
Keyword Proximity Search on XML Graphs∗

Vagelis Hristidis Yannis Papakonstantinou Andrey Balmin
Computer Science and Engineering Dept.

University of California, San Diego
{vagelis,yannis,abalmin}@cs.ucsd.edu

Abstract

XKeyword provides efficient keyword proximity queries
on large XML graph databases. A query is simply a list of
keywords and does not require any schema or query lan-
guage knowledge for its formulation.

XKeyword is built on a relational database and, hence,
can accommodate very large graphs. Query evaluation is
optimized by using the graph’s schema. In particular, XKey-
word consists of two stages. In the preprocessing stage a set
of keyword indices are built along with indexed path rela-
tions that describe particular patterns of paths in the graph.
In the query processing stage plans are developed that use
a near optimal set of path relations to efficiently locate the
keyword query results. The results are presented graphi-
cally using the novel idea of interactive result graphs, which
are populated on-demand according to the user’s naviga-
tion and allow efficient information discovery. We provide
theoretical and experimental points for the selection of the
appropriate set of precomputed path relations. We also pro-
pose and experimentally evaluate algorithms to minimize
the number of queries sent to the database to output the
top-K results.

1 Introduction
XML and its labeled graph abstraction emerge as the

data model of choice for representing semistructured self-
describing data. Semistructured query languages (see [2]
for a survey and [23] for the emerging XQuery standard)
provide features, such as flexible path expressions, that al-
low one to query semistructured data, i.e., graph data that
are not characterized by rigid structure. However, one still
needs sufficient knowledge of the structure, role of the re-
quested objects and XQuery in order to formulate a mean-
ingful query. Keyword search does not present such require-
ments; it enables information discovery by providing a sim-
ple interface. It has been the most popular information dis-
covery method since the user does not need to know either
a query language or the structure of the underlying data.

The search engines available today provide keyword
search on top of sets of documents. When a set of key-
words is provided by the user the search engine returns all
documents that are associated with these keywords. Typi-
cally, a set of keywords and a document are associated if

∗Work supported by NSF Grant No. 9734548.

person

order

lineitem

part

nation
["US"]

partkey
[1002]

name
["TV"]

quantity
[10] shipdate

[Nov 13 2001]

name
["John"]

date
[Nov 3 2001]

person

order

lineitem

nation
["US"]

quantity
[10] shipdate

[Oct 14 2001]

name
["Mike"]

date
[Oct 4 2001]

order

lineitem

quantity
[10]

shipdate
[Oct 15 2001]

date
[Oct 3 2001]

part

partkey
[1005]

name
["TV"]

lineitem

quantity
[6]

shipdate
[Oct 14 2001]

supplier linepart

supplier linepart

supplier linepart

supplier linepart

part

partkey
[1008]

name
["VCR"]

product

prodkey
[2005]

descr
["set of VCR
and DVD "]

service_call

date
[Nov 13 2001]

descr
[DVD error]

part

partkey
[1009]

name
["VCR"]

subpartsubpart

Figure 1. Sample XML document
the keywords are contained in the document. Their degree
of associativity is often their distance from each other.

XKeyword follows a recent generation of information
retrieval systems that provide keyword proximity search
[12, 13, 6, 3] to structured and semistructured databases. In
particular, XKeyword provides keyword proximity search
on XML data that are modeled as labeled graphs, where
the edges correspond to the element-subelement relation-
ship and to IDREF pointers. XKeyword differs from prior
systems for proximity search on labeled graphs in that it
assumes the existence of a schema, similar to the XML
Schema standard [22], to which the graph conforms. The
schema facilitates the presentation of the results and is also
used in optimizing the performance of the system. Note that
the end-user does not need to be aware of the schema.

A keyword proximity query is a set of keywords and the
results are trees of XML fragments (called target objects)
that contain all the keywords and are ranked according to
their size. Trees of smaller sizes denote higher association
between the keywords, which is generally true for reason-
able schema designs. For example, consider the keyword
query “John, VCR” on the graph of Figure 1. The first
highlighted tree (thick edges) name[John] ← person ←
supplier ← lineitem → linepart → product →
descr[set of V CR and DV D] on the source XML graph
of Figure 1 is a result of size 6. The second highlighted
tree (gray arrows) name[John]← person← supplier←
lineitem → linepart → part → subpart → part →
name[V CR] is a result of size 8. The first result is con-
sidered to be a “better” one by XKeyword (as well as by
all the other keyword proximity search systems) since the
shorter distance corresponds to the closer connection be-

1

p1: person
[name="John"
nation="US"]

l1: lineitem
[quantity=10

shipdate=Oct 14 2001]

l2: lineitem
[quantity=10

shipdate=Oct 15 2001]

pa3: part
[partkey=1005
name="TV"]

pa1: part
[partkey=1008
name="VCR"]

supplier

supplier

linepart

linepart
su

bpart

pa2: part
[partkey=1009
name="VCR"]

subpart

Figure 2. Multivalued dependencies in results
tween “John” and “VCR” in the first solution, where the
“VCR” is the product that “John” supplied, as opposed to
being a sub-part of another part supplied by “John”. Notice
that we allow edges to be followed in either direction.

The presentation of the results faces two key challenges
that have not been addressed by prior systems. First, the
results need to be semantically meaningful to the user. To-
wards this direction, XKeyword associates a minimal piece
of information, called target object, to each node and dis-
plays the target objects instead of the nodes in the results.
In the DBLP demo (Figure 4) XKeyword displays target
object fields such as the paper title and conference along
with a paper. In the TPC-H example, XKeyword adds some
children nodes of the person, lineitem and part nodes (high-
lighted for the second result in Figure 1). For example, we
display the target object part[partkey[1005], name[TV]]
in the place of the intermediate part node. Target objects
are designated by the system administrator who splits the
schema graph in minimal self-contained information pieces
(Figure 6), which we call Target Schema Segments (TSS)
and correspond to the target objects presented to the user.
Furthermore, the edges connecting the target objects in the
presentation graph are annotated with their semantic de-
scription, which is defined on the TSS graph (Figure 6). For
example the part→ part edge is named “subpart”.

The second challenge is to avoid overwhelming the user
with a huge number of often trivial results, as is the case
with DISCOVER [13] and DBXplorer [3]1. Both of those
systems present all trees that connect the keywords. In do-
ing so they produce a large number of trees that contain the
same pieces of information many times. For example, con-
sider the keyword query “US, VCR” and the subgraph of
the XML graph of Figure 1 shown in Figure 2. This XML
fragment contains four results:
N1 : p1 ← l1 → pa3 → pa1, N2 : p1 ← l2 → pa3 → pa2,
N3 : p1 ← l2 → pa3 → pa1, N4 : p1 ← l1 → pa3 → pa2

The above results contain a form of redundancy similar to
multivalued dependencies [20]: we can infer N3 and N4

from N1 and N2. In that sense, N3 and N4 are trivial, once
N1 and N2 are given. Such trivial results penalize perfor-
mance and overwhelm the user. XKeyword avoids produc-
ing “duplicate” results by employing a smart execution al-
gorithm. On the presentation level it uses a presentation
graph that comprises the complete set of nodes participat-
ing in result trees. At any point only a subset of the graph is
shown (see Figure 3), as it is formulated by various naviga-
tion actions of the user. Initially the user sees one result tree
r0. By clicking on a node of interest the graph is expanded
to display more nodes of the same type that belong to result
trees that contain as many as possible of the other nodes
of r0. Towards this purpose we define a minimal expan-
sion concept. For example, clicking on the lineitem node

1Both systems work on relational databases, but the presentation chal-
lenges are similar.

(a)

(b)

(c)

Figure 3. Presentation graph (expanded
nodes have single outliner)

of Figure 3 (a) displays all lineitem nodes which are con-
nected to the person and part in the initial tree, as shown
in Figure 3 (b).

Two key challenges arise on the way to providing fast
response times. First, the XML data has to be stored
efficiently to allow the fast discovery of connections be-
tween the elements that contain the keywords. We fol-
low the architecture of multiple recent XML database sys-
tems and store the XML data in a relational database
[7, 19, 10, 16, 8, 18, 5], which we tune to provide the needed
indexing and clustering. Then XKeyword builds a set of
connection relations, which precompute particular path and
tree connections on the TSS graph. Connection relations are
similar to path indices [9] since they facilitate fast traversal
of the database, but also different because they can connect
more than two objects and they store the actual path be-
tween a set of target objects, which is needed in the answer
of the keyword query. A core problem is the choice of the
set of connection relations that are precomputed.

Second, the cost of computing the full presentation graph
is very high. Hence XKeyword uses an on-demand execu-
tion method, where the execution is guided according to the
user’s navigation. We present an algorithm that generates
a minimal set of queries to the underlying database in re-
sponse to the user’s navigation.

XKeyword consists of two stages (Figure 7). In the pre-
processing stage, the master index is created along with a
set of connection relations. The master index is an inverted
index that stores for each keyword k a list of elements that
contain k. The most suitable decomposition, i.e., represen-
tation of the target object graph with a set of connection
relations, is selected, given the performance and space re-
quirements. We compared different decomposition strate-
gies and found that in order to compute the top-1 result for
each result schema, which is needed to construct the pre-
sentation graph, the most space effective decomposition is
to create inlined fragments [5], i.e., fragments that do not
contain multivalued dependencies. On the other hand, a
combination of the inlined and the minimal decomposition,
where a connection relation is generated for each edge of
the schema graph, is more efficient for the on-demand ex-

2

pansion of the presentation graph.
In the query processing stage, XKeyword retrieves from

the master index the schema nodes, whose elements con-
tain the keywords, and exploits the schema graph’s infor-
mation (in contrast to [12, 6]) to generate a complete and
non-redundant set of connection trees (candidate networks
(CN)) between them. Each CN may produce a number of
answers to the keyword query, when evaluated on the XML
graph. A presentation graph is generated for each CN, since
they correspond to the different schemata of results. The CN
Generator of XKeyword is an extension to XML databases
of the CN Generator of DISCOVER [13]. We also present
ways to improve the performance of the algorithm described
in [13].

The CN’s are passed to the query optimizer, which gen-
erates an execution plan. The key challenges of the opti-
mizer are (a) to decide which connection relations to use to
efficiently evaluate each CN and (b) to exploit the reusabil-
ity opportunities of common subexpressions among the
CN’s. Both decisions, which are shown to be NP-complete,
dramatically affect the performance as we show experimen-
tally.

Finally, the results are presented to the user. XKeyword
offers two presentation methods: displaying a presentation
graph for each CN (Figure 4 (c)), or displaying a full list
of results (Figure 4 (b)), where each result is a tree that
contains every keyword exactly once. The former method
offers a more compact and non-redundant representation,
while the latter favors faster response times.

In summary, this paper makes a number of contributions
in the area of keyword proximity search:
• We present keyword proximity search semantics, ex-

tended to capture our novel result presentation method,
which prevents information overflow and allows the
user to navigate in the result.
• We present an architecture and framework that allows

for choosing which connections between objects will
be precomputed. We present rules to avoid generating
any useless connection relation, i.e., connection rela-
tions that are not efficient to evaluate any CN. We show
how to bound the number of joins needed to output a
solution.
• We address the on-demand performance requirement

of the presentation approach and we compare and an-
alyze different decomposition schemes with respect to
it. We also present an algorithm that efficiently gener-
ates the full list of results by caching partial results and
avoiding to recompute the common result portions and
show experimentally that it is up to 80% faster than the
naive approach used in [13] and [3].

XKeyword has been implemented (Fig-
ure 4) and a demo is available at
http://www.db.ucsd.edu/XKeyword, which operates on
the XML data of the DBLP database.
2 Related Work

There is a number of proposals for less structured ways
to query XML database by incorporating keyword search
[11, 1] or by relaxing the semantics of the query language
[15, 4]. However none of these works incorporates proxim-
ity search. Florescu et al. [11] propose an extension to XML
query languages that enables keyword search at the granu-
larity of XML elements, which helps novice users formulate

queries. Another difference of this work from XKeyword is
that it requires the user to specify the elements where the
keywords are.

In [12] and [6], a database is viewed as a graph with ob-
jects/tuples as nodes and relationships as edges. Relation-
ships are defined based on the properties of each applica-
tion. For example an edge may denote a primary to foreign
key relationship. In [12], the user query specifies two sets
of objects, the Find and the Near objects. These objects
may be generated from two corresponding sets of keywords.
The system ranks the objects in Find according to their dis-
tance from the objects in Near. An algorithm is presented
that efficiently calculates these distances by building hub
indices. In [6], answers to keyword queries are provided by
searching for Steiner trees [17] that contain all keywords.
Heuristics are used to approximate the Steiner tree prob-
lem. Two drawbacks of these approaches are that (a) they
work on the graph of the data, which is huge and (b) the
information provided by the database schema is ignored. In
contrast, XKeyword (a) works on the relatively compact set
of target objects connections (see Section 3) and (b) exploits
the properties of the schema of the database. XKeyword
also provides relatively scalable performance as the avail-
able space to store fragments (see Section 5) increases.

DISCOVER [13] and DBXplorer [3] work on top of a
DBMS to facilitate keyword search in relational databases.
They are middleware in the sense that they can operate as
an additional layer on top of existing DBMS’s. In contrast,
XKeyword is a system dedicated to providing efficient key-
word querying of XML databases, by using elaborate dupli-
cation and indexing techniques. XKeyword provides guar-
antees on the performance of the keyword queries, which
is not possible for a middleware system. DISCOVER and
DBXplorer do not consider building materialized views,
which is the equivalent of redundant fragments in XKey-
word. Furthermore, XKeyword adopts an elaborate presen-
tation method using interactive graphs of results. In con-
trast, DISCOVER and DBXplorer output a list of results, in-
cluding trivial ones. The inherent differences of XML from
relational data are handled in XKeyword by introducing the
notion of target object.

Both DISCOVER and XKeyword exploit reusability op-
portunities among the candidate networks, in contrast to
DBXplorer. The candidate network generator of XKeyword
is an extension of the candidate network generator of DIS-
COVER to exploit the information provided by the XML
schema like the disjunction nodes and the maxoccurence of
an edge.

XKeyword stores the XML data in a relational database
[7, 19, 10, 16, 8, 18, 5], to allow the addition of structured
querying capabilities in the future and leverage the indexing
capabilities of the DBMS’s. Some of these works [10, 16, 8]
did not assume knowledge of an XML schema. In particu-
lar, the Agora project employed a fixed relational schema,
which stores a tuple per XML element. This approach is
flexible but it is much less competitive than the other ap-
proaches, because of the performance problems caused by
the large number of joins in SQL queries. XKeyword is dif-
ferent because it exploits the schema information to store
the relationships between the target object id’s of the XML
data. The actual data are stored in XML BLOB’s which are
introduced in [5].

3

(a) Query page (b) Presentation as a list of results

(c) Presentation using Presentation graphs

Figure 4. XKeyword demo
3 Framework and Proximity Keyword

Query Semantics
We use the conventional labeled graph notation to repre-

sent XML data. The nodes of the graph correspond to XML
elements and are labeled with the tags of the corresponding
elements and an optional string value. Figure 1 shows an
example of an XML graph. An edge of the graph denotes
either containment (e.g., any “person→ name” edge) or an
IDREF-to-ID relationship (e.g., any “supplier → person”
edge) or a cross-document XML Link [21]. We will collec-
tively refer to IDREF-to-ID and XML Link edges as refer-
ence edges and to the rest as containment edges.

We allow the graph to have multiple roots, i.e., multi-
ple nodes with no incoming containment edge, for two rea-
sons: First, the administrator may choose to omit the root
of an XML document from the graph, since the root often
provides an artificial connection between semantically un-
related first level elements. For example, had we included
a root in Figure 1 it would appear as persons and parts
are closely connected (two edges way) via the root; such
a connection would be artificial. A second reason for mul-
tiple roots is that we may want the graph to capture multi-
ple XML documents, potentially linked via cross-document
XML Links. We also assume that every node has a unique
id, invented by the system if the corresponding element has
no ID attribute. Note that the graph does not consider any
notion of order among the nodes v , . . . , vn pointed by a par-
ent node v. In summary:
Definition 3.1 (XML graph) An XML graph G is a la-
beled directed graph where every node v has a unique id
id(v), a label λ(v) coming from the set of element tags T

person

order

lineitem

part

*

*

nation
partkey name

quantity shipdate

name

date

supplier linepart

subpart
*

product

prodkey descr

service_call
*

date descr

Figure 5. TPC-H based schema graph
and optionally a value val(v) coming from the set of val-
ues V . Edges are classified into containment and reference
edges. ♦

Figure 1 illustrates an XML graph. By convention, we
indicate containment edges with solid lines and reference
edges with dotted lines. We omit id’s from the figures and
we include the values in brackets.
Schema Graphs We use schema graphs2 to describe the
structure of the XML graphs. Schema graphs are similar
to XML Schema definitions [22] but have typed references.
We have simplified the content types captured by an XML
Schema and kept only the constructs that are useful for per-
formance optimization.

The data of Figure 1 conform 2 to the TPC-H-like schema
of Figure 5, where dotted lines denote reference edges
and solid lines stand for containment edges. We denote
choice nodes with an arc over their outgoing edges; all
other nodes are of type all. In Figure 5, only “linepart” is

2defined formally in [14]

4

a choice node. Finally, we define an uncycled directed
graph G(V, E) to be a directed graph, whose equivalent
undirected graph Gu(V, E′) has no cycles. An edge (v1, v2)
is created in Gu if G has edges (v1, v2) or (v2, v1).
3.1 Semantics of Keyword Queries and Presenta-

tion of Results
A keyword query is a set of keywords k1, . . . , km. The

result of a keyword query is the set of all possible Mini-
mal Total Target Object Networks (MTTON’s). We define
MTTON’s after we have first defined minimal total node
networks (MTNN’s). A node network j of an XML graph
G is an uncycled subgraph of G, such that for each edge
(n1, n2) ∈ j it is is (n1, n2) ∈ G. A total node network j
of the keywords {k1, . . . , km} is a node network, where ev-
ery keyword k is contained in at least one node n of j, i.e.,
∀k ∈ {k1, . . . , km}, ∃n ∈ j : k ∈ keywords(n), where
keywords(n) is the set of keywords contained in the tag or
the value of n. A Minimal Total Node Network (MTNN)
j of the keywords {k1, . . . , km} is a total node network
where no node can be removed and j still be a total node
network. The score of a MTNN j is its size in number of
edges. For example the following MTNN N0 of the key-
word query “John, VCR” has size 8.
N0 : name[John]← person← supplier← lineitem→

linepart→ part→ subpart→ part→ name[VCR]
Notice that in the general case, the size of the MTNN’s of
a keyword query is only data bound. Hence the user speci-
fies the maximum size Z of an MTNN that is of interest to
him/her.

To ensure that the result of a keyword query is seman-
tically meaningful for the user we introduce the notion of
target objects. For every node n in the XML graph we de-
fine (using the schema, as we will see later) a segment of
the XML graph, called target object of the node n (or sim-
ply called target object when the node n is obvious from the
context.) Intuitively, a target object of a node n is a piece
of XML data that is large enough to be meaningful and able
to semantically identify the node n while, at the same time,
is as small as possible. For example, consider the MTNN
N0 above. The user would like to know which is the part
number of the VCR, which is the part p of which the VCR
is a subpart, which line item includes p, and what is the last
name of John.3

The target objects provide us such information. It makes
sense to output the “partkey” of the VCR part as well as the
name and “partkey” of the TV. On the other hand it would
not make sense to output all the subparts of the TV or the
orders of the person. They could be too many and of no
interest in semantically identifying the node. Hence, we
define the person element with the name and nation subele-
ments to be a target object, and the part with the “partkey”
and name to be another target object.

Given a MTNN j with nodes v1, . . . , vn there is a cor-
responding MTTON t,4 which is a tree whose nodes is a

3Due to space limitations we do not include a last name field in the
figures.

4The definition does not guarantee the uniqueness of the MTTON t.
The nodes of j may be split in minimal sets of target objects in multiple
ways. However, this is of limited practical importance since in practice it
is unlikely that target objects overlap with each other in ways that enable a
network to be split in multiple ways in target objects.

minimal set of target objects {t1, . . . , tm} such that for ev-
ery node nk ∈ j there is a tl ∈ t such that target(nk) = tl.
There is an edge from a target object ti to a target object tj

if there is an edge (or as path of dummy nodes as defined
below) from a node that belongs to t i to a node that belongs
to tj . The score of a MTTON t is the score (size) of its
corresponding MTNN. The answer to a keyword query is
unique.
Specification of Target Objects The target objects are
defined from an administrator using the Target Schema Seg-
ment (TSS) graph described next. A TSS graph is an un-
cycled graph whose nodes are called target schema seg-
ments. The TSS graph is derived from a partial mapping
of the nodes of the schema graph G. A node tS is cre-
ated in GTSS for each set S = {s1, . . . , sw} of nodes of
G that are mapped to tS . Some nodes in G, which are
called dummy schema nodes, are not mapped to any node in
GTSS , because they do not carry any information. For ex-
ample supplier, subpart and linepart are dummy schema
nodes. An edge (tS , tS′) is created in GTSS if the schema
graph has nodes s ∈ S and s′ ∈ S′, that are connected di-
rectly through an edge (s, s′) or indirectly through a path
of dummy schema nodes. Typically we assign to a node
tS of the TSS graph a name that is the label of the “most
representative” schema graph node s ∈ S. For example,
the TSS node corresponding to {person, name, nation} is
named person (see Figure 6).

Figure 14 illustrates the TSS graph behind our DBLP
demo. Notice the semantic explanations, with the obvious
meanings, that annotate the edges. Each edge is annotated
with two semantic explanations: the first explains the con-
nection in the direction of the edge and the second in the
reverse direction. Similarly, the semantic explanations of
the TPC-H TSS graph are shown in Figure 6.

Given the TSS graph, it is straightforward to define a
target decomposition of the XML graph into target objects,
connected to each other. For example a target object de-
composition of the schema of Figure 5 and the correspond-
ing TSS graph are shown in Figure 6. The MTTON of the
MTNN N0 presented above is highlighted in Figure 1.
3.2 Presentation Graph

In its simplest result presentation method (Figure 4
(b)) XKeyword spawns multiple threads, evaluating various
plans for producing MTTON’s, and outputs MTTONs as
they come. The smaller MTTON’s, which are intuitively
more important to the user, are usually output first, since
they require smaller execution times. The threads fill a
queue with MTTONs, which are output to the user page by
page as in web search engine interfaces.

The naive presentation method described above (and cur-
rently used by the DBLP demo) provides fast response
times, but may flood the user with results, many of which
are trivial. In particular, as we explained in the introduc-
tion, a redundancy similar to the one observed in multival-
ued dependencies emerges often. Displaying to the user re-
sults involving multivalued dependencies is overwhelming
and counter-intuitive. XKeyword faces the problem by pro-
viding an interactive interface (and corresponding API) that
allows navigation and hides the trivial results, since it does
not display any duplicate information as we show below.

XKeyword’s interactive interface presents the results
grouped by the candidate networks (see Section 4) they con-

5

Person

Order

Lineitem

Part

*
p
la

ce
d
,

p
la

ce
d
 b

y

*
co

n
ta

in
s,

is
 c

o
n
ta

in
e
d

linepart,
linepart of

su
p

p
lie

d
 b

y,
su

p
p

lie
r

TARGET DECOMPOSITION TSS GRAPH

person

order

lineitem

part

*

*
nation

partkey name

quantity shipdate

name

date

supplier linepart

subpart
* *

product

prodkey descr Product
linepart,

linepart of

*
service_call

date descr

Service_call

* is
su

ed,

iss
ued by

subpart,
subpart of

Figure 6. Target decomposition of a schema graph
form to. Intuitively, MTTON’s that belong to the same can-
didate network have the same types of target objects and the
same type of connections between them. XKeyword groups
the results for each candidate network to summarize the dif-
ferent connection types (schemata) between the keywords
and to simplify the visualization of the result.

XKeyword compacts the results’ representation and of-
fers a drill-down navigational interface to the user. In par-
ticular, a presentation graph PG(C) (Figure 3) is created
for each candidate network C. The presentation graph con-
tains all nodes that participate in some MTTON of C. A se-
quence of subgraphs PG0(C), . . . , PGn(C) are active and
are displayed at each point, as a result of the user’s actions.
The initial subgraph, PG0(C), is a single, arbitrarily cho-
sen MTTON m of C, as shown in Figure 3 (a).

An expansion PGi+1(C) of PGi(C) on a node n of type
N is defined as follows. All distinct nodes n′, of type N ,
of every MTTON m′ of C are displayed and marked as ex-
panded (Figure 3 (b)). Note that we have to consider the
statement “of type N” in a restricted sense: A candidate
network may involve the same schema type in more than
one roles (as is the case with tuple variable aliases in SQL.)
For example, in Figure 3 “part” objects on the right side are
VCRs while the “part” objects to their left are the “part”
that contain the VCR parts. We consider those two classes
of “part” objects to be two different types as far as presen-
tation graphs are concerned. In addition a minimal num-
ber of nodes of other types are displayed, so that the ex-
panded nodes appear as part of MTTON’s. More formally,
given a presentation graph instance PGi(C), its expansion
PGi+1(C) on a node n of type N has the following proper-
ties: (a) PGi(C) is a subgraph of PGi+1(C), (b) for each
MTTON m′ ∈ C, where the node n′ ∈ m′ is of type N , n′
is included in PGi+1(C), (c) for each node v ∈ PGi+1(C)
there is a MTTON z contained in PGi+1(C), such that
v ∈ z, and (d) there is no instance PG′

i+1(C) satisfying
the above properties and the set of nodes of PG ′

i+1(C) is
subset of the nodes of PGi+1(C).

In the implementation of XKeyword, an expansion on a
node n occurs when the user clicks on n. Notice also that
if the expanded nodes are too many to fit in the screen then
only the first 10 are displayed.

On the other hand, a contraction PGi+1(C) of PGi(C)
on an expanded node n of type N is defined as follows.
All nodes of type N , except for n, are hidden (Figure 3
(c)). In addition a minimum number of nodes of types
other than N are hidden, while satisfying the restriction
that for each node in PGi+1(C) there is a containing MT-
TON in PGi+1(C) (see condition (c) below). More for-

mally, given a presentation graph instance PG i(C), its con-
traction PGi+1(C) on an expanded node n of type N has
the following properties: (a) PGi+1(C) is a subgraph of
PGi(C), (b) n is the only node in PGi+1(C) of type N ,
(c) for each node v ∈ PGi+1(C) there is a MTTON z con-
tained in PGi+1(C), such that v ∈ z, and (d) there is no
instance PG′

i+1(C) satisfying the above properties while
PG′

i+1(C) has more nodes than PGi+1(C). In the imple-
mentation of XKeyword, similar to the expansion, a con-
traction on an expanded node n occurs when the user clicks
on n.

The presentation graphs model allows the user to navi-
gate into the results without being overwhelmed by a huge
number of similar MTTON’s. Furthermore, if he/she is
looking for a particular result it is easy to discover it by
focusing on one node at a time.

The presentation of the results of a keyword query by
the interactive presentation graphs evokes the following re-
quirements for the execution unit: First the top MTTON
of each candidate network, which is the initial presentation
graph, must be computed very quickly to provide a quick
initial response time to the user. Second the expansion of
the presentation graph must be performed on demand. This
cannot be done simply by moving the cursor of some query
we submit to the underlying database. Instead, when a user
clicks on a node, a new minimal set of focused queries is
sent to the database. These requirements and corresponding
solutions are addressed in Section 6.
4 Architecture

The architecture of XKeyword (Figure 7) consists of a
load stage, where the data are loaded to the system and
all precomputations are performed, and a query processing
stage that answers keyword queries.

In the load stage, the decomposer inputs the schema
graph, the TSS graph and the XML graph and creates the
following structures:

1. A master index, which stores for each
keyword k a list of triplets of the form
〈TO id, node id, schema node〉 where TO id
is the id of the target object that contains the node of
type schema node with id node id, which contains
k. The node id 5 and schema node are needed
when calculating the score of a candidate network
(Definition 4.1), since as we describe below, the
generated relations only store target object id’s.

2. A set of statistics specifying: (a) the number s(S) of
nodes of type S in the XML graph and (b) the average

5node id is needed to distinguish two nodes of the same type and of
the same target object.

6

DecomposerXML graph

S
chem

a graph,
T

S
S

 graph

Master Index

Target object BLOBs

Relational Schema

LOAD STAGE

keyword
discoverer

CN Generator

k
1 ,...,k

m

Optimizer

Execution Module

QUERY PROCESSING

ID Relations

Schema graph,
TSS graph

statistics

Presentation Module

Containing lists

Candidate TSS networks,
Containing lists

Exec Plan,
Containing lists

Target object networks

Presentation graph, or set
of MTNNs

User's
navigation

Figure 7. Architecture

POL P_id O_id L_id

PaPa Pa1_id Pa2_id

LP_ref L_id P_id

LPa_ref L_id PA_id

LPr_ref L_id Pr_id

PS P_id S_id

Person

Order

*
*

Service_call

* Part

*

Product
Lineitem

Figure 8. TSS graph Decomposition

number c(S → S ′) of children of type S ′ for a random
node of type S.

3. BLOBs of target objects, which given an object id in-
stantly return the whole target object.

4. A decomposition of the TSS graph into fragments,
which correspond to connection relations that allow
efficient retrieval of MTTON’s.

Figure 8 shows a valid decomposition of the TSS graph
of Figure 6, where the thick arrows and the closed dotted
curves denote single edge and multiple edge fragments re-
spectively. We map each fragment into a connection rela-
tion. For example, P → O → L (in short POL, since
the arrows are unambiguously implied by the TSS graph) is
the connection relation that corresponds to the fragment in
the dotted line. It stores the connections among the Person,
Order and Lineitem TSS’s. LPref is the connection rela-
tion that corresponds to the fragment (indicated by the thick
dotted line) containing the reference edge between Lineitem
and Person.

Query processing consists of five stages. The key-
word discoverer inputs the set of keywords and out-
puts for each keyword k the containing list L(k) of
〈TO id, node id, schema node〉where the node identified
by node id contains k.

The CN Generator takes from the containing lists the in-
formation about which schema nodes contain the keyword
and works on the schema graph to calculate all possible can-
didate networks (CN’s)) (Definition 4.1). The CN Gener-
ator works on the schema graph and not on the TSS graph
because (a) important schema information like the choice

nodes may be lost when we create the TSS graph and (b)
the score of the MTTON’s is measured in terms of schema
graph edges.

A schema node network is an uncycled directed graph
of schema nodes, where for each edge (S1, S2) of adja-
cent schema nodes S1, S2 there is an edge (S1, S2) in the
schema graph. The same edge of the schema graph may
appear more than once in a schema node network. Intu-
itively, this corresponds to the fact that target objects of the
same type may be playing different roles in the MTTON’s.
A schema node S is free (S) if its corresponding extension
has nodes that contain keywords. Otherwise it is non-free.
The non-free schema node SK is the set of nodes of type S
that contain all keywords in K .

A node network j belongs to a schema node network N
(j ∈ N) if there is a tree isomorphism mapping h from the
nodes of j to the schema nodes of N , such that for each
node n ∈ j, n ∈ h(n).
Definition 4.1 (Candidate Network) Given a keyword
query k1, . . . , km and a schema graph, a schema node net-
work C is a candidate network (CN), if there is an instance
of the XML graph that conforms to the schema graph and
has a MTNN m ∈ C. ♦

The CN generator algorithm is based on the algorithm
described in DISCOVER [13]. It has been extended to ad-
dress the unique features of XML (choice nodes, distinction
of containment and reference edges) and also incorporates
performance improvements over [13]. The algorithm is pre-
sented in [14]. The CN Generator algorithm is complete
(the proof is an extension of the proof of [13]), that is, all
MTNN’s of size up to Z belong to an output CN. Further-
more, the algorithm is non-redundant, that is, for each out-
put candidate network C there is an instance of the database
that contains a MTNN j ∈ C and there is no other candidate
network C ′ such that j ∈ C ′.

Recall that the connection relations store only target ob-
ject id’s. Hence we reduce the candidate networks to TSS
networks, which are uncycled directed graphs of TSS’s,
where for each edge (T1, T2) between TSS’s T1, T2 there is
an edge (T1, T2) in the TSS graph. The unique TSS network
that corresponds to a candidate network is called candidate
TSS network (CTSSN).

The candidate TSS networks corresponding to the candi-
date networks of size up to Z = 8 are the following, where
T k,S denotes a TSS T that contains keyword k in its schema
node S:

CTSSN1: PartTV,name → PartV CR,name

CTSSN2: PartTV,name → Part→ PartV CR,name

CTSSN3: PartTV,name → Part→ Part→
PartV CR,name

CTSSN4: PartTV,name ← Lineitem← Order →
Lineitem→ PartV CR,name

CTSSN5: PartTV,name ← Lineitem← Order →
Lineitem→ ProductV CR,descr

The candidate TSS networks are output by the CN Gen-
erator. The Optimizer is an adaptation of the optimizer of
[13] and is presented in [14] due to lack of space. It uses
the schema information on the connection relations and the
available statistics to generate the best Execution Plan that
evaluates the set of candidate TSS networks.

7

Person

Order

Lineitem

Part*
*

*

POL P_id O_id L_id

PaPa Pa1_id Pa2_id

LP_ref L_id P_id

LPa_ref L_id PA_id
Product LPr_ref L_id Pr_id

Service_call
*

PS P_id S_id

OLPa O_id L_id Pa_id

Figure 9. Another TSS Graph Decomposition

Person

Order

Lineitem

Part

*
*

Product

Service_call

* Part

*

Person

Order

Lineitem

Product
*

*

Part

Service_call
*

Lineitem

Part

*

Product

* *

Part

*

Figure 10. Unfolded TSS Graph Decomposi-
tions
The Execution Module inputs the execution plan from

the Optimizer. If the presentation graph method is used to
present the results, the Execution Module interacts with the
Presentation Module to direct the execution according to
the user’s navigation on the presentation graphs. In the case
of the full list of results presentation method, a stream of
results is output. The details of the Execution Module are
described in Section 6.

Finally the Presentation module displays the results as
described in Section 3.2.

5 XML Decompositions
The decomposition of the TSS graph into fragments de-

termines how the connections of the XML graph are stored
in the database, and consequently the generated execution
plan for the candidate TSS networks. We have found that
the selected decomposition can dramatically change the per-
formance of XKeyword, especially for top-K queries.
EXAMPLE 5.1 Consider the keyword query “TV, VCR”
and CTSSN4: PartTV,name ← Lineitem ← Order →
Lineitem → PartV CR,name from Section 4. CTSSN4
requires three joins given the decomposition of Fig-
ure 8. Consider the TSS graph decomposition of Fig-
ure 9, which includes an OLPa fragment. With this de-
composition, CTSSN4 can be evaluated with a single join
OLPTV,part.name � OLPV CR,part.name. �

Often we need to build unfolded fragments that contain
the same TSS more than once, to store the same edge of the
TSS graph more than once, as shown in the example below.
EXAMPLE 5.2 Consider the network CTSSN2:
PartTV,name → Part → PartV CR,name of Section 4.
This network connects three Part nodes by following
the Part → Part edge twice. Under any non-unfolded
decomposition this network cannot be executed without a
join. However, the first unfolded TSS graph of Figure 10,
which “unrolls” the PartPart cycle, allows the creation of
the Part → Part → Part fragment, which can evaluate
CTSSN2 without a join.

Similarly, CTSSN4 can be evaluated without a join,
if we create the Part ← Lineitem ← Order →
Lineitem → Part fragment on the second unfolded TSS
graph of Figure 10, where the Order → Lineitem edge
has been “split”, i.e., the Order TSS has two children
Lineitem TSS’s. Notice that not all edges of the unfolded
TSS graphs have to be in the decomposition. For example
in the second unfolded TSS graph of Figure 10, the second
Lineitem→ Person edge is not in a fragment, since there
is a fragment for the first Lineitem→ Person edge. �

Definition 5.1 (Walk Set, Unfolded TSS Graph) A walk
set of a TSS graph G, denoted WS(G), is the set of all
possible walks in G. A graph Gu is an unfolded TSS graph
of the TSS graph G if WS(Gu) = WS(G). ♦
Definition 5.2 (TSS Graph Decomposition) A decompo-
sition of a TSS graph G = 〈N, E〉 is a set of fragments
F1, . . . , Fn, where for each fragment F 〈N, E〉 there is an
unfolded TSS graph Gu = 〈Nu, Eu〉 of G, such that F is
a subgraph of Gu. Every edge of G has to be present in at
least one fragment. ♦
Lemma 5.1 Any candidate TSS network can be evaluated
given a TSS graph decomposition with the properties of Def-
inition 5.2.

The size of a fragment is the number of edges of the TSS
graph that it includes. Note that a TSS graph decomposition
is not necessarily a partition of the TSS graph – a TSS may
be included in multiple fragments (Figure 9).

Each fragment F = 〈N, E〉 corresponds to a connection
relation R, where each attribute corresponds to a TSS and is
of type ID6. A tuple is added to R for each subgraph of type
F in the target object graph, which is the representation
of the XML graph in terms of target objects, that is, each
node of the target object graph is a target object. Connection
relations are a generalization of path indexes [9].
5.1 Decomposition Tradeoffs

There is a tradeoff between the number of fragments that
we build and the performance of the keyword queries, as
we shown in Section 7. Assume that we consider solutions
to the keyword queries which contain up to M + 1 target
objects. That is, the maximum size of a candidate TSS net-
work is M . The one extreme is to create the minimal de-
composition, where a fragment is built for each edge of the
TSS graph. Then, each candidate TSS network C requires
S − 1 joins to be evaluated, where S is the size of C. We
have found that the minimal is the most efficient decompo-
sition for the on-demand expansion of a presentation graph,
because the execution algorithm first tries to connect the
new target objects to the adjacent nodes in the presentation
graph, and gradually tries further nodes (Figure 13).

The other extreme is the maximal decomposition, where
a fragment F is built for every possible candidate TSS net-
work C. F is created by replacing the non-free TSS’s of
C with free TSS’s. Then C is evaluated with zero joins.
Clearly, the maximal decomposition is not feasible in prac-
tice due to the huge amount of space required.

Notice that M can be calculated by the maximum size Z
of the MTNN’s of the keyword query. In particular, the size
S of a candidate TSS network C is bound by the size S ′ of

6In RDBMS’s we use the “integer” type to represent the “ID” datatype.

8

the corresponding candidate network C ′ with the size asso-
ciation function f , which depends on the schema graph, the
number of keywords and the TSS graph. It is S ≤ f(S ′).
Hence

M = f(Z) (1)
For the schema graph of Figure 5, two keywords and the
TSS graph of Figure 6, it is f(S ′) = 2 · S′ + 2.

The clustering and indexing of the connection relations
are critical because they determine the performance of the
joins. In the maximal decomposition, a multi-attribute
index is created for every valid (i.e., the keywords can
be on these attributes) combination of attributes of ev-
ery connection relation. In all non-maximal decomposi-
tions, we found (Section 7) that the performance is dra-
matically improved when a connection relation R is clus-
tered on the direction that R is used. For example, con-
sider the execution plan of Section 4. If the evaluation
of CTSSN3 ← PaPa(TV,part1.name) �Pa2 id=Pa1 id

PaPa �Pa2 id=Pa1 id PaPa(V CR,part2.name) starts from
the left end, then all three PaPa connection relations
should be clustered from left to right. If creating all clus-
terings for each fragment is too expensive with respect to
space, then single attribute indices are created on every
attribute of the connection relations, since we found that
multi-attribute indices are not used by the DBMS optimizer
to evaluate join sequences.

The number of joins to evaluate the query q correspond-
ing to a candidate TSS network is critical, because of the
nature of q, which always starts from “small” connection
relations. Also, the connection relations only store ID’s and
have every single attribute index, which makes the joins in-
dex lookups. The significance of the number of joins was
verified experimentally (Section 7). Hence, we specify for
each decomposition an upper bound B to the number of
joins to evaluate any candidate TSS network of size up to
M . For example B = 0 and B = M − 1 for the maximal
and minimal decompositions respectively.

Given B, we generally prefer to build fragments of small
sizes to limit the space of storing them. Theorem 5.1 proves
that we can bound the size of the fragments of the decom-
position.
Theorem 5.1 There is always a decomposition D, whose
fragments’ maximum size is L = � M

B+1� and any candidate
TSS network of size up to M is evaluated with at most B
joins.
Proof: See [14]. ♦

Depending on the TSS graph, we may need to build all
possible fragments of size L to satisfy the constraint B on
the number of joins. Theorem 5.2 shows such a class of
TSS graphs.
Theorem 5.2 If all edges of the TSS graph are star (“*”)
edges and ∃L ∈ N, such that M = L · (B + 1), then the
decomposition D must contain all fragments of size L to
satisfy the constraint B on the number of joins.
Proof: See [14]. ♦

Often it is not efficient to build all fragments of size
L, because a fragment may take up too much space de-
spite its small size (in number of edges). This happens
when the corresponding connection relation of a fragment
has a non-trivial multivalued dependency (MVD), as the
PaLOLPa fragment in Figure 10, which has the MVD

O id →→ L1 id, Pa1 id. We say that a fragment has an
MVD when its corresponding connection relation has an
MVD.
Theorem 5.3 A fragment F has a non-trivial
MVD iff F contains a path p = (e1, . . . , en) and
∃ei ∈ {e1, . . . , en}, ∃ej ∈ {e1, . . . , en}, i < j, and

• ei ∈ { ∗←−,
ref−−→,

∗→
ref

,
∗←

ref
} and

• ej ∈ { ∗−→,
ref←−−,

∗→
ref

,
∗←

ref
} and

• ∃l, i < l < j − 1, el ∈ {→} ∧ el+1 ∈ {←}
Proof: See [14]. ♦

We classify TSS graph fragments and decompositions
based on the storage redundancy in the corresponding con-
nection relations. Connection relations that correspond to
a single edge in the TSS graph, by definition are always
in 4NF. Some wider connection relations, for example the
OLPa relation of Figure 9 can be in 4NF, however most of
them will not be in 4NF. Non-MVD, no-4NF connection re-
lations, are called inlined connection relations. A fragment
is 4NF, inlined, or MVD, if the resulting connection relation
is 4NF, inlined, or MVD respectively.

There are two classes of fragments that should never be
built because no candidate TSS network can efficiently use
them. We call such fragments useless:

1. If a fragment F contains a choice TSS T and more than
one children of T , then F is useless, since the children
of T can never be connected through T . For example,
the fragment PaLPr is useless since Lineitem is a
choice TSS.

2. A fragment that contains the construct T1
l1−→ T

l2←− T2

is useless, if l1 = ref and l2 = ref , because T1 and
T2 are never connected through T . For example, the
fragment L1PrL2 is useless since two Lineitem tar-
get objects cannot connect through a Part target ob-
ject.

We ignore useless fragments in the decomposition algo-
rithm presented below.

Decomposition Algorithm. XKeyword uses two different
decompositions. First, an inlined, non-MVD decomposition
generated by the algorithm of Figure 12 is built, where B is
the maximum number of joins and M is the maximum can-
didate TSS network size. This decomposition is used to ef-
ficiently generate the top-K results (MTTON’s) in the web
search engine-like presentation, and the top-1 MTTON of
each CN C which corresponds to the initial instance of the
presentation graph of C. Second, the minimal decomposi-
tion is built, which is used along with the inlined, non-MVD
decomposition in the on-demand expansion of the presenta-
tion graphs.

The algorithm in Figure 12:
• satisfies the B constraint on the number of joins
• avoids building MVD fragments if possible
• builds non-MVD fragments of size larger than L =
� M

B+1� if they can eliminate MVD fragments of size L
We say that a candidate TSS network C is covered by a
decomposition D when C can be evaluated with at most B
joins.

Given M = 4 and B = 1, Figure 11 shows how the
candidate TSS network S ← P → O → L → Pr is
covered if we build the non-MVD fragment POLPr of size
L + 1 instead of the MVD fragment SPO of size L.

9

Person

Order

Lineitem

Part

*
*

* Product

Service_call
*

Person

Order

Lineitem

part

*
*

* Product

Service_call
*

(a) (b)

Figure 11. Replacing an MVD with a non-MVD
fragment

Decomposition Algorithm(B,M){
Add to the decomposition D the non-MVD fragments of size ≤ L;
Create a list Q of all candidate TSS networks
of size up to M not covered by D;

Add all possible non-MVD fragments of size
greater than L, that help in covering at
least one candidate TSS network C ∈ Q and remove C from Q;

Add the minimum number of MVD fragments of size up to L
to cover all candidate TSS networks in Q;
}

Figure 12. Decomposition Algorithm

6 Execution
The execution module of XKeyword aims at providing

fast response time to keyword queries. Depending on the
presentation method selected (see Section 3.1), we follow a
different execution approach.
Web search engine-like presentation. In the case of the
web search engine-like presentation of the MTTON’s (Fig-
ure 4 (b)), we use the inlined, non-mvd decomposition (Fig-
ure 12) to speedup the execution of the top-K keyword
query. If the CN’s7 were evaluated sequentially, and the
first one did not produce any results, then the time to get
the first result would be too long. We solve this problem be
using a thread pool. A thread is assigned to each CN start-
ing from the smaller ones, which need less execution time
and also produce higher ranked results. A thread is returned
to the pool when either the corresponding CN’s evaluation
completed, or a total of K results have been generated by
all threads, in which case the execution ends.

The evaluation of a single CN C of the keyword query
k1, . . . , km is challenging for two reasons. First, since
we look for K results, sending a SQL statement for C
is inefficient, because the DBMS’s do not currently effi-
ciently support top-K queries. XKeyword uses nested loops
join, where the nesting of the loops is determinded by a
depth first traversal of C that first finds a connection be-
tween k1 and k2, then to k3, etc. The execution is termi-
nated after K results are produced. For example, consider
CTSSN2 : partTV,name → part → partV CR,name

of Section 4. The outermost loop will iterate over the TSS
partV CR,name8, the second loop over part and the inner-

7For simplicity, in this section we use the term CN for both a CN and
its corresponding candidate TSS network.

8In the next paragraph we explain why VCR was selected as k1.

Expansion Algorithm(PG(C),n){
PG(C): current instance of presentation graph
n: node to be expanded. n is of type N
Let S be the set of target objects of type N ;
for each node u in S do
l := 1;
while u not connected to all keywords and l ≤ size(C) do

Check if u is connected to all keywords through PG(C)
with l extra edges;

l++;
If no connection was found ignore u;
else add u with its connection edges to PG(C);
}

Figure 13. On-demand expansion algorithm

most over partTV,name.
The second challenge is that the naive nested loops

join algorithm has a serious inefficiency, because it may
send the same queries multiple times. In the above ex-
ample, consider the case where two target objects t1, t2
in partV CR,name connect to the same target object in the
part TSS. Then, when evaluating CTSSN2 for t2, the in-
nermost loop (over partTV,name) should not be executed
since it will produce the same results as before. Notice
that this optimization would not be possible if we had put
partTV,name as the outermost loop, because part → part
is a containment and not a reference edge, so no two tar-
get objects in partTV,name could connect to the same tar-
get objects in the part TSS. The speedup of the optimized
execution algorithm over the naive one is experimentally
evaluated in Section 7.

In the optimized execution algorithm, there is a trade-
off between storing the past results to avoid repeating a
query and keeping no past results but sending more queries.
XKeyword uses a fixed size cache for each keyword query
to store past results and if the cache gets full, the queries are
re-send to the DBMS.
Presentation Graphs. In the case of the on-demand exe-
cution based on the presentation graphs’ navigation we need
to modify the optimized algorithm, because we do not need
the complete MTTONs, but only to find the set of expanded
nodes that the user requested and their minimal connections
to the presentation graph. In the above example, if the user
clicks on the partTV,name TSS, then for each expanded
node n in partTV,name, we need to find a single connec-
tion to the part TSS and we ignore additional connections.
In particular, we first check if n is connected to a node of
part already in the presentation graph PG(CTSSN2), be-
cause we need to expand the PG(CTSSN2) in a minimal
way. If such a connection is not possible, we search for a
connection to a fresh node of the part TSS. The on-demand
expansion algorithm is shown in Figure 13.

Initially, the XKeyword decomposition (Figure 12) is
used to efficiently retrieve the top result of each CN. Then
we use a combination of the minimal and the inlined, non-
MVD decomposition to find the minimal connection of the
expanded nodes to the presentation graph, as we explain in
Section 7.

10

Conference

Year

Paper

*
in

 y
ea

r,
of

 c
on

fe
re

nc
e

* contains paper,in issue

TARGET DECOMPOSITION TSS GRAPH

conference

year

paper

*
*

title pages

name

confyear

URL

author

name

*

Author

 *

 b
y

au
th

or
,

of
 p

ap
er

*

*

cites,
is cited by

Figure 14. Target decomposition of DBLP

7 Experiments
To evaluate the performance of XKeyword we performed

a set of experiments. First, we measure the performance
of the keyword queries for various decompositions of the
XML schema, for top-K and full results. Then we evalu-
ate the performance of the optimized execution algorithm
for the search engine-like presentation method described in
Section 6. Finally the performance of the on-demand ex-
pansion algorithm is evaluated.

We use the DBLP XML database with the schema shown
in Figure 14. The citations of many papers are not contained
in the DBLP database, so we randomly added a set of cita-
tions to each such paper, such that the average number of
citations of each paper is 20. We use Oracle 9i, running on
a Xeon 2.2GHz PC with 1GB of RAM. XKeyword has been
implemented in Java and connects to the underlying DBMS
through JDBC. The master index is implemented using the
full-text Oracle 9i interMedia Text extension. Clustering is
performed using index-organized tables.
Decompositions. We assume that the maximum candi-
date networks’ size is Z = 8 and focus on the case of
two keywords. Notice that we select a big Z value to show
the importance of the selected decomposition. The absolute
times are an order of magnitude smaller when we reduce
Z by one. For the TSS graph of Figure 14, the maximum
size of the CTSSN’s is M = f(8) = 8 − 2 = 6. We re-
quire that the maximum number of joins is B = 2, hence
from Theorem 5.1 it is L = 2. We compare five different
decompositions:

1. The XKeyword decomposition created by the algo-
rithm of Figure 12.

2. The Complete decomposition, which consists of all
fragments of size L.

3. The MinClust decomposition, which is the minimal
decomposition with all possible clusterings for each
fragment.

4. The MinNClustIndx decomposition, which is the
minimal decomposition with single attribute indices on
every attribute of the ID relations.

5. The MinNClustNIndx decomposition, which is the
minimal decomposition with no indices or clustering.

We compare the average performance of these decom-
positions to output the top-K results for each candidate net-
work. The results are shown in Figure 15 (a). Notice that
the Complete decomposition is slower than MinClust
although it requires a smaller number of joins, because
of the huge size of the fragments that correspond to re-
lations with multi-valued dependencies and the more effi-
cient caching performed in the MinClust decomposition.

Also notice that the non-clustered decompositions (the re-
sults for MinNClustNIndx are not shown, because they
are worse by an order of magnitude) perform poorly for the
top-K results.

Figure 15 (b) shows the average execution times to out-
put all the results for each candidate network. Notice that
the MinNClustNIndx is the fastest, since the full table
scan and the hash join is the fastest way to perform a join
when the size of the relations is small relatively to the main
memory and the disk transfer rate of the system, which is
the case here, since all relations of the minimal decomposi-
tion have just two id (integer) attributes.

Execution Algorithm. We evaluate the optimized execu-
tion algorithm, where partial results are cached and reused
(and hence production of “trivial” results, due to multi-
valued dependencies, is reduced) for the search engine-
like (non-interactive) presentation method. We measure the
speedup of the optimized algorithm compared to the naive,
non-caching algorithm for various candidate TSS network
sizes M . The results are shown in Figure 16 (a), where the
number of keywords is fixed to 2. We see that the speedup
increases with M because the number of trivial results in-
creases with M . Also notice that the speedup is smaller than
1 for M = 2, because of the negligible caching opportuni-
ties and the overhead imposed by the caching algorithm.

Finally, we measure the performance of the on-demand
expansion algorithm of Figure 13. We use keyword queries
that involve the names of two authors and we focus on the
presentation of results coming from the candidate network
Authork1 ← Paper → Authork2 .Figure 16 (b) shows
the average time to expand a Paper node using three dif-
ferent decompositions: (i) the inlined, non-mvd decompo-
sition produced by the algorithm of Figure 12, (ii) the min-
imal decomposition, and (iii) the combination of the two
decompositions, i.e., the union of their fragments. More in-
ternal Paper nodes are added for bigger sizes. The combin-
ing decomposition is faster when the size of the candidate
TSS networks is greater than 2. It is slightly slower than
the minimal for size 2, due to the caching of the minimal
connection relations by the DBMS. The inlined is slower,
because the algorithm initially looks for a connection to the
adjacent nodes of the to be expanded node, where the mini-
mal fragments are more suitable.

8 Conclusions and Future Work

XKeyword is a system that offers keyword proximity
search on XML databases that conform to an XML schema.
The XML elements are grouped into target objects, whose
connections are stored in connection relations. Redundant
connection relations are used to improve the performance
of top-K keyword queries. XKeyword presents the results
as interactive presentation graphs, which summarize the re-
sults per candidate network. The execution of the queries is
optimized to offer fast response times.

In the future, we plan to look into different seman-
tics for keyword queries on structured and semi-structured
databases, going beyond the distance between keywords.
We also work on integrating the master index tighter into
the execution engine of XKeyword and on improving the
response time of the system.

11

0

10000

20000

30000

40000

50000

0 5 10 15 20 25
K

m
se

cs

XKeyword MinClust MinNClustIndx Complete

(a) Top-K results (b) All results
Figure 15. Execution times

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2 3 4 5

Maximum CTSSN Size

S
pe

ed
up

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

2 3 4 5
CTTSN size

se
cs

inline minimal combination

(a) Speedup by caching partial results (b) Expansion of presentation graph
Figure 16. Execution times

9 Acknowledgements
We thank Patrick Lightbody for implementing the front

end of the XKeyword demo. We also thank Tianqiu Tempo
Wang for implementing the module that displays the pre-
sentation graphs and helping with the experiments.
References

[1] http://www.xyzfind.com.

[2] S. Abiteboul, D. Suciu, and P. Buneman. Data on the Web
: From Relations to Semistructured Data and Xml. Morgan
Kaufmann Series in Data Management Systems, 2000.

[3] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A Sys-
tem For Keyword-Based Search Over Relational Databases.
ICDE, 2002.

[4] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern re-
laxation. International Conference on Extending Database
Technology (EDBT), 2002.

[5] A. Balmin and Y. Papakonstantinou. Storing and Query-
ing XML Data Using Denormalized Relational Databases.
UCSD Technical Report, 2001.

[6] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti, and S. Su-
darshan. Keyword Searching and Browsing in Databases us-
ing BANKS. ICDE, 2002.

[7] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML
schema to relations: A cost-based approach to XML storage.
In Proceedings of ICDE, 2002.

[8] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing
semistructured data with STORED. ACM SIGMOD, 1999.

[9] M. F. Fernandez and D. Suciu. Optimizing regular path ex-
pressions using graph schemas. In ICDE, pages 14–23, 1998.

[10] D. Florescu and D. Kossmann. Storing and querying XML
data using an RDBMS. IEEE Data Engineering Bulletin,
22(3):27–34, 1999.

[11] D. Florescu, D. Kossmann, and I. Manolescu. Integrating
Keyword Search into XML Query Processing. WWW9 Con-
ference, 1999.

[12] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity Search in Databases. VLDB,
1998.

[13] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword
Search in Relational Databases. VLDB, 2002.

[14] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Key-
word Proximity Search on XML Graphs (extended version).
UCSD Technical Report, 2002.

[15] Y. Kanza and Y. Sagiv. Flexible queries over semistructured
data. PODS, 2001.

[16] I. Manolescu, D. Florescu, D. Kossmann, F. Xhumari, and
D. Olteanu. Agora: Living with XML and relational. VLDB,
2000.

[17] J. Plesn’ik. A bound for the Steiner tree problem in graphs.
Math. Slovaca 31, pages 155–163, 1981.

[18] A. Schmidt, M. L. Kersten, M. Windhouwer, and F. Waas.
Efficient relational storage and retrieval of XML documents.
In WebDB (Selected Papers), pages 47–52, 2001.

[19] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. De-
Witt, and J. F. Naughton. Relational databases for query-
ing XML documents: Limitations and opportunities. VLDB,
1999.

[20] J. D. Ullman, J. Widom, and H. Garcia-Molina. Database
Systems: The Complete Book. Prentice Hall, 2001.

[21] W3C. XML Linking Language (XLink), 2001. W3C Re-
comendation available at http://www.w3.org/TR/xlink/.

[22] W3C. XML schema definition, 2001. W3C Recomendation
available at http://www.w3c.org/XML/Schema.

[23] W3C. XQuery: A query language for XML, 2001. W3C
Working Draft available at http://www.w3c.org/XML/Query.

12

