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Determining Attributes to Maximize Visibility 
of Objects 
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Abstract—In recent years, there has been significant interest in the development of ranking functions and efficient top-k 

retrieval algorithms to help users in ad-hoc search and retrieval in databases (e.g., buyers searching for products in a catalog). 

We introduce a complementary problem: how to guide a seller in selecting the best attributes of a new tuple (e.g., a new 

product) to highlight so that it stands out in the crowd of existing competitive products and is widely visible to the pool of 

potential buyers. We develop several formulations of this problem. Although the problems are NP-complete, we give several 

exact and approximation algorithms that work well in practice. One type of exact algorithms is based on Integer Programming 

(IP) formulations of the problems. Another class of exact methods is based on maximal frequent itemset mining algorithms. The 

approximation algorithms are based on greedy heuristics. A detailed performance study illustrates the benefits of our methods 

on real and synthetic data. 

Index Terms—Data mining, knowledge and data engineering tools and techniques, marketing, mining methods and algorithms, 

retrieval models. 
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1 INTRODUCTION

N recent years, there has been significant interest in 
developing effective techniques for ad-hoc search and 
retrieval in unstructured as well as structured data re-

positories, such as text collections and relational data-
bases. In particular, a large number of emerging applica-
tions require exploratory querying on such databases; 
examples include users wishing to search databases and 
catalogs of products such as homes, cars, cameras, restau-
rants, or articles such as news and job ads. Users brows-
ing these databases typically execute search queries via 
public front-end interfaces to these databases. Typical 
queries may specify sets of keywords in case of text data-
bases, or the desired values of certain attributes in case of 
structured relational databases. The query-answering 
system answers such queries by either returning all data 
objects that satisfy the query conditions, or may rank and 
return the top-k data objects, or return the results that are 
on the query’s skyline. If ranking is employed, the rank-
ing may either be simplistic – e.g., objects are ranked by 
an attribute such as Price; or more sophisticated – e.g., 
objects may be ranked by the degree of “relevance” to the 
query. While unranked retrieval (also known as Boolean 
Retrieval) is more common in traditional SQL-based data-
base systems, ranked retrieval (also known as Top-k Re-
trieval) is more common in text databases, e.g. tf-idf rank-
ing [28]. Recently there has been widespread interest in 

developing suitable top-k retrieval techniques even for 
structured databases [1, 7, 30]. Skyline retrieval semantics 
is also investigated where a data point is retrieved by a 
query if it is not dominated by any other data point in all 
dimensions [4, 19, 22, 25, 29, 31]. 
In this paper we do not address new search and retrieval 
techniques that will aid users in effective exploration of 
such databases. Rather, the focus is on the complemen-
tary novel problem of selecting the data to be shown, 
elaborated as follows. 
Selecting Attributes for Maximum Visibility We distin-
guish between two types of users of these databases: us-
ers who search such databases trying to locate objects of 
interest, and users who insert new objects into these data-
bases in the hope that they will be easily discovered by 
the first type of users. For example, in a database repre-
senting an e-marketplace (such as Craigslist.org, or the 
classified ads section of newspapers), the former type of 
users are potential buyers of products, while the latter 
type of users are sellers of products. Products could range 
from apartments for rent to job advertisements to auto-
mobiles for sale. Almost all of the prior research efforts on 
effective search and retrieval techniques – such as new 
top-k algorithms, new relevance measures, and so on – 
have been designed with the first kind of user in mind 
(i.e., the buyer). In contrast, less research has been 
addressing techniques to help a seller/manufacturer in-
sert a new product for sale in such databases that markets 
it in the best possible manner – i.e., such that it stands out 
in a crowd of competitive products and is widely visible 
to the pool of potential buyers. 
It is this latter problem that is the main focus of this pa-
per. To understand it a little better, consider the following 
scenario: assume that we wish to insert a classified ad in 
an online newspaper to advertise an apartment for rent. 
Our apartment may have numerous attributes (it has two 
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bedrooms, electricity will be paid by the owner, it is near 
a train station, etc). However, due to the ad costs in-
volved, it is not possible for us to describe all attributes in 
the ad. So we have to select, say the ten best attributes. 
Which ones should we select? Thus, one may view our 
effort as an attempt to build a recommendation system 
for sellers, unlike the more traditional recommendation 
systems for buyers. It may also be viewed as inverting a 
ranking function, i.e., determining the argument of a 
ranking function that will lead to high ranking scores.  
This general problem also arises in domains beyond e-
commerce applications. For example, in the design of a 
new product, a manufacturer may be interested in select-
ing the ten best features from a large wish-list of possible 
features – e.g., a homebuilder can find out that adding a 
swimming pool really increases visibility of a new home 
in a certain neighborhood. Likewise, we may be inter-
ested in developing a catchy title, or selecting a few im-
portant indexing keywords, for a scientific article.  
To define our problem more formally, we need to de-
velop a few abstractions. Let D be the database of prod-
ucts already being advertised in the marketplace (i.e., the 
“competition”). Based on the problem variant that we are 
considering, this database could be either a traditional 
relational table where tuples are products and columns 
are attributes (e.g., a Boolean database), or a collection of 
short text documents, where each text document is an ad 
for a product. In addition, let Q be the set of search que-
ries that have been executed against this database in the 
recent past – thus Q is the “workload” or “query log”. 
The query log is our primary model of what past poten-
tial buyers have been interested in. Based on the problem 
variant, the queries could be SQL-like selection queries or 
keyword queries that request for certain tuples to be re-
turned from D. For a new product that needs to be in-
serted into this database, we assume that the seller has a 
complete “ideal” description of the product (e.g., a long 
list of all possible attributes and their values, or a detailed 
text description covering all possible features of the prod-
uct). But due to budget constraints, there is a limit, say m, 
on the number of attributes/keywords that can be se-
lected for entry into the database. Our problem can now 
be defined as follows: 
PROBLEM: Given a database D, a query log Q, a new tuple t, 
and an integer m, determine the best (i.e., top-m) attributes of t 
to retain such that if the shortened version of t is inserted into 
the database, the number of queries of Q that retrieve t is max-
imized. 
In this paper we initiate an investigation of this novel 
optimization problem. We consider several variants, in-
cluding Boolean, categorical, text and numeric data, and 
conjunctive and disjunctive query semantics. We also 
consider variants in which the “budget”, i.e., m, is not 
specified; in this case our objective is to determine the 
value of m such that the number of satisfied queries di-
vided by m is maximized. Thus we seek to maximize the 
“per dollar” benefit. A special case of this no-budget vari-
ant is when ranking is performed using functions that are 
non-monotone on the number of specified attributes 
(keywords), such as the BM25 [26] scoring function used 

in Information Retrieval. 
We analyze the computational complexity of these prob-
lems, and show that most variants are NP-complete. Nev-
ertheless, we develop principled optimal algorithms for 
several of these problem variants that work well in prac-
tice. We develop two types of methods yielding optimal 
solutions: (a) techniques based on Integer Programming 
(IP) and Integer Linear Programming (ILP) methods, 
which work well for moderate-sized problem instances, 
and (b) more scalable solutions based on novel adapta-
tions of maximal frequent set algorithms that also allow 
us to leverage several preprocessing opportunities. We 
also develop fast greedy approximation algorithms that 
work well for all problem variants, and present a thor-
ough experimental study of all methods on real as well as 
synthetic data. 
Main Contributions The main contributions of this paper 
may be summarized as follows: 
1. We introduce the problem of selecting attributes of a tu-

ple for maximum visibility as a new data exploration 
problem. We consider several interesting variants of 
the problem as well as diverse application scenarios. 

2. We analyze the computational complexity of the dif-
ferent variants of the problem and show that most of 
them are NP-complete.  

3. We develop optimal Integer Programming (IP) and 
Integer Linear Programming (ILP) based algorithms to 
solve certain variants of the problem. These algorithms 
are effective for moderate-sized problem instances. 

4. For certain problem variants, we also develop more 
scalable optimal solutions based on novel adaptations 
of maximal frequent itemset algorithms. Furthermore, 
in contrast to ILP-based solutions, we can leverage 
preprocessing opportunities in these approaches. 

5. We also develop fast greedy approximation algorithms 
that work well for all problem variants. 

6. We perform detailed performance evaluations on both 
real as well as synthetic data to demonstrate the effec-
tiveness of our developed algorithms. 

The rest of the paper is organized as follows. In Section 2 
we provide some preliminary definitions. In Section 3 we 
give a formal definition with computational complexity 
analysis of our main problem for Boolean data. The cor-
responding algorithms are given in Section 4. In Section 5 
we discuss the problem variant for text data and provide 
algorithms. We present the result of extensive experi-
ments in Section 6. In Section 7 we discuss other problem 
variants for Boolean, categorical and numeric data, ana-
lyze their computational complexity, and give algorithms 
for the problems. In Section 8 we discuss related work, 
and Section 9 is a short conclusion. 

2 PRELIMINARIES 

First we provide some useful definitions. 
Boolean Database: Let D = {t1…tN} be a collection of Boo-
lean tuples over the attribute set A = {a1…aM}, where each 
tuple t is a bit-vector where a 0 implies the absence of a 
feature and a 1 implies the presence of a feature. A tuple t 
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may also be considered as a subset of A, where an attrib-
ute belongs to t if its value in the bit-vector is 1. 
Tuple Domination: Let t1 and t2 be two tuples such that for 
all attributes for which tuple t1 has value 1, tuple t2 also 
has value 1. In this case we say that t2 dominates t1.  
Tuple Compression: Let t be a tuple and let t′ be a subset of 
t with m attributes. Thus t′ represents a compressed rep-
resentation of t. Equivalently, in the bit-vector representa-
tion of t, we retain only m 1’s and convert the rest to 0’s.  
Query Log: Let Q = {q1…qS} be collection of queries where 
each query q defines a subset of attributes.  
The following running example will be used throughout 
the paper to illustrate various concepts. 
EXAMPLE 1: Consider an inventory database of an auto deal-
er, which contains a single database table D with N rows and 
M attributes where each tuple represents a car for sale. The 
table has numerous attributes that describe details of the car: 
Boolean attributes such as AC, Four Door, Turbo, Power 
Doors, Auto Trans, Power Brakes, etc; categorical attributes 
such as Make, Color, Engine Type, Zip Code, etc; numeric at-
tributes such as Price, Age, Fuel Mileage, etc; and text attrib-
utes such as Reviews, Accident History, and so on. Fig 1 illus-
trates such a database (where only the Boolean attributes are 
shown) of seven cars already advertised for sale. The figure also 
illustrates a query log of five queries, and a new car t that needs 
to be advertised, i.e., inserted into this database.  

3 MAIN PROBLEM VARIANT: CONJUNCTIVE 

BOOLEAN WITH QUERY LOG  

In this section we formally define the main problem for 
Boolean data. As we discuss in Section 7, many other va-
riants can be reduced to this problem. In Section 3.1 we 
formally define the problem and in Section 3.2 we present 
our complexity results. In Section 4 we provide algo-
rithms for this problem variant.  We first defined the 
query semantics to be used in the beginning.  
Conjunctive Boolean Retrieval: We view each query as a 
conjunctive query. A tuple t satisfies a query q if q is a 
subset of t. For example, a query such as {a1, a3} is equiva-
lent to “return all tuples such that a1= 1 and a3 = 1”. Alter-
natively, if we view q as a special type of “tuple”, then t 
dominates q. The set of returned tuples R(q) is the set of 
all tuples that satisfy q. 
In this problem variant as well as in most of the variants 
defined later, our task is to compress a new tuple t by 
retaining the best set of m attributes (i.e., top-m attributes) 
such that some criterion is optimized. 

3.1 Problem Definition 

Conjunctive Boolean - Query Log (CB-QL): Given a query 
log Q with Conjunctive Boolean Retrieval semantics, a new 
tuple t, and an integer m, compute a compressed tuple t′ having 
m attributes such that the number of queries that retrieve t′ is 
maximized. 
Intuitively, for buyers interested in browsing products of 
interest, we wish to ensure that the compressed version of 
the new product is visible to as many buyers as possible.  
 EXAMPLE 1 (cont’d): To illustrate this problem variant, 
consider the example in Fig 1, which shows a new tuple t that 

needs to be inserted into the database.  Suppose we are required 
to retain m = 3 attributes. It is not hard to see that if we retain 
the attributes AC, Four Door, and Power Doors (i.e., t′ = [1, 1, 
0, 1, 0, 0]), we can satisfy a maximum of three queries (q1, q2, 
and q3). No other selection of three attributes of the new tuple 
will satisfy more queries.  
This problem also has a per-attribute version where m is 
not specified; in this case we may wish to determine t′ 
such that the number of satisfied queries divided by |t′| 
is maximized. Intuitively, if the number of attributes re-
tained is a measure of the cost of advertising the new 
product, this problem seeks to maximize the number of 
potential buyers per advertising dollar.  
Notice that in CB-QL, it is the query log Q that needs to 
be analyzed in solving the problem; the actual database D 
(i.e., the “competing products”) is irrelevant. We consider 
variants that involve the products database in Section 7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.2 NP-Completeness Results 

Theorem 1: The decision version of CB-QL problem is 
NP-hard.  
Proof: An instance of decision version of CB-QL is similar to an 
instance of CB-QL, except that it has in addition a target pa-
rameter X, and is satisfied if there is a compressed tuple t′ hav-
ing m attributes such that the number of queries that retrieve t′ 
is at least X. Clearly, the decision version of CB-QL is in NP. 
To prove that it is NP-complete, we reduce from the Clique 
problem. Given a graph G = (V, E) and an integer r, the task in 
the Clique problem is to check if there is a clique of size r in G. 
We transform this to an instance of decision version of CB-QL 
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as follows. The attribute set A will be V, and the query log will 
contain one row for each edge. If e = (u, v) is an edge, then the 
query log Q contains the conjunctive query {u, v}, i.e., the 
query retrieving all tuples with u = 1 and v = 1. The new tuple 
t has all the attributes in V set to 1. Let m = r and X = m(m-
1)/2. Now t has a compressed representation with m attributes 
that satisfies X number of queries if and only if the graph has a 
clique of size r.  

4 ALGORITHMS FOR CONJUNCTIVE BOOLEAN 

WITH QUERY LOG 

In this section we discuss our main algorithmic results for 
the main problem variant discussed in Section 3.  

4.1 Optimal Brute Force Algorithm 

Clearly, since CB-QL is NP-hard, it is unlikely that any 
optimal algorithm will run in polynomial time in the 
worst case.  The problem can be obviously solved by a 
simple brute force algorithm (henceforth called Brute-
Force-CB-QL), which simply considers all combinations of 
m-attributes of the new tuple t and determines the combi-
nation that will satisfy the maximum number of queries 
in the query log Q. However, we are interested in devel-
oping optimal algorithms that work much better for typi-
cal problem instances. We discuss such algorithms next. 

4.2 Optimal Algorithm based on Integer Linear 
Programming 

We next show how CB-QL can be described in an integer 
linear programming (ILP) framework. Let the new tuple 
be the Boolean vector )}(),...,({ 1 tatat M= , S be the total 
number of queries in the query log, and let 

Mxx ,...,1
be 

integer variables such that if ai(t) = 1 then xi ∈ {0, 1}, else xi 
= 0. Consider the task:  
 

Maximize∑∏
= =

S

i qa

j

ij

x
1 1

subject to ∑
=

≤
M

j

j mx
1

 
 
It is easy to see that the maximum gives exactly the solu-
tion to CB-QL. The objective function is not linear, how-
ever, and thus we next show how this can be achieved. 
We introduce additional 0-1 integer variables 

Syy ,...,1
, 

i.e., one variable for each query in Q. The formulation is 
 

Maximize∑
=

S

i

iy
1

subject to 
 

∑
=

≤
M

j

j mx
1

and ji xy ≤ for each j & i such that 1=ijqa  
 

ji xy ≤  actually means 1== ji xy  if yi = 1, that is, if qi 
is satisfied. Thus, the variable

iy  corresponding to a query 
can be 1 only if all the variables 

jx  corresponding to the 
attributes in the query are 1. This implies that the maxi-
mum remains the same. We refer to the above algorithm 
as ILP-CB-QL.  The integer linear formulation is particu-
larly attractive as unlike more general IP solvers, ILP 
solvers are usually more efficient in practice. 

4.3 Optimal Algorithm based on Maximal Frequent 
Itemsets 

The algorithm based on Integer Linear Programming de-
scribed in the previous subsection has certain limitations; 

it is impractical for problem instances beyond a few hun-
dred queries in the query log. The reason is that it is a 
very generic method for solving arbitrary integer linear 
programming formulations, and consequently fails to 
leverage the specific nature of our problem. In this sub-
section we develop an alternate approach that scales very 
well to large query logs. This algorithm, called Max-
FreqItemSets-CB-QL, is based on an interesting adaptation 
of an algorithm for mining Maximal Frequent Itemsets [12]. 
We first define the frequent itemset problem: 
4.3.1 The Frequent Itemset Problem: Let R be an N-row M-
column Boolean table, and let r > 0 be an integer known as the 
threshold. Given an itemset I (i.e., a subset of attributes), let 
freq(I) be defined as the number of rows in R that “support” I 
(i.e., the set of attributes corresponding to the 1’s in the row is a 
superset of I). Compute all itemsets I such that freq(I) > r. 
Computing frequent itemsets is a well studied problem 
and there are several scalable algorithms that work well 
when R is sparse and the threshold is suitably large. Ex-
amples of such algorithms include [2, 15]. In our case, 
given a new tuple t, recall that our task is to compute t′, a 
compression of t by retaining only m attributes, such that 
the number of queries that satisfy t′ is maximized. This 
immediately suggests that we may be able to leverage 
algorithms for frequent itemsets mining over Q for this 
purpose. However, there are several important complica-
tions that need to be overcome, which we elaborate next. 
4.3.2 Complementing the Query Log: Firstly, in itemset 
mining, a row of the Boolean table is said to support an 
itemset if the row is a superset of the itemset. In our case, 
a query satisfies a tuple if it is a subset of the tuple. To 
overcome this conflict, our first task is to complement our 
problem instance, i.e., convert 1’s to 0’s and vice versa. 
Let ~t (~q) denote the complement of a tuple t (query q), 
i.e., where the 1’s and 0’s have been interchanged. Like-
wise let ~Q denote the complement of a query log Q 
where each query has been complemented. Now, freq(~t) 
can be defined as the number of rows in ~Q that support 
~t.  
Rest of the approach is now seemingly clear: compute all 
frequent itemsets of ~Q (using an appropriate threshold 
to be discussed later), and from among all frequent item-
sets of size M – m, determine the itemset I that is a super-
set of ~t with the highest frequency. The optimal com-
pressed tuple t’ is therefore the complement of I, i.e.,  ~I. 
However, the problem is that Q is itself a sparse table, as 
the queries in most search applications involve the speci-
fication of just a few attributes. Consequently, the com-
plement ~Q is an extremely dense table, and this prevents 
most frequent itemset algorithms from being directly ap-
plicable to ~Q. For example, most “level-wise algorithms” 
(such as Apriori [2], which operates level by level of the 
Boolean lattice over the attributes set by first computing 
the single itemsets, then itemsets of size 2, and so on) will 
only progress past just a few initial levels before being 
overcome by an intractable explosion in the size of candi-
date sets. To see this, consider a table with M=50 attrib-
utes, and let m = 10. To determine a compressed tuple t′ 
with 10 attributes, we need to know the itemset of ~Q of 
size 40 with maximum frequency. Due to the dense na-
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ture of ~Q, algorithms such as Apriori will not be able to 
compute frequent itemsets beyond a size of 5-10 at the 
most. Likewise, the sheer number of frequent itemsets 
will also prevent other algorithms such as FP-Tree [15] 
from being effective.  
We have developed an adaptation of frequent itemset 
mining algorithms to overcome this problem of extremely 
dense datasets. Before we describe details of our ap-
proach, let us discuss the issue of how the threshold pa-
rameter should be set. 
4.3.3 Setting of the Threshold Parameter: Let us assume 
we can solve the problem of itemset mining of extremely 
dense datasets. What should be the setting of the thresh-
old? Clearly setting the threshold r=1 will solve CB-QL 
optimally. But this is likely to make any itemset mining 
algorithm impractically slow.  
There are two alternate approaches to setting the thresh-
old. One approach is essentially a heuristic, where we set 
the threshold to a reasonable fixed value dictated by the 
practicalities of the application. The intuition is that the 
threshold enforces that attributes should be selected such 
that the compressed tuple is satisfied by a certain mini-
mum number of queries. This is reasonable in many prac-
tical applications, as the eventual goal is to make the 
compressed tuple visible to as many users as possible. For 
example, a threshold of 1% means that we are not inter-
ested in results that satisfy less than 1% of the queries in 
the query log, i.e., we are attempting to compress t such 
that at least 1% of the queries are still able to retrieve the 
tuple. It is important to note that for a fixed threshold 
setting such as this, one of two possible outcomes can 
occur. If the optimal compression t′ satisfies more than 1% 
of the queries, the algorithm will discover it. If the opti-
mal compression satisfies less than 1% of the queries, then 
the algorithm will return empty.  
We also suggest an alternate adaptive procedure of set-
ting the threshold that is guaranteed to find the optimal 
compression. First initialize the threshold to a high value 
and compute the frequent itemsets of ~Q. If there are no 
frequent itemsets of size at least M – m that are supersets 
of ~t, repeat the process with a smaller threshold which is 
half of the previous threshold. This process is guaranteed 
to discover the optimal t′. 
We now return to the task of how to compute frequent 
itemsets of the dense Boolean table ~Q. In fact, we do not 
compute all frequent itemsets of the dense table ~Q, as 
we have already argued earlier that there will be prohibi-
tively too many of them. Instead, our approach is to com-
pute the maximal frequent itemsets of ~Q.  
4.3.4 Random Walk to Compute Maximal Frequent 
Itemsets: A maximal frequent itemset is a frequent itemset 
such that none of its supersets are frequent. The set of 
maximal frequent itemsets are much smaller than the set 
of all frequent itemsets. For example, if we have a dense 
table with M attributes, then it is quite likely that most of 
the maximal frequent itemsets will exist very high up in 
the Boolean lattice over the attributes, very close to the 
highest possible level M. Fig 2 shows a conceptual dia-
gram of a Boolean lattice over a dense Boolean table ~Q. 
The shaded region depicts the frequent itemsets and the 

maximal frequent itemsets are located at the highest posi-
tions of the border between the frequent and infrequent 
itemsets. 

 
 
 
 
 
 
 
 
 

 
Fig. 2. Maximal frequent itemsets in a Boolean Lattice 

There exist several algorithms for computing maximal 
frequent itemsets, e.g. [3, 5, 12, 14].  We base our ap-
proach on the random walk based algorithm in [12], which 
starts from a random singleton itemset I at the bottom of 
the lattice, and at each iteration, adds a random item to I 
(from among all items A - I such that I remains frequent), 
until no further additions are possible. At this point a 
maximal frequent itemset I has been discovered. If the 
number of maximal frequent itemsets is relatively small, 
this is a practical algorithm: repeating this random walk a 
reasonable number of times will with high probability 
discover all maximal frequent itemsets. However, since 
this algorithm is based on traversing the lattice from bot-
tom to top, it implies that the random walk will have to 
traverse a lot of levels before it reaches a maximal fre-
quent itemset of a dense table. 
 

 
 
 
 
 
 

 
Fig. 3. Two phase random walk 

Instead, we propose an alternate approach which starts 
from the top of the lattice and traverses down. Our ran-
dom walk can be divided into two phases: (a) Down Phase: 
starting from the top of the lattice (I = {a1a2…aM}), walk 
down the lattice by removing random items from I until I 
becomes frequent, and (b) Up Phase: starting from I, walk 
up the lattice by adding random items to I (from among 
all items A - I such that I remains frequent), until the no 
further additions are possible. At this point a maximal 
frequent itemset I has been discovered. 
Fig 3 shows an example of the two phases of the random 
walk. What is important to note is that this process is 
much more efficient than a bottom-up traversal, as our 
walks are always confined to the top region of the lattice 
and we never have to traverse too many levels. Comple-
menting the query log eventually results in a dense data-
set. In a dense dataset, maximal frequent itemsets are 
usually at the top of the lattice. That is, they are close to 
level M - m, where m is comparatively much smaller than 
M. If a bottom-up approach is used to find maximal fre-
quent itemsets, it will have to traverse a long portion of 
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the lattice (i.e., too many levels) and will be inefficient. 
Whereas, in top-down approach, the first phase tries to 
find the first frequent itemset along the path from the top 
which is usually close to a maximal frequent itemset, the 
walks are confined to the top region of the lattice and we 
never have to traverse too many levels. 
4.3.5 Complexity Analysis of a Random Walk Sequence:  
In the worst case, the cost of a down-up random walk is 
2⋅M⋅|Q|, where M is the total number of attributes and 
|Q| is the size of the query log. Although in the worst 
case the random walk will go up and down the whole 
lattice, in practice we only expect each portion of the walk 
to traverse only a few levels at the top of the lattice. 
4.3.6 Number of Iterations: Repeating this two phase 
random walk several times will discover, with high prob-
ability, all the maximal frequent itemsets. The actual 
number of such iterations can be monitored adaptively; 
our approach is to stop the algorithm if each discovered 
maximal frequent itemset has been discovered at least 
twice (or a maximum number of iterations have been 
reached). This stopping heuristic is motivated by the 
Good-Turing estimate for computing the number of differ-
ent objects via sampling [9]. Good–Turing frequency es-
timation is a statistical technique for predicting the prob-
ability of occurrence of objects belonging to an unknown 
number of species, given past observations of such objects 
and their species. 
4.3.7 Frequent Itemsets at Level M – m: Finally, once all 
maximal frequent itemsets have been computed, we have 
to check which ones are supersets of ~t. Then, for all pos-
sible subsets (of size M – m) of each such maximal fre-
quent itemset (see Fig 4) , we can determine that subset I 
that is (a) a superset of ~t, and (b) has the highest fre-
quency. The optimal compressed tuple t′ is therefore the 
complement of I, i.e., ~I. 

 
 
 
 
 
 
 

 
Fig. 4. Checking frequent itemsets at level M - m 

In summary, the pseudo-code of our algorithm Max-
FreqItemSets-CB-QL is shown in Fig. 5. Details of how cer-
tain parameters such as the threshold are set, are omitted 
from the pseudo-code. 
4.3.8 Preprocessing Opportunities: Note that the algo-
rithm also allows for certain operations to be performed 
in a preprocessing step. For example, all the maximal 
itemsets can be precomputed, and the only task that 
needs to be done at runtime is to determine, for a new 
tuple t, those itemsets that are supersets of ~t and have 
size M – m. If we know the range of m that is usually re-
quested for compression in new tuples, we can even pre-
compute all frequent itemsets for those values of m, and 
lookup the itemset with the highest frequency at runtime. 
4.3.9 The Per-Attribute Variant:  CB-QL has a per-
attribute variant, where m is not provided as an input, 

and we have to determine the best m such that number of 
satisfied queries divided by m is maximized. This variant 
can be simply solved by trying out values of m between 1 
and M and making M calls to any of the algorithms dis-
cussed above, and selecting the solution that maximizes 
our objective. Since we adopt this general strategy for all 
per-attribute problem variants, we do not discuss such 
variants any further in this paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.4 Greedy Heuristics 

While the maximal frequent itemset based algorithm has 
much better scalability properties than the ILP based al-
gorithm, it also becomes prohibitively slow for really 
large datasets (query logs). Consequently, we also devel-
oped suboptimal greedy heuristics for solving CB-QL; in 
our experiments the results were quite good. We briefly 
describe the heuristics here.  
The algorithm ConsumeAttr-CB-QL first computes the 
number of times each individual attribute appear in the 
query log. It then selects the top-m attributes of the new 
tuple that have the highest frequencies. 
The algorithm ConsumeAttrCumul-CB-QL is a cumulative 
version of ConsumeAttr-CB-QL. It first selects the attribute 
with the highest individual frequency in the query log. It 
then selects the second attribute that co-occurs most fre-
quently with the first attribute in the query log, and so on. 
Instead of consuming attributes greedily, an alternative 
approach is to consume queries greedily. The algorithm 
ConsumeQueries-CB-QL operates as follows. It first picks 
the query with minimum number of attributes, and se-
lects all attributes specified in the query. It then picks the 

{a1a2…aM} 

Frequent itemsets at level M - m 

Q: Query Log 

t: new tuple 

m: num attributes of t to retain 

r: threshold ← suitable value 

MaxFreqItemsets ← {} 

MaxNumIter ← suitable value 

Algorithm TwoPhase-Random-Walk(~Q, r) 

    execute Down Phase random walk 

    execute Up Phase random walk 

    return itemset reached after Up Phase 

Algorithm ComputeMaxFreqItemsets(~Q, r) 

   while  

     (i++ ≤ MaxNumIter) and 

     (∃ J in MaxFreqItemsets s.t.  

         timesDiscovered(J)= 1) 

     I ← TwoPhase-Random-Walk(~Q, r) 

     timesDiscovered(I)++ 

     MaxFreqItemsets←MaxFreqItemsets∪ {I} 

Algorithm MaxFreqItemSets-CB-QL(~Q, r) 

    ComputeMaxFreqItemsets(~Q, r) 

    let Itemsets(t) ← {I |  I ⊆  MaxFreqItemsets,  

                                       |I| = M – m, and   I ⊇ ~t)} 

    let I be the itemset in Itemsets(t) with highest 

         frequency 

    return ~I 

Fig. 5. Algorithm MaxFreqItemSets-CB-QL 
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query with minimum number of new attributes (i.e., not 
already specified in the first query), and adds these new 
attributes to the selected list. This process is continued 
until m attributes have been selected. 

5 PROBLEM VARIANT FOR TEXT DATA 

5.1 Text Data Problem Definition 

A text database consists of a collection of documents, 
where each document is modeled as a bag of words as is 
common in Information Retrieval. Queries are sets of 
keywords, with top-k retrieval via query-specific scoring 
functions, such as the tf-idf-based BM25 scoring function 
[26]. Tk-QR (described later in Section 7.2) can be directly 
mapped to a corresponding problem for text data if we 
view a text database as a Boolean database with each dis-
tinct keyword considered as a Boolean attribute. This 
problem arises in several applications, e.g., when we wish 
to post a classified ad in an online newspaper and need to 
specify important keywords that will enable the ad to be 
visible to the maximum number of potential buyers. A 
subtle point is that, due to the non-monotonicity of many 
IR ranking functions, it is possible that a top-m1 tuple 
compression is worse (fewer queries retrieve document t’) 
than a top-m2 compression, where m1 > m2. The non-
monotonicity is usually due to the document length pa-
rameter that decreases the score of a document as its 
length increases.  
The attribute selection problem for text data is also NP-
complete as it can be converted into Boolean problem 
considering each keyword as a Boolean attribute. The 
problem is NP-hard for the case of monotone ranking 
function, as in CB-QL. Hence, it is also NP-hard for the 
more complex non-monotonic ranking functions. 

5.2. Algorithms for Text Data 

As discussed above, text data can be treated as Boolean 
data, and all the algorithms developed for Boolean data 
can be used for text data. There are two issues that we 
wish to highlight, however. One is that if we view each 
distinct keyword in the text corpus (or query log) as a 
distinct Boolean attribute, the dimension of the Boolean 
database is enormous. Consequently, none of the optimal 
algorithms, either IP-based or frequent itemset-based, are 
feasible for text data. Fortunately, the greedy heuristics 
we have developed scale very well with reasonable re-
sults, as described in the experiments section. The second 
issue is that some of the scoring function that are used in 
text data – e.g., the BM25 scoring function that takes into 
account the document length (size of compressed tuple t′) 
–  are non-monotonic on the number of keywords added.  
In particular, adding a query keyword to t′ may decrease 
its BM25 score if this keyword has very low inverse doc-
ument frequency (idf). Consequently the per-attribute 
versions of our various problem variants are of interest. 

6 EXPERIMENTS 

In this section we describe the experimental setting and 
the results. Our main performance indicators are (a) the 

time cost of the proposed optimal and greedy algorithms, 
and (b) the approximation quality of the greedy algo-
rithms, for the CB-QL and text data problem variants pre-
sented in Sections 3 and 5 respectively. Note that no ex-
perimental results are presented for the problem variants 
of Section 7 since their algorithms are usually adaptations 
of the ones for CB-QL.  
System Configuration: We used Microsoft SQL Server 
2000 RDBMS on a P4 3.2-GHZ PC with 1 GB of RAM and 
100 GB HDD for our experiments. Algorithms are imple-
mented in C#, and connected to RDBMS through ADO.  
Datasets: We used two datasets, a cars dataset for the 
Boolean data experiments (Section 6.1), and a publications 
titles dataset for the text data experiments (Section 6.2). In 
particular, we use an online used-cars dataset consisting 
of 15,191 cars for sale in the Dallas area extracted from 
autos.yahoo.com. There are 32 Boolean attributes, such as 
AC, Power Locks, etc. We used a real workload of 185 que-
ries created by users at UT Arlington, as well as synthetic 
workloads. In the synthetic workload, each query speci-
fies 1 to 5 attributes chosen randomly distributed as fol-
lows: 1 attribute – 20%, 2 attributes – 30%, 3 attributes – 
30%, 4 attributes – 10%, 5 attributes – 10%. We assume 
that most of the users specify two or three attributes. 
The publication titles dataset consists of 119,332 titles ex-
tracted from the DBLP (http://dblp.uni-trier.de/xml/) 
database for the major database forums including SIG-
MOD, VLDB, PODS, ICDE, ICDT and EDBT. These titles 
have a total of 59,184 distinct (non-stop word) keywords. 
A query workload of 150 real user queries is used, which 
was created as follows: We asked 7 MS and PhD students 
from UTA and FIU to create about 20 queries each that 
they would pose to the DBLP dataset, containing 1-4 
keywords. This query log has a total of 205 distinct (non-
stop word) keywords. 

6.1 Boolean Data 

We focus on CB-QL, which can be solved by a superset of 
the algorithms used in the other variants. 
The top-m attributes selected by our algorithms seem 
promising. For example, even with a small real query log 
of 185 queries, our optimal algorithms could select top 
features specific to the car, e.g., sporty features are se-
lected for sports cars, safety features are selected for pas-
senger sedans, and so on.  
We first compare the execution times of the optimal and 
greedy algorithms that solve CB-QL. These are (Section 4): 
ILP-CB-QL, MaxFreqItemSets-CB-QL, which produce op-
timal results, and ConsumeAttr-CB-QL, ConsumeAttrCu-
mul-CB-QL, and ConsumeQueries-CB-QL, which are 
greedy approximations. The CB-QL suffix is skipped in 
the graphs for clarity.  
Fig 6 shows how the execution times vary with m for the 
real query workload, averaged over 100 randomly se-
lected to-be-advertised cars from the dataset. Note that 
different y-axis scales are used for the two optimal and 
the three greedy algorithms to better display the differ-
ences among the methods. The MaxFreqItemSets algorithm 
consistently performs better than the ILP algorithm. An-
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other interesting observation is that the cost of ILP does 
not always increase with m. The reason seems to be that 
the ILP solver is based on branch and bound, and for 
some instances the pruning of the search space is more 
efficient than for others. 
The times in Fig 6 for MaxFreqItemSets also include the 
preprocessing stage, which can be performed once in ad-
vance regardless of the new tuple (user car), as explained 
in Section 4.3. If the pre-processing time is ignored, then 
MaxFreqItemSets takes only approximately 0.015 seconds 
to execute for any m value. 
Fig 7 shows the quality, that is, the numbers of satisfied 
queries for the greedy algorithms along with the optimal 

numbers, for varying m. The numbers of queries are aver-
aged over 100 randomly selected to-be-advertised cars 
from the dataset. Note that no query is satisfied for m = 3 
because all queries specify more than 3 attributes. We see 
that ConsumeAttr and ConsumeAttrCumul produce near-
optimal results. In contrast, ConsumeQueries has low qual-
ity, since it is often the case that the attributes of the que-
ries with few attributes (which are selected first) are not 
common in the workload. 
Fig 8 and Fig 9 repeat the same experiments for the syn-
thetic query workload of 2000 queries. In Fig 8, we do not 
include the ILP algorithm, because it is very slow for 
more than 1000 queries (as also shown in Fig 10). 
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Fig. 6. Execution times for CB-QL for varying 
m, for real workload of 185 queries. 
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Fig. 9. Satisfied queries for greedy and opti-
mal algorithms for CB-QL for varying m, for 
synthetic workload of 2000 queries. 
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Fig. 7. Satisfied queries for greedy and opti-
mal algorithms for CB-QL for varying m, for 
real workload of 185 queries. 
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Fig. 10. Execution times for CB-QL for vary-
ing synthetic workload size for m = 5. 
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Fig. 8. Execution times for CB-QL for varying 
m, for the synthetic workload of 2000 queries. 
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Fig. 11. Execution times for CB-QL for vary-
ing number of total attributes for the syn-
thetic workload of 200 queries for m = 5 

Next, we measure the execution times of the algorithms 
for varying query log size and number of attributes. Fig 
10 shows how the average execution time varies with the 
query log size, where the synthetic workloads were cre-
ated as described earlier in this section. We observe that 
ILP does not scale for large query logs; this is why there 
are no measurements for ILP for more than 1000 queries. 
ConsumeQueries performs consistently worse than other 
greedy algorithms since we make a pass on the whole 
workload at each iteration to find the next query to add. 
We conclude ConsumeQueries is  generally a bad choice. 
Fig 11 focuses on the two optimal algorithms, and meas-
ures the execution times of the algorithms, averaged over 
100 randomly selected to-be-advertised cars from the da-
taset, for varying number M of total attributes of the data-
set and queries, for a synthetic query log of 200 queries. 
We observe that ILP is faster than MaxFreqItemSets for 
more than 32 total attributes. For 32 total attributes Max-
FreqItemSets is faster as also shown in Fig 6. However, 

note that ILP is only feasible for very small query logs. 
For larger query logs, ILP is very slow or infeasible, as is 
also shown by the missing values in Fig 10. To summa-
rize, ILP is better for small query logs and many total at-
tributes (i.e. short and wide query log), whereas Max-
FreqItemSets is better for larger query logs with fewer total 
attributes (i.e. long and narrow query log). However for 
query logs those are long and wide, the problem becomes 
truly intractable, and approximation methods such as our 
greedy algorithms perhaps the only feasible approaches. 

6.2 Text Data 

We use a simplified version of the BM25 [26] ranking 
function, for the case of ad-hoc retrieval where any repeti-
tion of terms in the query is ignored. The weight of a term 
j is computed by the following formula: 
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where dj is the term frequency and dfj is the document 
frequency of term j, dl is the document length, avdl is the 
average document length across the collection, and k1 and 
b are free parameters (we set k1 = 1 and b = 0.5).  
The number of distinct keywords (equivalent to the num-
ber of attributes in the Boolean problem) for our titles 
dataset is 59,184. We randomly selected 50 abstracts of 
papers to be used as the to-be-advertised tuples. In fact, 
we retrieved the abstracts of 50 of the papers in our titles 
dataset. We consider the rest 59, 134 (59,184-50) titles as 
our query log That is, the tuple t is the abstract, and the 
compressed t′ is the “best” keywords from the abstract to 
be used in the title. The titles of these papers were re-
moved from the dataset. Fig 12 shows how the greedy 
algorithms ConsumeAttr and ConsumeAttrCumul perform 
in terms of execution time and in terms of quality, for 
varying m. We set k = 20 (recall that we want to maximize 
the number of queries in the workload for which the to-
be-advertised tuple is in the top-k results). As mentioned 
in Section 5.2, no optimal algorithm is feasible due to the 
large number of total attributes (distinct keywords). Fi-
nally, we note that the ConsumeQueries greedy algorithm 
is inappropriate for the same reason, since it would just 
select the keywords of the shortest one or two titles, 
which most likely satisfy no other queries. 
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Fig. 12. Execution times and Number of covered queries for greedy 
algorithms for text data for varying top-m. 

7 OTHER PROBLEM VARIANTS 

In this section we discuss several other problem variants 
for Boolean as well as categorical and numeric data. 

7.1 Conjunctive Boolean - Data (CB-D) 

This is the situation where we only have access to the da-
tabase of existing products and no access to the query log. 
In this case the strategy is to search for a compressed ver-
sion of the new product that dominates as many products 
in the database as possible.  Thus any buyer that executes 
a query (with Conjunctive Boolean Retrieval) that selects 
a dominated product will also get to see the new product. 

7.1.1 Problem Definition (CB-D): Given a database D, a 
new tuple t, and an integer m, compute a compressed tuple t′ 
by retaining m attributes such that the number of tuples in D 
dominated by t′ is maximized. 
EXAMPLE 1 (cont’d): To illustrate this problem variant, con-
sider the example in Fig 1 again. Suppose we are required to 
retain m = 4 attributes of the new tuple t. It is not hard to see 
that if we retain the four attributes AC, Four Door, Power 

Doors and Power Brakes (i.e., t′ = [1, 1, 0, 1, 0, 1]), we domi-
nate four tuples (t1, t4, t5 and t6). No other selection of four at-
tributes of the new tuple will dominate more tuples.   

7.1.2 Complexity Results for CB-D: The same proof in 
section 3.2 for the problem CB-QL obviously tells also that 
CB-D is NP-hard. CB-D also has a per-attribute version 
which can be naturally defined. 

7.1.3 Algorithms for CB-D: Any of the above algorithms 
that solve CB-QL can be also used to solve CB-D, by sim-
ply replacing the query log with the database as input. 

7.2 Top-k - Global Ranking (Tk-GR) and Top-k - 
Query-Specific Ranking (Tk-QR) 

We consider Top-k Retrieval via Global and Query-
Specific Scoring Function for these problem variants. 
Top-k Retrieval via Global Scoring Function: Let Score(t) be a 
function that returns a real-valued score for any tuple t. 
Let k be a small integer associated with a query q. Then 
R(q) is defined as the set of top-k tuples1 in the database 
with the highest scores that satisfy q. Global scoring func-
tions capture the “global importance” of tuples, e.g., the 
price of a product. 
Top-k Retrieval via Query-Specific Scoring Function: Let 
Score(q, t) be a scoring function that returns a real-valued 
score for any tuple t. Let k be a small integer associated 
with a query q. Then R(q) is defined as the set of top-k 
tuples in the database with the highest scores. Note that 
here we do not insist that the queries are conjunctive, i.e., 
tuples that do not satisfy all attributes specified in the 
query may also be returned. An example of a query spe-
cific scoring function is the dot product of q and t. 

7.2.1 Problem Definition (Tk-GR): Given a database D, a 
query log Q with Top-k Retrieval via Global Scoring Function, 
a new tuple t, and an integer m, compute a compressed tuple t′ 
by retaining m attributes such that the number of queries that 
retrieve t′ is maximized. 

7.2.2 Problem Definition (Tk-QR): Given a database D, a 
query log Q with Top-k Retrieval via Query-Specific Scoring 
Function, a new tuple t, and an integer m, compute a com-
pressed tuple t′ by retaining m attributes such that the number 
of queries that retrieve t′ is maximized. 

EXAMPLE 1 (cont’d): To illustrate Tk-GR, assume that each 
query in the query log returns the top-2 tuples (i.e., k = 2) or-
dered by decreasing Fuel Efficiency, where Fuel Efficiency is a 
numeric attribute not shown in Fig 1. 2Let us assume that the 
fuel efficiencies of the seven cars t1 … t7 are 10mpg, 20mpg … 
70mpg respectively. The results of executing the five queries in 
the query log on the database are shown in Fig 13(a). 
Assume the fuel efficiency of the new tuple t is 35mpg and we 
are required to retain m = 3 of its Boolean attributes. We first 
argue that the selections suggested in CB-QL are suboptimal. 
Suppose we decide to retain the three attributes AC, Four Door, 
and Power Doors as suggested in CB-QL. The new compressed 
tuple t′ will satisfy the Boolean conditions of queries q1, q2, and 
q3, however, it will not be returned among the top-2 tuples of q1  

1 If the number of tuples that satisfy q is less than k, then all such tuples are 
returned 

2 For now, we assume that only Boolean attributes can be specified in queries. 
Allowing numeric ranges to be specified in queries is discussed in Section 7.6.2 
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and q3, because it has a lower score (fuel efficiency) than t4 (the 
second tuple returned by both q1 and q3). Consequently, the 
compressed tuple t′ will be returned by only one query, q2 (by 
replacing t3 as the second tuple to be returned, since t3 has low-
er fuel efficiency than t′). In contrast, if we decide to retain AC, 
Power Doors and Power Brakes, the compressed tuple t′ will 
satisfy the Boolean conditions of two queries, q2 and q4, and 
moreover, will replace t3 as the second tuple to be returned by 
each query. No other selection of three attributes of the new 
tuple will ensure that it gets returned by more queries.  

 
 
 
 
 
 
 
 

 
Fig. 13.  Results of Top-k Retrieval 

We now discuss Tk-QR. 
EXAMPLE 1 (cont’d): Assume that each query in the query 
log returns the top-3 tuples (i.e., k = 3), where the query-
specific scoring function is the dot product between a query and 
a tuple. Recall that in this case a query is no longer a conjunc-
tive query – tuples that do not dominate a query may also be 
returned. Based on this scoring function, the results of the exe-
cution of the five queries are shown in Fig 13(b) (score ties have 
been broken arbitrarily).  Suppose we are required to retain m = 
4 attributes. It is not hard to see that if we retain the attributes 
AC, Four Door, Power Doors and Power Brakes, the com-
pressed tuple will definitely enter into the top-3 result tuples of 
q1, q2 and q4 respectively (it will also tie scores with the top-3 
tuples of q3). No other selection of three attributes of the new 
tuple will ensure that it gets returned by more queries.  
Monotonicity of Scoring Functions: One final issue re-
garding Tk-QR needs to be discussed. In this variant, we 
have assumed that the scoring function is monotonic, i.e., 
that if t′ is a compressed representation of t, then the 
score of t′ is no greater than the score of t. This is certainly 
true of the dot product. Monotonic scoring functions im-
ply that it is to our advantage to retain as many attributes 
as possible (constrained by the budget, m). However, not 
all scoring functions are monotonic, as we have seen in 
Section 5, when we discuss an application in text data-
bases. In such case, the optimal number of attributes to 
retain may even be less than the budget m.  
Finally, Tk-GR and Tk-QR also have per-attribute versions 
which can be naturally defined. 

7.2.3 Complexity Results for Tk-GR and Tk-QR : Tk-GR 
can also be shown to be NP-hard by reducing from a CB-
D problem instance as follows. We create a database with 
only one competing tuple t1 with all 1’s and with score(t1) 
= 1. Let t be the new tuple with all 1’s and with score(t)  = 
2. Let k = 1 for each query in the query log. The task in Tk-
GR is to determine the top-m attributes such that the 
compressed tuple t’ is returned as the top-1 tuple of as 
many queries as possible; clearly this is equivalent to 
solving the CB-D problem instance. 

The same idea can also be used to show that Tk-QR is NP-
hard for some scoring functions such as the dot product; 
e.g., it is easy to see that t’ ties with t1 for the top-1 tuple 
of a query only if it satisfies each attribute of the query.  

7.2.4 Algorithms for Tk-GR and Tk-QR : Fortunately, 
due to the scoring function being a global function, we 
can reduce Tk-GR to CB-QL as follows, and use any of the 
algorithms developed in Section 4.  We first execute each 
query q in Q. Let the kth largest score of the returned tu-
ples be sq. Let the score of the new tuple be st. Let Q′ be 
the subset of Q such that for each query q in Q′, sq is no 
larger than st. Then it is easy to see that all we need to 
solve CB-QL for the reduced query log Q′, because if the 
compressed tuple t′ satisfies a query q in Q′, it will be 
definitely retuned as part of the top-k tuples of q. 
However, in this approach we cannot leverage any pre-
processing opportunities if we use the maximal frequent 
itemset based approach, as the Boolean table Q′ has to be 
constructed at runtime. Thus the maximum frequent item-
sets have to be computed at runtime. 
Tk-QR is identical to Tk-GR, except that the scoring func-
tion is query specific and the semantics are not conjunc-
tive. Unfortunately, this makes all the difference, and the 
frequent itemset approach is no longer applicable, as 
there appears to be no way of reducing this variant to CB-
QL. Likewise, it appears difficult to formulate the prob-
lem naturally as a small integer linear program. The best 
we can do is to formulate the problem as a general (i.e., 
non-linear) Integer Program. The details are omitted due 
to their small practical value.  
However, we can develop several effective greedy algo-
rithms for Tk-QR, depending on whether we consume 
attributes or queries cumulatively or non-cumulatively 
(as Section 4.4). The straightforward details are omitted. 

7.3 Skyline Boolean (SB) 

We consider skyline retrieval semantics for this problem. 
Given a set of points, the skyline comprises the points 
that are not dominated by other points. A point domi-
nates another point if it is as good or better in all dimen-
sions and better in at least one dimension [31]. We con-
sider skyline for Boolean data in our problem. 
For each query q in the query log we define the query sky-
line S(q) = {s1…sL}, which is a collection of skyline points. 
Each skyline point s defines a subset (i.e., projection) of 
attributes for which any data point (tuple) remains on the 
skyline. For example, suppose a user poses a query q = 
“Select * from Cars where Make = Honda and AC = yes and 
Power Windows = yes”, and the database has three cars t1 = 
<Toyota, AC, Power Windows>, t2 = <Honda, AC, Power 
Brakes> and t3 = <Nissan, AC, Power Brakes>. We can see 
from the skyline definition that the cars t1 and t2 will be 
on the skyline of q, since they are not dominated by any 
other cars (t3 here) present in the database based on the 
attributes asked by the query q. We do not store the actual 
skyline data points (all attributes present in the tuple) 
such as t1 and t2 in skyline log, instead the set of attributes 
for which a data point is visible on the skyline. Here, t1 = 
<Toyota, AC, Power Windows> is visible on the skyline of q 
because of attributes {AC, Power Windows} asked by q. So, 

Query 

ID 

Top-3 tuples with 

scores 

q1 t4 (2), t5 (2), t1 (1) 

q2 t3 (2), t4 (2), t1 (1) 

q3 t1 (2), t4 (2),  t6 (2) 

q4 t3 (2), t4 (2), t1 (1) 

q5 t2 (1), t3 (1), t7 (1) 

  (b) Query specific scor-
ing function (dot product) 

Query 

ID 

Top-2 tuples 

with scores 

q1 t5 (50), t4 (40) 

q2 t4 (40), t3 (30) 

q3 t6 (60), t4 (40) 

q4 t4 (40), t3 (30) 

 q5 ∅ 

(a) Global scoring 
function 
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the skyline points are s1 = {AC, Power Windows} and s2 = 
{Honda, AC} for which t2 is on the skyline of q. A skylines 
log contains all the skylines for the query log. 

7.3.1 Problem Definition (SB): Given a database of compet-
ing products D, a query log Q with Skyline Query semantics, a 
new tuple t, and an integer m, compute a compressed tuple t′ 
by retaining m attributes such that the number of queries for 
which t′ appears on their skylines is maximized. 
Table 1 displays the skylines log for the query log Q and 
database D of Fig 1. Note that in Fig 1, none of the tuples 
in D satisfies q5 (Turbo, Auto Trans) completely. In contrast 
to the conjunctive query semantics, this does not mean 
that q5 has no answer.  A tuple satisfies q5 if it has attribute 
Turbo (t2 and t7) or Auto Trans (t3), as shown in Table 1. 
A query can have more than one set of attributes for 
which data points can be visible on the skyline; e.g., for 
query q5, tuples t2 and t7 are visible on the skyline for at-
tribute Turbo, whereas tuple t3 is visible on the skyline for 
the attribute Auto Trans. We keep separate record for each 
set of attribute as shown in Table 1. 
EXAMPLE 2: To illustrate the example consider the skylines 
in Table 1. Assume we are required to retain m = 3 attributes of 
the new tuple. It is not hard to see that if we retain the attrib-
utes AC, Four Door, and Power Doors (i.e., t′ = {AC, Four 
Door, Power Doors}), the compressed tuple t′ will be visible on 
the skylines for the maximum of three queries (q1, q2, and q3). 
No other selection of three attributes of the new tuple will re-
main on skylines of more queries.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

7.3.2 Complexity Results for SB: SB is NP-hard since CB-
QL can be reduced to it if there is a data point that com-
pletely satisfies the query (identical to the query), for each 
query in the query log. 

7.3.3 Algorithms for SB: There are several methods pro-
posed for efficient processing of skyline queries which are 
mentioned in related work (Section 8). Any good skyline 
processing technique such as [22] can be used here to find 
the skylines for the query log which is efficient for Boo-
lean data. Once these skylines have been found, then our 
problem is to find the subset of the attributes for the new 
tuple so that skylines from the maximum number of que-
ries will retrieve the new tuple. So, we can now revert 
back to conjunctive query semantics where a skyline s 
will retrieve the new tuple t if all the attributes present in 
the skyline is also present in t, i.e., ts∈ , where t retains 
the selected subset of attributes (top-m attributes).  

A new tuple will satisfy a skyline query if the tuple is a 
superset of a skyline point of the query skyline, that is, 
the new tuple contains all the attributes of a skyline point. 
Consider Table 1. If the new tuple has the attributes AC, 
Four Door, and Power Doors (i.e., t′ = {AC, Four Door, Power 
Doors}), the compressed tuple t′ will be visible on the sky-
lines s1, s2, and s3. We need to make sure that we do not 
just maximize the number of skyline points that t domi-
nates, but maximize the number of queries for which t 
will be visible on their skylines. 
We use algorithm MaxFreqItemSets used for the problem 
CB-QL with couple of updates: (1) we use skyline log in-
stead of query log, and (2) we count each query only once 
rather than each skyline. Considering our running exam-
ple, when we check if an itemset is frequent or not, we 
count each query only once regardless of the number of 
skyline points it has. For example, if we find two skylines 
points (for q5) are present when we check an itemset is 
frequent or not, we only increase the count by one be-
cause both come from the same skyline, that of query q5.  

7.4 Conjunctive Boolean - Query Log - Negation 
(CB-QL-Negation) 

Sometimes a query can have negation that means a user 
can specify in the query that he or she does not want spe-
cific attribute (i.e., that attribute should not be present in 
the product). For this problem variant we consider Con-
junctive Boolean Retrieval with Negation retrieval semantics. 
Conjunctive Boolean Retrieval with Negation: This problem 
variant also considers each query as conjunctive query 
where a tuple t satisfies a query q if q is a subset of t. 
However, the query can have negation. For example, a 
query such as {a1, a3, ~a4} equivalent to “return all tuples 
such that a1= 1 and a3 = 1 and a4 != 1 (more specifically a4 
must not be present). The set of returned tuples R(q) is the 
set of all tuples that satisfy q. We assume that if an attrib-
ute value ai is missing in t', but ai is 0 in t (that is, this fea-
ture is missing), then a query q that specifies 1 for ai is not 
satisfied by t'. That is, we assume that a user will eventu-
ally check all the attributes of the new product t. 

7.4.1 Problem Definition (CB-QL-Negation): Given a 
query log Q where a query can have negation with Conjunctive 
Boolean Retrieval semantics, a new tuple t, and an integer m, 
compute a compressed tuple t′ by retaining m attributes such 
that the number of queries that retrieve t′ is maximized. 
A query can have value for a Boolean attribute as 1, 0, or 
-1; where 1 means the attribute must be present, 0 means 
do not care, and -1 means must not be present. As in CB-
QL, for buyers interested in browsing products of interest, 
we wish to ensure that the compressed version of the new 
product is visible to as many buyers as possible. 

7.4.2 Complexity Results for CB-QL-Negation: CB-QL-
Negations is also NP-hard, since CB-QL can be reduced to 
CB-QL-Negations if the queries have no negation.  
Here we can define another complementary problem 
where we have access to the database of existing products 
but do not have access to the query log. This can be done 
similarly as CB-QL is used to define CB-D previously. 

7.4.3 Algorithms for CB-QL-Negation: Direct application 

TABLE 1 
SKYLINES OF QUERIES 

Sky-

line ID 

Query 

ID 
Car ID 

Attributes for which the car is 

on the skyline 

s1 q1 t4, t5 AC, Four Door 

s2 q2 t3, t4 AC, Power Doors 

s3 q3 t1, t4, t6 Four Door, Power Doors 

s4 q4 t3, t4 Power Brakes, Power Doors 

s5 q5 t2, t7 Turbo 

s5 q5 t3 Auto Trans 
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of the algorithms for CB-QL does not work for this prob-
lem variant. This is because the query log has negations 
where a query asks that an attribute must not be present 
in the returned tuple. This breaks the monotonicity prop-
erty of CB-QL, that is, adding more attribute to the new 
tuple does not always increase the number of satisfied 
queries. For this problem variant we use the algorithms 
for CB-QL with some preprocessing as follows: 
1. Remove all queries from the query log that do not satisfy a 

negated new tuple attribute (attribute with value 0). At this 
step we remove these queries because the new tuple 
will never satisfy them. 

2. For each attribute not present in the new tuple, for each 
query in the query log that has -1 for this attribute, we 
change the value to 0. Note that the new tuple has value 
0 or 1 for each attribute, where recall that 0 denotes 
that the attribute is missing. Hence, if a query does not 
request an attribute which is not present in the new tu-
ple, then value can updated to 0 in the query log. 

3. Then apply algorithms for CB-QL. We can apply the algo-
rithms for CB-QL now as negation is already removed. 

7.5 Maximize Query Coverage (MQC) 

This problem variant is interesting because it is the only 
one among the variants considered in this paper to have 
polynomial algorithm. The intuition is that we look for a 
compressed tuple that has maximum sum of scores over 
all queries in query log. For instance, find the attributes of 
a home so that it satisfies as many of the conditions of the 
past queries as possible. The reason why this problem is 
polynomial is that it is a best-effort problem. We assume 
that the scoring function is an aggregation of the scores of 
the individual attributes, e.g., the sum of the attribute 
contributions. The attribute contribution could be 1 if it is 
satisfied or 0 otherwise. For a text database, it could be 
the tf-idf weight of a keyword. 

7.5.1 Problem Definition (MQC): Given a query log Q, and 
a new tuple t, find compressed tuple t’ that maximizes the sum 
of scores of t’ over all queries in Q. 

7.5.2 Complexity Results and Algorithms for MQC: An 
optimal polynomial algorithm is the following. At each 
iteration, select the attribute of t that maximizes the sum 
of the scores for all queries in Q, assuming that the rest of 
the attribute values are missing. 

7.6 Categorical and Numeric Data 

7.6.1 Problems and Algorithms for Categorical Data 
We also consider categorical databases, which are natural 
extensions of Boolean databases where each attribute ai 

can take one of several values from a multi-valued cate-
gorical domain Domi. A query over a categorical database 
is a set of conditions of the form ai = xi, xi ∈ Domi. We can 
define problem variants for categorical data correspond-
ing to the ones for Boolean data discussed earlier. 
Each categorical column ai can be replaced by |Domi| 
Boolean columns, and consequently a categorical data-
base/query log with M attributes is replaced by a Boolean 
database/query log with ∏

≤≤ Mi

iDom
1

Boolean attributes. 

7.6.2 Problems and Algorithms for Numeric Data 
Finally we also consider numeric databases. We consider 
queries that specify ranges over a subset of attributes. The 
above problem variants for Boolean data have corre-
sponding versions for numeric databases. For example, 
users browsing for used digital cameras may specify que-
ries with ranges on price, age of product, desired resolu-
tion, etc, and the returned results may be ranked by price. 
Problems involving numeric ranges in queries and global 
scoring functions can be reduced to Boolean problem in-
stances as follows.  We first execute each query in the 
query log, and reduce Q to Q′ by eliminating queries for 
which the new tuple has no chance of entering into the 
top-k results, exactly as we did in Section 7.2. Then, for 
each numeric attribute ai in Q′, we replace it by a Boolean 
attribute bi as follows: if the ith range condition of query q 
contains the ith value of tuple t, then assign 1 to bi for 
query q, else assign 0 to bi for query q. I.e., each query has 
effectively been reduced to a Boolean row in a Boolean 
query log Q′. The tuple t can be converted to a Boolean 
tuple consisting of all 1’s. It is not hard to see we have 
created CB-QL variant for Boolean data, whose solution 
will solve the corresponding problem for numeric data.  
However, if we choose to solve this problem using our 
frequent itemset based approach, it is important to note 
that we cannot leverage any preprocessing opportunities, 
as the Boolean query log has to be constructed at runtime. 

8 RELATED WORK 

A large corpus of work has tackled the problem of rank-
ing the results of a query. In the documents world, the 
most popular techniques are tf-idf based [28] ranking 
functions, like BM25 [26], as well as link-structure-based 
techniques like PageRank [6] if such links are present 
(e.g., the Web). In the database world, automatic ranking 
techniques for the results of structured queries have been 
proposed [1, 7, 30]. Also there has been recent work [8] on 
ordering the displayed attributes of query results.  
Both of these tuple and attribute ranking techniques are 
inapplicable to our problem. The former inputs a data-
base and a query, and outputs a list of database tuples 
according to a ranking function, and the latter inputs the 
list of database results and selects a set of attributes that 
“explain” these results. In contrast, our problem inputs a 
database, a query log, and a new tuple, and computes a 
set of attributes that will rank the tuple high for as many 
queries in the query log as possible. 
Although the problem of choosing attributes is seemingly 
related to the area of feature selection [10], our work dif-
fers from the work on feature selection because our goal 
is very specific – to enable a tuple to be highly visible to 
the database users – and not to reduce the cost of building 
a mining model such as classification or clustering.  
Kleinberg et al. [18] present a set of microeconomic prob-
lems suitable for data mining techniques; however no 
specific solutions are presented. Their problem closer to 
our work is identifying the best parameters for a market-
ing strategy in order to maximize the attracted customers, 
given that the competitor independently also prepares a 
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similar strategy. Our problem is different since we know 
the competition. Another area where boosting an item's 
rank has received attention is Web search, where the most 
popular techniques involve manipulating the link-
structure of the Web to achieve higher visibility [13]. 
Integer and linear programming optimization problems 
are extremely well studied problems in operations re-
search, management science and many other areas of ap-
plicability (see recent book on this subject [27]). Integer 
programming is well-known to be NP-hard [11]; however 
carefully designed branch and bound algorithms can effi-
ciently solve problems of moderate size. In our experi-
ments, we use an of-the-shelf ILP solver available from 
http://lpsolve.sourceforge.net/5.5/download.htm. 
Computing frequent itemsets is a popular area of research 
in data mining and some of the best known algorithms 
include Apriori [2] and FP-Tree [15]. Several papers have 
also investigated the problem of computing maximal fre-
quent itemsets [3, 5, 12, 14, 17]. Almost all the popular 
approaches are designed for sparse datasets and do not 
work well for our unique problem of dense datasets. Ap-
riori [2] employs a bottom-up, breadth first search that 
enumerates every single frequent itemset. In many appli-
cations (especially in dense data) with long frequent pat-
terns enumerating all possible subsets of an M length pat-
tern (M can easily be 50 or 60 or longer) is computation-
ally unfeasible. Also, we are not interested in mining all 
frequent itemsets, but only maximal frequent itemsets in 
our algorithm. A known approach for mining maximal 
frequent itemsets is the complete random walk [12], 
which is a bottom-up approach. But in a dense dataset the 
maximal frequent itemsets usually lie on the top region of 
the lattice, and if a bottom-up approach is used to find 
maximal frequent itemsets, it will have to traverse a long 
portion of the lattice (i.e., numerous levels) and will be 
inefficient. To see this, consider a table with 50 attributes, 
and assume we need to determine a compressed tuple t′ 
with 10 attributes. Now, we need to know the itemset of 
~Q (complemented query log which is a dense dataset) of 
size 40 with maximum frequency. Due to the dense na-
ture of ~Q, the bottom-up approach will not be able to 
compute frequent itemsets beyond a size of 5-10. 
Likewise, other approaches for mining maximal frequent 
itemsets such as the Genetic Algorithm (GA) based ap-
proach [17] is also mainly intended for sparse dataset and 
does not work well for dense dataset. In contrast, our 
proposed method works well for dense dataset. 
The recent works [21] and [20] are related to our work. 
The former tries to find out the dominant relationship 
between products and potential buyers where by analyz-
ing such relationships, companies can position their 
products more effectively while remaining profitable. The 
latter introduces skyline query types taking into account 
not only min/max attributes (e.g., price, weight) but also 
spatial attributes and the relationships between these dif-
ferent attribute types. Their work aims at helping manu-
facturers choose the right specs for a new product, whe-
reas our work to choose the attributes subset of an exist-
ing product for advertising purposes. 
In previous work [23], we tackled the main variant of the 

problem with Boolean conjunctive query semantics where 
a tuple satisfies a query if all the attributes present in 
query are also present in the tuple (Section 3). We extend 
the idea in the current paper. We consider both the data-
base (existing products) and query log with various query 
semantics (conjunctive, top-k, skyline, negations, etc.). 
Several techniques have been proposed for efficient sky-
line query processing [4, 19, 25, 31]. There has been recent 
work on categorical skylines [29] and skyline computa-
tion over low cardinality domains [22] that also considers 
skyline for Boolean data as well. One main difference of 
our work with the existing works is that our goal is not to 
propose a method for processing or maintaining the sky-
lines, instead we use skylines as a query semantic where a 
new tuple can be visible for maximum number of queries. 
Another related work is mining top-k frequent itemsets 
without minimum support threshold [16] which finds 
top-k closed frequent itemsets. This is inapplicable in our 
case because we are interested in finding out all the max-
imal frequent itemsets, and not just the top-k frequent 
itemsets. Also it is not proven that the top-k approach 
works well for dense dataset. The top-k approach without 
minimum support threshold [16] finds top-k frequent 
closed patterns of length no less than min_l, where min_l 
is the minimal length of each pattern. In our problem, we 
do not have any min-l restriction. 

9 CONCLUSIONS 

In this work we introduced the problem of selecting the 
best attributes of a new tuple, such that this tuple will be 
ranked highly, given a dataset, a query log, or both, i.e., 
the tuple “stands out in the crowd”. We presented vari-
ants of the problem for Boolean, categorical, text and nu-
meric data, and showed that even though the problem is 
NP-complete in most cases; optimal algorithms are feasi-
ble for small inputs. Furthermore, we present greedy al-
gorithms, which are experimentally shown to produce 
good approximation ratios.  
While the problems considered in this paper are novel 
and important to the area of ad-hoc data exploration and 
retrieval, we observe that our specific problem definition 
does have limitations. After all, a query log is only an 
approximate surrogate of real user preferences, and 
moreover in some applications neither the database, nor 
the query log may be available for analysis; thus we have 
to make assumptions about the nature of the competition 
as well as about the user preferences. Finally, in all these 
problems our focus is on deciding what subset of attrib-
utes to retain of a product. We do not attempt to suggest 
what values to set for specific attributes, which is a prob-
lem tackled in marketing research, e.g., [24].  
However, while we acknowledge that the scope of our 
problem definition is indeed limited in several ways, we 
do feel that our work takes an important first step to-
wards developing principled approaches for attribute 
selection in a data exploration environment. 
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