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Abstract— As the use of Electronic Medical Records (EMRS)
becomes more widespread, so does the need for effective informa-
tion discovery within them. Recently proposed EMR standards
are XML-based. A key characteristic in these standards is the
frequent use of ontological references, i.e., ontological concept
codes appear as XML elements and are used to associate portions
of the EMR document with concepts defined in a domain
ontology.

A rich corpus of work addresses searching XML documents.
Unfortunately, these works do not make use of ontological refer-
ences to enhance search. In this paper we present the XOntoRank
system which addresses the problem of ontology-aware keyword
search of XML documents with a particular focus on EMR
XML documents. Our current prototypes and experiments use
the Health Level Seven (HL7) Clinical Document Architecture
(CDA) Release 2.0 standard of EMR representation and the
Systematized Nomenclature of Human and Veterinary Medicine
(SNOMED) ontology, although the presented techniques and
results are applicable to any EMR hierarchical format and any
ontology that defines concepts and relationships.

I. INTRODUCTION

The National Health Information Network (NHIN) and
its data-sharing building blocks, RHIOs (Regional Health
Information Organizations), are encouraging the widespread
adoption of Electronic Medical Records (EMR) for all hos-
pitals within five years. A key component of this effort is
the standardization of EMR. To date, there has been little
or no effort to define methods or approaches to search such
documents effectively.

One of the most promising standards for EMR manipulation
and exchange is Health Level 7’s [1] Clinical Document Archi-
tecture (CDA) [2], which leverages a semi-structured (XML)
format, and ontologies to specify the structure and semantics
of EMRs for the purpose of Electronic Data Interchange (EDI).

In this paper we present the XOntoRank system, which ad-
dresses the problem of facilitating ontology-aware information
discovery within a corpus of XML-based EMR documents.
By information discovery [3], [4] we mean the extraction of
relevant pieces of data from a database given a user query.
Information discovery can be viewed as an extension of tradi-
tional Information Retrieval (IR), which ranks the relevance of
unstructured documents given a keyword query. Hence, given
a question (query) and a set of EMRs, we need to find the
entities (typically subtrees) that match the query, and rank
them according to their “goodness” with respect to the query.
The success of Web search engines has shown that keyword
queries are a useful and intuitive approach to information
discovery. Therefore, we focus on keyword queries in this
paper.

A large corpus of work (e.g. [5], [6], [7], [8]) addresses key-
word search of XML documents, where the query keywords
are matched to XML nodes and a minimal tree containing
these nodes is returned. A variety of ranking techniques are
used, ranging from the size of the result-trees to adaptations of
Information Retrieval (IR) scoring. Investigators have explored
ontologies (e.g. [9], [10]) for XML querying; we compare
them to our work in Section VIII.

For example, consider the query “Bronchial Structure Theo-
phylline” and a CDA document such as the one in Fig-
ure 1, which is explained in detail in Section II. The phrase
“Bronchial Structure” does not appear in this document.
Hence, most traditional XML-based keyword search systems
will not return any results. However, this document contains
an ontological reference to an “Asthma” concept defined in
SNOMED (in Line 39, Figure 1). The SNOMED ontology fur-
ther defines a “finding-site-of ”” relationship between “Asthma”
and “Bronchial Structure” (as shown in Figure 2). Hence,



based on the definitions in the ontology, a result tree connect-
ing the “Asthma” node of Line 39 and the ““Theophylline”
node of Line 50 can be created as output.

The use of ontological definitions allows us to perform
semantic search on the XML documents. We no longer require
an exact match between keywords in the query and in the
document, but we can make use of the domain ontology
to infer a semantic relationship between keywords in the
query and terms in the document. This allows returning more
results than would otherwise be returned with an exact-match
requirement. This paper makes the following contributions:

1) Introduce the problem of ontology-aware keyword
search among XML-based EMR documents, which can
be extended to general XML documents.

2) Define the semantics of what constitutes a result and how
the results are ranked for the problem of ontology-aware
keyword search within the EMR. We leverage previous
work related to searching XML data.

3) Develop a set of techniques to compute the degree
of association between ontological concepts that take
into account both taxonomic is-a links as well as more
general semantic relationships between concepts. This is
a core component of our ranking framework.

4) Create and experimentally evaluate algorithms to answer
efficiently ontology-aware keyword queries in EMRs.
These algorithms were tested with real EMR data ac-
quired from a local hospital.

We note that our study does not address the important
privacy issues involved in accessing patient information, as
required by HIPAA [11]. The policies and principles described
in [12] could work as a starting point in achieving Hippocratic
information discovery.

The rest of this paper is organized as follows: Section II
presents background knowledge. Section III defines the prob-
lem and its semantics. Alternative approaches to compute the
semantic relevance of an ontological concept to a keyword
are presented in Section IV. In Section V we present the
architecture. Section VI presents the algorithms to implement
the approaches of Section IV. Section VII presents the ex-
perimental evaluation of XOntoRank. Section VIII presents
previous work and we conclude in Section IX.

II. BACKGROUND

HL7: Health Level Seven (HL7) [1] is a not-for-profit organi-
zation that provides standards for interoperability in the health-
care industry, mainly focused on clinical and administrative
data. HL7 is an American National Standards Institute (ANSI)
-accredited Standards Developing Organization (SDO) that
includes providers, vendors, payers, consultants, government
groups and other entities interested in developing clinical and
administrative standards for healthcare.

HL7 standards specify a series of flexible standards to
facilitate the communication between heterogeneous systems
and vendors, allowing information to be shared and pro-
cessed in a uniform and consistent manner. During the years,
HL7 has developed Conceptual Standards (i.e. HL7 RIM),

1 <? xm version="1.0" ?>

2 <dinical Document xm ns="urn:hl 7-org: v3" xni ns:voc="urn: hl 7- or g: v3/ voc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schen®- i nst ance"
xsi : schenaLocati on="urn: hl 7-org: v3 CDA. Rel easeTwo. Conmi tt ee. 2004. xsd"
tenpl atel d="2. 16. 840. 1. 113883. 3. 27. 1776" >

3 <id extension="c266" root="2.16.840.1.113883.3.933" />

5 <author>

6 <time val ue="20040407" />

7 <assi gnedAut hor >

8 <id extension="KPO0017" root="2.16.840.1.113883.3.933" />
9 <assi gnedPer son>

10 <name>

11 <gi ven>Juan</ gi ven>

12 <fam | y>Wodbl ack</fam | y>

13 <suf fi x>MD</ suf fi x>

14 </ name></ assi gnedPer son></ assi gnedAut hor ></ aut hor >
15 <recordTarget>
16 <pati ent Rol e>

17 <id extension="49912" root="2.16.840.1.113883.3.933" />
18 <patientPatient>

19 <name>

20 <gi ven>Fi r st Name</ gi ven>

21 <fam | y>Last Nane</fami | y>

22 <suffix>Jr.</suffix>

23 </ nane>

24 <adni ni strativeGender Code code="M codeSystens"2.16.840.1.5.1"/>
25 <bi rt hTi ne val ue="20020924"/ >

26 </ patientPatient>

27 <provi der Or gani zat i on>

28 <id extensi on="M45" root="2.16.840.1.113883. 3. 933"/ >

29 </ provider Organi zati on></ pati ent Rol e></r ecor dTar get >
30 <conponent >
31 <Struct ur edBody>

32 <conponent >

33 <section>

34 <code code="10160-0" codeSystem="2. 16. 840. 1. 113883. 6. 1"
codeSyst enName="LO NC'/ >

35 <title>Medications</title>

36 <entry>

37 <bservati on>

38 <code code="84100007" codeSysten¥"2.16.840. 1. 113883. 6. 96"

codeSyst emName="SNOVED CT" di spl ayNanme="Medi cations"/>
39 <val ue xsi:type="CD' code="195967001" codeSystenr

"2.16.840.1.113883. 6. 96" codeSyst emNanme="SNOVED CT"
di spl ayName="Ast hma" >

40 <ori gi nal Text ><ref erence val ue="ml"/></ori gi nal Text >

41 </ val ue></ Cbservation></entry>

42 <entry>

43 <bservati on>

44 <code code="84100007" codeSysten¥"2.16.840. 1. 113883. 6. 96"
codeSyst enName="SNOVED CT" di spl ayName="Medi cations"/>

45 <val ue xsi:type="CD' code="32398004" codeSystenr

"2.16.840.1.113883. 6. 96" codeSyst enName="SNOVED CT"
di spl ayName="Bronchitis">
46 <val ue xsi:type="CD' code="91143003" codeSystenr
"2.16.840.1.113883. 6. 96" codeSyst enName="SNOVED CT"
di spl ayName="Al buterol " />

a7 </ val ue></ Cbservati on></entry>

48 <entry>

49 <Subst anceAdni ni stration>

50 <t ext ><cont ent | D="nl">Theophyl | i ne</ cont ent >20 ng every

other day, alternating with 18 ng every other day. Stop
if tenperature is above 103F. </text>

51 <consunabl e>
52 <manuf act ur edPr oduct >
53 <manuf act ur edLabel edDr ug>
54 <code code="66493003" codeSystem="2.16.840. 1. 113883. 6. 96"
codeSyst emNane="SNOMED CT" di spl ayName="Theophyl | i ne"/>
55 </ manuf act ur edLabel edDr ug></ nanuf act ur edPr oduct ></ consumabl e>
56 </ Subst anceAdni ni stration></entry>
57 </ secti on></ conponent >
58 <conponent >
59 <section>
60 <code code="11384-5" codeSystem="2. 16. 840. 1. 113883. 6. 1"
codeSyst emNane="LO NC'/ >
61 <title>Physical Examination</title>
62 <conponent >
63 <section>
64 <code code="8716-3" codeSystenr"2. 16.840. 1. 113883. 6. 1"
codeSyst enName="L0 NC'/ >
65 <title>Vital Signs</title>
66 <text>
67 <tabl e>
68 <tr>
69 <t h>Tenper at ure</th>
70 <td>36.9 C (98.5 F)</td>
71 </tr>
72 <tr>
73 <t h>Pul se</th>
74 <td>86 / minute</td>
75 </tr></tabl e></text>
76 <entry>
7 <bservati on>
78 <code code="50373000" codeSysten¥"2.16.840.1.113883. 6. 96"
codeSyst enName="SNOVED CT" di spl ayNane="Body hei ght"/>
79 <effectiveTime val ue="200404071430"/ >
80 <val ue xsi:type="PQ' value="1.77" unit="nt />
81 </ Cbservat i on></ entry></ secti on></ conponent ></ sect i on></ conponent >

82 </ StructuredBody></ component ></ d i ni cal Docunent >

Fig. 1. HL7 CDA Sample Document



Document Standards (i.e. HL7 CDA), Application Standards
(i.e. HL7 CCOW) and Messaging Standards (i.e. HL7 v2.x
and v3.0). These standards define the language, structure and
data types that participate in the integration of heterogeneous
systems [13].

SNOMED CT: The International Systematized Nomenclature
of Human and Veterinary Medicine (SNOMED) [14] has
matured into a comprehensive set of over 150 000 records in
twelve different chapters or axes. SNOMED Clinical Terms
(SNOMED CT) is a universal health care terminology and
infrastructure. The SNOMED CT (simply termed “SNOMED”
in the rest of the paper) structure is concept-based; each
concept represents a unit of knowledge, having one or more
natural language terms that can be used to describe the
concept. Every concept has relationships with other concepts,
including hierarchical *““is-a” relationships as well as other
relationships that describe clinical attributes.

Figure 2 shows a sub graph of the SNOMED ontology
graph. At the moment, SNOMED contains more than 325 000
concepts, with 800 000 terms in English, 350 000 in Spanish
and 150 000 in German. Also, there are 1 200 000 relationships
connecting these terms and concepts. SNOMED terms are
referenced in CDA documents by their numeric codes.
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Fig. 2. Subgraph of SNOMED Ontology.

Clinical Document Architecture (CDA): CDA is an XML-
based document markup standard that specifies the structure
and semantics of clinical documents, such as discharge sum-
maries and progress notes, for the purpose of exchange. It is
an ANSI-approved HL7 standard, intended to become the de
facto standard for electronic medical records. Figure 3 [15]
shows a fragment of the CDA’s Object Model that represents
the semantic constructs of the Reference Information Model
(RIM) [16], depicting the connection from a document section
to a portion of the CDA clinical statement model with nested
CDA entries. The colors in Figure 3 identify these classes with

the core classes of RIM (Red for Act specializations, blue for
Participations, green for Entities, yellow for Roles and pink
for Relationships).
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Fig. 3. Fragment of CDA Object Model.

Figure 1 depicts a sample CDA document, D;, which is
wrapped by the “ClinicalDocument™ element, as it appears in
Line 2. The CDA header (Lines 3-29) identifies and classifies
the document, and provides information about the participants
(patient and providers). The CDA body (Lines 30-82), which
is wrapped by the “StructuredBody” element, is the core of
the document. It can be either an unstructured segment or
an XML fragment. Every information unit is allocated as
a section under a component, following the class diagram
of Figure 3. A section can represent any of the entities
under the clinicalStatement superclass, and hence we find
several sections such as Observations (Lines 37 and 43) and
Substance Administration (Line 49).

We focus on structured CDA documents, which provide
a better opportunity for high-quality information discovery.
Traditional Information Retrieval (IR) approaches [17], [18]
can be applied to the unstructured scenario. Note how cer-
tain XML elements in D; reference concepts of SNOMED.
For example, Line 39 in Figure 1 references the SNOMED
(as system code=2.16.840.1.113883.6.96"") concept with
code=*84100007"".

III. PROBLEM DEFINITION AND SEMANTICS

XML data: Our data collection is a set D = {T4,...,T,}
of XML documents. We view an XML document as a labeled
tree T'. Each node v € T has:

a. A textual description v.tezt, which is the concatenation
of its tag name, attribute names and values, and text
content, and

b. An optional ontological reference v.onto, which typ-
ically consists of an integer code v.onto.system for
the referenced ontological system (e.g., SNOMED) and
an integer code v.onto.concept for the specific concept
(e.g., “Asthma”).

Nodes with ontological reference are called code nodes. The

set of ontological systems referenced by nodes in D is called
ontological systems collection O = {O1,...,0;}.



For instance, the node of Line 39 in Figure 1
has vtext="‘value xsi:type="“CD” code=*195967001"
codeSystem=*2.16.840.1.113883.6.96” codeSystem-
Name="“SNOMED cT” displayName=*“Asthma™,
v.onto.system = 2.16.840.1.113883.6.96, and
v.onto.concept = 195967001. Note that some attribute
values like code strings are not included in v.tezt since these
are unlikely to be used in a query keyword or in ontology
reference words from. An expert specifies the attributes that
should not be included in the textual description.

In the algorithms presented in this paper we ignore ID-
IDREF edges as well as inter-document references, since
we build on tree search algorithms. However, the techniques
we use to incorporate ontological information are straightfor-
wardly applicable to graph search algorithms as well (i. e.
when ID-IDREF edges are considered [8]).

Keyword Search: A keyword query @ is a set {w1,...,wn}
of keywords. Previous work, which ignores ontological refer-
ences, has generally defined the results as subtrees of the XML
documents that contain all query keywords (see Section VIII
for an overview of related work). In this work we adopt
the result semantics of XRANK [6], which is a popular
representative of this class of works, and extend it to account
for ontological references. Any other system could be extended
in a similar way. The key extension is that instead of requiring
keywords to be contained in the nodes of the result subtree,
we require that the result subtree has nodes associated with
every query keyword. Let NS(v,w) (Node Score), whose
computation is explained later, be the association degree of a
node v with respect to a keyword w which is directly contained
in v or is associated to v through an ontology. The result of
@ for a document T' € D is defined as follows. Let

Ry = {v|v € TA
Yw € QIu € (Desc(v) Uv)(NS(u,w) > 0)}

be the set of elements that are, themselves or through their
descendant nodes, associated to all query keywords of Q.
Desc(v) is the set of descendants of v in 7.

The result of the query @ is defined as:

Result(Q) = {v|Vw € Q,Tu € (Desc(v) Uv)
(NS(u,w) > 0A -3t € Desc(v)(t € Ro))} (1)

Intuitively, a result v is an element that has sub-elements
associated with each of the query keywords, but no sub-
element is associated with all keywords. Note that Result(Q)
is a subset of Ry. The latter condition ensures we do not
generate non-specific results.

For instance, if query q=[*“asthma”, “medication’] is exe-
cuted on the document of Figure 1, we get the XML fragment
depicted in Figure 4, being the most specific sub-element in
the CDA document that contains both terms in the query. Note
that in the case, both terms are actually contained in the XML
fragment. In general, though, the terms need not be in the
fragment, but may be associated with nodes in the fragment
through the ontology.

<Cbservati on>
<code code="84100007" codeSystenr"2.16.840.1.113883. 6. 96"
codeSyst enNane="SNOMVED CT" di spl ayNanme="Medi cati ons"/>
<val ue xsi:type="CD' code="195967001" codeSystenr
"2.16.840.1.113883. 6. 96" codeSyst emNane="SNOVED CT"
di spl ayNanme="Ast hma" >
<ori gi nal Text ><ref erence val ue="ml"/></ori gi nal Text >
</ val ue></ Cbservati on>

Fig. 4. XML Fragment representing the answer to query g=[“asthma’,
“medications’].

Score of results: As mentioned above, NS(v,w) is non-
zero if a node v directly contains w or is associated to w
through an ontological system. This score is propagated to
other nodes of the XML document as follows. The propagated
score PS(v,w,u) of an element v with respect to keyword
w, assuming that a sub-element u of v has NS(u,w) > 0, is

PS(v,w,u) = decay' - NS(u,w) )

where | = distance(v, u) is the number of containment edges
between v and u. Decay is set between 0 and 1 to account
for the specificity of a result.

Given that multiple sub-elements of v may be associated
with w, we use the following formula for the overall score of
v given w

Score(v,w) = MaATyepesc(vyun PSSV, w, u) 3)

Other monotonic aggregation functions are also possible.
The score of a result element v for @ is

Score(v,Q) = Z Score(v,w) ()
wEQR

Again other monotonic aggregation functions are possible.

Association degree of node to keyword: The association
degree NS(v,w) of node v € T, T' € D with respect to a
keyword w, given documents collection D and an ontological
systems collection O is a combination of its IR score with
respect to w and its ontological association to w.

IRS(v.text,w), >
OSv.onto.system (CN(U.OTLtO), ’IU) (5)
where TRS(d,w) is the IR score of a document d given
keyword w within the collection D. D is an implicit input
to IRS(-) since popular IR functions [17], [19], [20] use the
document frequency (df) which is computed over D. We view
each XML element as a document to apply the IR function.
In our experiments we use the BM25 [19] function.
OSy.onto.system (W, W) is the association degree (OntoScore)
of a node (concept) u € O;, where O; is specified by
v.onto.system, to keyword w, and is computed by exploiting
the relationships in O;, as explained in detail in Section IV.
CN(v.onto) returns the concept node with code
v.onto.concept in the ontological system specified by
v.onto.system. For instance, consider the document of
Figure 1 and the ontological system of Figure 2. C'N (v.onto)
for the code element v of Line 39 in Figure 1 will return the

NS(v,w) = maz (



concept node “Asthma” identified with the code 195967001
in Figure 2. TRS(-) and OS(-) are normalized to [0, 1].

The intuition of (5) is that a node v may be associated
with a keyword w either through its textual description v.text
or through its ontological reference v.onto. We then pick the
strongest one. The OS(-) term of a non-code node is 0. Again,
alternative monotonic aggregation functions are possible.

For instance, for the keyword w="Asthma” assuming node
v of Line 39 in Figure 1 has IRS(v.text,w) = 0.3 and its
related SNOMED node u has OSsyomEp (u, w) = 0.5, its
NS (v, w) would be 0.5.

IV. SEMANTIC RELEVANCE OF ONTOLOGICAL CONCEPTS
TO KEYWORDS

A key component of XOntoRank is the derivation of se-
mantic relevance of a concept v in the ontology to a query
keyword w. Since nodes in an XML document may refer to
concepts in the ontology, this derivation essentially quantifies
the semantic relevance of an XML element to a query keyword
based on terminological definitions in the ontology.

The Semantic Web community has developed various mech-
anisms to determine semantic similarity of concepts in an
ontology (see Section VIII for a description of Related Work).
However, most existing measures do not use relationship
information between concepts in a general manner. The main
advantage of ontologies like SNOMED over simpler tax-
onomies is that they describe various kinds of relationships
between concepts, which can be used to calculate relevance
measures.

We view the ontology as a graph, where the nodes in the
graph represent concepts, and edges represent relationships
between concepts. Our approach for calculating the semantic
relevance of a concept to a query keyword is inspired by the
idea of authority flow. Initially, each concept in the ontology is
granted a certain authority based on how strongly it is related
to w, as measured by its IR score. Authority then flows from
these concepts to other concepts in the ontology based on
certain rules. Note that the authority flow occurs in a recursive
fashion and hence, it can affect descendants and not only direct
children of the involved elements.

In this section, we examine various strategies for directing
the flow of authority, based on different views of the ontology.
For simplicity of presentation we consider a single ontology
Oy and omit the Oy subscript at OS(). We use the overloaded
function OS(v,w, ) to represent the relevance of concept v
to keyword w due to the occurrence of w in another node z
in the ontology. It is:

OS5 (v, w) = mazyeco,(0S(v,w,x)) (6)
Other monotonic aggregation functions are possible.

A. View Ontology as Undirected, Unlabeled Graph

This strategy treats the ontology as an undirected graph,
with no distinction among the different kinds of relationships
between concepts. Based on this view, we define OS(v, w, z)

as:
0S(v,w,z) = IRS(x,w) - decay’ @)

where | = distance(v, z) and 0 < decay < 1.

B. View Ontology as Taxonomy

This strategy only considers the taxonomic portion of the
ontology, i.e. we only consider is-a links between concepts for
calculating OntoScore. The is-a links form a Directed Acyclic
Graph (DAG), since cycles are not permitted based on subclass
relationships. OS(v, w, z) is computed recursively using (6)
and the following two cases:

i x is a superclass of v, i.e., there is a path from v to z

in the DAG formed by the is-a links. In this case,
OS(v,w,z) = IRS(z,w)

The intuition behind this definition is that since x is
a superclass of v, any query for z is completely and
logically satisfied by v. For example, let v be “Asthma”,
w be “Bronchus” and x be ““Disorder of Bronchus”
(“DOB”) in the ontology fragment of Figure 2. It is
OS(“Asthma”, “Bronchus”, “DOB”) = IRS(*“DOB”,
“Bronchus™). An extreme case of this rule is when z is
the same as v. In this case, OS(v,w,v) = IRS(v,w).

ii z is a direct subclass of v, i.e. there is an is-a link
from 2z to v. In this case,

OS(v,w,z) = IRS(z,w) - (1/n)

where n is the number of subclasses of v. The intuition
behind this definition is that since z is a subclass of v,
any query for z is partially satisfied by v. Our heuristic
for calculating the extent of the partial satisfaction is
based on the number of subclasses of v, similarly to
the authority flow distribution in [21]. For example,
let v be “Disorder of Bronchus”, w be ‘““Asthma’ and
x be “Asthma” in Figure 2. In the actual ontology,
the concept “Asthma’ has 26 direct subclasses. Hence,
in this case, OS(*“Disorder of Bronchus”, “Asthma”,
“Asthma’) = IRS(“Asthma”, “Asthma’) *(1/26).

C. Including the Relationships between Concepts

To handle different kinds of relationships, we interpret
concepts and relationships in SNOMED using description
logics [22]. Many biomedical ontologies, including SNOMED,
belong to a category of Descriptions Logics called ££T [23].
Concepts in this logic are defined as follows:

C:=A|T|ICnDJ3r.C ®)

where A ranges over atomic concept names
T is the top concept
r ranges over relationship names
C, D are concept names

I is the concept intersection operator

The Jr.C' construct is an existential quantification operator
that declares the existence of a relationship (or role) to a
concept C'. We can also view 3r.C as a concept where every
instance of the concept is related by role r to an instance
of a concept C'. We call such a concept an existential role



restriction, since it describes a constraint or restriction on the
values of a relationship. (8) describes the different ways in
which a concept can be defined in the ££T logic. The ££T
logic also defines subclass (or concept inclusion) relationships
between concepts as C' C D.

Some examples of £L1 expressions from Figure 2 are:

Disorder of Thorax L Finding of Region of Thorax
Asthma Attack C Asthma
M JFinding-site-of.Bronchial Structure

Consider the last statement, which says that “Asthma At-
tack™ is a concept that is a subclass of Asthma and that
has a finding-site-of relationship to the “Bronchial Structure”
concept. In other words, any instance of “Asthma Attack™ (e.g.
the “Asthma Attack suffered by” a specific patient) is also
an instance of “Asthma” and is found in some instance of
“Bronchial Structure™.

This description logic view allows us to describe every
concept as a subclass of a set of atomic concepts or existential
role restrictions. Hence, we can reduce a graph with different
kinds of relationships into one that has only subclass or is-a
relationships.

For example, consider an ontology graph fragment depicted
in Figure 5. A description logic view of this ontology would
appear as shown in Figure 6. The dotted links between
concepts represent is-a links, meant to indicate the relationship
between a concept X and a 3r.X for any role 7.

&

Fig. 5.

Sample Ontology Fragment.

Fig. 6. Ontology’s Description Logic View.

We now calculate OS (v, w, z) in this logically transformed
ontology graph using an extension of the strategy of Sec-
tion IV-B. In particular, if there is a “dotted link” between
z and v, i.e. one of x or v is of the form C, and the other is
of the form 3r.C, then,

g/Nrp a - g/(NreNy) o - a/( NrgNeac)

a - a/(nme)

OS(Aw,A) = q

a - a/(nrg)

Fig. 7. OntoScore Propagation. n; is the number of subclasses of node 3.

OS(v,z,w) = 0S(z,w) -« )

Here, a represents the decay in semantic relevance when
traversing a dotted link between a concept C' and a role
restriction 3r.C.

As an example, assuming that OS(A, w, A) = g, then the
OntoScore would propagate as shown in Figure 7 to different
nodes in the ontology.

We provide a syntactic name to the concepts corresponding
to existential relationship restrictions so as to allow calcu-
lating TRS(z,w) when z is a role restriction concept of
the form Jr.C'. The syntactic name in our implementation
is “Exists”+r+C. For example, the relationship “finding site
of” between “‘Asthma Attack™ and *““Bronchial Structure” in
Figure 2 gives rise to the new existential role restriction named
“Exists finding site of Bronchial Structure”.

V. ARCHITECTURE AND SYSTEM OVERVIEW

In this section we present the architecture and overview of
the XOntoRank system.

A. XOntoRank Architecture

Figure 8 shows the architecture of XOntoRank, which is
divided into two stages. The pre-processing phase consists of
the Index Creation Module, which takes as input the corpus
of XML-formatted EMR documents to be indexed (CDA in
our experiments), the ontological system(s) referenced in the
EMR documents and the set of all keywords (the vocabulary)
to be indexed.

The Index Creation Module generates the XOntoRank
Dewey Inverted Lists (XOnto-DILs) which are inspired from
the Dewey Inverted Lists of XRANK [6]. XRANK is based on
ElemRank, a variation of the PageRank algorithm that exploits
the structure and containment edges of XML documents. The
key difference is that instead of ElemRank(v) we store
NS (v,w), that is, the relevance score of node v with respect
to keyword w given the XML documents and the ontological
systems, defined in (5). ElemRank could be incorporated in
NS (v,w) but our CDA documents have no ID-IDREF edges
and hence ElemRank would make no difference.

For example, Figure 9 shows the Dewey ID’s generated
for a subset of the document of Figure 1. We have truncated
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Fig. 8. XOntoRank Architecture.
the prefix in the Dewey ID’s for space constraints. Figure 10
shows a fragment of the XOnto-DIL for the same document.
Note that the first component of each Dewey ID is the
document ID. The process to build XOnto-DILs is described
in detail in Section VI-B.

<SubstanceAdministration:
0.5.0.3.0

<content>
0.5.0.3.0.0
0.5.0.2.0.1

Theophylline

Medications

History Taking
(Medication)

Asthma

Fig. 9. Dewey IDs for CDA Document.
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Asthma ~——6.0.5.0.2.0.1 0.83
9.0.5.0.1.0.2 0.38

Thepohylline —m» 5.1.3.0.0.2.2 .76
6.0.5.0.3.0.0 .57

Fig. 10. Dewey Inverted List for CDA Document.

During the query phase, the Query Module inputs the user
keyword query and executes XRANK’s DIL algorithm using
the XOnto-DILs generated in the pre-processing phase. The
Database Access Module then obtains the appropriate XML
fragments addressed by the resulting Dewey ID’s.

B. Building the XOnto-DILs

In this section we describe how the XOnto-DILs are com-
puted for the various semantics described in Section IV. We
compute XOnto-DILs for all words in the Vocabulary, defined
as the union of words in the ontological systems Oq,...,0s

and in documents in D. As above, we assume there is a single
ontological system (Og. XOnto-DILs are computed in three
stages:

Full-text Indexing: First, we build a full-text index of the
CDA documents and the ontology. This phase is common to
all the algorithms, and computes the TF-IDF score.
OntoScore Computation Stage: Second, we build an On-
toScore Hash Map M, that stores the OS (v, w) for every pair
(v, w) of concept node v and keyword w with OS (v, w) >
threshold, where threshold is a predefined value used to
improve the efficiency of building M. We chose a threshold
that could give us a balance of space and quality. The details
of computing M, as well as the criteria to choose threshold
are presented in Section VI.

DIL Creation: Finally, we compute the XOnto-DILs for the
documents in D. The NS (v, w) for each pair (v,w) of node
v € T;, T, € D, w € Vocabulary is computed by (5),
where OS(CN (v.onto),w) is retrieved from Hash Map M.
We show how M is computed in the next section.

VI. ONTOSCORE COMPUTATION ALGORITHMS

In the next sections we show how the Hash Map M
is computed during the OntoScore stage for each of the
OntoScore computation methods described in Section IV.

A. Ontology as Undirected Graph

If a node v € O; can be reached from multiple concept
nodes uq,...,uz, then we assign to w the maximum score
that any of uq,...,u,; would assign. Again other aggregation
functions are possible.

0S(v,w) = mawi=1..2(0S (v, w,u;)) (10)

The algorithm to compute the Hash Map M in the On-
toScore phase is depicted in Algorithm 1.

An inefficiency of Algorithm 1 is that it does breadth-first-

search (BFS) starting from all nodes that contain keyword
w (Line 4). This can potentially lead to traversing the same
node multiple times, once for each BFS instance. This can be
avoided using the following observation:
Observation 1: If multiple BFS instances arrive at a node, then
we only need to propagate one value, which corresponds to the
aggregate function, that is, we merge the met BFS expansions
into one with the aggregate node score.

The reason is that the score propagates by multiplying by
decay for each level. Hence, if v has score f(OS;,0S;) where
f() is the combining function (maz in (10)), a node u with
distance [ from v will have score f(O0S;,0S;) - decay'. If
we would ignore this observation and do the BFS expansions
independently, u would get score f(OS;-decay', 0S;-decay').
The two quantities are equal for any reasonable combining
function f(-) like maz, sum, and product.

The above observation is implemented by doing the follow-
ing changes to Algorithm 1. We replace Line 4 by 4’ and
insert Lines 6.1, 6.2 after Line 6.



Input: Vocabulary V, SNOMED Ontology graph O
Output: Hash Map M with key: pair (v, w) where v
is concept node id and w is keyword, and
value: OS(v,w)
1 foreach keyword w in V do
/* Find all concept nodes in O
that contain w */
2 S + getRootSet(w, O);
3 foreach concept s € S do
4 do BFS from s;
5 foreach accessed concept node v do
6 Compute OS(v,w); /* By Eq. 7 */
/* 1f expanding fromu to wv,
0S(v,w) = OS(u,w) - decay */
7 if M.get(v,w) < OS(v,w) then
8 | M-mt((v:w):os(vaw));
9 else
10 | Stop BFS expansion for v;
1 end
12 end
13 end
14 end

Algorithm 1: Compute OntoScore Hash Map.

4 do BFS in parallel from s;

61 if v already has an OS score then
6.2 Stop expanding v for expansion instance that produced
the smallest O.S (v, w);

Note that to do BFS in parallel we insert all nodes in .S in
the BFS queue and then do BFS as usual. To halt the expansion
of a node v (Line 6.2 in the correction above) that has already
been processed and its adjacent nodes C' have already been
inserted in the queue, we maintain pointers from v to C' in the
queue, and remove from the queue the nodes in C' when v’s
expansion is halted.

B. Ontology as Taxonomy

As mentioned in Section IV-B, we restrict the links used to
compute OntoScore, by only considering the is-a and inverse-
is-a edges in SNOMED. Hence, the first modification is to
change the loop in Line 3 of Algorithm 1 to restrict the BFS
to only follow these two types of relationships, capturing only
the taxonomic portion of the ontology.

We also modify the way in which OS(v,w) is computed
(Line 5 of Algorithm 1), replacing the formula in (7) by the
cases exposed in Section IV-B. In particular, if we expand

from node u with OntoScoreOS(u,w) to node v, then:

o if u =% o then OS(v,w) = pposlet)

o if u *=% v then O0S(v,w) = OS(u,w)
where InDegree,(v) is the number of incoming relationship
edges of type 7.

The rest of the algorithm stays as specified in Algorithm 1,
using the same threshold constraints and the same optimization

described in Observation 1.

C. Ontology as Collection of Relationships

In this case, as mentioned in Section IV-C, all relationship
edges are considered. We enumerate below how the expanded
nodes are assigned OntoScores without having to physically
create the ontological graph with the existential role restric-
tions described in Section IV-C. The assigned OntoScores are
equal to the ones computed by building the ontological graph
described in Section I'V-C.

Hence, the BFS expansion is the same as in Section V-A.
The OntoScore computation of Line 5 is changed as follows,
to reflect the approach described in Section I'V-C. If we expand
from node u with OntoScore OS(u,w) to node v, then:

o if u == v then OS(v,w) = #ﬁ;"’(w

o if u <=2 v then 0S(v,w) = OS(u,w)

o ifus v, #is.a then OS(v,w) = a- #ﬁé’:}(v)

o if u v, #is_a then OS(v,w) = a-0S(u,w)

Note that the denominator InDegree,(v) is the in-degree
of the existential role restriction 3r.v.

VII. EXPERIMENTS

In this section we experimentally evaluate the XOntoRank
system and show the feasibility of both the Preprocessing and
Query phases. The experiments were performed on a Pentium
4, 2.8 GHz PC with 1GB RAM. XOntoRank was implemented
in Java JDK 5.0, using DOM for XML parsing and Microsoft
SQL Server 2000 for the persistent storage of indexes. To
access and navigate SNOMED CT, which takes multiple GBs
of disk space, we used the API provided by the National Li-
brary of Medicine (NLM) Unified Medical Language System
(UMLS) [24]. This API provides the necessary methods to
query the ontology and dictionary and obtain the concept code
and display name for a particular string. We used this API as a
black box in both the preliminary CDA document generation
and the Index Creation Module of XOntoRank.

In Section VII-A we quantify the differences in the rank-
ing for the alternative OntoScore computation techniques of
Section IV. We also present results of a user survey that we
performed with the aid of a medical doctor and researcher. In
Section VII-B we measure the performance of the XOntoRank
system in terms of index creation and query execution times.
Some screenshots of the XOntoRank system are available at
the project homepage [25]. The system was not made available
to the public due to patient record privacy concerns.

CDA Documents Generation: We developed a program
to convert automatically the relational anonymized EMR
database of the Cardiac Division of a local hospital into a
set of XML CDA documents. Each CDA document represents
the medical record of a single patient conglomerating all her
hospitalization entries. 3 492 such documents were created,
each being on average 47KB with 1 133 XML elements.
Ontological references were inserted for every XML node
whose value matched one of the concepts in SNOMED. This



TABLE I
NUMBER OF RESULTS MARKED AS RELEVANT FOR EACH QUERY. USER MARKS UP TO 5 RESULTS.

Query XRANK | Graph | Taxonomy | Relationships

q1 “cardiac” “arrest” 5 5 5 5
q2 “cardiac” “‘coarctation” 5 5 5 5
g3 | “neonatal” “cyanosis” 3 3 0 3
g4 | “‘carbapenem” “ibuprofen” 0 3 0 3
gs | ‘“‘supraventricular arrhythmia” “pericardial effusion” 0 0 1 0
ge | “regurgitant flow” “amiodarone” 0 1 1 2
g7 | “‘supraventricular arrhythmia” “acetaminophen” 0 0 0 0
AVERAGE 1.875 2.429 1.714 2.571

resulted in 2 454 CDA documents with ontological references
to SNOMED with an average of 151 references per document.

A. Quality Results

We performed two quality experiments. The first one com-
pares the distances between the result lists of the proposed
search approaches for a real query workload, and the second
one is a proof-of-concept user survey which compares the
user satisfaction for these approaches. The four approaches —
baseline plus the three described in Section V- are denoted as
XRANK (baseline, no use of ontology), Graph (Section IV-A),
Taxonomy (Section IV-B), and Relationships (Section TV-C).

Distance between Top-k lists: We performed a series of two-
keyword queries obtained from domain expert collaborators.
The second column of Table I shows a sample of these queries.
Note that some keywords are phrases enclosed in quotes.
We use the top-k Kendall Tau [26] measure to determine
the distance between the lists and hence test the effects of
each individual algorithm. Table II reports the Kendall Tau
values for £k = 20 and penalty parameter p = 0.5 (see
[26] for definition of p), normalized over 20 queries. We
observe the large distance between the result of Graph and the
Relationships algorithm; this was expected since the expansion
on the ontology graph achieved by the Graph algorithm is less
restricted than the Relationships algorithm, which extends the
Taxonomy expansion. For this reason, the distance between
Taxonomy and Relationships lists is small.

TABLE 11
NORMALIZED KENDALL TAU VALUES FOR FOUR APPROACHES.
XRANK | Graph | Taxonomy | Relationships
XRANK 0.000 0.171 0.101 0.209
Graph 0.171 0.000 0.116 1.000
Taxonomy 0.101 0.116 0.000 0.171
Relationships 0.209 1.000 0.171 0.000

Quality Survey: We conducted a survey to determine the
quality of each of the four algorithms we presented. Given
the specialized nature of our medical records dataset, which
come from a children’s cardiac clinic, it is hard to find many
users to properly evaluate the results. Hence, we chose to only
report, as a proof of concept, the results of a survey on a single
domain expert-medical doctor and researcher knowledgeable
in this area—instead of involving non-expert users who could
degrade the reliability of the results.

The results of the survey are shown in Table I. For each
query, we presented to the user the union of the top-5 results
from each of the four algorithms. The user was asked to select

up to 5 results that he found relevant to the query. For this
experiment, we set decay to 0.5, threshold to 0.1 and « to 0.5.

For queries ¢ and g2, the top-5 results obtained by XRANK
are also the top-5 results for the ontology-enabled algorithms,
because the query keywords appear frequently in the CDA
documents. For g3, XRANK only generated three results —all
of which were marked as relevant—, but only one of these
appear in the top-5 list of the other three algorithms. For
the remaining queries, XRANK does not produce any results,
since there is no CDA document with direct occurrences of
both keywords (or phrases). In contrast, the ontology-enabled
algorithms find relevant results to the queries by mapping the
keyword’s concept to other concepts present in the documents.
For q4, both Graph and Relationships algorithms produce the
same results by expanding through non-taxonomical edges in
the SNOMED ontology.

For g5, only the Taxonomy algorithm produced a result
that was considered “relevant” by the domain expert. This
result did not reach the top-5 of Graph and Relationships
algorithms, because the expansion through non-taxonomical
concepts produced more compact results —single XML ele-
ments that mapped a concept to both query keywords— with
higher score, but those were not considered relevant by the
domain expert.

For ¢g, the Relationships algorithm produces better results,
because it combines the results of both the Graph and Taxon-
omy algorithms; the expansion over the ontology for the Graph
algorithm decayed before it could reach the taxonomical result
found by the Taxonomy and Relationships algorithms.

Note that in some cases, the semantic knowledge repre-
sented by the ontology might not be sufficient to provide
high quality Information Retrieval over EMR’s. For instance,
consider query ¢y =[*“supraventricular arrhythmia” *“ac-
etaminophen”]. The scores of zero for the ontology-assisted
algorithms in Table I are due to the following reason: All the
results of these algorithms map the concept “acetaminophen”
to the concept “aspirin”. In the context of pain control, these
two concepts are indeed related, because they both provide
relief of pain. But in this specific case, the keyword ““supraven-
tricular arrhythmia” implies that the target context of this
query is not pain control but cardiology, and in this context,
however, these drugs are generally unrelated. “Aspirin” has
cardiac benefits that are not seen with ““acetaminophen”, due
to the differing properties of the two drugs.

The findings of Table I are summarized as follows. The
quality of Relationships and Graph is generally superior



to the baseline XRANK algorithm, which means that when
the keywords are not present in a document, the ontology-
enhanced algorithms are capable of finding “good” results to
satisfy the given queries. The Taxonomy algorithm can be
slightly worse than XRANK, since the former could return
results where a query keyword is matched to a far ancestor
concept, because Taxonomy does not penalize the ontology
expansion when following is-a (parent) edges.

B. Performance Results

Pre-processing phase: Building XOnto-DIL lists for all key-
words in the SNOMED ontology was not feasible given that
they are in the order of millions, the keywords vocabulary
cannot be extracted from the provided SNOMED API, and the
API is slow given that it is IO-intensive (note that SNOMED
is a multi-gigabyte ontology). Note that there is a method
to get all occurrences of a specific keyword, but there is no
vocabulary of all keywords in the database. Hence, we indexed
a subset of this universe of keywords which let us execute
a large number of queries and estimate reliable projections
of index execution time. In particular we built XOnto-DIL
lists for all the keywords in the CDA documents and for all
keywords contained in a concept, up to 2 relationships away
from a concept referenced in a CDA document (more than
400 unique concepts are referenced in our CDA collection).
The above rules translated to the indexing of more than 40
000 keywords directly present in the documents and more that
100 000 concepts from the SNOMED ontology. To navigate
SNOMED efficiently, we loaded the appropriate fragment in
main memory, thus reducing the access to SNOMED flat files.
However, the SNOMED navigation was still too slow. In the
future, we plan to work on more efficient ways to navigate
the ontology to build the XOnto-DIL lists, as discussed in
Section IX. We set decay to 0.5, threshold to 0.1 and « to
0.5.

Table III presents the average creation time, average number
of postings (rows in Figure 10) and size of a XOnto-DIL
list of a keyword for each of the four approaches. For the
average creation time, we exclude the time taken to navigate
the SNOMED ontology, since it can take up to several minutes
for frequent keywords, given the current implementation of the
SNOMED API.

We observe that the average creation time for Taxonomy
is much larger than Graph. This is due to the fact that the
expansion in Graph decays continuously, whereas the expan-
sion for Taxonomy decays quickly only for descendants, but
may expand indefinitely for parent relationships. We also see
how the Graph and both Relationships approaches generate the
largest number of XOnto-DIL entries, given the fact that the
navigation does not decay for the one direction of is-a edges.
We observe a high difference between the number of postings
for the Taxonomy approach compared to the Relationships
algorithm, giving evidence of the large number of concepts
mapped through the ontology graph. Note that the size of the
XOnto-DIL entries can be reduced by appropriately adjusting
the threshold and/or decay parameters.

TABLE III
AVERAGE SIZE FOR XONTO-DIL ENTRIES.

. Per Keyword
Algorithm Avg. Creation Time (ms) | Postings | Sze (KB)
XRANK 1.0 14357 39.3
Graph 4 143.5 | 20 906.7 571.7
Taxonomy 10 743.5 5511.9 150.7
Relationships 13 485.3 | 46 979.5 1 284.6

Query Phase: Figure 11 presents the average execution times
for queries with varying number of keywords, for £ = 10. The
time for Relationships algorithm is higher due to the larger
number of nodes in the XML document that are ontologically
related to the query keywords.
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Fig. 11. Average Execution Time for Keyword Queries with Varying Number
of Keywords.

VIII. RELATED WORK

Authority Flow: XOntoRank uses related techniques to our
previous work in ObjectRank [21], [27]. The principle of
authority flow is the main concept under these two systems,
but there are also key differences between them. As a first
difference, ObjectRank performs IR over relational databases,
whereas XOntoRank works over XML tree documents —with
no associations among them— augmented with the graph of
the referenced ontologies. In ObjectRank, the source of author-
ity is the data nodes that contain the keywords; in XOntoRank,
the source of authority also includes XML elements that link
to the ontology, without directly containing the keywords.
The second key difference is that we do not apply iterative
PageRank-style authority propagation in this work (as we do
in ObjectRank). Applying ObjectRank on the ontology graph
would be an alternative option, but we chose to use a one-
pass BFS expansion algorithms for scalability purposes, given
the size of SNOMED and the number of unique keywords for
which ObjectRank should be precomputed.

Searching XML documents. The following works perform
keyword search on XML documents without considering any
external knowledge, such as ontologies. XSEarch [7] ranks
the results, taking into consideration both the degrees of the
semantic relationship and the relevance of the keyword. We



found that XSEarch would not be an appropriate framework
to base XOntoRank, since their “interconnection relationship”
would not work well in the particular case of CDA docu-
ments. XIRQL [5] utilizes a strategy different to XSEarch’s
to compute its ranking, defining index units, specific entity
types that can be indexed and used for tf-idf computation.
Schema-free XQuery [28] refines the work of XSEarch by
utilizing meaningful lowest common ancestors instead of the
concept of interconnected nodes. Cohen et al. [29] improve
even further this approach by including the schema into the
framework and discovering interconnection information. Xu
and Papakonstantinou [30] define a result as a ‘“‘smallest”
tree, that is, a subtree that does not contain any subtree
that also contains all keywords. Hristidis et al. [31] group
structurally similar tree-results to avoid overwhelming the user.
XKeyword [8] operates on an XML graph (with ID-IDREF
edges) and returns subtrees of minimum size.

Query Expansion: Various query expansion strategies
(e.g. [32]) have been proposed for general as well as biological
documents search. For instance, the QEEF framework [33]
uses the UMLS ontology to suggest additional terms. [34],
[35], [10], assign weights on the ontology edges by comparing
the distributions of the contents of the two nodes and of
their combination on a very large dataset like the Web.
This approach, which complements our work, is too time-
consuming for large ontologies like SNOMED. The ontologi-
cal associations are exploited by expanding the XXL query. It
differs from our approach in which XXL considers symmetric
associations between ontology concepts, whereas we use the
authority flow model. [9], [36] expand the query by matching
the ontology to the document DTD. All the above techniques
are proposed for structured XML queries. For our case of
keyword queries, query expansion is not appropriate, since
it leads to non-minimal results (see [4] for a definition of a
minimal keyword search result) — the same concept appears
multiple times in a result.

Semantic similarity: In Information Retrieval, two ap-
proaches have addressed the problem of computing similarity
between two concepts. Initially, statistical correlations between
terms were exploited [37]. With the conception of ontologies
and semantic networks like WordNet [38], a graph-oriented
approach was adopted, focusing on the number, depth and
direction of the edges between two concepts [39]. A more
recent approach has combined these two techniques [40], [41]
by taking into account the graph structure and statistics.

In the Semantic Web, various approaches have been sug-
gested to measure semantic similarity between different arti-
facts. Most similarity measures such as [42], [43] focus only
on subsumption relations (i.e. hierarchical ““is-a” links in an
ontology). Maguitman et al. [44] propose an information theo-
retic measure of similarity that also considers non-hierarchical
links. However, their approach requires the presence of a
large number of instances to determine the similarity between
concepts. In the medical domain, most ontologies, including
SNOMED, only describe concepts and not instances. Hence,
their approach cannot be used. The notion of authority flows is

also similar to the spreading activation scheme that is used in
information retrieval [45] and web mining [46]. A novel aspect
of our approach is the use of strategies based on description
logics and the spreading of activation from the ontology into
the XML documents.

IX. CONCLUSIONS AND FUTURE WORK

We have introduced the problem of ontology-aware keyword
search on XML-based EMR documents, which contain refer-
ences to clinical ontological concepts. We defined semantics
for this problem, where the ontological references, as well as
the relationships within the ontology are used in creating and
ranking the query results. Alternative views of the ontology
were considered. We created efficient algorithms, building
on previous work, to generate the top-k query results. The
algorithms were evaluated experimentally, showing that the
precision and recall of our algorithm is better than the baseline
algorithm.

A critical future direction is the optimization of the index
creation process. Our current index creation approach relies
on the API and data provided by [14], which are based on
flat files. Implementing approximation and early pruning tech-
niques, as well as in-memory representations of the ontology
graphs, may prove useful in scaling to larger ontologies and
datasets.
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