M —m+1) =m(2M —m+1)/2 = O(m - M) pipelining
interfaces and retrieves a minimal prefix of the output stré@am
each of them. Ip is the average number of tuples retrieved from
each output stream, the time complexityém - M - p). If richer
interfaces for the scoring function are available, moreigffit algo-
rithms are possible. For example, if the scoring functiokniewn
and is monotone, and buffering is available, then we couddthe
Threshold Algorithm [11] to combine the origindll streams to
the next level of\/ — 1 streams without re-invoking the pipelining
interfaces.

4.3 Score-Based Attribute Selection Algorithm
The greedy algorithms for score-based attribute seleetiesig-

nificantly simpler. Figure 4 shows the cumulative greedpathm

for this case. Once the tap+esultsL’ are retrieved, we repeat-



edly invoke the single-result interface to get the scorehef tu-

ples in L’ for each candidate attribute. We choose the attribute

that minimizes the score-based distance function oveuplés in

L' and repeat the above process untilattributes have been se-

lected. The number of invocations of the single-resultriate is
nM+(M-1)---+(M-m+1)=nm(2M —m+1)/2 =
O(n - m - M). Hence the time complexity ©(n - m - M) since
the single-tuple interface has unit cost.

5. RELATED WORK

Dimensionality reduction and feature selection are sora¢wé:
lated and well studied problems, but differ in key respebimen-
sionality reduction (Faloutsos and Lin [12], Keogh et aF]jlaims
at mapping high dimensional data to lower dimensional deitéle
preserving some metrics, such as distances, to the bedblpess
tent. Applications of dimensionality reduction includel@xing of
data using index structures that work well only in lower dime
sions. In our context we are not interested in distancesd®rithe
data points, or distances from arbitrary query points, bther in
the similarity of data points to a specific query. Furthemein-
sionality reduction can compute new axes, whereas in ouerbn

a computed axis will be meaningless to the user, and we can onl

use existing dimensions (attributes) as axes.

There has been extensive work on feature selection in tlee are

of classification machine learning. Guyon and Elisseeff fir¢-

vide an excellent overview of feature selection, while deatse-
lection for text classification is discussed in Yang and Peafe
[22]. Among the three variants, Rank-based attribute fieleés

most closely related to feature selection, because in esser
wish to select attributes that best distinguish the#tojpples of a
query from the rest. For e.g., if we imagine a hypotheticablBan
class attribute that is set ta ue for each of the topz tuples and

f al se otherwise, the problem is similar to determining the best

m attributes (or features) of a classifier attempting to aa®ly

disambiguate the top-tuples from the rest. However, the main

differences are:

1. In feature selection, the important features are detexthi

as an useful preprocessing step before building the classifi

(and this is usually done by selecting attributes that agklipi
correlated with the class attribute), whereas in our prable

the scoring function is already available (albeit as a black
box), and we wish to determine its most influential attrilsute

that explain the high ranks of the taptuples.
2. RDist measures the amount by which tia@ksof the topn

tuples changes when a subset of attributes are used in score
computations, whereas feature selection approaches aire no
based on changes in ranks. As an example, consider two at-

tributesa; anda;, each over the domaifll, 2,3}. Let the

top-n tuples returned by a query have the following values

for these attributes(3, 3), (3,3),...,(3,3),(2,1). Letthe

remainingN — n tuples have the following values for these

attributes: (3, 3), (1,2),(1,2),...,(1,2). From the sym-

metry, it is quite clear that feature selection methods oainn
distinguish between; anda; because both are equally cor-
related with the hypothetical boolean class attribute @men

tioned above). HoweverRDist(A,{a;}) = 1, whereas
RDist(A,{a;}) = N — n (since thenth tuple in the tops

will be placed at the very bottom of the table if we ranked

only according to the values af;).

In Section 6 we experiment with a baseline feature seleetpn
proach based on selecting attributes that are most cardedatthe

top-n tuples by using the chi-square measure after suitable dis-
cretization of numeric attributes. Feature selectionnapkes are
less appropriate for the other proposed variants, scaeeband
relative rank-based.

Although there has been a significant amount of work on visual
interfaces to databases (e.g. VisDB [16], Polaris [20] alog)d-2
[2]) none of this work has addressed the selection of ate#to
display. Feature selection has been used in the contexfaf in
mation visualization, but the goals (which are similar tosé of
dimensionality reduction) have been preservation of distanet-
rics or clusters (Rheingans and desJardins [19]) and nkingn

Techniques to find top-K results where the overall score @ac
bination of scores on individual attributes are describgdragin
et al. [11, 10] and Hristidis et al. [15]. Different ways ofrne
paring (and combining, or aggregating) rankings are coatpay
Dwork et al. [8]. These include measures such as the Kendall
method, and Spearman’s footrule. Ranking comparison amd ra
aggregation in the context of ranking with ties is descriipeflagin
et al. [9].

In the context of querying on items with multiple attributdse
problem of ranking the query results in the presence of many a
swers is considered by Agrawal et al. [1] and Chaudhuri €6al.

In particular, [6] exploits the query workload (past useeges) to
discover user preferences (popularity of attribute vahres corre-
lations between them), which are then used in ranking thdtees
On the other hand, Nambiar and Kambhampati [18] tackle thve fe
answers problem, and relax attributes of the query that tave
least amount of correlation to other attributes. Their téghes
can be used to perform automatic query extension when needed

Chakrabarti et al. [5] consider the problem of browsingdesgts
of query answers, and suggests ways in which to chooseuaétsib
as candidates for creating branches in a browsing tree. Ubey
a workload of past queries to pick an ordering of attribut&s.
tributes that occur in fewer than some fraction of queriesrat
considered further. An exploration cost model is used t& ie
best attribute to use as the branching attribute at the eest bf the
tree. Intuitively, attributes that appear often in queriegh selec-
tions that significantly reduce the number of candidateltesue
preferred. Their exploration cost model is not relevanttin sce-
nario. The idea of preferring attributes that are most offeeried
upon is relevant in our context, but is a coarse approximagioce
they may not be highly correlated with the score or rank ofdsip
in a particular answer.

6. EXPERIMENTS

In this section we report on the results of an experimentaluev
ation of our attribute selection algorithms. We implemerttee at-
tribute selection variants (including the hyb8glit-Paneapproach)
proposed in this paper (see Section 4), as well as severalitms
attribute selection methods (such as selecting by weigtitsan
lecting based on how correlated the attributes were withythesy
rankings). We evaluated both the quality of the selectidnained,
as well as the performance of the various approaches.

6.1 Experimental Setup and Tuple Ranking
Functions

We used Microsoft SQL Server 2000 RDBMS on a P4 2.8-GHz
PC with 1 GB of RAM and 120 GB HDD for our experiments. We
implemented all algorithms in C#, and connected to the RDBMS
through DAO. We used two datasets. First, we use portions of a
online used-car automotive dealer’s nationwide datab#sehis
database, each tuple represents a car for sale, and eachncolu
represented an attribute of the car. For our studies we derei



[ Query [ Score-Based Rank-Based Relative-Rank-Basefl Split-Pane| By-Weight]| By-Correlation |
Cars-1 3.00 2.60 2.50 4.60 2.40 1.40
Cars-2 3.17 2.33 1.83 4.50 3.00 2.00
Cars-3 3.33 2.50 2.50 4.50 3.17 1.50
Cars-4 3.50 2.83 2.17 4.17 2.83 2.17
Cars-5 3.25 2.38 1.88 4.00 2.63 2.00

Cars-AVG 3.25 2.53 2.18 4.35 2.81 1.81
Homes-1 2.50 1.67 1.50 3.83 2.33 2.00
Homes-2 2.00 2.33 1.67 3.67 3.00 2.67
Homes-3 2.67 1.67 3.33 3.33 3.33 2.00
Homes-4 3.00 2.33 1.67 3.00 3.00 2.00
Homes-5 3.00 1.50 1.50 2.00 3.50 2.50
Homes-AVG 2.63 1.90 1.93 3.16 3.03 2.23

Figure 5: User Study: Compare various attribute selection nethods

37 attributes, including numeric attributes such as Piitrggine heterogeneous mix of different profiles of potential camiledouy-
Size, Year; categorical attributes such as Make, ModelpCahd ers - young teenagers, rich couples, suburban families, Bte
Boolean attributes such as AC, Power Brakes, etc. To make ourqueries are the following:

quality experiments more manageable, we restricted oabdae
to aboutl5, 191 cars sold in the Dallas-Ft Worth Metroplex. The
second dataset is a US home properties dataset extractadafro

Cars dataset queries
1. make = “Infinity” and mileage< 20000

nationwide realtor's website. This dataset R8s943 properties 2. make = “Lexus” and price = 40k-60k
listed with 25 attributes like square footage, price, number of bed- 3. make = “Honda” and price = 0-20k
rooms, and so on.

Since attribute selection depends on the specific tupldrggor 4. make = “Mercedes” and price = 40-60k
function used, we considered two tuple scoring functionsigt- 5. make = “Audi” and price= 20-40k

edL2 and Conditional, which have described in Section 2.un o

experiments, users were initially allowed to specify wesgs well
as the values of query attributes. The average of these tgeigis
recorded, and used as default value for unspecified atshtat all
experiments including our user study. We emphasize thajdbe

of this paper isi1otto investigate the quality of this (or any other) tu-

ple scoring function. Tuple scoring functions of variousds have
already appeared in prior published work (e.g. the Conditi@l-
gorithm, [6]), while the others (such as WeightedL2) argédy

specified by domain experts or by the users themselves. Gilir go

in this paper is to demonstrate thgilyen a tuple scoring function
such as the above, our attribute selection algorithms ohgied the
top attributes that best “explain” these rankings.

6.2 User Studies

We first investigated whether our basic premise is reasenabl

i.e., that users are indeed interested in viewing the atgbthat
influence the ranking of tuples the most. We informally tdsiar
system with lots of queries ourselves. Most of the time botres-
based as well as rank-based approaches produced intyitiesin-
ingful attributes that would be useful to a user looking farscor
homes in such databases.
study of our system. Preparing an extensive experimerntiab $er
such subjective testing was extremely challenging - urdiker es-
tablished disciplines such as Information Retrieval wistemdard

benchmarks are available, in our case we had to conduct uskr s

ies using limited resources in a nascent area where no bemkbm
exist.

For our user studies we requested participation fé@npeople
from our respective universities and institutions. We usett the
cars and the homes datasets and considered two tuple sfiorizng
tions: WeightedL2 and Conditional [6]. We only present tbsults
for cars-WeightedL2 and homes-Conditional in this paper.

We solicited five typical queries for each dataset that isgrea

Homes dataset queries

1.
2.

3.
4,
5.

price = 400k-500k, Tarrant County, TX

multiple family homes, price500k, bedrooms5, Tarrant
County, TX

condos with pool and clubhouse, Tarrant County, TX
price = 400k-500k, Tarrant County, TX
multi family homes, 2 stories, Tarrant County, TX

The weights used by the WeightedL?2 tuple ranking, as well for
the By-Weightattribute selection (explained below) were created
after a mini-survey on the global importance of the atteisun the
datasets.

For each of these queries, we selected the top attributdseof t
result by the following methods:

1.
2.

3.
We also attempted a methodical user

I

Score-BasedAttributes are selected by score (Equation 3).
Rank-BasedAttributes are selected by rank (Equation 4).

Relative-Rank-Based\ttributes are selected by relative rank
(Equation 5).

. Split-Pane The displayed attributes are grouped into three

vertical panes, each having the top-4 attributes selegted b
Score Rankand Relative-Rankespectively. Duplicate at-
tributes across panes are not displayed.

. By-Weight Attributes are selected by their weights, which

are hardcoded as explained above, and do not depend on the
query.

. By-Correlation Attributes are selected according to the chi-

square value between them (i.e., ignoring the other ataf)u
and the topr tuples (see Section 5).



Note thatBy-WeightandBy-Correlationare used as baselines to
compare against our proposed orderings. We set the numlmér
displayed attributes to 12 and the numbeof output tuples to 10.
The results were presented to users in tabular form 18ix 12
tables side by side, with attributes ordered from left thrig each
table according to the order in which they were picked by thte r
spective algorithms Users were not told how the tables weneig
ated, in order to avoid any bias. Users were requested toiegam
the attributes in each table and indicate whether they ddhed the
attributes were helpful in explaining the high ranks of thasgples
(on a scale of [1..5] with 5 indicating that they strongly et with
the attributes shown).

Figure 5 show a table where the responses of all users to this

survey has been averaged. Notice that the rows "Cars-Av@” an
"Homes-AVG” do not correspond to averaging the 5 query rows
because we average per user and not per query and differeat nu
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Figure 6: Rank-Greedy, Optimal vsm

bers of users answered each query of the survey. As can be seen

most users preferred ti8plit-Paneselections, since it combines the
characteristics of the other selections. Users seemedliy tike
the fact that different attribute sets serve to explainedéht facets
of the ranking process. Furthermore, as we argued in Se&ign
Score-Baseds most closely related tBy-Weightsince the former
may be considered a query-specific version of the latterr&uits
were as expected - users preferabre-basedver By-Weightin
one dataset, whereas the preferences were split in thedstaset.
Likewise, as discussed in Section Bank-Baseds most closely
related taBy-Correlation and in our survey users preferred the for-
mer over the latter in one dataset, but reversed their apsnio
the other dataset. THeelative Rank-Baseattribute selection was
not as preferred compared to eittfecore-Basedr Rank-Based
perhaps indicating that its top attributes should be listely af-
ter attributes of the first two types have been displayed bybaidh
approach such &3plit-Pane

While the results of this user survey appear promising, we ca
tion that it would be premature to interpret the results ashsive
evidence that one specific attribute selection approacétiefthat
another. Rather, the clear preferenceSeplit-Paneby users indi-
cates that each variant provides very different types afrmftion,
each of which has arole to play in helping users compare theth
tuples of a query.

6.3 Greedy versus Optimal - Approximation
Quality
In this subsection we investigate the different variantshef
greedy algorithm and measure how closely they approxintete t
selections produced by the Optimal algorithm (see Secfioi\é
only present the results on the cars dataset for Rank-Bakith w
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Figure 7: Rank-Greedy, Optimal vsn

4 attributes, Optimal does quite well in the sense that altop-
tuple is only 3 positions away from its true rank on the averag
The greedy variants are not that far behind, with Rank-Gr€ach
(resp. Rank-GreedyNonCum) shifting top-10 tuples by 6p(ré&9
positions on the average. This experiment thus shows thht bo
rank-based greedy variants are good approximations of@pti
although asn gets larger, the approximation factor does increase,
with Rank-GreedyNonCum being consistently worse than Rank
GreedyCum.

Although the results for the case when= 10 seem accept-
able, we ran experiments to see if a similar behavior is eeser
for larger values of.. Figure 7 shows that witth = 4, asn in-
creases, the distance between the result lists steadisewsy with

is the most complex to compute due to space consideratioms. W Optimal being consistently better than Rank-GreedyCuniclwim
generated a set of 50 random queries as follows. For eacly,quer turn is consistently better than Rank-GreedyNonCum. Theae

we picked between one to three attributes at random, andcafiir e
attribute, we picked a value from its domain at random. Fahea
query we ran all variants of our attribute selection aldwnis for
various parameter settings:(is varied between 1 and 5, whiteis
varied from 10, 100 to 1000).

Since Optimal is a very slow running algorithm, we could only
experiment with it for 20 queries and for valuesef< 4. Even so,
several interesting conclusions could be derived fromréiaively
small experimental framework.

Figure 6 shows the averagjst distance(Spearman’s footrule)

between Rank-GreedyCum and Rank-GreedyNonCum varying asfor n =

a function ofm for the top-10 results. That is, theaxis repre-
sents the average number of positions that an element irridpe 0

for this worsening in rank quality is attributable to thetfat once
the target set of tuples increases substantially, it bes@xeemely
difficult to have the same few (4) attributes explain theirkiags.
One option is to adopt the stance that tuples lower down thiesra
are not very important for the query anyway, and hence it is ac
ceptable to have large error in explaining their rankings.other
option is to try to determine the best attributes on a tupléuipje
basis.

Next, we compare rank-based versus score-based algoriEigis
ure 8 shows the performances of various greedy variantsiyers
10. It was interesting to see that although rank-based
variants usually produced better approximations thanesbased
variants, the difference was less pronounced comparecetdith

inal rankings is shifted by. Thus we can see that when we use ference between cumulative and noncumulative variantss Gdv
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havior was consistently observed at other values.oHowever,
rank-based algorithms produced much better approxinmeatiothe
case where only the top result-tuples of the candidatébattrise-
lection were considered instead of all the results, as isdlse for
the relative rank-based selection.

6.4 Execution Cost

Lastly, we performed experiments to compare the running tim
of different variants of our attribute selection algorithnwe only
present results for the cars dataset. Since our algorithere w
tightly coupled with the vertical scoring function Weighte?, sep-
arating out the performances of the former from the lattes wa
challenging task. We implemented the WeightedL2 scorimgfu
tion with masking using the pipelined execution model. 8inar
implementation was done through the SQL query interfacegusi
RDBMS, the pipelining model had to be simulated with appropr
ate ORDER BY clauses. Naturally this is less efficient coragar
to a true pipelining model implemented inside the databasees
- this is still an active area of research. However, it wal isti

structive tocountthe number of tuples that were processed by our

algorithms through these pipelines. We illustrate with saneple.
We executed the Rank-GreedyNonCum algorithm and retrithesd
top-n tuples forn in [1..10], and then for each attribute, we de-
termined the length of the shortest prefix of the correspundst
L; that contains these toptuples. The sum of the lengths of the

m shortest prefixes was an estimate of the total number ofguple

that were processed through these interfaces before tbethig
terminated.

Figure 9 illustrated how the total number of tuples procdsse
in pipelines increases as a functionsaf (averaged over several

Running time vs m
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queries withn set to5). Likewise, the total number of processed
tuples also increased with; we omit the details of these exper-
iments. Note that for some cases the total number of prodesse
tuples is smaller than that database size - thus a true pipglim-
plementation inside the RDBMS has the potential of beingefas
than a database scan, especially for larger databases.

Next, we compared the average running times of the different
variants of our actual implementations (i.e., SQL-baseti WiR-
DER BY clauses) after running them on several queries. Windle
caution that our database was too smafl, 191 tuples) to allow
highly reliable timing experiments, we did observe expattends.
Figure 10 shows that the running times increase with inangas
(for a fixedn = 1000), with the rank-based (resp. cumulative) vari-
ants generally slower than the score-based (resp. noniative)
counterparts. The running times also increased with irsongan
and database size; we omit details of these experimentodaekt
of space.

7. CONCLUSIONS AND FUTURE WORK

We addressed the problem of selecting thertopttributes from
the view point of helping a user understand what factors rimest
fluenced a ranking system in its ranking decisions. We pteden
several variants of the problem, showed that several obthas-
ants are NP-hard, and presented efficient greedy heurists
performed a user study demonstrating the benefits of a hglprid
proach that returns the top attributes from each of thesantar
We also presented a performance study comparing two version
the greedy heuristic, showing that the cumulative versigreedy
performs better.

In the future we plan to investigate alternative attribwkestion
and ordering criteria and techniques. For example, how can w
efficiently and effectively compute good and bad attribpgesswvell
as perform attribute selection based on multiple querien(imned
in Section 2.2)? Also, how can we automatically discoverfulse
attributes that have little to do with ranking of tuples? Wsoa
plan to study attribute ordering (as opposed to attribuliectien)
in more detail. Finally, we plan to investigate the integmatof
attribute selection with specific tuple ranking functios better
performance.
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