
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID 1

Determining Attributes to Maximize Visibility
of Objects

Muhammed Miah, Gautam Das, Vagelis Hristidis and Heikki Mannila

Abstract—In recent years, there has been significant interest in the development of ranking functions and efficient top-k

retrieval algorithms to help users in ad-hoc search and retrieval in databases (e.g., buyers searching for products in a catalog).

We introduce a complementary problem: how to guide a seller in selecting the best attributes of a new tuple (e.g., a new

product) to highlight so that it stands out in the crowd of existing competitive products and is widely visible to the pool of

potential buyers. We develop several formulations of this problem. Although the problems are NP-complete, we give several

exact and approximation algorithms that work well in practice. One type of exact algorithms is based on Integer Programming

(IP) formulations of the problems. Another class of exact methods is based on maximal frequent itemset mining algorithms. The

approximation algorithms are based on greedy heuristics. A detailed performance study illustrates the benefits of our methods

on real and synthetic data.

Index Terms—Data mining, knowledge and data engineering tools and techniques, marketing, mining methods and algorithms,

retrieval models.

—————————— � ——————————

1 INTRODUCTION

N recent years, there has been significant interest in
developing effective techniques for ad-hoc search and
retrieval in unstructured as well as structured data re-

positories, such as text collections and relational data-
bases. In particular, a large number of emerging applica-
tions require exploratory querying on such databases;
examples include users wishing to search databases and
catalogs of products such as homes, cars, cameras, restau-
rants, or articles such as news and job ads. Users brows-
ing these databases typically execute search queries via
public front-end interfaces to these databases. Typical
queries may specify sets of keywords in case of text data-
bases, or the desired values of certain attributes in case of
structured relational databases. The query-answering
system answers such queries by either returning all data
objects that satisfy the query conditions, or may rank and
return the top-k data objects, or return the results that are
on the query’s skyline. If ranking is employed, the rank-
ing may either be simplistic – e.g., objects are ranked by
an attribute such as Price; or more sophisticated – e.g.,
objects may be ranked by the degree of “relevance” to the
query. While unranked retrieval (also known as Boolean
Retrieval) is more common in traditional SQL-based data-
base systems, ranked retrieval (also known as Top-k Re-
trieval) is more common in text databases, e.g. tf-idf rank-
ing [28]. Recently there has been widespread interest in

developing suitable top-k retrieval techniques even for
structured databases [1, 7, 30]. Skyline retrieval semantics
is also investigated where a data point is retrieved by a
query if it is not dominated by any other data point in all
dimensions [4, 19, 22, 25, 29, 31].
In this paper we do not address new search and retrieval
techniques that will aid users in effective exploration of
such databases. Rather, the focus is on the complemen-
tary novel problem of selecting the data to be shown,
elaborated as follows.
Selecting Attributes for Maximum Visibility We distin-
guish between two types of users of these databases: us-
ers who search such databases trying to locate objects of
interest, and users who insert new objects into these data-
bases in the hope that they will be easily discovered by
the first type of users. For example, in a database repre-
senting an e-marketplace (such as Craigslist.org, or the
classified ads section of newspapers), the former type of
users are potential buyers of products, while the latter
type of users are sellers of products. Products could range
from apartments for rent to job advertisements to auto-
mobiles for sale. Almost all of the prior research efforts on
effective search and retrieval techniques – such as new
top-k algorithms, new relevance measures, and so on –
have been designed with the first kind of user in mind
(i.e., the buyer). In contrast, less research has been
addressing techniques to help a seller/manufacturer in-
sert a new product for sale in such databases that markets
it in the best possible manner – i.e., such that it stands out
in a crowd of competitive products and is widely visible
to the pool of potential buyers.
It is this latter problem that is the main focus of this pa-
per. To understand it a little better, consider the following
scenario: assume that we wish to insert a classified ad in
an online newspaper to advertise an apartment for rent.
Our apartment may have numerous attributes (it has two

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• M. Miah is a PhD student of CSE at the University of Texas at Arlington,
Arlington, TX. E-mail: md.miah@mavs.uta.edu.

• G. Das is with the Department of Computer Science & Engineering, Uni-
versity of Texas at Arlington, Arlington, TX. E-mail: gdas@uta.edu.

• V. Hristidis is with the School of Computing and Information Sciences,
Florida International University, Miami, FL. E-mail: vagelis@cis.fiu.edu.

• H. Mannila is with HIIT, Helsinki University of Technology and Univer-
sity of Helsinki, Finland. E-mail: heikki.mannila@tkk.fi.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

I

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

bedrooms, electricity will be paid by the owner, it is near
a train station, etc). However, due to the ad costs in-
volved, it is not possible for us to describe all attributes in
the ad. So we have to select, say the ten best attributes.
Which ones should we select? Thus, one may view our
effort as an attempt to build a recommendation system
for sellers, unlike the more traditional recommendation
systems for buyers. It may also be viewed as inverting a
ranking function, i.e., determining the argument of a
ranking function that will lead to high ranking scores.
This general problem also arises in domains beyond e-
commerce applications. For example, in the design of a
new product, a manufacturer may be interested in select-
ing the ten best features from a large wish-list of possible
features – e.g., a homebuilder can find out that adding a
swimming pool really increases visibility of a new home
in a certain neighborhood. Likewise, we may be inter-
ested in developing a catchy title, or selecting a few im-
portant indexing keywords, for a scientific article.
To define our problem more formally, we need to de-
velop a few abstractions. Let D be the database of prod-
ucts already being advertised in the marketplace (i.e., the
“competition”). Based on the problem variant that we are
considering, this database could be either a traditional
relational table where tuples are products and columns
are attributes (e.g., a Boolean database), or a collection of
short text documents, where each text document is an ad
for a product. In addition, let Q be the set of search que-
ries that have been executed against this database in the
recent past – thus Q is the “workload” or “query log”.
The query log is our primary model of what past poten-
tial buyers have been interested in. Based on the problem
variant, the queries could be SQL-like selection queries or
keyword queries that request for certain tuples to be re-
turned from D. For a new product that needs to be in-
serted into this database, we assume that the seller has a
complete “ideal” description of the product (e.g., a long
list of all possible attributes and their values, or a detailed
text description covering all possible features of the prod-
uct). But due to budget constraints, there is a limit, say m,
on the number of attributes/keywords that can be se-
lected for entry into the database. Our problem can now
be defined as follows:
PROBLEM: Given a database D, a query log Q, a new tuple t,
and an integer m, determine the best (i.e., top-m) attributes of t
to retain such that if the shortened version of t is inserted into
the database, the number of queries of Q that retrieve t is max-
imized.
In this paper we initiate an investigation of this novel
optimization problem. We consider several variants, in-
cluding Boolean, categorical, text and numeric data, and
conjunctive and disjunctive query semantics. We also
consider variants in which the “budget”, i.e., m, is not
specified; in this case our objective is to determine the
value of m such that the number of satisfied queries di-
vided by m is maximized. Thus we seek to maximize the
“per dollar” benefit. A special case of this no-budget vari-
ant is when ranking is performed using functions that are
non-monotone on the number of specified attributes
(keywords), such as the BM25 [26] scoring function used

in Information Retrieval.
We analyze the computational complexity of these prob-
lems, and show that most variants are NP-complete. Nev-
ertheless, we develop principled optimal algorithms for
several of these problem variants that work well in prac-
tice. We develop two types of methods yielding optimal
solutions: (a) techniques based on Integer Programming
(IP) and Integer Linear Programming (ILP) methods,
which work well for moderate-sized problem instances,
and (b) more scalable solutions based on novel adapta-
tions of maximal frequent set algorithms that also allow
us to leverage several preprocessing opportunities. We
also develop fast greedy approximation algorithms that
work well for all problem variants, and present a thor-
ough experimental study of all methods on real as well as
synthetic data.
Main Contributions The main contributions of this paper
may be summarized as follows:
1. We introduce the problem of selecting attributes of a tu-

ple for maximum visibility as a new data exploration
problem. We consider several interesting variants of
the problem as well as diverse application scenarios.

2. We analyze the computational complexity of the dif-
ferent variants of the problem and show that most of
them are NP-complete.

3. We develop optimal Integer Programming (IP) and
Integer Linear Programming (ILP) based algorithms to
solve certain variants of the problem. These algorithms
are effective for moderate-sized problem instances.

4. For certain problem variants, we also develop more
scalable optimal solutions based on novel adaptations
of maximal frequent itemset algorithms. Furthermore,
in contrast to ILP-based solutions, we can leverage
preprocessing opportunities in these approaches.

5. We also develop fast greedy approximation algorithms
that work well for all problem variants.

6. We perform detailed performance evaluations on both
real as well as synthetic data to demonstrate the effec-
tiveness of our developed algorithms.

The rest of the paper is organized as follows. In Section 2
we provide some preliminary definitions. In Section 3 we
give a formal definition with computational complexity
analysis of our main problem for Boolean data. The cor-
responding algorithms are given in Section 4. In Section 5
we discuss the problem variant for text data and provide
algorithms. We present the result of extensive experi-
ments in Section 6. In Section 7 we discuss other problem
variants for Boolean, categorical and numeric data, ana-
lyze their computational complexity, and give algorithms
for the problems. In Section 8 we discuss related work,
and Section 9 is a short conclusion.

2 PRELIMINARIES

First we provide some useful definitions.
Boolean Database: Let D = {t1…tN} be a collection of Boo-
lean tuples over the attribute set A = {a1…aM}, where each
tuple t is a bit-vector where a 0 implies the absence of a
feature and a 1 implies the presence of a feature. A tuple t

MIAH ET AL.: DETERMINING ATTRIBUTES TO MAXIMIZE VISIBILITY OF OBJECTS 3

may also be considered as a subset of A, where an attrib-
ute belongs to t if its value in the bit-vector is 1.
Tuple Domination: Let t1 and t2 be two tuples such that for
all attributes for which tuple t1 has value 1, tuple t2 also
has value 1. In this case we say that t2 dominates t1.
Tuple Compression: Let t be a tuple and let t′ be a subset of
t with m attributes. Thus t′ represents a compressed rep-
resentation of t. Equivalently, in the bit-vector representa-
tion of t, we retain only m 1’s and convert the rest to 0’s.
Query Log: Let Q = {q1…qS} be collection of queries where
each query q defines a subset of attributes.
The following running example will be used throughout
the paper to illustrate various concepts.
EXAMPLE 1: Consider an inventory database of an auto deal-
er, which contains a single database table D with N rows and
M attributes where each tuple represents a car for sale. The
table has numerous attributes that describe details of the car:
Boolean attributes such as AC, Four Door, Turbo, Power
Doors, Auto Trans, Power Brakes, etc; categorical attributes
such as Make, Color, Engine Type, Zip Code, etc; numeric at-
tributes such as Price, Age, Fuel Mileage, etc; and text attrib-
utes such as Reviews, Accident History, and so on. Fig 1 illus-
trates such a database (where only the Boolean attributes are
shown) of seven cars already advertised for sale. The figure also
illustrates a query log of five queries, and a new car t that needs
to be advertised, i.e., inserted into this database. 

3 MAIN PROBLEM VARIANT: CONJUNCTIVE

BOOLEAN WITH QUERY LOG

In this section we formally define the main problem for
Boolean data. As we discuss in Section 7, many other va-
riants can be reduced to this problem. In Section 3.1 we
formally define the problem and in Section 3.2 we present
our complexity results. In Section 4 we provide algo-
rithms for this problem variant. We first defined the
query semantics to be used in the beginning.
Conjunctive Boolean Retrieval: We view each query as a
conjunctive query. A tuple t satisfies a query q if q is a
subset of t. For example, a query such as {a1, a3} is equiva-
lent to “return all tuples such that a1= 1 and a3 = 1”. Alter-
natively, if we view q as a special type of “tuple”, then t
dominates q. The set of returned tuples R(q) is the set of
all tuples that satisfy q.
In this problem variant as well as in most of the variants
defined later, our task is to compress a new tuple t by
retaining the best set of m attributes (i.e., top-m attributes)
such that some criterion is optimized.

3.1 Problem Definition

Conjunctive Boolean - Query Log (CB-QL): Given a query
log Q with Conjunctive Boolean Retrieval semantics, a new
tuple t, and an integer m, compute a compressed tuple t′ having
m attributes such that the number of queries that retrieve t′ is
maximized.
Intuitively, for buyers interested in browsing products of
interest, we wish to ensure that the compressed version of
the new product is visible to as many buyers as possible.
 EXAMPLE 1 (cont’d): To illustrate this problem variant,
consider the example in Fig 1, which shows a new tuple t that

needs to be inserted into the database. Suppose we are required
to retain m = 3 attributes. It is not hard to see that if we retain
the attributes AC, Four Door, and Power Doors (i.e., t′ = [1, 1,
0, 1, 0, 0]), we can satisfy a maximum of three queries (q1, q2,
and q3). No other selection of three attributes of the new tuple
will satisfy more queries. 
This problem also has a per-attribute version where m is
not specified; in this case we may wish to determine t′
such that the number of satisfied queries divided by |t′|
is maximized. Intuitively, if the number of attributes re-
tained is a measure of the cost of advertising the new
product, this problem seeks to maximize the number of
potential buyers per advertising dollar.
Notice that in CB-QL, it is the query log Q that needs to
be analyzed in solving the problem; the actual database D
(i.e., the “competing products”) is irrelevant. We consider
variants that involve the products database in Section 7.

3.2 NP-Completeness Results

Theorem 1: The decision version of CB-QL problem is
NP-hard.
Proof: An instance of decision version of CB-QL is similar to an
instance of CB-QL, except that it has in addition a target pa-
rameter X, and is satisfied if there is a compressed tuple t′ hav-
ing m attributes such that the number of queries that retrieve t′
is at least X. Clearly, the decision version of CB-QL is in NP.
To prove that it is NP-complete, we reduce from the Clique
problem. Given a graph G = (V, E) and an integer r, the task in
the Clique problem is to check if there is a clique of size r in G.
We transform this to an instance of decision version of CB-QL

Car

ID

AC Four

Door

Turbo Power

Doors

Auto

Trans

Power

Brakes

t1 0 1 0 1 0 0

t2 0 1 1 0 0 0

t3 1 0 0 1 1 1

t4 1 1 0 1 0 1

t5 1 1 0 0 0 0

t6 0 1 0 1 0 0

t7 0 0 1 1 0 0

Database D

Query

ID

AC Four

Door

Turbo Power

Doors

Auto

Trans

Power

Brakes

q1 1 1 0 0 0 0

q2 1 0 0 1 0 0

q3 0 1 0 1 0 0

q4 0 0 0 1 0 1

q5 0 0 1 0 1 0

Query Log Q

New

Car

AC Four

Door

Turbo Power

Doors

Auto

Trans

Power

Brakes

t 1 1 0 1 1 1

New tuple t to be inserted

Fig. 1. Illustrating EXAMPLE 1

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

as follows. The attribute set A will be V, and the query log will
contain one row for each edge. If e = (u, v) is an edge, then the
query log Q contains the conjunctive query {u, v}, i.e., the
query retrieving all tuples with u = 1 and v = 1. The new tuple
t has all the attributes in V set to 1. Let m = r and X = m(m-
1)/2. Now t has a compressed representation with m attributes
that satisfies X number of queries if and only if the graph has a
clique of size r. 

4 ALGORITHMS FOR CONJUNCTIVE BOOLEAN

WITH QUERY LOG

In this section we discuss our main algorithmic results for
the main problem variant discussed in Section 3.

4.1 Optimal Brute Force Algorithm

Clearly, since CB-QL is NP-hard, it is unlikely that any
optimal algorithm will run in polynomial time in the
worst case. The problem can be obviously solved by a
simple brute force algorithm (henceforth called Brute-
Force-CB-QL), which simply considers all combinations of
m-attributes of the new tuple t and determines the combi-
nation that will satisfy the maximum number of queries
in the query log Q. However, we are interested in devel-
oping optimal algorithms that work much better for typi-
cal problem instances. We discuss such algorithms next.

4.2 Optimal Algorithm based on Integer Linear
Programming

We next show how CB-QL can be described in an integer
linear programming (ILP) framework. Let the new tuple
be the Boolean vector)}(),...,({ 1 tatat M= , S be the total
number of queries in the query log, and let

Mxx ,...,1
be

integer variables such that if ai(t) = 1 then xi ∈ {0, 1}, else xi
= 0. Consider the task:

Maximize∑∏
= =

S

i qa

j

ij

x
1 1

subject to ∑
=

≤
M

j

j mx
1

It is easy to see that the maximum gives exactly the solu-
tion to CB-QL. The objective function is not linear, how-
ever, and thus we next show how this can be achieved.
We introduce additional 0-1 integer variables

Syy ,...,1
,

i.e., one variable for each query in Q. The formulation is

Maximize∑
=

S

i

iy
1

subject to

∑
=

≤
M

j

j mx
1

and ji xy ≤ for each j & i such that 1=ijqa

ji xy ≤ actually means 1== ji xy if yi = 1, that is, if qi
is satisfied. Thus, the variable

iy corresponding to a query
can be 1 only if all the variables

jx corresponding to the
attributes in the query are 1. This implies that the maxi-
mum remains the same. We refer to the above algorithm
as ILP-CB-QL. The integer linear formulation is particu-
larly attractive as unlike more general IP solvers, ILP
solvers are usually more efficient in practice.

4.3 Optimal Algorithm based on Maximal Frequent
Itemsets

The algorithm based on Integer Linear Programming de-
scribed in the previous subsection has certain limitations;

it is impractical for problem instances beyond a few hun-
dred queries in the query log. The reason is that it is a
very generic method for solving arbitrary integer linear
programming formulations, and consequently fails to
leverage the specific nature of our problem. In this sub-
section we develop an alternate approach that scales very
well to large query logs. This algorithm, called Max-
FreqItemSets-CB-QL, is based on an interesting adaptation
of an algorithm for mining Maximal Frequent Itemsets [12].
We first define the frequent itemset problem:
4.3.1 The Frequent Itemset Problem: Let R be an N-row M-
column Boolean table, and let r > 0 be an integer known as the
threshold. Given an itemset I (i.e., a subset of attributes), let
freq(I) be defined as the number of rows in R that “support” I
(i.e., the set of attributes corresponding to the 1’s in the row is a
superset of I). Compute all itemsets I such that freq(I) > r.
Computing frequent itemsets is a well studied problem
and there are several scalable algorithms that work well
when R is sparse and the threshold is suitably large. Ex-
amples of such algorithms include [2, 15]. In our case,
given a new tuple t, recall that our task is to compute t′, a
compression of t by retaining only m attributes, such that
the number of queries that satisfy t′ is maximized. This
immediately suggests that we may be able to leverage
algorithms for frequent itemsets mining over Q for this
purpose. However, there are several important complica-
tions that need to be overcome, which we elaborate next.
4.3.2 Complementing the Query Log: Firstly, in itemset
mining, a row of the Boolean table is said to support an
itemset if the row is a superset of the itemset. In our case,
a query satisfies a tuple if it is a subset of the tuple. To
overcome this conflict, our first task is to complement our
problem instance, i.e., convert 1’s to 0’s and vice versa.
Let ~t (~q) denote the complement of a tuple t (query q),
i.e., where the 1’s and 0’s have been interchanged. Like-
wise let ~Q denote the complement of a query log Q
where each query has been complemented. Now, freq(~t)
can be defined as the number of rows in ~Q that support
~t.
Rest of the approach is now seemingly clear: compute all
frequent itemsets of ~Q (using an appropriate threshold
to be discussed later), and from among all frequent item-
sets of size M – m, determine the itemset I that is a super-
set of ~t with the highest frequency. The optimal com-
pressed tuple t’ is therefore the complement of I, i.e., ~I.
However, the problem is that Q is itself a sparse table, as
the queries in most search applications involve the speci-
fication of just a few attributes. Consequently, the com-
plement ~Q is an extremely dense table, and this prevents
most frequent itemset algorithms from being directly ap-
plicable to ~Q. For example, most “level-wise algorithms”
(such as Apriori [2], which operates level by level of the
Boolean lattice over the attributes set by first computing
the single itemsets, then itemsets of size 2, and so on) will
only progress past just a few initial levels before being
overcome by an intractable explosion in the size of candi-
date sets. To see this, consider a table with M=50 attrib-
utes, and let m = 10. To determine a compressed tuple t′
with 10 attributes, we need to know the itemset of ~Q of
size 40 with maximum frequency. Due to the dense na-

MIAH ET AL.: DETERMINING ATTRIBUTES TO MAXIMIZE VISIBILITY OF OBJECTS 5

ture of ~Q, algorithms such as Apriori will not be able to
compute frequent itemsets beyond a size of 5-10 at the
most. Likewise, the sheer number of frequent itemsets
will also prevent other algorithms such as FP-Tree [15]
from being effective.
We have developed an adaptation of frequent itemset
mining algorithms to overcome this problem of extremely
dense datasets. Before we describe details of our ap-
proach, let us discuss the issue of how the threshold pa-
rameter should be set.
4.3.3 Setting of the Threshold Parameter: Let us assume
we can solve the problem of itemset mining of extremely
dense datasets. What should be the setting of the thresh-
old? Clearly setting the threshold r=1 will solve CB-QL
optimally. But this is likely to make any itemset mining
algorithm impractically slow.
There are two alternate approaches to setting the thresh-
old. One approach is essentially a heuristic, where we set
the threshold to a reasonable fixed value dictated by the
practicalities of the application. The intuition is that the
threshold enforces that attributes should be selected such
that the compressed tuple is satisfied by a certain mini-
mum number of queries. This is reasonable in many prac-
tical applications, as the eventual goal is to make the
compressed tuple visible to as many users as possible. For
example, a threshold of 1% means that we are not inter-
ested in results that satisfy less than 1% of the queries in
the query log, i.e., we are attempting to compress t such
that at least 1% of the queries are still able to retrieve the
tuple. It is important to note that for a fixed threshold
setting such as this, one of two possible outcomes can
occur. If the optimal compression t′ satisfies more than 1%
of the queries, the algorithm will discover it. If the opti-
mal compression satisfies less than 1% of the queries, then
the algorithm will return empty.
We also suggest an alternate adaptive procedure of set-
ting the threshold that is guaranteed to find the optimal
compression. First initialize the threshold to a high value
and compute the frequent itemsets of ~Q. If there are no
frequent itemsets of size at least M – m that are supersets
of ~t, repeat the process with a smaller threshold which is
half of the previous threshold. This process is guaranteed
to discover the optimal t′.
We now return to the task of how to compute frequent
itemsets of the dense Boolean table ~Q. In fact, we do not
compute all frequent itemsets of the dense table ~Q, as
we have already argued earlier that there will be prohibi-
tively too many of them. Instead, our approach is to com-
pute the maximal frequent itemsets of ~Q.
4.3.4 Random Walk to Compute Maximal Frequent
Itemsets: A maximal frequent itemset is a frequent itemset
such that none of its supersets are frequent. The set of
maximal frequent itemsets are much smaller than the set
of all frequent itemsets. For example, if we have a dense
table with M attributes, then it is quite likely that most of
the maximal frequent itemsets will exist very high up in
the Boolean lattice over the attributes, very close to the
highest possible level M. Fig 2 shows a conceptual dia-
gram of a Boolean lattice over a dense Boolean table ~Q.
The shaded region depicts the frequent itemsets and the

maximal frequent itemsets are located at the highest posi-
tions of the border between the frequent and infrequent
itemsets.

Fig. 2. Maximal frequent itemsets in a Boolean Lattice

There exist several algorithms for computing maximal
frequent itemsets, e.g. [3, 5, 12, 14]. We base our ap-
proach on the random walk based algorithm in [12], which
starts from a random singleton itemset I at the bottom of
the lattice, and at each iteration, adds a random item to I
(from among all items A - I such that I remains frequent),
until no further additions are possible. At this point a
maximal frequent itemset I has been discovered. If the
number of maximal frequent itemsets is relatively small,
this is a practical algorithm: repeating this random walk a
reasonable number of times will with high probability
discover all maximal frequent itemsets. However, since
this algorithm is based on traversing the lattice from bot-
tom to top, it implies that the random walk will have to
traverse a lot of levels before it reaches a maximal fre-
quent itemset of a dense table.

Fig. 3. Two phase random walk

Instead, we propose an alternate approach which starts
from the top of the lattice and traverses down. Our ran-
dom walk can be divided into two phases: (a) Down Phase:
starting from the top of the lattice (I = {a1a2…aM}), walk
down the lattice by removing random items from I until I
becomes frequent, and (b) Up Phase: starting from I, walk
up the lattice by adding random items to I (from among
all items A - I such that I remains frequent), until the no
further additions are possible. At this point a maximal
frequent itemset I has been discovered.
Fig 3 shows an example of the two phases of the random
walk. What is important to note is that this process is
much more efficient than a bottom-up traversal, as our
walks are always confined to the top region of the lattice
and we never have to traverse too many levels. Comple-
menting the query log eventually results in a dense data-
set. In a dense dataset, maximal frequent itemsets are
usually at the top of the lattice. That is, they are close to
level M - m, where m is comparatively much smaller than
M. If a bottom-up approach is used to find maximal fre-
quent itemsets, it will have to traverse a long portion of

{a1a2…aM}
Down Phase Up Phase

a1 a2 a3 aM

{a1a2} {a1a3} {a1a4}

……

……. {aM-1 aM}

{a1a2…aM}

Maximal

frequent item-

Infrequent

itemsets Frequent

itemsets

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

the lattice (i.e., too many levels) and will be inefficient.
Whereas, in top-down approach, the first phase tries to
find the first frequent itemset along the path from the top
which is usually close to a maximal frequent itemset, the
walks are confined to the top region of the lattice and we
never have to traverse too many levels.
4.3.5 Complexity Analysis of a Random Walk Sequence:
In the worst case, the cost of a down-up random walk is
2⋅M⋅|Q|, where M is the total number of attributes and
|Q| is the size of the query log. Although in the worst
case the random walk will go up and down the whole
lattice, in practice we only expect each portion of the walk
to traverse only a few levels at the top of the lattice.
4.3.6 Number of Iterations: Repeating this two phase
random walk several times will discover, with high prob-
ability, all the maximal frequent itemsets. The actual
number of such iterations can be monitored adaptively;
our approach is to stop the algorithm if each discovered
maximal frequent itemset has been discovered at least
twice (or a maximum number of iterations have been
reached). This stopping heuristic is motivated by the
Good-Turing estimate for computing the number of differ-
ent objects via sampling [9]. Good–Turing frequency es-
timation is a statistical technique for predicting the prob-
ability of occurrence of objects belonging to an unknown
number of species, given past observations of such objects
and their species.
4.3.7 Frequent Itemsets at Level M – m: Finally, once all
maximal frequent itemsets have been computed, we have
to check which ones are supersets of ~t. Then, for all pos-
sible subsets (of size M – m) of each such maximal fre-
quent itemset (see Fig 4) , we can determine that subset I
that is (a) a superset of ~t, and (b) has the highest fre-
quency. The optimal compressed tuple t′ is therefore the
complement of I, i.e., ~I.

Fig. 4. Checking frequent itemsets at level M - m

In summary, the pseudo-code of our algorithm Max-
FreqItemSets-CB-QL is shown in Fig. 5. Details of how cer-
tain parameters such as the threshold are set, are omitted
from the pseudo-code.
4.3.8 Preprocessing Opportunities: Note that the algo-
rithm also allows for certain operations to be performed
in a preprocessing step. For example, all the maximal
itemsets can be precomputed, and the only task that
needs to be done at runtime is to determine, for a new
tuple t, those itemsets that are supersets of ~t and have
size M – m. If we know the range of m that is usually re-
quested for compression in new tuples, we can even pre-
compute all frequent itemsets for those values of m, and
lookup the itemset with the highest frequency at runtime.
4.3.9 The Per-Attribute Variant: CB-QL has a per-
attribute variant, where m is not provided as an input,

and we have to determine the best m such that number of
satisfied queries divided by m is maximized. This variant
can be simply solved by trying out values of m between 1
and M and making M calls to any of the algorithms dis-
cussed above, and selecting the solution that maximizes
our objective. Since we adopt this general strategy for all
per-attribute problem variants, we do not discuss such
variants any further in this paper.

4.4 Greedy Heuristics

While the maximal frequent itemset based algorithm has
much better scalability properties than the ILP based al-
gorithm, it also becomes prohibitively slow for really
large datasets (query logs). Consequently, we also devel-
oped suboptimal greedy heuristics for solving CB-QL; in
our experiments the results were quite good. We briefly
describe the heuristics here.
The algorithm ConsumeAttr-CB-QL first computes the
number of times each individual attribute appear in the
query log. It then selects the top-m attributes of the new
tuple that have the highest frequencies.
The algorithm ConsumeAttrCumul-CB-QL is a cumulative
version of ConsumeAttr-CB-QL. It first selects the attribute
with the highest individual frequency in the query log. It
then selects the second attribute that co-occurs most fre-
quently with the first attribute in the query log, and so on.
Instead of consuming attributes greedily, an alternative
approach is to consume queries greedily. The algorithm
ConsumeQueries-CB-QL operates as follows. It first picks
the query with minimum number of attributes, and se-
lects all attributes specified in the query. It then picks the

{a1a2…aM}

Frequent itemsets at level M - m

Q: Query Log

t: new tuple

m: num attributes of t to retain

r: threshold ← suitable value

MaxFreqItemsets ← {}

MaxNumIter ← suitable value

Algorithm TwoPhase-Random-Walk(~Q, r)

 execute Down Phase random walk

 execute Up Phase random walk

 return itemset reached after Up Phase

Algorithm ComputeMaxFreqItemsets(~Q, r)

 while

 (i++ ≤ MaxNumIter) and

 (∃ J in MaxFreqItemsets s.t.

 timesDiscovered(J)= 1)

 I ← TwoPhase-Random-Walk(~Q, r)

 timesDiscovered(I)++

 MaxFreqItemsets←MaxFreqItemsets∪ {I}

Algorithm MaxFreqItemSets-CB-QL(~Q, r)

 ComputeMaxFreqItemsets(~Q, r)

 let Itemsets(t) ← {I | I ⊆ MaxFreqItemsets,

 |I| = M – m, and I ⊇ ~t)}

 let I be the itemset in Itemsets(t) with highest

 frequency

 return ~I

Fig. 5. Algorithm MaxFreqItemSets-CB-QL

MIAH ET AL.: DETERMINING ATTRIBUTES TO MAXIMIZE VISIBILITY OF OBJECTS 7

query with minimum number of new attributes (i.e., not
already specified in the first query), and adds these new
attributes to the selected list. This process is continued
until m attributes have been selected.

5 PROBLEM VARIANT FOR TEXT DATA

5.1 Text Data Problem Definition

A text database consists of a collection of documents,
where each document is modeled as a bag of words as is
common in Information Retrieval. Queries are sets of
keywords, with top-k retrieval via query-specific scoring
functions, such as the tf-idf-based BM25 scoring function
[26]. Tk-QR (described later in Section 7.2) can be directly
mapped to a corresponding problem for text data if we
view a text database as a Boolean database with each dis-
tinct keyword considered as a Boolean attribute. This
problem arises in several applications, e.g., when we wish
to post a classified ad in an online newspaper and need to
specify important keywords that will enable the ad to be
visible to the maximum number of potential buyers. A
subtle point is that, due to the non-monotonicity of many
IR ranking functions, it is possible that a top-m1 tuple
compression is worse (fewer queries retrieve document t’)
than a top-m2 compression, where m1 > m2. The non-
monotonicity is usually due to the document length pa-
rameter that decreases the score of a document as its
length increases.
The attribute selection problem for text data is also NP-
complete as it can be converted into Boolean problem
considering each keyword as a Boolean attribute. The
problem is NP-hard for the case of monotone ranking
function, as in CB-QL. Hence, it is also NP-hard for the
more complex non-monotonic ranking functions.

5.2. Algorithms for Text Data

As discussed above, text data can be treated as Boolean
data, and all the algorithms developed for Boolean data
can be used for text data. There are two issues that we
wish to highlight, however. One is that if we view each
distinct keyword in the text corpus (or query log) as a
distinct Boolean attribute, the dimension of the Boolean
database is enormous. Consequently, none of the optimal
algorithms, either IP-based or frequent itemset-based, are
feasible for text data. Fortunately, the greedy heuristics
we have developed scale very well with reasonable re-
sults, as described in the experiments section. The second
issue is that some of the scoring function that are used in
text data – e.g., the BM25 scoring function that takes into
account the document length (size of compressed tuple t′)
– are non-monotonic on the number of keywords added.
In particular, adding a query keyword to t′ may decrease
its BM25 score if this keyword has very low inverse doc-
ument frequency (idf). Consequently the per-attribute
versions of our various problem variants are of interest.

6 EXPERIMENTS

In this section we describe the experimental setting and
the results. Our main performance indicators are (a) the

time cost of the proposed optimal and greedy algorithms,
and (b) the approximation quality of the greedy algo-
rithms, for the CB-QL and text data problem variants pre-
sented in Sections 3 and 5 respectively. Note that no ex-
perimental results are presented for the problem variants
of Section 7 since their algorithms are usually adaptations
of the ones for CB-QL.
System Configuration: We used Microsoft SQL Server
2000 RDBMS on a P4 3.2-GHZ PC with 1 GB of RAM and
100 GB HDD for our experiments. Algorithms are imple-
mented in C#, and connected to RDBMS through ADO.
Datasets: We used two datasets, a cars dataset for the
Boolean data experiments (Section 6.1), and a publications
titles dataset for the text data experiments (Section 6.2). In
particular, we use an online used-cars dataset consisting
of 15,191 cars for sale in the Dallas area extracted from
autos.yahoo.com. There are 32 Boolean attributes, such as
AC, Power Locks, etc. We used a real workload of 185 que-
ries created by users at UT Arlington, as well as synthetic
workloads. In the synthetic workload, each query speci-
fies 1 to 5 attributes chosen randomly distributed as fol-
lows: 1 attribute – 20%, 2 attributes – 30%, 3 attributes –
30%, 4 attributes – 10%, 5 attributes – 10%. We assume
that most of the users specify two or three attributes.
The publication titles dataset consists of 119,332 titles ex-
tracted from the DBLP (http://dblp.uni-trier.de/xml/)
database for the major database forums including SIG-
MOD, VLDB, PODS, ICDE, ICDT and EDBT. These titles
have a total of 59,184 distinct (non-stop word) keywords.
A query workload of 150 real user queries is used, which
was created as follows: We asked 7 MS and PhD students
from UTA and FIU to create about 20 queries each that
they would pose to the DBLP dataset, containing 1-4
keywords. This query log has a total of 205 distinct (non-
stop word) keywords.

6.1 Boolean Data

We focus on CB-QL, which can be solved by a superset of
the algorithms used in the other variants.
The top-m attributes selected by our algorithms seem
promising. For example, even with a small real query log
of 185 queries, our optimal algorithms could select top
features specific to the car, e.g., sporty features are se-
lected for sports cars, safety features are selected for pas-
senger sedans, and so on.
We first compare the execution times of the optimal and
greedy algorithms that solve CB-QL. These are (Section 4):
ILP-CB-QL, MaxFreqItemSets-CB-QL, which produce op-
timal results, and ConsumeAttr-CB-QL, ConsumeAttrCu-
mul-CB-QL, and ConsumeQueries-CB-QL, which are
greedy approximations. The CB-QL suffix is skipped in
the graphs for clarity.
Fig 6 shows how the execution times vary with m for the
real query workload, averaged over 100 randomly se-
lected to-be-advertised cars from the dataset. Note that
different y-axis scales are used for the two optimal and
the three greedy algorithms to better display the differ-
ences among the methods. The MaxFreqItemSets algorithm
consistently performs better than the ILP algorithm. An-

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

other interesting observation is that the cost of ILP does
not always increase with m. The reason seems to be that
the ILP solver is based on branch and bound, and for
some instances the pruning of the search space is more
efficient than for others.
The times in Fig 6 for MaxFreqItemSets also include the
preprocessing stage, which can be performed once in ad-
vance regardless of the new tuple (user car), as explained
in Section 4.3. If the pre-processing time is ignored, then
MaxFreqItemSets takes only approximately 0.015 seconds
to execute for any m value.
Fig 7 shows the quality, that is, the numbers of satisfied
queries for the greedy algorithms along with the optimal

numbers, for varying m. The numbers of queries are aver-
aged over 100 randomly selected to-be-advertised cars
from the dataset. Note that no query is satisfied for m = 3
because all queries specify more than 3 attributes. We see
that ConsumeAttr and ConsumeAttrCumul produce near-
optimal results. In contrast, ConsumeQueries has low qual-
ity, since it is often the case that the attributes of the que-
ries with few attributes (which are selected first) are not
common in the workload.
Fig 8 and Fig 9 repeat the same experiments for the syn-
thetic query workload of 2000 queries. In Fig 8, we do not
include the ILP algorithm, because it is very slow for
more than 1000 queries (as also shown in Fig 10).

0

0.1

0.2

0.3

0.4

3 5 7 10

Number of attributes to retain (m)

T
im
e
 i
n
 S
e
c
 (
b
a
r)

0

10

20

30

40

50

60

70

T
im
e
 i
n
 S
e
c
 (
li
n
e
)

ConsumeAttr ConsumeAttrCumul

ConsumeQueries MaxFreqItemSets

ILP

Fig. 6. Execution times for CB-QL for varying
m, for real workload of 185 queries.

0

100

200

300

400

500

600

3 5 7 10
Number of attributes to retain (m)

#
 o
f
Q
u
e
ri
e
s

ConsumeAttr ConsumeAttrCumul

ConsumeQueries MaxFreqItemSets

Fig. 9. Satisfied queries for greedy and opti-
mal algorithms for CB-QL for varying m, for
synthetic workload of 2000 queries.

0

5

10

15

20

25

30

35

40

3 5 7 10
Number of attributes to retain (m)

#
 o
f
Q
u
e
ri
e
s

ConsumeAttr ConsumeAttrCumul

ConsumeQueries Optimal

Fig. 7. Satisfied queries for greedy and opti-
mal algorithms for CB-QL for varying m, for
real workload of 185 queries.

0

100

200

300

400

500

600

700

200 400 600 800 1000 2K 100K 1M
Query log s ize (# of queries)

T
im

e
 i
n
 S
e
c
 (
b
a
r)

0

5000

10000

15000

20000
T
im

e
 i
n
 S
e
c
 (
li
n
e
)

ConsumeAttr ConsumeAttrCumul

ConsumeQueries ILP

MaxFreqItemSets

Fig. 10. Execution times for CB-QL for vary-
ing synthetic workload size for m = 5.

0

0.2

0.4

0.6

0.8

1

1.2

3 5 7 10

Number of attributes to retain (m)

T
im

e
 i
n
 S
e
c
 (
b
a
r)

0

10

20

30

40

50

60

70

80

90

T
im

e
 in

 S
e
c
 (
lin

e
)

ConsumeAttr ConsumeAttrCumul

ConsumeQueries MaxFreqItemSets

Fig. 8. Execution times for CB-QL for varying
m, for the synthetic workload of 2000 queries.

0

5

10

15

20

25

32 64 96 128

of boolean attributes

T
im

e
 i
n
 S
e
c
(b
a
r)

0

500

1000

1500

2000

2500

T
im

e
 i
n
 S
e
c
 (
lin

e
)

ILP MaxFreqItemSets

Fig. 11. Execution times for CB-QL for vary-
ing number of total attributes for the syn-
thetic workload of 200 queries for m = 5

Next, we measure the execution times of the algorithms
for varying query log size and number of attributes. Fig
10 shows how the average execution time varies with the
query log size, where the synthetic workloads were cre-
ated as described earlier in this section. We observe that
ILP does not scale for large query logs; this is why there
are no measurements for ILP for more than 1000 queries.
ConsumeQueries performs consistently worse than other
greedy algorithms since we make a pass on the whole
workload at each iteration to find the next query to add.
We conclude ConsumeQueries is generally a bad choice.
Fig 11 focuses on the two optimal algorithms, and meas-
ures the execution times of the algorithms, averaged over
100 randomly selected to-be-advertised cars from the da-
taset, for varying number M of total attributes of the data-
set and queries, for a synthetic query log of 200 queries.
We observe that ILP is faster than MaxFreqItemSets for
more than 32 total attributes. For 32 total attributes Max-
FreqItemSets is faster as also shown in Fig 6. However,

note that ILP is only feasible for very small query logs.
For larger query logs, ILP is very slow or infeasible, as is
also shown by the missing values in Fig 10. To summa-
rize, ILP is better for small query logs and many total at-
tributes (i.e. short and wide query log), whereas Max-
FreqItemSets is better for larger query logs with fewer total
attributes (i.e. long and narrow query log). However for
query logs those are long and wide, the problem becomes
truly intractable, and approximation methods such as our
greedy algorithms perhaps the only feasible approaches.

6.2 Text Data

We use a simplified version of the BM25 [26] ranking
function, for the case of ad-hoc retrieval where any repeti-
tion of terms in the query is ignored. The weight of a term
j is computed by the following formula:

5.0

5.0
log

))1((

)1(
:),(

1

1

+

+−

++−

+
=

j

j

j

j

j
df

dfN

d
avdl

dl
bbk

dk
Cdw

MIAH ET AL.: DETERMINING ATTRIBUTES TO MAXIMIZE VISIBILITY OF OBJECTS 9

where dj is the term frequency and dfj is the document
frequency of term j, dl is the document length, avdl is the
average document length across the collection, and k1 and
b are free parameters (we set k1 = 1 and b = 0.5).
The number of distinct keywords (equivalent to the num-
ber of attributes in the Boolean problem) for our titles
dataset is 59,184. We randomly selected 50 abstracts of
papers to be used as the to-be-advertised tuples. In fact,
we retrieved the abstracts of 50 of the papers in our titles
dataset. We consider the rest 59, 134 (59,184-50) titles as
our query log That is, the tuple t is the abstract, and the
compressed t′ is the “best” keywords from the abstract to
be used in the title. The titles of these papers were re-
moved from the dataset. Fig 12 shows how the greedy
algorithms ConsumeAttr and ConsumeAttrCumul perform
in terms of execution time and in terms of quality, for
varying m. We set k = 20 (recall that we want to maximize
the number of queries in the workload for which the to-
be-advertised tuple is in the top-k results). As mentioned
in Section 5.2, no optimal algorithm is feasible due to the
large number of total attributes (distinct keywords). Fi-
nally, we note that the ConsumeQueries greedy algorithm
is inappropriate for the same reason, since it would just
select the keywords of the shortest one or two titles,
which most likely satisfy no other queries.

0

0.2

0.4

0.6

0.8

1

3 5 7 10

Number of keyword to retain (m)

T
im

e
 in

 S
e
c

ConsumeAttr ConsumeAttrCumul

0

10

20

30

40

3 5 7 10

Number of keyword to retain (m)

#
 o
f
Q
u
e
ri
e
s

ConsumeAttr ConsumeAttrCumul

 (a) Execution times (b) Number of covered queries

Fig. 12. Execution times and Number of covered queries for greedy
algorithms for text data for varying top-m.

7 OTHER PROBLEM VARIANTS

In this section we discuss several other problem variants
for Boolean as well as categorical and numeric data.

7.1 Conjunctive Boolean - Data (CB-D)

This is the situation where we only have access to the da-
tabase of existing products and no access to the query log.
In this case the strategy is to search for a compressed ver-
sion of the new product that dominates as many products
in the database as possible. Thus any buyer that executes
a query (with Conjunctive Boolean Retrieval) that selects
a dominated product will also get to see the new product.

7.1.1 Problem Definition (CB-D): Given a database D, a
new tuple t, and an integer m, compute a compressed tuple t′
by retaining m attributes such that the number of tuples in D
dominated by t′ is maximized.
EXAMPLE 1 (cont’d): To illustrate this problem variant, con-
sider the example in Fig 1 again. Suppose we are required to
retain m = 4 attributes of the new tuple t. It is not hard to see
that if we retain the four attributes AC, Four Door, Power

Doors and Power Brakes (i.e., t′ = [1, 1, 0, 1, 0, 1]), we domi-
nate four tuples (t1, t4, t5 and t6). No other selection of four at-
tributes of the new tuple will dominate more tuples. 

7.1.2 Complexity Results for CB-D: The same proof in
section 3.2 for the problem CB-QL obviously tells also that
CB-D is NP-hard. CB-D also has a per-attribute version
which can be naturally defined.

7.1.3 Algorithms for CB-D: Any of the above algorithms
that solve CB-QL can be also used to solve CB-D, by sim-
ply replacing the query log with the database as input.

7.2 Top-k - Global Ranking (Tk-GR) and Top-k -
Query-Specific Ranking (Tk-QR)

We consider Top-k Retrieval via Global and Query-
Specific Scoring Function for these problem variants.
Top-k Retrieval via Global Scoring Function: Let Score(t) be a
function that returns a real-valued score for any tuple t.
Let k be a small integer associated with a query q. Then
R(q) is defined as the set of top-k tuples1 in the database
with the highest scores that satisfy q. Global scoring func-
tions capture the “global importance” of tuples, e.g., the
price of a product.
Top-k Retrieval via Query-Specific Scoring Function: Let
Score(q, t) be a scoring function that returns a real-valued
score for any tuple t. Let k be a small integer associated
with a query q. Then R(q) is defined as the set of top-k
tuples in the database with the highest scores. Note that
here we do not insist that the queries are conjunctive, i.e.,
tuples that do not satisfy all attributes specified in the
query may also be returned. An example of a query spe-
cific scoring function is the dot product of q and t.

7.2.1 Problem Definition (Tk-GR): Given a database D, a
query log Q with Top-k Retrieval via Global Scoring Function,
a new tuple t, and an integer m, compute a compressed tuple t′
by retaining m attributes such that the number of queries that
retrieve t′ is maximized.

7.2.2 Problem Definition (Tk-QR): Given a database D, a
query log Q with Top-k Retrieval via Query-Specific Scoring
Function, a new tuple t, and an integer m, compute a com-
pressed tuple t′ by retaining m attributes such that the number
of queries that retrieve t′ is maximized.

EXAMPLE 1 (cont’d): To illustrate Tk-GR, assume that each
query in the query log returns the top-2 tuples (i.e., k = 2) or-
dered by decreasing Fuel Efficiency, where Fuel Efficiency is a
numeric attribute not shown in Fig 1. 2Let us assume that the
fuel efficiencies of the seven cars t1 … t7 are 10mpg, 20mpg …
70mpg respectively. The results of executing the five queries in
the query log on the database are shown in Fig 13(a).
Assume the fuel efficiency of the new tuple t is 35mpg and we
are required to retain m = 3 of its Boolean attributes. We first
argue that the selections suggested in CB-QL are suboptimal.
Suppose we decide to retain the three attributes AC, Four Door,
and Power Doors as suggested in CB-QL. The new compressed
tuple t′ will satisfy the Boolean conditions of queries q1, q2, and
q3, however, it will not be returned among the top-2 tuples of q1

1 If the number of tuples that satisfy q is less than k, then all such tuples are
returned

2 For now, we assume that only Boolean attributes can be specified in queries.
Allowing numeric ranges to be specified in queries is discussed in Section 7.6.2

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

and q3, because it has a lower score (fuel efficiency) than t4 (the
second tuple returned by both q1 and q3). Consequently, the
compressed tuple t′ will be returned by only one query, q2 (by
replacing t3 as the second tuple to be returned, since t3 has low-
er fuel efficiency than t′). In contrast, if we decide to retain AC,
Power Doors and Power Brakes, the compressed tuple t′ will
satisfy the Boolean conditions of two queries, q2 and q4, and
moreover, will replace t3 as the second tuple to be returned by
each query. No other selection of three attributes of the new
tuple will ensure that it gets returned by more queries. 

Fig. 13. Results of Top-k Retrieval

We now discuss Tk-QR.
EXAMPLE 1 (cont’d): Assume that each query in the query
log returns the top-3 tuples (i.e., k = 3), where the query-
specific scoring function is the dot product between a query and
a tuple. Recall that in this case a query is no longer a conjunc-
tive query – tuples that do not dominate a query may also be
returned. Based on this scoring function, the results of the exe-
cution of the five queries are shown in Fig 13(b) (score ties have
been broken arbitrarily). Suppose we are required to retain m =
4 attributes. It is not hard to see that if we retain the attributes
AC, Four Door, Power Doors and Power Brakes, the com-
pressed tuple will definitely enter into the top-3 result tuples of
q1, q2 and q4 respectively (it will also tie scores with the top-3
tuples of q3). No other selection of three attributes of the new
tuple will ensure that it gets returned by more queries. 
Monotonicity of Scoring Functions: One final issue re-
garding Tk-QR needs to be discussed. In this variant, we
have assumed that the scoring function is monotonic, i.e.,
that if t′ is a compressed representation of t, then the
score of t′ is no greater than the score of t. This is certainly
true of the dot product. Monotonic scoring functions im-
ply that it is to our advantage to retain as many attributes
as possible (constrained by the budget, m). However, not
all scoring functions are monotonic, as we have seen in
Section 5, when we discuss an application in text data-
bases. In such case, the optimal number of attributes to
retain may even be less than the budget m.
Finally, Tk-GR and Tk-QR also have per-attribute versions
which can be naturally defined.

7.2.3 Complexity Results for Tk-GR and Tk-QR : Tk-GR
can also be shown to be NP-hard by reducing from a CB-
D problem instance as follows. We create a database with
only one competing tuple t1 with all 1’s and with score(t1)
= 1. Let t be the new tuple with all 1’s and with score(t) =
2. Let k = 1 for each query in the query log. The task in Tk-
GR is to determine the top-m attributes such that the
compressed tuple t’ is returned as the top-1 tuple of as
many queries as possible; clearly this is equivalent to
solving the CB-D problem instance.

The same idea can also be used to show that Tk-QR is NP-
hard for some scoring functions such as the dot product;
e.g., it is easy to see that t’ ties with t1 for the top-1 tuple
of a query only if it satisfies each attribute of the query.

7.2.4 Algorithms for Tk-GR and Tk-QR : Fortunately,
due to the scoring function being a global function, we
can reduce Tk-GR to CB-QL as follows, and use any of the
algorithms developed in Section 4. We first execute each
query q in Q. Let the kth largest score of the returned tu-
ples be sq. Let the score of the new tuple be st. Let Q′ be
the subset of Q such that for each query q in Q′, sq is no
larger than st. Then it is easy to see that all we need to
solve CB-QL for the reduced query log Q′, because if the
compressed tuple t′ satisfies a query q in Q′, it will be
definitely retuned as part of the top-k tuples of q.
However, in this approach we cannot leverage any pre-
processing opportunities if we use the maximal frequent
itemset based approach, as the Boolean table Q′ has to be
constructed at runtime. Thus the maximum frequent item-
sets have to be computed at runtime.
Tk-QR is identical to Tk-GR, except that the scoring func-
tion is query specific and the semantics are not conjunc-
tive. Unfortunately, this makes all the difference, and the
frequent itemset approach is no longer applicable, as
there appears to be no way of reducing this variant to CB-
QL. Likewise, it appears difficult to formulate the prob-
lem naturally as a small integer linear program. The best
we can do is to formulate the problem as a general (i.e.,
non-linear) Integer Program. The details are omitted due
to their small practical value.
However, we can develop several effective greedy algo-
rithms for Tk-QR, depending on whether we consume
attributes or queries cumulatively or non-cumulatively
(as Section 4.4). The straightforward details are omitted.

7.3 Skyline Boolean (SB)

We consider skyline retrieval semantics for this problem.
Given a set of points, the skyline comprises the points
that are not dominated by other points. A point domi-
nates another point if it is as good or better in all dimen-
sions and better in at least one dimension [31]. We con-
sider skyline for Boolean data in our problem.
For each query q in the query log we define the query sky-
line S(q) = {s1…sL}, which is a collection of skyline points.
Each skyline point s defines a subset (i.e., projection) of
attributes for which any data point (tuple) remains on the
skyline. For example, suppose a user poses a query q =
“Select * from Cars where Make = Honda and AC = yes and
Power Windows = yes”, and the database has three cars t1 =
<Toyota, AC, Power Windows>, t2 = <Honda, AC, Power
Brakes> and t3 = <Nissan, AC, Power Brakes>. We can see
from the skyline definition that the cars t1 and t2 will be
on the skyline of q, since they are not dominated by any
other cars (t3 here) present in the database based on the
attributes asked by the query q. We do not store the actual
skyline data points (all attributes present in the tuple)
such as t1 and t2 in skyline log, instead the set of attributes
for which a data point is visible on the skyline. Here, t1 =
<Toyota, AC, Power Windows> is visible on the skyline of q
because of attributes {AC, Power Windows} asked by q. So,

Query

ID

Top-3 tuples with

scores

q1 t4 (2), t5 (2), t1 (1)

q2 t3 (2), t4 (2), t1 (1)

q3 t1 (2), t4 (2), t6 (2)

q4 t3 (2), t4 (2), t1 (1)

q5 t2 (1), t3 (1), t7 (1)

 (b) Query specific scor-
ing function (dot product)

Query

ID

Top-2 tuples

with scores

q1 t5 (50), t4 (40)

q2 t4 (40), t3 (30)

q3 t6 (60), t4 (40)

q4 t4 (40), t3 (30)

 q5 ∅

(a) Global scoring
function

MIAH ET AL.: DETERMINING ATTRIBUTES TO MAXIMIZE VISIBILITY OF OBJECTS 11

the skyline points are s1 = {AC, Power Windows} and s2 =
{Honda, AC} for which t2 is on the skyline of q. A skylines
log contains all the skylines for the query log.

7.3.1 Problem Definition (SB): Given a database of compet-
ing products D, a query log Q with Skyline Query semantics, a
new tuple t, and an integer m, compute a compressed tuple t′
by retaining m attributes such that the number of queries for
which t′ appears on their skylines is maximized.
Table 1 displays the skylines log for the query log Q and
database D of Fig 1. Note that in Fig 1, none of the tuples
in D satisfies q5 (Turbo, Auto Trans) completely. In contrast
to the conjunctive query semantics, this does not mean
that q5 has no answer. A tuple satisfies q5 if it has attribute
Turbo (t2 and t7) or Auto Trans (t3), as shown in Table 1.
A query can have more than one set of attributes for
which data points can be visible on the skyline; e.g., for
query q5, tuples t2 and t7 are visible on the skyline for at-
tribute Turbo, whereas tuple t3 is visible on the skyline for
the attribute Auto Trans. We keep separate record for each
set of attribute as shown in Table 1.
EXAMPLE 2: To illustrate the example consider the skylines
in Table 1. Assume we are required to retain m = 3 attributes of
the new tuple. It is not hard to see that if we retain the attrib-
utes AC, Four Door, and Power Doors (i.e., t′ = {AC, Four
Door, Power Doors}), the compressed tuple t′ will be visible on
the skylines for the maximum of three queries (q1, q2, and q3).
No other selection of three attributes of the new tuple will re-
main on skylines of more queries. 

7.3.2 Complexity Results for SB: SB is NP-hard since CB-
QL can be reduced to it if there is a data point that com-
pletely satisfies the query (identical to the query), for each
query in the query log.

7.3.3 Algorithms for SB: There are several methods pro-
posed for efficient processing of skyline queries which are
mentioned in related work (Section 8). Any good skyline
processing technique such as [22] can be used here to find
the skylines for the query log which is efficient for Boo-
lean data. Once these skylines have been found, then our
problem is to find the subset of the attributes for the new
tuple so that skylines from the maximum number of que-
ries will retrieve the new tuple. So, we can now revert
back to conjunctive query semantics where a skyline s
will retrieve the new tuple t if all the attributes present in
the skyline is also present in t, i.e., ts∈ , where t retains
the selected subset of attributes (top-m attributes).

A new tuple will satisfy a skyline query if the tuple is a
superset of a skyline point of the query skyline, that is,
the new tuple contains all the attributes of a skyline point.
Consider Table 1. If the new tuple has the attributes AC,
Four Door, and Power Doors (i.e., t′ = {AC, Four Door, Power
Doors}), the compressed tuple t′ will be visible on the sky-
lines s1, s2, and s3. We need to make sure that we do not
just maximize the number of skyline points that t domi-
nates, but maximize the number of queries for which t
will be visible on their skylines.
We use algorithm MaxFreqItemSets used for the problem
CB-QL with couple of updates: (1) we use skyline log in-
stead of query log, and (2) we count each query only once
rather than each skyline. Considering our running exam-
ple, when we check if an itemset is frequent or not, we
count each query only once regardless of the number of
skyline points it has. For example, if we find two skylines
points (for q5) are present when we check an itemset is
frequent or not, we only increase the count by one be-
cause both come from the same skyline, that of query q5.

7.4 Conjunctive Boolean - Query Log - Negation
(CB-QL-Negation)

Sometimes a query can have negation that means a user
can specify in the query that he or she does not want spe-
cific attribute (i.e., that attribute should not be present in
the product). For this problem variant we consider Con-
junctive Boolean Retrieval with Negation retrieval semantics.
Conjunctive Boolean Retrieval with Negation: This problem
variant also considers each query as conjunctive query
where a tuple t satisfies a query q if q is a subset of t.
However, the query can have negation. For example, a
query such as {a1, a3, ~a4} equivalent to “return all tuples
such that a1= 1 and a3 = 1 and a4 != 1 (more specifically a4
must not be present). The set of returned tuples R(q) is the
set of all tuples that satisfy q. We assume that if an attrib-
ute value ai is missing in t', but ai is 0 in t (that is, this fea-
ture is missing), then a query q that specifies 1 for ai is not
satisfied by t'. That is, we assume that a user will eventu-
ally check all the attributes of the new product t.

7.4.1 Problem Definition (CB-QL-Negation): Given a
query log Q where a query can have negation with Conjunctive
Boolean Retrieval semantics, a new tuple t, and an integer m,
compute a compressed tuple t′ by retaining m attributes such
that the number of queries that retrieve t′ is maximized.
A query can have value for a Boolean attribute as 1, 0, or
-1; where 1 means the attribute must be present, 0 means
do not care, and -1 means must not be present. As in CB-
QL, for buyers interested in browsing products of interest,
we wish to ensure that the compressed version of the new
product is visible to as many buyers as possible.

7.4.2 Complexity Results for CB-QL-Negation: CB-QL-
Negations is also NP-hard, since CB-QL can be reduced to
CB-QL-Negations if the queries have no negation.
Here we can define another complementary problem
where we have access to the database of existing products
but do not have access to the query log. This can be done
similarly as CB-QL is used to define CB-D previously.

7.4.3 Algorithms for CB-QL-Negation: Direct application

TABLE 1
SKYLINES OF QUERIES

Sky-

line ID

Query

ID
Car ID

Attributes for which the car is

on the skyline

s1 q1 t4, t5 AC, Four Door

s2 q2 t3, t4 AC, Power Doors

s3 q3 t1, t4, t6 Four Door, Power Doors

s4 q4 t3, t4 Power Brakes, Power Doors

s5 q5 t2, t7 Turbo

s5 q5 t3 Auto Trans

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

of the algorithms for CB-QL does not work for this prob-
lem variant. This is because the query log has negations
where a query asks that an attribute must not be present
in the returned tuple. This breaks the monotonicity prop-
erty of CB-QL, that is, adding more attribute to the new
tuple does not always increase the number of satisfied
queries. For this problem variant we use the algorithms
for CB-QL with some preprocessing as follows:
1. Remove all queries from the query log that do not satisfy a

negated new tuple attribute (attribute with value 0). At this
step we remove these queries because the new tuple
will never satisfy them.

2. For each attribute not present in the new tuple, for each
query in the query log that has -1 for this attribute, we
change the value to 0. Note that the new tuple has value
0 or 1 for each attribute, where recall that 0 denotes
that the attribute is missing. Hence, if a query does not
request an attribute which is not present in the new tu-
ple, then value can updated to 0 in the query log.

3. Then apply algorithms for CB-QL. We can apply the algo-
rithms for CB-QL now as negation is already removed.

7.5 Maximize Query Coverage (MQC)

This problem variant is interesting because it is the only
one among the variants considered in this paper to have
polynomial algorithm. The intuition is that we look for a
compressed tuple that has maximum sum of scores over
all queries in query log. For instance, find the attributes of
a home so that it satisfies as many of the conditions of the
past queries as possible. The reason why this problem is
polynomial is that it is a best-effort problem. We assume
that the scoring function is an aggregation of the scores of
the individual attributes, e.g., the sum of the attribute
contributions. The attribute contribution could be 1 if it is
satisfied or 0 otherwise. For a text database, it could be
the tf-idf weight of a keyword.

7.5.1 Problem Definition (MQC): Given a query log Q, and
a new tuple t, find compressed tuple t’ that maximizes the sum
of scores of t’ over all queries in Q.

7.5.2 Complexity Results and Algorithms for MQC: An
optimal polynomial algorithm is the following. At each
iteration, select the attribute of t that maximizes the sum
of the scores for all queries in Q, assuming that the rest of
the attribute values are missing.

7.6 Categorical and Numeric Data

7.6.1 Problems and Algorithms for Categorical Data
We also consider categorical databases, which are natural
extensions of Boolean databases where each attribute ai

can take one of several values from a multi-valued cate-
gorical domain Domi. A query over a categorical database
is a set of conditions of the form ai = xi, xi ∈ Domi. We can
define problem variants for categorical data correspond-
ing to the ones for Boolean data discussed earlier.
Each categorical column ai can be replaced by |Domi|
Boolean columns, and consequently a categorical data-
base/query log with M attributes is replaced by a Boolean
database/query log with ∏

≤≤ Mi

iDom
1

Boolean attributes.

7.6.2 Problems and Algorithms for Numeric Data
Finally we also consider numeric databases. We consider
queries that specify ranges over a subset of attributes. The
above problem variants for Boolean data have corre-
sponding versions for numeric databases. For example,
users browsing for used digital cameras may specify que-
ries with ranges on price, age of product, desired resolu-
tion, etc, and the returned results may be ranked by price.
Problems involving numeric ranges in queries and global
scoring functions can be reduced to Boolean problem in-
stances as follows. We first execute each query in the
query log, and reduce Q to Q′ by eliminating queries for
which the new tuple has no chance of entering into the
top-k results, exactly as we did in Section 7.2. Then, for
each numeric attribute ai in Q′, we replace it by a Boolean
attribute bi as follows: if the ith range condition of query q
contains the ith value of tuple t, then assign 1 to bi for
query q, else assign 0 to bi for query q. I.e., each query has
effectively been reduced to a Boolean row in a Boolean
query log Q′. The tuple t can be converted to a Boolean
tuple consisting of all 1’s. It is not hard to see we have
created CB-QL variant for Boolean data, whose solution
will solve the corresponding problem for numeric data.
However, if we choose to solve this problem using our
frequent itemset based approach, it is important to note
that we cannot leverage any preprocessing opportunities,
as the Boolean query log has to be constructed at runtime.

8 RELATED WORK

A large corpus of work has tackled the problem of rank-
ing the results of a query. In the documents world, the
most popular techniques are tf-idf based [28] ranking
functions, like BM25 [26], as well as link-structure-based
techniques like PageRank [6] if such links are present
(e.g., the Web). In the database world, automatic ranking
techniques for the results of structured queries have been
proposed [1, 7, 30]. Also there has been recent work [8] on
ordering the displayed attributes of query results.
Both of these tuple and attribute ranking techniques are
inapplicable to our problem. The former inputs a data-
base and a query, and outputs a list of database tuples
according to a ranking function, and the latter inputs the
list of database results and selects a set of attributes that
“explain” these results. In contrast, our problem inputs a
database, a query log, and a new tuple, and computes a
set of attributes that will rank the tuple high for as many
queries in the query log as possible.
Although the problem of choosing attributes is seemingly
related to the area of feature selection [10], our work dif-
fers from the work on feature selection because our goal
is very specific – to enable a tuple to be highly visible to
the database users – and not to reduce the cost of building
a mining model such as classification or clustering.
Kleinberg et al. [18] present a set of microeconomic prob-
lems suitable for data mining techniques; however no
specific solutions are presented. Their problem closer to
our work is identifying the best parameters for a market-
ing strategy in order to maximize the attracted customers,
given that the competitor independently also prepares a

MIAH ET AL.: DETERMINING ATTRIBUTES TO MAXIMIZE VISIBILITY OF OBJECTS 13

similar strategy. Our problem is different since we know
the competition. Another area where boosting an item's
rank has received attention is Web search, where the most
popular techniques involve manipulating the link-
structure of the Web to achieve higher visibility [13].
Integer and linear programming optimization problems
are extremely well studied problems in operations re-
search, management science and many other areas of ap-
plicability (see recent book on this subject [27]). Integer
programming is well-known to be NP-hard [11]; however
carefully designed branch and bound algorithms can effi-
ciently solve problems of moderate size. In our experi-
ments, we use an of-the-shelf ILP solver available from
http://lpsolve.sourceforge.net/5.5/download.htm.
Computing frequent itemsets is a popular area of research
in data mining and some of the best known algorithms
include Apriori [2] and FP-Tree [15]. Several papers have
also investigated the problem of computing maximal fre-
quent itemsets [3, 5, 12, 14, 17]. Almost all the popular
approaches are designed for sparse datasets and do not
work well for our unique problem of dense datasets. Ap-
riori [2] employs a bottom-up, breadth first search that
enumerates every single frequent itemset. In many appli-
cations (especially in dense data) with long frequent pat-
terns enumerating all possible subsets of an M length pat-
tern (M can easily be 50 or 60 or longer) is computation-
ally unfeasible. Also, we are not interested in mining all
frequent itemsets, but only maximal frequent itemsets in
our algorithm. A known approach for mining maximal
frequent itemsets is the complete random walk [12],
which is a bottom-up approach. But in a dense dataset the
maximal frequent itemsets usually lie on the top region of
the lattice, and if a bottom-up approach is used to find
maximal frequent itemsets, it will have to traverse a long
portion of the lattice (i.e., numerous levels) and will be
inefficient. To see this, consider a table with 50 attributes,
and assume we need to determine a compressed tuple t′
with 10 attributes. Now, we need to know the itemset of
~Q (complemented query log which is a dense dataset) of
size 40 with maximum frequency. Due to the dense na-
ture of ~Q, the bottom-up approach will not be able to
compute frequent itemsets beyond a size of 5-10.
Likewise, other approaches for mining maximal frequent
itemsets such as the Genetic Algorithm (GA) based ap-
proach [17] is also mainly intended for sparse dataset and
does not work well for dense dataset. In contrast, our
proposed method works well for dense dataset.
The recent works [21] and [20] are related to our work.
The former tries to find out the dominant relationship
between products and potential buyers where by analyz-
ing such relationships, companies can position their
products more effectively while remaining profitable. The
latter introduces skyline query types taking into account
not only min/max attributes (e.g., price, weight) but also
spatial attributes and the relationships between these dif-
ferent attribute types. Their work aims at helping manu-
facturers choose the right specs for a new product, whe-
reas our work to choose the attributes subset of an exist-
ing product for advertising purposes.
In previous work [23], we tackled the main variant of the

problem with Boolean conjunctive query semantics where
a tuple satisfies a query if all the attributes present in
query are also present in the tuple (Section 3). We extend
the idea in the current paper. We consider both the data-
base (existing products) and query log with various query
semantics (conjunctive, top-k, skyline, negations, etc.).
Several techniques have been proposed for efficient sky-
line query processing [4, 19, 25, 31]. There has been recent
work on categorical skylines [29] and skyline computa-
tion over low cardinality domains [22] that also considers
skyline for Boolean data as well. One main difference of
our work with the existing works is that our goal is not to
propose a method for processing or maintaining the sky-
lines, instead we use skylines as a query semantic where a
new tuple can be visible for maximum number of queries.
Another related work is mining top-k frequent itemsets
without minimum support threshold [16] which finds
top-k closed frequent itemsets. This is inapplicable in our
case because we are interested in finding out all the max-
imal frequent itemsets, and not just the top-k frequent
itemsets. Also it is not proven that the top-k approach
works well for dense dataset. The top-k approach without
minimum support threshold [16] finds top-k frequent
closed patterns of length no less than min_l, where min_l
is the minimal length of each pattern. In our problem, we
do not have any min-l restriction.

9 CONCLUSIONS

In this work we introduced the problem of selecting the
best attributes of a new tuple, such that this tuple will be
ranked highly, given a dataset, a query log, or both, i.e.,
the tuple “stands out in the crowd”. We presented vari-
ants of the problem for Boolean, categorical, text and nu-
meric data, and showed that even though the problem is
NP-complete in most cases; optimal algorithms are feasi-
ble for small inputs. Furthermore, we present greedy al-
gorithms, which are experimentally shown to produce
good approximation ratios.
While the problems considered in this paper are novel
and important to the area of ad-hoc data exploration and
retrieval, we observe that our specific problem definition
does have limitations. After all, a query log is only an
approximate surrogate of real user preferences, and
moreover in some applications neither the database, nor
the query log may be available for analysis; thus we have
to make assumptions about the nature of the competition
as well as about the user preferences. Finally, in all these
problems our focus is on deciding what subset of attrib-
utes to retain of a product. We do not attempt to suggest
what values to set for specific attributes, which is a prob-
lem tackled in marketing research, e.g., [24].
However, while we acknowledge that the scope of our
problem definition is indeed limited in several ways, we
do feel that our work takes an important first step to-
wards developing principled approaches for attribute
selection in a data exploration environment.

ACKNOWLEDGMENT

We thank the anonymous referees for their useful com-

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

ments on earlier drafts of this paper. Vagelis Hristidis
was supported by NSF grants IIS-0811922 and IIS-
0534530. Gautam Das was partially supported by NSF
grants IIS-0845644 and NSF IIS-0812601 as well as gifts
from Microsoft Research and Nokia Research.

REFERENCES

[1] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, Aristides Gionis:

Automated Ranking of Database Query Results. CIDR 2003.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo.

Fast discovery of association rules. In U.M. Fayyad, G. Piatetsky-

Shapiro, P. Smyth, and R. Uthurusamy, (eds.), Advances in Knowledge

Discovery and Data Mining, pp. 307-328. AAAI/MIT Press, 1996.

[3] Roberto J. Bayardo Jr.: Efficiently Mining Long Patterns from Data-

bases. SIGMOD Conference 1998: 85-93. 1

[4] S. Borzsonyi, D. Kossmann, K. Stocker: The Skyline Operator. ICDE ‘01.

[5] D. Burdick, M. Calimlim, J. Gehrke: MAFIA: A Maximal Frequent

Itemset Algorithm for Transactional Databases. ICDE 2001

[6] S. Brin and L. Page: The Anatomy of a Large-Scale Hypertextual Web

Search Engine. WWW Conference, 1998.

[7] S. Chaudhuri, G. Das, V. Hristidis, G. Weikum: Probabilistic Ranking of

Database Query Results. VLDB, 2004.

[8] Gautam Das, Vagelis Hristidis, Nishant Kapoor, S. Sudarshan. Order-

ing the Attributes of Query Results. SIGMOD, 2006.

[9] Good, I., The population frequencies of species and the estimation of

population parameters, Biometrika, v. 40, 1953, pp. 237-264.

[10] Isabelle Guyon and Andre Elisseeff. An introduction to variable and

feature selection. Journal of Machine Learning Research, 3(mar): 2003.

[11] Michael R. Garey and David S. Johnson (1979). Computers and Intrac-

tability: A Guide to the Theory of NP-Completeness. W.H. Freeman.

ISBN 0-7167-1045-5.

[12] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, R. S.

Sharm: Discovering all most specific sentences. ACM TODS. 28(2): 2003

[13] M. Gori and I. Witten. The bubble of web visibility. Commun. ACM 48,

3 (Mar. 2005), 115-117.

[14] Karam Gouda, Mohammed J. Zaki: Efficiently Mining Maximal Fre-

quent Itemsets, ICDM 2001.

[15] Jiawei Han, Jian Pei, Yiwen Yin: Mining Frequent Patterns without

Candidate Generation. SIGMOD 2000: 1-12.

[16] Jiawei Han, Jianyong Wang, Ying Lu, Petre Tzvetkov: Mining top-k

frequent closed patterns without minimum support, ICDM 2002.

[17] Jen-peng Huang, Che-Tsung Yang, Chih-Hsiung Fu: A Genetic Algo-

rithm Based Searching of Maximal Frequent Itemsets. ICAI 2004.

[18] J. Kleinberg, C. Papadimitriou and P. Raghavan.A Microeconomic

View of Data Mining. Data Min. Knowl. Discov. 2, 4 (Dec. 1998).

[19] D. Kossmann, F. Ramsak, S. Rost: Shooting Stars in the Sky: an Online

Algorithm for Skyline Queries. VLDB 2002.

[20] Cuiping Li, Beng Chin Ooi, Anthony K. H. Tung, Shan Wang: DADA:

a Data Cube for Dominant Relationship Analysis. SIGMOD 2006.

[21] Cuiping Li, Anthony K. H. Tung, Wen Jin, Martin Ester: On Dominat-

ing Your Neighborhood Profitably. VLDB 2007: 818-829

[22] Michael D. Morse, Jignesh M. Patel, H. V. Jagadish: Efficient Skyline

Computation over Low-Cardinality Domains. VLDB 2007.

[23] Muhammed Miah, Gautam Das, Vagelis Hristidis, Heikki Mannila:

Standing Out in a Crowd: Selecting Attributes for Maximum Visibility.

ICDE 2008: 356-365

[24] Thomas T. Nagle, John Hogan. The Strategy and Tactics of Pricing: A

Guide to Growing More Profitably (4th Edition), Prentice Hall, 2005.

[25] Dimitris Papadias, Yufei Tao, Greg Fu, Bernhard Seeger: An Optimal

and Progressive Algorithm for Skyline Queries. ACM SIGMOD 2003.

[26] S E Robertson and S Walker. Some simple effective approximations to

the 2-Poisson model for probabilistic weighted retrieval. SIGIR 1994.

[27] Alexander Schrijver: Theory of Linear and Integer Programming. John

Wiley and Sons. 1998.

[28] G. Salton. Automatic Text Processing: The Transformation, Analysis,

and Retrieval of Information by Computer. Addison Wesley, 1989.

[29] Nikos Sarkas, Gautam Das, Nick Koudas, Anthony K. H. Tung: Cate-

gorical skylines for streaming data. SIGMOD Conference 2008: 239-250

[30] W. Su, J. Wang, Q. Huang, F. Lochovsky. Query Result Ranking over E-

commerce Web Databases. ACM CIKM 2006.

[31] Kian-Lee Tan, Pin-Kwang Eng, Beng Chin Ooi: Efficient Progressive

Skyline Computation. VLDB 2001.

Muhammed Miah is a PhD student of Com-
puter Science and Engineering department
at the University of Texas at Arlington. He
received BS degree in Civil Engineering from
Khulna University of Engineering and Tech-
nology, Bangladesh, MS degree in Com-
puter and Information Science from Univer-
sity of New Haven, Connecticut, and MBA
degree from Qunnipiac University, Connecti-

cut. His main research work includes data mining, information re-
trieval, and maximizing visibility of products in search queries.

Gautam Das received the PhD degree in
computer science from the University of
Wisconsin, Madison, in 1990. He has been
an associate professor in the Computer
Science and Engineering Department, Uni-
versity of Texas, Arlington, since 2004. His
research interests include data mining and
knowledge discovery, databases, algorithms,
and computational geometry. His research
has been supported by the US National
Science Foundation (NSF), US Office of
Naval Research (ONR), and indictries in-

cluding Microsoft, Nokia and Cadence.

Vagelis Hristidis received the BS degree in
Electrical and Computer Engineering from the
National Technical University of Athens and
the MS and PhD degrees in Computer Sci-
ence from the University of California, San
Diego, in 2004. Since then, he is an Assistant
Professor in the School of Computing and
Information Sciences at Florida International
University, in Miami. His main research work

addresses the problem of bridging the gap between databases and
information retrieval.

Heikki Mannila is the director of Helsinki
Institute for Information Technology HIIT, a
joint research institute of University of Helsinki
and Helsinki University of Technology TKK,
and a professor of computer science at TKK.
He has also worked at Technical University of
Vienna, Max Planck Institute for Computer
Science, Microsoft Research, and Nokia Re-
search Center. He has published two books
and over 190 refereed articles in computer
science and related areas. His specific area
of interest is in algorithms for data analysis,

and applications in science and in industry. He received the ACM
SIGKDD Innovation award in 2003.

