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Abstract a fine-granularity time-frame, the “on-disk working-set”

This paper presents the design, imp]ementation, angf typlcal I/0 workloads is dynamic; nevertheless, work-
evaluation of BORG, a self-optimizing storage systemloads exhibittemporal localityin the data that they ac-
that performsautomatic block reorganizatiohased on ~ cess, andiii) I/O workloads exhibitpartial determin-
the observed 1/0 workload. BORG is motivated by threeismin their disk access patterns; besides sequential ac-
characteristics of 1/0 workloads: non-uniform accesscesses to portions of files, fragments of the block access
frequency distribution, temporal locality, and partiat de sequence that lead to non-sequential disk accesses also
terminism in non-sequential accesses. To achieve its ojepeat. We elaborate on these observatiofis2n
jective, BORG manages a small, dedicated partition on While the above observations mostly validate the prior
the disk drive, with the goal of servicing a majority of the studies, and may even appear largely intuitive, surpris-
I/0 requests from within this partition with significantly ingly, there is a lack of commodity storage systems that
reduced seek and rotational delays. BORG is transparenitilize these observations to reduce I/O times. We believe
to the rest of the storage stack, including applicatiors, fil that such systems do not exist beca(ipkey design and
system(s), and 1/O schedulers, thereby requiring no oimplementation issues related to the feasibility of such
minimal modification to storage stack implementations.systems have not been resolved, &idthe scope of ef-

We evaluated a Linux implementation of BORG using fectiveness of such systems has not been determined.
several real-world workloads, including individual user  We built BORG, an onlin@lock-reORGanizingtor-
desktop environments, a web-server, a virtual machinege system to comprehensively address the above issues.
monitor, and an SVN server. These experiments compreBORG correlates disk blocks based on block access pat-
hensively demonstrate BORG’s effectiveness in improv+erns to capture the I/O workload characteristics. It
ing 1/0O performance and its incurred resource overheadmanages a dedicateBORG OPtimized Target (BOPT)
1 Introduction partiti_on and dynamically copies vyorki.ng—se.t data plocks

) i ) ) possibly spread over the entire disk) in their relative ac-
There is a continual increase in the gap between CPUaqq sequence contiguously within this partition, thus si-
performance and disk drive performance. While then, jianeously reducing seek and rotational delays. In ad-
steady increase in main memory sizes attempts to bridggiion it assimilates alivrite requestinto the BOPT par-
this gap, the impact is relatively small; Pattersen iion's write buffer. Since BORG operates in the back-
al. [25] have pointed out that disk drive capacities andgqynd it presents little interference to foreground appli
workload working-set sizes tend to grow at a faster ratg.5tions. Also, BORG provides strong block-layer data

than memory sizes. Present day file systems, which consgnsistency to upper layers, by maintaining a persistent
trol space allocation on the disk drive, employ static datapage-levelndirection map

layouts [5, 8, 15, 20, 22, 37]. Mostly, they aim to pre-

the direct truct f the fi " d onfi We evaluated a Linux implementation of BORG for
Serve the directory structure o the file System and optli- variety of workloads including a development work-

:mdze fct)rlfeql_.letntlal accetthto 3nt|re f!les.h No ft"e_si'.Ste"E:ation, an SVN server, a web server, a virtual machine
oday takes Into account the dynamic Charactenstics o, ,nitor as well as several individual desktop applica-

/O workload within its qlata management mechanisms. tions. The evaluation shows both the benefits and short-
. We conducted experiments to reconcile past Opservaéomings of BORG as well as its resource overheads.
tions about the nature of /O wor!doads_ [7. 9, 30] in the articularly, BORG can degrade performance when a
context of current-day systems mcludmg end-user f”m(ion-sequential read workload suddenly shifts its on-disk
server-class systems. Our key observations that mOt'VaW/orking-set For most workloads. however. BORG de-

E’ORG areig!) :)_r;)—d;_sk:ihate}‘fexhlbn lelon—unlforn:j?gc?ss_, creased disk busy times in the range 6% to 50%, offering
requency distributionthe “frequently accessed” data s ,q greatest benefit in the case of non-sequential write-

u%ua!ly asmall fraction (Tf thte :.0 tal ?ata_;tored \./;he.n Con'mostly workloads without tuning BORG parameters for
sidering a coarse-granularity time-frang#, considering optimality. A sensitivity study with various parameters

*The first three authors contributed equally to this work. of BORG demonstrates the importance of careful pa-




Workload File System | Memory Reads [GB] Writes [GB] File System | Top 20% Partial
type size [GB] size [GB] | Total | Unique | Total | Unique accessed | data access| determinism
office 8.29 1.5 6.49 1.63 0.32 0.22 22.22 % 51.40 % 65.42 %
developer 45.59 2.0 3.82 2.57 10.46 3.96 14.32 % 60.27 % 61.56 %
SVN server 2.39 0.5 0.29 0.17 0.62 0.18 14.60 % 45.79 % 50.73 %
web server 169.54 0.5 21.07 7.32 2.24 0.33 451 % 59.50 % 15.55 %

Table 1: Summary statistics of week-long traces obtained from four dferent systems.

rameter choice which can lead to even greater improveless than 4.5-22.3% of the file system data were accessed
ments or degrade performance in the worst case; a selbver the duration of an entire week (shown in Table 1).
configuring BORG is certainly a logical and feasible di- We observe that the office and web server workloads are
rection. Memory overheads of BORG are bound withinread mostly, while the developer and SVN server are
0.25% of BOPT, but CPU overheads are higher. Fortuwrite mostly. Figure 1 (top row) shows page access rank-
nately, most processing can be done in the backgrounftequency plots for the workloads; file system pages were
and there is ample room for improvement. 4KB in size, composed of 8 contiguous blocks. A uni-
This paper makes the following contribution® we  form trend to be observed across the various workloads
study the characteristics of 1/O workloads and show howis that the really high frequency accesses are due write
the findings motivate BORG;(2) , (ii) we motivate and requests. However, and especially in the case of the read-
present the detailed design and the first implementatiomostly office and web server workloads, there are a large
of a disk data re-organizing system that adapts itself tolumber of read requests that occur repeatedly. In either
changesin the I/O workload 8 and§ 4), (iii) we present case (read or write), the access frequencies are highly
the challenges faced in building such a system and ouskewed. Figure 1 (middle row) depicts dibkatmaps
solutions to it § 5), and(iv) we evaluate the system to created by partitioning the disk into regions and mea-
guantify its merits and weakness§sj. suring accesses to each region. The heatmaps indicate

2 Characteristics of I/O Workloads that accesses, both high and Iqw frequency ones, in most
cases are spread over the entire disk area. Skewed data

In this section, we invest.igate the charaeteristics of modycess frequency is further illustrated in Table 1 — the
ern I/O workloads, specifically elaborating on those thatiy; 2005 most frequently accessed blocks contributed to a
directly motivate BORG. We collected 1/O traces, down- substantially large{45-66%) percentage of the total ac-
stream of an active page cache, over a one-week pessses across the workloads, which are within the ranges
ned from four different m_achlnes. These machines havereported by Gomez and Santonja (Figure 2(a) in [7]) for
different 1/0O workloads, |nelud|ng)ﬁ|ce and developer the Cello traces they examined.

desktop workloads, a version contiBUN (Subversion) Based on the above observations, it is reasonable to ex-

ser\ﬁr an aweb-lserver Thil offcljce _Ier?dfdeveloperk pect that co-locating frequently accessed data in a small
}NO; oads are smgde-uset: W(;r Ol? bs. € ormerr\]/volr t'area of the disk would help reduce seek times when com-
oad was composed mostly of Web-browsing, graph plo ‘pared to the same data being spread throughout the entire
ting with gnuplot, and several open-office apphcaﬂons,disk area. Akyurek and Salem [2] have demonstrated the
while the latter consisted of extensive development usy_ <o oo 'banefits of such an optimization via a sim-
:2_? E; m:r?;ilg(\;\?ebag?ov%g; ,gd(;%lamlf;;a?eng;atﬂznogselr lation study. This observation also motivates reorganiz-
= ' i} ' “ing copies of popular blocks in BORG.
ating system. The SVN server hosted document anorIg P pop
project code-base repositories for our 6-person research2 Temporal Locality

group. Finally, the web-server workload mirrored theTemporaI localityin I/O workloads is observed when the

web-requests made to our department’s production web-"" . . .
. .. on-disk working-sets remain mostly static over short du-

server on one of our lab machines and served 1.1 million_. ;

. . - rations. Here, we refer to a locality of hours, days, or

web requests during the trace period. Key statistics for

these workloads are summarized in Table 1. We deﬁngveeks, rather than seconds or minutes (typical of main

theon-disk working-sethenceforth also referred to sim- memory aceesses). For metance, a developer may work
. ) i on a few projects over a period of a few weeks or months,
ply as “working-set”) of an I/O workload as the set of all

: . . . typically resulting in her daily or weekly working sets
unigue blocks accessed in a given interval. . X T ?
being substantially smaller than her entire disk size. In

2.1 Non-uniform Access Frequency Distribution servers, popularity of client requests result in temporal
Researchers have pointed out that file system data havecality. A web server’s top-level links tend to be ac-
non-uniform access frequency distribution [2, 29, 39].cessed more frequently than content that is embedded
This was confirmed in the traces that we collected wherenuch deeper in the web-site; an important new revision
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Figure 1: Rank-frequency, heatmap, and working-set plots for weekdng traces from four different systems.

The heatmaps (middle row) depict frequency of accessesiousgphysical regions of the disk, each cell representing
a region. Six normalized, exponentially-increasing hegels are used in each heatmap where darker cells represent
higher frequency of accesses to the region. Disk regionsragped to cells in row-major order.

of a specific repository on an SVN server is likely to be the set of I/O requests and the sequence in which they
accessed repeatedly over the initial weeks. are requested. Reading files related to a repeatable task
Figure 1 (bottom row) depicts the changes in the persuch as setting up a project in an integrated development
day working-sets of the /0 workload. The two end-userenvironment, compilation, linking, word-processing, etc
/0 workloads and the web server workload exhibit largeresult in a deterministic I/O pattern. In a web-server, ac-
overlaps in the data accessed across successive daysasissing a web-page involves accessing associated sub-
the week-long trace with the first day of the trace. Therepages, images, scripts, etc., in deterministic order.
is substantial overlap even among the top 20% most ac- In Table 1, we present the partial determinism for each
cessed data across successive days. Interestingly, theserkload calculated as the percentage of non-sequential
workloads do not necessarily exhibit a gradual decay iraccesses that repeat at least once during the week. The
working-set overlap with day 1 as one might expect, in-partial determinism percentages are high for the two end-
dicating that popularity is consistent across multi-day pe user and the SVN server workloads. Further, for each of
riods. The SVN server exhibits anomalous behavior bethese workloads, there were a non-trivial amount of non-
cause periods of highommitactivity degrade temporal sequential accesses that repeated as many as 100 times.
locality (new data gets created), while periods of highThese findings suggest that there is ample scope for op-
updateactivity improve temporal locality. timizing the repeated non-sequential access patterns.
These observations indicate that optimizing layout . .
based on past I/O activity can improve future 1/0 pen‘or-3 Overview and Architecture
mance for some workloads and motivates planning bloclBORG is motivated by the simple questiow/hat stor-

reorganization based on past activity in BORG. age system optimizations based on workload character-
_ o istics can allow applications to utilize the disk drive
2.3 Partial Determinism more efficiently than current systems do?This sec-

Partial determinisnin I/0 workload occurs when certain tion presents the rationale behind the design decisions
non-sequential accesses in the block access sequence §t&ORG and its system architecture.

found to repeat. mon-sequgntial access defined by a 3.1 BORG Design Decisions

sequence of two I/O operations that are addressed non-

contiguous block addresses. It manifests in both endA Disk-based Cache.

user systems and servers. For instance, 1/0O during appliFhe operating system uses main memory to cache fre-
cation start-up is largely deterministic, both in terms of quently and recently accessed file system data to reduce



the number of disk accesses incurred. In any given duThe file system optimizes for sequential accesses to en-

ration of time, the effectiveness of the cache is largelytire files, a common form of file access.

However,

dependent on the on-disk working-set of the 1/0 work-certain workloads, including application start-up, con-
load, and can degrade when this working-set increasetent indexing and web-page requests, exhibit a more non-
beyond the size of the page cache. Storage optimizasequential, but deterministic, access behavior. It is thus
tions such as prefetching [16, 24, 33] and 1/O schedulpossible that the same set of data can be accessed sequen-
ing [13, 26, 27, 32] help improve disk I/O performance tially by some applications and non-sequentially by oth-

in such situations.

ers. Further, some deterministic non-sequential accesses

Using a disk-based cache as an extension of the maifay only be temporary phenomenon.
memory cache offers three complementary advantages Based on this observation, Akyurek and Salem [2]
in comparison to main memory caching alone, prefetchhave argued in favor afopyingrather tharshuffling[29,
ing, and 1/0 scheduling. First, it is more effective as a39] of data. Copying retains original sequential layouts
cache (than main memory) because it offers a less expeﬁﬂ a choice of location based on the observed access pat-
sive (and thus larger) as well as reliable caching solutiontern may be possible. Reverting back to the original lay-
thus allowing data to be cache-resident for long period®utis straightforward. Similarly, rather than permangntl
of time. Second, the size of the disk-based cache caflisturbing the sequential layout of files, BORG operates
easily be configured by the system administrator with-0n copies of blocks placed temporarily in an independent
out Changing any hardware. And ﬁna”y, dynamica”y BOPT partition, Optlmlzmg for the current common case
optimizing data layout based on access patterns withi®f access for each data block.
a disk-based cache provides the unique ability to makg 2 BORG Architecture

originally non-sequential data accesses more sequential.

A Block Layer Solution.
A self-optimizing storage solution can be built at any
layer in the storage stack (shown in Figure 2). Block
level attributes of disk I/O operations are not easily ob-
tained at the VFS or the page cache layer. While file
system layer solutions can benefit from semantic knowl-
edge of blocks, they incur a significant disadvantage in
being tied to a specific file system (and perhaps even ver-
sion). Device driver encapsulations (interface at P4) are
incapable of capturing upper layer attributes, such as pro-
cess ID and request time-stamp due to I/O scheduler re-
ordering and loss of process context.

We contend that the block layer (interface at P3) is
ideal for introducing block reorganization for severatrea
sons. First, key temporal, block- and process- level at-
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Figure 2:BORG System Architecture.

tributes about disk accesses are available. Second, oper-Abstractly, BORG follows a four-stage process:
ating at the block layer makes the solution independent 1. profiling application block I/O accesses,
of the file system layer above, allowing it the flexibility 2. analyzingl/O accesses to derive access patterns,

to support multiple heterogeneous file systems simulta- 5 planninga modification to the data layout, and

neously. Finally, new abstractions due to virtualization
trends (e.g., virtual block device abstraction) as well a

network-attached storage environments (SAN and NA81
can be supported in a straightforward way. In the case
of SAN, BORG can reside on the client where all con-
text for I/O operations are readily available with the un-
derlying assumption that the SAN device’s logical block

case of NAS, the BORG layer can reside within the NAS
device where I/O context is readily available. Modifying
the NAS interface to include process associations within
file I/0O requests can complete the profile information.

Using an I ndependent BOPT partition.

4. executinghe plan to reconfigure the data layout.

n addition, an 1/O indirection mechanism runs contin-
ously, re-directing requests to the partition that it opti
Mmizes as required. Figure 2 presents the architecture of
BORG in relation to the storage stack within the oper-
ating system. The modification to the existing storage
) L ; stack is in the form of a new layer, which we teBORG
address space is optimized for sequential access. In tquer, that implements three major components: i
profiler, theBOPT reconfiguratoand thel/O Indirector.

A secondary throttle-friendly user-space component im-
plements thenalyzerand theplannerstages of BORG
and performs computation and memory-intensive tasks.
While profiling and indirection are both continuous pro-



cesses, the other stages run periodically and in succe Jg"gg(i; QIIEJSE)IEI;E - Sgg? BOtP_Tpa;t_ittiOf(‘jiOt'e”“ﬁe“
. . - . . . . I contains airty aata.
sion culminating ina reconfiguration operation. BOPT Sz BOPT partiion size.
For the 1/O profiler, we use a low-overhead kernel toolRead-cache info Offset and size of the Read-cache.
calledbl kt race [3]. The analyzer reads the 1/O trace | Write-buffer info Offset and size of the Write-buffer.
collected by the profiler and derives data access patterng Segment size Fixed size of segments in the BOPT.

Subsequently, the planner uses these data access patterns
and generates a new reconfiguration plan for the BOPT

partition, which it communicates to the BOPT reconfig- tjon of BORG. TheBORG REQUI RE bit is setwhen the
urator component. The user-space analyzer and planngfopT contains data that requires to be copied back to the
components run as a low-priority process, utilizing only g5 |f set, the operating system initiates BORG at boot
otherwise free system resources. Under heavy systefiime to ensure consistent data accesses. The remaining
load, the only impact to BORG is that generating the newWneta-data information is used to correctly populate the

reconfiguration plan would be delayed. _in-memory indirection map structure during BORG ini-
The BOPT reconfigurator is responsible for the peri-tjalization.

odic reconfiguration of the BOPT patrtition, per tag- . .
out planspecified by the planner. The reconfiguratoris-4 ~Detailed Design
sues low-priority disk 1/0Os to accomplish its task, mini- In this section, we present the design details of BORG
mizing the interference to foreground disk accesses. Fiby elaborating on its individual components.
nally, the I/O indirector continuously directs I/O requgest -
. S - 4.1 /O Profil
either to the FS partition or the BOPT patrtition, based on rotier

the specifics of the request and the contents of the BopT he /0 _profiler is a data col_lection com_ponent t_hat is
responsible for comprehensively capturing all disk /0

Table 2:Borg meta-data.

3.3 BOPT Space Management activity. The 1/O profiler generates afO tracethat in-
cludes the temporal (timestamp of the request), process
BOPT (process ID and executable) and the block-level (address
Disk: .. || eogvewadaa | reascache || wiesurer ]| .. range and read/write mode) attributes. We use@he
(a) BOPT overview events reported by blktrace [3], which capture the 1/O
requests queued at the block layer. These include all
<Segment, Segmery Segment Segmen requests as issued by the file system(s), including any

[ AN

(b) Read-Cache detail (c) Write-Buffer detalil

|| journaling and/or page destageing mechanisms. We de-
fer further details to the blktrace work [3].

4.2 Analyzer
Theanalyzeris responsible for summarizing the disk I1/0

Figure 3:Format of the BOPT partition. Each entry in workload. It first splits the I/O trace obtained from the

the Write-Buffer and Read-Cache map tables is a3_tup|€profiler into multiple 1/O traces, one per process. Each
of the form (FS LBA, BOPT LBA, valid bit) process trace is used to build a direcgdcess access
’ ' ' graph G;(V;, E;), where vertices represent LBA ranges

The OPtimized Target partition (BOPT) as managedand edges a temporal dependency (correlation) between
by BORG is shown in Figure 3. To reduce head move-two LBA ranges. The weight on an edge between ver-
ment, we suggest that the BOPT partition be createdices (u,v) represents the frequency of accesses (reads
adjoining theswappartition if virtual memory is used. or writes) fromu to v. Thedirectedandweightedgraph
BORG partitions the BOPT into three fragmerB®©RG  representation is powerful enough to identify repeated
Meta-data Read-cacheand Write-buffer The Read- sequences of multiple non-sequential requests.
cache and Write-buffer are further sub-divided into fixed-  Since multiple processes may access the same LBA,
length segments which store both data and (valid/invalidg singlemaster access grapfi(V, E), that captures all
map entries for the segment. The in-memory indirec-available correlations into a single input for the reconfig-
tion map (elaborated if 4.5) maintained by BORG is a uration planner is created (illustrated in Figure 4). The
union of all the segment map entries in the BOPT. Thecomplexity of the merge process increases if two ver-
BOPT map entries are synchronously updated each timgces (either within the same graph or across graphs) have
the in-memory map information changes. Additionally, overlapping ranges. This is resolved by creating multi-
the segment map in the write-buffer contains a “valid en-ple vertices so that each LBA is represented in at most
tries counter” to track space usage in the write buffer. one range vertex. While we omit the detailed algorithm

Table 2 depicts the BOPT meta-data fragment. Itfor vertex splitting and graph merging due to space con-
stores key persistent information that aid in the operastraints, we point out that we reduce the complexity of

| : Read-Cache segment m@: Write-Buffer segment map + valid entries counD: Data blocks I
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Figure 5: Placing the master access graph. C is

the most connected vertex and is chosen for placement

first. Next, vertexB is placedafter vertexC since it

i@ connected by an outgoing edge and has the highest
eight of all the edges connected €& Next, vertex

G is placedbe fore vertex groupC U B. The final se-

quence of vertices from the lowest LBA to the highest is:

L=[F,H,J AG,C,B,E,D).

the merge algorithm by keeping the vertices sorted by

their initial LBA. The total time complexity for the ana- tency between the FS and BOPT copies of data blocks

lyzer stage is given b (n x 1), wheren is the number S . o
. : N by maintaining a persistent indirection map, termed the
of vertices and is the size (in LBA) of the largest vertex .
bor g_map, that continuously tracks the most up-to-date

in the graph. Once the merge operation is completed, thFocation of a data block. This map is updated each time
master access grapfi, is obtained. a block location change.s

4.3 Planner The reconfigurator copies blocks in three stages:

The plannertakes the master access gragh,as input 90ing where it copies all the dirty blocks that are no
and determines a reconfiguration plan for the BOPT parlonger in the new plan back to the original file system
tition. It uses a greedy heuristic that starts by choosindFS) locationyelocate where it copies blocks that have
for placement the most connected vertex,i.e., with  t0 be relocated within the BOPT, aridcomingwhere

the maximum sum of incoming and outgoing edges (Fig-t copies all the new blocks that have to be copied from
ure 5). Next it chooses the vertexmost connected (in  the FS to the BOPT. A single data movement operation
one direction only, either incoming or outgoing)aof ~ @nd the corresponding update isor g_map entry can be

v lies on the outgoing edge af it is placed after, and ~ considered ‘atomic’ since any applicatiarmite request

if it lies on the incoming edge it is placed before. The t0 thesourceLBA during data movementis put on hold
next vertex to be placed is the one most connected to thentil after the movement is complete and the g_mep
groupu U v. This process is repeated until either all the €ntry is updated. This ensures that an up-to-date version
vertices inG are placed, or the read cache in the BOPT isOf data is always maintained by the file system.

fully occupied, or the edges connecting to the unplaceql'5
vertices in the master graph have weight below a cho- - ) S
sen threshold. If the graph contains disconnected com!Ihel/O indirectoroperates cqntlnuously, redirecting file
ponents, each of these are placed as separate groups. T§¥steém /O requests as required. An I/O request may be
time complexity for the planner i©(n x lg(m) + n?) composgd of an arbitrary number of pages. Each page
wheren is the number of vertices anah is the num-  réquest is handled separately based(gnnumber of

ber of edges; finding the most connected vertex take8l0cks that can be satisfied from the BOPT as per the
O(n x lg(m)) time and finding the next vertex takes bor g-map entry, (ii) type of operation (read or write)

Figure 4: Building the master access graph.Vertices
are defined by (start LBA, size of request). Since vertice
r1 and s; have overlapping LBAs;; is split into two
vertices in the master access graph, one with size 1 an
the other with the overlapping, blocks, starting at LBA

1 with size 2.

I/O Indirector

O(n) time . and(iii) presence of a free page in the BOPT.
] For each 1/0O request larger than one page, the indirec-
4.4 BOPT Reconfigurator tor splits it into multiple per-page requests. If a map-

The BOPT reconfiguratoimplements the plan created ping exists for all the pages of the I/O request in the
by the planner component by performing the actual datdor g_map, the request is indirected to the BOPT. If no
movement to realize the new configuration of the BOPT.mapping exists, and the request is a read request, it is is-
This task is complicated primarily because of consis-sued unchanged to the file system. If only some pages of
tency and overhead concerns. Overhead is partially ada read I/O request are mapped and the mapped entries are
dressed by issuing low-priority I/O requests for data lay-clean, the entire I/O is indirected to the file system; this
out reconfiguration, making the use of a priority sched-optimization reduces the seek overhead incurred to serve
uler a prerequisite. BORG ensures block data consisthe request partially from the BOPT and the rest from the



FS. For a write request, when no mapping exists for anyduring the reconfiguration operation. If a cycle exists, it
of the pages, the blocks are written tavete-bufferpor-  is broken by copying the last block,, back to the FS
tion of the BOPT reserved for assimilating write requests(if dirty) and then deleting the plan entry for that block;
(if space permits) along with an additional request for up-an additional plan entry is then created to mark this as
dating corresponding mapping entries in tiee g_map. i ncom ng block to L,,. Next, all remaining blocks be-
For partially-mapped writes, the mapped blocks are indonging to the same chain/cycle are copied to their new
directed to their BOPT locations; the unmapped pages$ocations in the BOPT. To do so, the reconfigurator is-
are also absorbed in the write-buffer, space permittingsues all reads to the source locations in parallel; once all
otherwise these are issued to the FS. reads have been completed, it issues all the writes in par-
allel, in each case allowing the I/O scheduler to optimize
the request schedule.

4.6 Kernel Data Structures

The persistent data structuser g_map is implemented
as a radix tree such that given an FS LBA, the BOPT5.3 Other Data Consistency Issues
LBA can be retrieved efficiently and vice-versa. It also BORG maintains metadata at the granularity qfeme
maintains thalirty information for the BOPT LBAs. For (rather tharblock) to reduce metadata memory require-
every page of 4KB, BORG stores 4 bytes each for the forment (by 8X for Linux file systems). Consequently, the
ward and the reverse mapping and one dirty bit. If all theindirector must carefully handle I/0O requests whose sizes
pages in the BOPT of siz& GB are occupied, the worst are not multiples of the page-size and/or which are not
case memory requirementisx S MB (S MB for for- page-aligned to the beginning of the target partition. We
ward and reverse mapping each), 3B for the dirty ~ address this issue via I/0 request splitting and page-wise
information. Thus, inthe worst cadsr g_map requires  indirection, techniques borrowed from our earlier work
memory of 0.25% of the size of the BOPT partition, an on EXCES [38], a block-layer extension that manages a
acceptable requirement for kernel-space memory. persistent cache for reducing disk power consumption.
5 Implementation Issues BORG_ is dynamically included in_ the 1/0O stack by

) ] ] ) . substituting therake_r equest function of the device
In this section, we discuss the particularly challengingia geted for performance optimization. While module in-
aspects of the BORG implementation that help addresggion is straightforward, module removal/unload must
data consistency and overhead. ensure that all the data from the BOPT has been copied
5.1 Persistent Indirection Map back to their original locations in the file system and han-

Since BORG replicates popular data in the BOPT spacedle foreground I/O correctly. Once again, BORG uses
the system must ensure that reads are always up-té€chniques from EXCES [38] and flushes dirty BOPT
date versions of data, including after a clean shutdowrlocks to their original locations in the file system upon
or a system crash. BORG implements a persisteniemOVaL To address race conditions caused when an ap-
bor g_map, which is distributed within read-cache and Plication issues an /O request to a page that is being
write-buffer segments of the BOPT. Map entries on-diskflushed to disk, BORG stalls (vé& eep) the foreground

are updated (along with their in-memory version) eachl/O operation until the specific page(s) being flushed are
time the BOPT partition is reconfigured or when a newWritten to the disk.

map entry is added to accommodate a new write abB Evaluation

sorbed into the BOPT. Upon writes to an existing BOPTIn this section, we compare the performance of BORG

mapped block, its indirection entry in the in-memory ith " term in which all the block located
copy of the reconfiguration map is marked as dirty, onceV' avaniia system In which ail th€ blocks are focate

the /0 is completed. To minimize overhead for BOPT in their original FS space under various workloads to an-

. RN o swer the following questions.
writes, we chose not to maintain dirty information in the 7.
on-disk copy. Upon reboot after an unclean shut down,(') How well does BORG perform@\e use the total

all entries in the persistent map are marked as dirty an&“Sk busyttllmef(l.e.]: excluding g" |d|te %ec;'lggs,) as 'ihe.prl-
future 10s to these blocks are directed to the BOPT. mary metric of performance. Uue 1o S optimiza-

tions, apart from the potentially improved head position-
5.2 Optimizing Reconfiguration ing times, the degree of merging of requests may also be
Consider a sef. of n LBAs, L1,---,L,, sequentially increased when compared with the vanilla configuration,
located in the BOPT spacé.forms achainif VL, € L,  thus changing the request pattern itself. Thus, the more
whereL; # L,, L; has to be relocated to locatidn + 1 common I/O response time metric is an ill-suited choice.
andL,, is an outgoing block. If.,,, has to be relocatedto The total disk busy time (henceforth simply referred to
L, within the BOPT,L forms acycle Information about as disk busy time) is also robust against the trace-replay
chains and cycles, that occur exclusively for the relocatedpeedups we employ in some of our experiments.
blocks, can be used to further optimize data movementii) Why is BORG effective®e would like to know if



RAM Capacity (GB)

‘ Host‘ Make ‘ Model ‘

(MB) | Total | FS | BOPT 5 Vanilla £x=x=x3

Ol WD 2500AAKS 1024 250 46 1 \?_,,
[67 WD 360GD 1024 39 24 2 @
a3 Maxtor 6L020L1 1024 20 15 2 g
A WD 2500AAKS 1024 250 180 8 §
[03] Maxtor 6L020J1 1536 20 8 1 i

[}

o

Table 3:Experimental test-bed details.

Phases

BORG performance gains are because of the sequenti
ity or the proximity of data (or both) in the BOPT. We use
two metrics,average seek distan@nd non-sequential

accesses percentaf@r this purpose. The latter is mea- spectively.R; and R, are beyond the-axis range with

# Seeks H _ H .
sured aSppcrsreas SINCE NON-sequential accesses are af 5 e5 of 272 and 564 seconds respectively.
least an order of magnitude less efficient than sequential

accesses, even a small reduction in this metric may lead
to substantial performance benefit.

(iii) When is BORG not effectiveBORG can degrade
the system performance for certain workloads. We eval8.1 Trace Replay

uate BORG for varying workloads to determine in which Tg evaluate BORG under realistic workloads, we con-
cases it could perform worse than the vanilla system.  ducted trace replay experiments using SVN server and
(iv) How much CPU resource overhead does BORG indeveloper workloads described in Table 1. For the traces
cur? While the upper bound on memory overhead wasand the replay, we useblktrace and btreplay respec-
examined in§ 4.6, the CPU resources consumed bytively [3]. We used an acceleration factor of 168X that re-
BORG should also be within acceptable limits. We useduces the experimentation time from one week to a man-
the execution times for various stages of BORG as an apageable one hour after verifying that the resultant block
proximate measure of CPU resource utilization. access sequence was unaffected. The trace-playback
(v) How is BORG affected by its parameter¥% per-  acceleration factor was reverted to 1X during each re-
form a sensitivity analysis of BORG to its parametersconfiguration operation to accurately estimate reconfig-
- reconfiguration interval, BOPT size, and BOPT write yration overhead. Since we only measure disk busy
buffer fraction - to evaluate their impact on performance.times, the comparison between normal and reconfigura-

Experimental Setup. All experiments were performed tions phases remains valid despite the varying accelera-
on machines running the Linux 2.6.22 kernels. Wetion factors.

used host machine®l throughCb, with differing hard-
ware configurations and disk drives (Table 3). We used-1-1 SVN Server
rei serfs for Ol andG8, andext 3 for the rest. No  Forthe SVN server trace replay, we used the asfTa-
additional hardware was required to implement BORG. ble 3). The write buffer size was set to 20% of the BOPT
We conducted four different sets of experiments. Thesize. Figure 6 shows the disk busy times during differ-
first set uses week-long traces of a developer’s systerant phases of the experiment. In all the reconfiguration
and a Subversion control server (SVN). The second exphases the busy time with BORG is notably higher than
periment is an actual deployment of a web server thathe vanilla case. This is due to substantial head move-
mirrors our CS department’s web server. The third ex-ment during reconfiguration for relocating blocks. The
periment evaluates BORG performance in a virtual majongest reconfiguration phase lasted approximately 10
chine environment. The fourth experiment evaluates theninutes. Rz and R, have substantially higher busy time
performance improvement due to BORG for applicationthan the previous two reconfigurations. After trace anal-
start-up events. ysis, we found that while the amount of data movement
In each experiment, we performed 4 reconfigurationavas similar across the four reconfiguration instances, in
equally spaced in time; this gave us a reasonable numbéhe latter two phases, the I/O scheduler merge ratio and
of phases for detailed analysis. By not choosing moreghe sequential disk accesses dropped dramatically; this
favorable times such as idle disk periods based on wellean be attributed to the blocks relocated within the BOPT
known diurnal workload cycles, we would only over- being spread out more than in the previous reconfigura-
estimate the overhead of BORG during reconfigurationtions. However, As is evident by the vanilla busy times,
We further discuss the selection of this paramet§Grb  the foreground activity during these intervals are negligi
and§ 7. Finally, we use the notatioR; andN; in var-  ble and thus the increased reconfiguration durations have
ious graphs to denote reconfiguration phased non- little impact to foreground 1/O.

a\hgure 6:Disk busy times in various phases of the SVN
server trace replay. R; and N; correspond to recon-
figuration phasel and non-reconfiguration phasgre-

reconfiguration phasgrespectively.



700 of the I/O history, we conducted two sets of experiments.

Vanilla &=xxxxa
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In the first experiment, we used all the traces gathered
from the beginning of the experiment as input to the re-
configurator ¢umulative. For the second, we only used
the portion of the trace corresponding to the period since
the last reconfiguratiorpértial).

Disk busy time (sec)

500
In all the non-reconfiguration phases, each of which ° 0

lasted 1.75 days approximately, BORG offers better per-
formance for foreground I/O than the vanilla configura-

tion. In the best case (rangé,;), BORG decreases the Figure 8: Disk busy time for the week long web log
disk busy time by approximately 45%. This is a sur-replay. Borg-C and Borg-Pcorrespond to using cumu-

prising result, since as per Figure 1(c), the working-se{ative and partial traces respectively.
for this workload undergoes rapid shifts. The expla-

nation lies in the fact that the SVN server is a write- Figure 8 shows the improvements in disk busy time
intensive workload and the BOPT write-buffer is Suc- 5o oo various non-reconfiguration and reconfiguration
cessful in se_quentl_ahzmg a rapidly cha_ngmg, poss'blyphases during the experiment.  For both the cumula-
non-sequential, write Work_load. Analysis of the bIOCI_( tive and partial experiments, BORG reduces disk busy
level traces revealed that with BORG, the non-sequentigin,e in 4| non-reconfiguration phases with reductions
access percentage reduced from 1.70% to 1.15%, andﬂ?ﬁnging from 14% to 35% for cumulative and 5% to
average seek distance reduced from 704 to 201 cylinder:)sg% for the partial configuration, except; for cumu-

during the non-reconfiguration phases. lative which reported a 6% increase for cumulative due
6.1.2 Developer to drastic change in the last interval's workload. Disk
busy times in reconfiguration phases are typically higher

Elor t3he Qer:/elr?pt:(t)rgfzre re_plai:/), vf\;e used thiggsﬁ?'h due to the overhead of copying data to the BOPT. Nev-

g ) with the ;’]V”te # ZF skett) to 40% ? the_ ertheless, BORG was able to obtain overall reductions of
BOPT size. Figure 7 shows the disk busy time for this; 4o, a0 1894 for cumulative and partial configuration. It

experiment in various phqses. .W'th this workload, theis interesting to note that short term training yielded bet-
Ionges_t measured reco_nflgurat|on phases weyeand ter results in this case, perhaps due to greater influence
R4 which lasted approximately 7 minutes each. We ob- f short term locality.
serve reduced disk busy times (13% to 50% reductionss)

across the non-reconfiguration periods, except/Xgr 50000 ‘
which shows an increase of 25%. Overall, the developer | reconfgurator
workload is a write-mostly workload and thus, largely 1 Analyzer ©00
conducive to BORG optimizations. Analysis of the block § o0 |
level traces revealed that overall, the non-sequential acE
cess percentage reduced from 3.93% to 3.30%, and the
average seek distance reduced from 1203 to 782 cylin-

ders when using BORG.

6.2 web Server Figure 9: BORG overhead. Bars C and P represent the

To evaluate BORG in a production server environmentcymylative and partial traces experiments respectivéllyin-

we made a copy of the our Computer Science departgicates theth reconfiguration.

ment web server on th®4 machine (see Table 3), and

replayed all the web requests for a week. During this Nextwe examine operational overhead of BORG. Fig-
week a total of 1137234 requests to 256017 distinct filesuire 9 shows the amount of time spent in each phase of
were serviced. We set BORG to reconfigure four timesthe reconfiguration. With cumulative traces, the time
during this period, using an BOPT of 8GB (6% of the  required for the analyzer and planner phases increases
180GB web server file system). To measure the influencénearly. While the planner and analyzer stages can run

Phases 3500
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as low-priority tasks in the background, we must point 3500
out that the current implementation of BORG analyzer § 3000
and planner stages are highly unoptimized and there isg 2232 I
substantial room for improvement. We discuss possi-5. 5 |
ble improvements for both subsystemsgih With par- 1000 |
tial traces, the time increases until the second recon-5 500 f i ,
figuration, but then decreases and stays almost constant 0 % " ©

for the following ones, indicating a gradually stabilizing Phases

Vanilla =xxxxa
BORG mmmmm

k Busy

A%
o o

working-set. . .
g Figure 11:BORG with a VMM.
2.0
L8 pelocate App [ Start-uptime [ Rand. /O % [ Avg seek (#cyl) |
16 Leaving mmm | V | B | V | B | V | B |
1.4 | Incoming exzzzzz

firefox 371 232 | 27 1.2 132 37
oowriter 530 | 274 | 3.8 0.2 193 20
xenmacs 726 | 272 | 21 0.3 87 9
acr or ead 6.20 2.65 4.6 0.1 39 9
eclipse 412 | 152 | 25 0.3 198 29
gi np 362 | 366 | 25 2.1 102 63
ooinpress | 5.18 | 1.97 | 2.7 0.3 61 39

Table 4: Application start-up time improvement. V:
vanilla, B: BORG.

# of Pages (millions)

Ry

Ry Ry
Reconfigurations

Figure 10:Differences in the reconfiguration plans.

To explain this further, we examined the reconfigu—mark' The results for the 1/0O performance are shown in
ration plan divided by the type of operation (refer to _F|gure 11. As beforez the reponﬁgurauon phases see a
§ 4.4), presented in Figure 10. We note that the Sizéncrea.sed disk busy tllrr_wes W|th_ BORG. For the .normal
of the plan consistently increases when using cumulativ@Peration, as the training set increases, the disk busy
traces and most of the movements correspond to page rdMes with BORG starts decreasing. Overall, there is
locates, which are page movements within the BOPT it-21 @verage decrease of 6% in busy time during the non-
self. The story is quite different for partial traces, where€configuration phases. However, this improvement is
we see pages not accessed in the past interval leaving tf@t consistent; performance degrades substantially even
BOPT, resulting in a smaller working set in the BOPT during normal operation in the early stages of the bench-

and thereby reducing the amount of work done by theM@'k. Theloss of process contektside the VMM is a
analyzer, planner, and reconfigurator stages. key problem that tends to convert sequentially laid out
files into non-sequential upon reconfiguration. We be-

6.3 Virtual Machines lieve that making BORG aware of process context inside
BORG has the potential to significantly improve the per-the VMM [14] can substantially improve the BOPT lay-
formance of virtualized environments, by co-locating out, resulting in much greater performance benefit.
multiple virtual machine (VM) localities spread across a o
physical volume. We evaluated the impact on the perS-4 Application Start-up
VM boot time and the overall performance of virtual We evaluated the impact of BORG on I/O-bound start-
machines by deploying BORG in a Xen [4] virtual ma- up phase for common desktop applications using host
chine monitor. We created four VMs, each with 64MB O3. We first trained the system for a duration of approx-
memory and 4GB physical partition on the h@st(refer  imately four hours, during which we invoked a subset of
to Table 3). For evaluating boot-time improvement, wethe applications listed in Table 4 (but specifically exclud-
trained BORG with the boot-time events of all the vir- ing gi np andooi npr ess) multiple times for perform-
tual machines. BORG showed an almost 3X average iming common office tasks. We invalidated the page cache
provementin VM boot-times - 167 seconds with vanilla periodically to artificially dilate time and simulate sys-
and 65 seconds with BORG. tem reboots. Table 4 shows the difference in application
To measure normal execution performance improvestart-up times, the percentage of sequential accesses and
ment for the VMs, we ran the Postmark benchmarkaverage seek overhead. For the applications that were
which emulates an e-mail server and creates and upised in training, it can be observed that there is a no-
dates small files. We set the number of files to be 200Qiceable improvement in the I/O time with BORG - at
in 500 directories and performed 200,000 transactiondeast 43% foroowr i t er and up to 67% foecl i pse.
We reconfigured BORG after every 20% of the bench-Further, it is interesting to observe that although the per-
mark was executed with the training set including 1/0O centage of sequential 1/Os decreasesofosr i t er and
operations from the start of the execution of the benchacr or ead with BORG, there is an overall improvement
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Figure 12: A sensitivity analysis of BORG performance teciisfigurable parameters.

in I/O performance, possibly due to a reduction in the ro-256MB to 8GB, of which the write buffer is always cho-

tational overhead . There is barely any difference in thesen as 50% of the BOPT size. Figure 12 (middle) shows
performance for untrained applicatignnp. However, that as the BOPT size increases, BORG’s performance
althoughooi npress was not used in the training, its with the developer workload increases since the devel-
start-up user-time shows an improvement of 62% in theoper workload has a larger working set. When most
average 1/O time; this can be attributed to large shareaf the blocks in the working set can be accommodated
libraries also used by theowr i t er which was included in the BOPT, the performance improvement stabilizes.
in training. Since the working set size for the SVN workload is rel-

atively smaller, the performance improvement is almost

6.5 Sensitivity Analysis same for the BOPT sizes256MB.

To gain maximum performance improvement with _ o
BORG its configurable parameters — the reconfiguratior§-2-3 Write Buffer Variation

interval, the BOPT size, and the BOPT write buffer frac- From our previous results, we pick an interval of 3 days
tion — must be carefully tuned for a given workload. To and 1 day and BOPT size of 2GB and 4GB for the devel-
better understand the effects of these parameters, we reper and the SVN workloads respectively. We vary the
played the developer and the SVN workload traces orwrite buffer from 0-100%. Figure 12 (right) shows that
hostOL varying each of these parameters over a rangéor the developer workload, not having a write buffer re-
of values. In all the experiments, the trace replay besults in the lowest throughput. There is a steady increase
gins at the same starting point, that is aftebase re- in performance, peaking at 50% write buffer. Thereafter,
configuration which uses the first six hours of the trace it starts falling since read performance begins to degrade
as the training period. We measure the relative effi-due to lesser available read cache. For the write-intensive
ciency of disk I/O using BORG averaged across the nonSVN workload, the performance increases with increase
reconfiguration intervals by reporting theprovement in the write buffer size, since all the writes can be co-
in disk busy time throughpyteferred to henceforth as |ocated in the BOPT partition.

“throughput improvement”) when compared to a vanilla

Configuring BORG parameters The above experi-
system.

ments indicate that configuring parameters incorrectly
6.5.1 Reconfiguration Interval can lead to sub-optimal performance improvements with
eﬁORG. Fortunately, iterative algorithms can be easily
demployed to identify better parameter combinations in a
straightforward way. Exploring such iterative algorithms

ore formally is one aspect of our future work.

Figure 12 (left) shows the percentage improvement ovi
the vanilla system. The reconfiguration interval is varie
from 8 hours (18 reconfigurations) to 3 days (1 reconfig-
uration). To bootstrap the sensitivity analysis, the BOPT"
size is fixed to 1GB, with 50% reserved for write buffer- 7 Discussion

ing in this experiment. For the developer workload, aSWhiIe our experiences with BORG have been mostly

the reconfiguration interval increases the throughput in- "~ .. . . . .
9 gnhp ositive, there are several directions in which the current

creases, the training set becomes larger, and BORG Ca\{/)r(]arsion can be either improved or extended. We now dis-
more effectively capture the working-set. For the SVN P '

workload, the performance decreases for higher interg:uss some of the significant directions that can serve as

vals. This is because the SVN working-set changes quit@?ljbjeCts of future investigation.

frequently (elaboration if§ 2 and Figure 1(c)). Analyzer and Planner optimization. The current ver-
sions of the analyzeg@.2) and the planneg@.3) com-

ponents of BORG do not use the results of past execu-
We use the best-case reconfiguration intervals of 3 daysons and therefore incur higher overheads for every sub-
for the developer and a day for the SVN workload from sequent reconfiguration when using cumulative traces for
the previous experiment. We vary the BOPT size fromtraining. Each of these components can be substantially

6.5.2 BOPT size



optimized by making them more intelligent. The ana-ment in I/O performance. In Akyurek and Salem’s
lyzer can build the master access graph incrementallyvork [2], the authors demonstrated the advantages of
rather than from scratch; likewise, the planner can increcopying over shuffling and the importance of reorganiza-
mentally create the new plan for BOPT reconfigurationtion at the block (rather than cylinder) level. These early
during each iteration. data clustering approaches emphasized on process- and

Alternate BOPT layout strategies. The current version 2CCess-pattern- agnostic block counts to perform the data
of BORG uses a simple BOPT layout strategy Startmgreorganlzatmn and reported simulation-based results.
from the most-connected vertex — the vertex with the Researchers have also investigate self-optimizing
highest sum of its edge-weights — in the master acces8AID systems.  Wilkeset al. proposed HP Au-
graph, and then choosing the vertex most connected tipRAID [40], a controller-based solution, that transpar-
it, and so on. Alternate layout strategies can be envi€ntly adapts to workload changes by using a two-level
sioned that potentially yield greater benefit. For instancestorage hierarchy; the upper level provides data redun-
the placement can begin with the nodes connected to th@ancy for popular data while the lower level provides
highest weight edge, and then resorting to the same incrd3AID 5 parity protection for inactive data. Work on ea-
mental addition of vertices. Alternatively, a distributed 9€r writing [42] and distorted mirrors [35] address mir-
layout algorithm can be designed which uses many startored/striped RAID configurations primarily for database
ing points for building the layout. OLTP workload (which are characterized by little local-
ity or sequentiality) that choose to write to a free sec-

;I'!mely .re;%rggu.ratgon. dThe ch_Jrre;jn_t :ecor:ﬁgﬁratlon tor closest to the head position on one more disk drives.
riggerin IS based on a fixed interval. HOWEVET,\yiq \ye are yet to explore BORG’s use in multi-disk

opportune times for performing reconfiguration are dur’systems, the optimizations used in BORG are differ-

ing periods of no or low foreground I/O activity, espe- ent and mostly complementary to the above proposals,

qa(ljly f(;r W?rlftloa&s that ex;‘.'bt'.t O?Vc'jotu_s idle or peak pe-l whereby BORG attempts to capture longer-term on-disk
riods of activity. More sophisticated triggers can use a “working-sets within a dedicated volume.

ternate metrics to identify “unwanted” or “much needed” ) . . .
reconfiguration, such as the BOPT hit rate or the per- Huetal’s work on Disk Caching Disk [10] uses an ad-

centage of sequential accesses pre- and post- indirectiodrlltlonal logging disk (or disk partition) to perform writes

. sequentially and subsequently, destage to their original
to evaluate the effectiveness of the current BOPT Iayom[ocations. Write buffering in BORG s slightly different

The above techniques can help substantially reduce the

impact of reconfiguration to foreground I/O and increase that writes to data already in the BOPT partition are

. ; ; . written in place. The DCD work does not optimize for
the effectiveness of each reconfiguration operation. o L
o _ data read operations; BORG optimizes reads as well so
Avoiding performance degradation. BORG can de-  head movement is substantially restricted.

grade performance for certain workloads, for instance, Among recent work on block reorganization, C-

a read-intensive workload that has a very large or unstayiner [17] uses advanced data mining techniques to
ble working-set{ 6.2). Future versions of BORG can be mine correlations between block I/O requests. These
made intelligent to measure the impact of reconfigurayechniques can be utilized in BORG to infer complex

tion on such workloads by comparing the percentage segjisk access patterns. The Intel Application Launch Ac-
quentiality and the spatial locality for the accesses leefor g|erator [12] reorganizes blocks used during application
(vanilla) and after (BORG) the indirection operation. If start-up to be more sequential, but does not provide a

these metrics degrade post-BORG, BORG can be disgeneric solution to improve overall disk 1/0 performance
abled. Such a mechanism will allow system performancgy ihe system.

to degrgde graceful_ly in the event that th_e W(_)rkload isnot g, throughput improvement, Schindlet al. have
conducive to benefit from block reorganization. proposed free-block scheduling [18] and track-aligned
8 Related Work extents [31] which use intelligent I/O scheduling rather

than block reorganization. These are complementary
techniques that can be used in conjunction with BORG.
Among block level approaches, our work is closest to
8.1 Block level approaches ALIS [9], wherein frequently accessed blocks as well as
Early work [41] on optimized data layout argued for block sequences are placed sequentially on a dedicated,
placing the frequently accessed data in the center ofeorganized area on the disk. There are key differences
the disk. Vongsathormt al. [39] and Ruemmler and in design and implementation, though. First, BORG in-
Wilkes [29] both propose Cylinder Shuffling. Ruemm- curs reduced space, maintenance, and metadata overhead
ler and Wilkes specifically demonstrated that perform-since it maintains at most one copy of each data block.
ing relatively infrequent shuffling led to greater improve- The multiple replicas in ALIS can become stale quickly

We examine related work by organizing the literature
into block and file based approaches.



in write-intensive workloads. Further, unlike BORG, and consequently, space and I/0O bandwidth wastage, be-
ALIS does not optimize write traffic. Finally, the evalu- come important concerns (similar to those in ALIS);
ation of ALIS techniques is performed using a disk sim-BORG maintains at most one extra copy of each block
ulator with trace playback. On the other hand, we imple-and its strength is in being a non-intrusive, storage-stack
ment and evaluate an actual system, thereby having thigiendly, and file system independent (portable) solution.

opportunity to address a greater detail of system impleg Conclusions and Future Work

mentation issues. o )
We presented BORG, a self-optimizing layer in the stor-

8.2 File level approaches age stack that automatically reorganizes disk data layout

In one of the early file oriented approaches, Staetin to adapt _to the worquad’s disk access pattern_s. BORG
was designed to optimize both read and write traffic

al. [36] proposed monitoring file accesses and mov- icallv b ki d d wri
ing frequently accessed files (entirely) to the center Oiqynamlca y by maKing reads an writes more sequen-
the disk. Log-structured file systems (LFS [28]) offer tial and res_trlt_:tlng 'T‘alo”ty .O.f head r‘.‘o"e'".”e”t within
superior performance for workloads with large number® ;mallfogct;rl‘gged disk plart|t|cc>in. dA Iﬁnux |mpl;efmen—
of small writes by batching disk writes to the end of g tation o was evaluated and shown to offer per-

disk-sequentidlog. BORG writes all data to the BOPT formance ggins ”P the average case for varied work-
partition to achieve a similar effect, but also attempts toloads including office and developer class end_—user Sys-
co-locate a majority of read operations with the Writes.ter.ns’ a W?b server, an S\./N server, .and a_thual ma-
Matthewset al.[19] proposed an optimization to LFS by chine monitor. Disk busy t|rr_1e reductions W'th B.OR(.;

incorporating data layout reorganization to improve read?croSS these workloads during non-reconfiguration in-
performance. Their use of block access graphs is similafrvals range from 6% (for the VM W°T"'°ad) to 50%

to the process access graphs used in BORG. Their LF for the developer server workload), with even greater

specific solution moves blocks within the LFS partition :/r\:;t?\riavgglggs possible with careful parameter selection

storing exactly one copy of each block at any time. Since . .
J y Ry y BORG performs occasionally worse than a vanilla

BORG stores two copies, it can optimize for sequential ifically wh d | Kload d
and application-driven deterministic, non-sequential ac s_ystem, specitically when a rea —most_y workload dras-
tically shifts its working set. BORG is able to eas-

cesses simultaneously. ily address changing working-sets with a (possibly non
Researchers have also explored data- and applicationy ging g (p y

specific lavout mechanisms. Ganaer and Kaashoek [Giequential) write workload, since it has the ability to ab-
P y S ) 9 orb and sequentialize writes inside the BOPT. A sensi-
advocate co-locating inodes and file blocks for small

files. Conversely, PLACE [23], exposes the underly-tlv'ty analysis revealed the importance of choosing the

ing layout structure to applications, so they can perform”ght configuration parameters for reconfiguration inter-

. val, BOPT size, and the write-buffer fraction. Fortu-
custom data placement. - Sivathagtial. [34] propose nately, simple iterative algorithms can be quite effective
semantically-smart disk systems (SDS) that infer file sys- Y, P 9 4

tem semantic associations for blocks, subsequently used identifying the right parameter combination; a formal

o . ; . : investigation of such an approach is an avenue for fu-
for aligning files with track boundaries. Windows K Th d heads | db
XP [21] usesthe defragmenterforco—locatingtemporallyture work. The memory an CPU overheads incurred by

BORG are modest, and with ample scope for further op-

correlated file data for speeding up application Start'un[imization. In summary, we believe that BORG offers a

events. BORG is a generic solution in comparison to the . L -
) . .~ . hovel and practical approach to building self-optimizing
above approaches, since it creates a block reorganization

mechanism that can adapt to an arbitrary workload. storage systgms that can offer- large 1/O performance im-
. . provements in commodity environments.
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