
A System for Keyword Proximity Search on XML Databases

Andrey Balmin
abalmin@cs.ucsd.edu

Yannis Papakonstantinou
yannis@cs.ucsd.edu

Vagelis Hristidis
vagelis@cs.ucsd.edu

Divesh Srivastava
divesh@research.att.com

Nick Koudas
koudas@research.att.com

Tianqiu Wang
tiwang@ucsd.edu

Conference Conference Conference

Person
[Serge Abiteboul]

Person
[Chen Li]

Person
[Yannis Papakonstantinou]

Person
[Vasilis Vassalos]

Name
[VLDB]

Issue

Year
[1998] Paper

Title
[“MedMaker:..”]Author

Name
[ICDE]

Issue

Year
[1996]

Paper

Author Author

Name
[Sigmod]

Issue

Year
[1999]

Paper

Issue

Year
[1998]

Paper

Title
[“Incremental

Maintanance…”]

Title
[“Query

Rewriting...”]
Author

Author

Title
[“TSIMMIS...”]

AuthorAuthor
Author

Cites Cites
Cites

Cites

Figure 1: Sample XML document

1 Overview
Keyword proximity search is a user-friendly information
discovery technique that has been extensively studied for
text documents. In extending this technique to structured
databases, recent works [6, 7, 4, 2] provide keyword prox-
imity search on labeled graphs. A keyword proximity
search does not require the user to know the structure of
the graph, the role of the objects containing the keywords,
or the type of the connections between the objects. The
user simply submits a list of keywords and the system re-
turns the sub-graph that connect the objects containing the
keywords.

XML and its labeled graph/tree abstractions are becom-
ing the data model of choice for representing semistruc-
tured, self-describing data, and keyword proximity search
is well-suited to XML documents as well. We describe a
system that provides keyword proximity search on XML
data that are modeled as labeled graphs or trees, the edges
correspond to the element-subelement relationship and to
ID/IDREF links (in the case of graphs). Our work differs
from prior systems for proximity search on labeled graphs
in that it can take advantage of knowledge of the schema,
e.g., the XML Schema [12], to which the XML data con-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

forms, in addition to working with schema-less XML trees
that conform to the DOM model. The schema facilitates
the presentation of the results and is also used in optimiz-
ing the performance of the system. Moreover, for databases
consisting of XML trees, we employ efficient algorithms
[13] that execute in time linear in the size of the lists of
nodes containing the keywords, providing great advantages
in performance.

The results of keyword proximity search in our sys-
tem are the minimum connecting trees of XML fragments
(called target objects) that contain all the keywords and are
ranked according to their size. Trees of smaller sizes de-
note higher association between the keywords, which is
generally true for reasonable schema designs. For exam-
ple, consider the keyword query “Yannis, Vasilis” on the
graph of Figure 1. The first highlighted tree (thick edges)����������	�
 ���	�	�������������������� �!���"����$#%�������&���'#
����������	�
)(�����+*��,�-�

on the source XML graph of Figure 1 is
a result of size 4. The second highlighted tree (gray arrows)����������	�
 ���	�	������.�/�������&���0�1���"����0�123�4�����5#
���"����0#6�����������0# ����������	�
)(�����+*,���-�

is a result of
size 6. The first result is considered to be a “better” one by
our system (as well as by other keyword proximity search
systems we are aware of) since the smaller size corresponds
to the closer connection between “Yannis” and “Vasilis” in
the first solution, where they are co-authors of the same
paper, as opposed to being authors of different papers one
of which cites the other. Notice that we allow edges to be
followed in either direction.

The presentation of results faces two key challenges that
have not been addressed by prior systems for proximity
search on labeled graphs. First, the results need to be se-
mantically meaningful to the user. Towards this direction,
we group the nodes of the source XML tree into target ob-
jects, that are presented to the user. In the DBLP demo
(Figure 4) we display target object fields such as the paper
title and conference along with a paper. For example, we
display the following target object :
���"�����
 ���4�7*��8
:9��&����;=<=��>?���@���,	BADC����=E���FD���������&GH���&����I�J�K��K�4�

in the place of the intermediate
���"&���

node. The edges
connecting the target objects in the presentation graph are
annotated with their semantic description. For example the���"����=#L�=�����&���

edge is named “By”. Target objects are
identified by the DBA who splits the schema graph in mini-



Person 

Conference

Issue

Year Paper

Author

Name

Title

Cites/
Cited by

Contains/In

Contains/In

By/Of

Figure 2: Target decomposition of a schema graph

a2:author
[Jeffrey 
Ullman]

a1:author
[Yannis]

a3:author
[Vasilis
Vassalos]

p1:paper

p2:paper 

p3:paper 

p4:paper 
p5:paper 

p6:paper

p7:paper

Figure 3: Multivalued dependencies in results

mal self-contained information pieces (Figure 2), which we
call Target Schema Segments (TSS) and correspond to the
target objects presented to the user.

The second challenge is to avoid overwhelming the user
with a huge number of often trivial results, as is the case
with DISCOVER [7] and DBXplorer [2].1 Both systems
present all trees that connect the keywords. In doing so
they produce a large number of trees that contain the same
pieces of information many times. For example, consider
the keyword query “Yannis, Vasilis” and the XML sub-
graph shown in Figure 3. Since “Yannis” and “Ullman”
co-authored five papers, and “Vasilis” and “Ullman” co-
authored two, this XML fragment contains 10 results, or
which four are shown below:MON=P8BNQ�R"�NS#L�TU�R"&VQ#LXW

,M�T3P8BNQ�R"�TQ#L�TU�R"&VQ#LXW
,M=WOP8BNQ�R"�NS#L�TU�R"&YQ#LXW
,M=ZOP8 N �R" T #L T �R" Y #L W

The above results contain a form of redundancy similar
to multi-valued dependencies [11]: we can infer

M W
and
M=Z

from
M N

and
M T

. In that sense,
M W

and
M[Z

are trivial, onceM N
and
M T

are given. Such trivial results penalize perfor-
mance and overwhelm the user. Our execution algorithm
avoids producing and presenting such “duplicate” results.

At the presentation level, we use a presentation graph
that comprises the complete set of nodes participating in
result trees. At any point, only a subset of the graph is
shown (see Figure 6), as determined by various navigation
actions of the user. Initially, the user sees one result tree

��\
.

By clicking on a node of interest the graph is expanded to
display more nodes of the same type that belong to result
trees that contain as many as possible of the other nodes of� \

. Towards this purpose we define a minimal expansion
1Both systems work on relational databases, but the presentation chal-

lenges are similar.

Figure 4: On-line demo output

Figure 5: Initial presentation graph

concept. For example, clicking on the highlighted
"&�"&���

node of Figure 5 displays all
"��"����

nodes which are con-
nected to the same

"&��������	
and
"��"����

nodes in the initial
graph, as shown in Figure 6. In order to provide fast re-
sponse times, we employ indexing techniques that allow us
to quickly navigate in the XML graph/tree and find connec-
tions between the nodes that contain the keywords.

2 Related Work
There are a number of proposals for less structured ways
to query an XML database by incorporating keyword
search [5, 1] or by relaxing the semantics of the query lan-
guage [9, 3]. However none of these works incorporates
proximity search. Florescu et al. [5] propose an extension
to XML query languages that enables keyword search at
the granularity of XML elements, which helps novice users
formulate queries.

In [6] and [4], a database is viewed as a graph with ob-
jects/tuples as nodes and relationships as edges. Relation-
ships are defined based on the properties of each applica-
tion. For example, an edge may denote a primary to foreign
key relationship. In [6], the user query specifies two sets of
objects, the ] �,	�I and the

M^����
objects. These objects may

be generated from two corresponding sets of keywords.
The system ranks the objects in ] ��	�I according to their
distance from the objects in

M^��_�
. An algorithm is pre-

sented that efficiently calculates these distances by build-
ing hub indices. In [4], answers to keyword queries are
provided by searching for Steiner trees [10] that contain all
keywords. Heuristics are used to approximate the Steiner
tree problem. Two drawbacks of these approaches are that
(a) they work on the graph of the data, which is huge,
and (b) the information provided by the database schema



Figure 6: Expanded Presentation graph

if available is ignored. In contrast, we use indexing tech-
niques that allow quick navigation of the XML graph/tree.

DISCOVER [7] and DBXplorer [2] work on top of a
DBMS to facilitate keyword search in relational databases.
They are middleware systems in the sense that they can op-
erate as an additional layer on top of existing DBMSs. In
contrast, the system we present is dedicated to providing
efficient keyword proximity querying of XML databases,
by using sophisticated execution and indexing techniques.
Furthermore, we adopt an elaborate presentation method
using interactive graphs of results. In contrast, DISCOVER
and DBXplorer output a list of results, including trivial
ones. Finally, we handle the inherent differences of XML
from relational data by introducing the notion of target ob-
jects.

3 Architecture
The architecture of the system is shown in Figure 7. During
the preprocessing stage, the master index is created, which
is an inverted index that stores for each keyword ` a list
of elements that contain ` . When the XML database is an
XML graph, i.e., includes IDREF edges, we also store a set
of connection relations [8] that allow us to quickly navigate
in the XML graph.

In the query processing stage, we retrieve from the mas-
ter index the elements that contain the keywords and gen-
erate, in a pipelined way, trees of target objects that con-
tain all the keywords. In the case where the database has
IDREFs we exploit the information stored in the connec-
tion relations to efficiently discover the connections be-
tween the keywords. On the other hand, if the database
is an XML tree, we employ efficient algorithms [13] that
execute in time linear in the size of the keyword lists.

Finally, the results are presented to the user. The system
offers two presentation methods: displaying a presentation
graph for each different result schema (Figure 5), or dis-

playing a full list of results (Figure 4), where each result
is a tree that contains every keyword exactly once. The
former method offers a more compact and non-redundant
representation, while the latter favors faster response times.

4 Presentation Graph
In its simplest result presentation method (Figure 4) the
system outputs results page by page, as in web search en-
gine interfaces. The smaller results, which are intuitively
more important to the user, are output first. This naive
presentation method provides fast response times, but may
flood the user with results, many of which are trivial. In
particular, as we explained earlier, a redundancy similar to
the one observed in multi-valued dependencies emerges of-
ten. Displaying to the user results involving multi-valued
dependencies is overwhelming and counter-intuitive. We
address the problem by providing an interactive interface
that allows navigation and hides trivial and duplicate re-
sults, as discussed below.

The system’s interactive interface presents the results
grouped by the schema to which they conform. Intuitively,
results of the same schema have the same types of target ob-
jects and the same type of connections between them. The
results are grouped for each schema to summarize the dif-
ferent connection types between the keywords and to sim-
plify the visualization of the result.

The system compacts the results’ representation and of-
fers a drill-down navigational interface to the user. In par-
ticular, a presentation graph

��acb,E�d
is created for each

schema
E

. The presentation graph contains all nodes that
participate in a result of type

E
. A sequence of subgraphs��a \ b,E�dfe�g�g�gfe���a=h&b,E�d

of
��a�b�Eid

is active and is displayed
at each point, as a result of the user’s actions. The initial
subgraph,

��a \ b�Eid
, is a single, arbitrarily chosen result

F
of type

E
, as shown in Figure 5.

An expansion
��a[j+klN�b,E�d

of
��a[j7b,E�d

on a node
	

of type



Figure 7: Architecture

M
is defined as follows. All distinct nodes

	nm
, of type

M
,

of every result
Fcm

of type
E

are displayed and marked as
expanded (Figure 6). In the demo, an expansion on a node	

occurs when the user clicks on
	

. Notice also that if the
expanded nodes are too many to fit in the screen then only
the first 10 are displayed.

On the other hand, a contraction
��a j+klN b,2�d

of
��a j b,23d

on an expanded node
	

of type
M

is defined as follows. All
nodes of type

M
, except for

	
, are hidden. In addition a

minimum number of nodes of types other than
M

are hid-
den, while satisfying the restriction that for each node in��a j+klN b�2�d

there is a containing result in
��a j+klN b�2�d

.

The presentation of the results of a keyword query by
the interactive presentation graphs evokes the following re-
quirements for the execution unit: First the top result of
each result schema, which is the initial presentation graph,
must be computed very quickly to provide a quick initial
response time to the user. Second the expansion of the pre-
sentation graph must be performed on demand. This can-
not be done simply by moving the cursor of some query
we submit to the underlying database. Instead, when a user
clicks on a node, a new minimal set of focused queries is
sent to the database.

5 Status of the Demo
The demo of the system on the DBLP database, with
HTML interface shown in Figure 4 is available at
http://www.db.ucsd.edu/XKeyword. The presentation
graphs interface is implemented as a standalone applica-
tion (Figures 5 and 6). This application facilitates key-
word queries on the DBLP dataset with subsequent interac-
tive exploration of the results. We are currently in process
of converting the application into an on-line applet-based
demo.

References
[1] http://www.xyzfind.com.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
System For Keyword-Based Search Over Relational
Databases. ICDE, 2002.

[3] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pat-
tern relaxation. International Conference on Extend-
ing Database Technology (EDBT), 2002.

[4] G. Bhalotia, C. Nakhey, A. Hulgeri, S. Chakrabarti,
and S. Sudarshan. Keyword Searching and Browsing
in Databases using BANKS. ICDE, 2002.

[5] D. Florescu, D. Kossmann, and I. Manolescu. Inte-
grating Keyword Search into XML Query Processing.
WWW9 Conference, 1999.

[6] R. Goldman, N. Shivakumar, S. Venkatasubrama-
nian, and H. Garcia-Molina. Proximity Search in
Databases. VLDB, 1998.

[7] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword Search in Relational Databases. VLDB,
2002.

[8] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword Proximity Search on XML Graphs. ICDE,
2003.

[9] Y. Kanza and Y. Sagiv. Flexible queries over
semistructured data. PODS, 2001.

[10] J. Plesn’ik. A bound for the Steiner tree problem in
graphs. Math. Slovaca 31, pages 155–163, 1981.

[11] J. D. Ullman, J. Widom, and H. Garcia-Molina.
Database Systems: The Complete Book. Prentice
Hall, 2001.

[12] W3C. XML schema definition, 2001.
W3C Recomendation available at
http://www.w3c.org/XML/Schema.

[13] V. Hristidis, N. Koudas, Y. Papakonstantinou, D. Sri-
vastava Keyword Proximity Search In XML Trees
Submitted for Publication, 2003.


