
A Syntactic Rule Based Approach to Web Service Composition

Ken Pu
University of Toronto
kenpu@cs.toronto.edu

Vagelis Hristidis
Florida International University

vagelis@cs.fiu.edu

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

Abstract

This paper studies a problem of web service composi-
tion from a syntactic approach. In contrast with other ap-
proaches on enriched semantic description such as state-
transition description of web services, our focus is in the
case when only the input-output type information from the
WSDL specifications is available.

The web service composition problem is formally for-
mulated as deriving a given desired type from a collec-
tion of available types and web services using a prescribed
set of rules with costs. We show that solving the minimal
cost composition is NP-complete in general, and present
a practical solution based on dynamic programming. Ex-
periements using a mixture of synthetic and real data sets
show that our approach is viable and produces good results.

1 Introduction

Several efforts, including the Web Service Conversation
Language (WSCL), the Business Process Execution Lan-
guage for Web Services (BPELWS), and the integration of
web service calls on XQuery [10] address the issue of web
service composition. A natural problem is to automate the
composition of web services. Towards this goal, a large
corpus of work has focused on composing semantically
rich (sematically annotated) web services. For instance, in
[2, 5, 1] web services are modeled as finite-state machines
that reflect their functionality, and their compositions are
modeled as compositions of state machines. Such a seman-
tically rich description of the web services allows discovery
of high-quality compositions [2] as well as verification of
existing ones [5]. However, WSDL, which is the currently
widely adopted standard for description of web services, of-
fers limited syntactic description of the services With only
such limited information on the input-output types of the
web services, is it possible to produce compositions to per-
form specific tasks?

In this paper, we propose a syntactic approach to web
service composition, given only their WSDL descriptions.
In particular, we view the web services as black boxes ca-
pable of transforming XML fragments of the input type to
XML fragments of the output type, and hence the prob-

lem of web service composition becomes a type-derivation
problem as follows:Given a collection T0 of base types, de-
scribed in XML Schema, a collection S of web services, and
a target type t, derive t from T0 using the services in S.

The target type is derived by applying a set of derivation-
rules, or simply rules. These rules, which we will present
in detail, describe the ways in which new types are derived
from existing ones by application of web services. The tar-
get type is derived from the base types by a series of ap-
plications of these rules, which include sequential or paral-
lel invocation of web services, and iteration over contain-
ers. Each step of a derivation (application of a rule) incurs
a cost according to a cost model, which generally favors
derivations with fewer rule applications (i.e., fewer struc-
tural transformations and web service applications).
Example: Consider the typebooks which is a collection of
book elements. Eachbook element is identified either by its
title or its ISBN number, along with the author names and
the publisher.

books : book[1,∞] :











union

[

title : string or
ISBN : string

authors :

[

fname : string
lname : string

publisher : string

Suppose that we have two web services described as fol-
lows:

WS1 :

[

title : string
publisher : string →

[

bestprice : numeric
bookstore : string

WS2 : ISBN : string→

[

bestprice : numeric
bookstore : string

Suppose that one wishes to find the best prices of all the
books in a collection (of typebooks). The target type is:

bestprices : bestprice[1,∞] :

[

bestprice : numeric
bookstore : string

One can manually verify that the target typebestprices

can indeed be derived from the collection of base typesT0 =
{books} and web servicesS= {WS1, WS2}. The derivation is not
unique, but a sensible one is the following.

1

Derivation Plan:
1. Iterate through the collectionbooks,
2. if it is identified by its title, then
3. pass the title and publisher information toWS1,
4. else, if it is identified by its ISBN, then
5. pass the ISBN number toWS2.
6. Take the outputs and form the collectionbestprices.

The rules proposed in this paper support this derivation
as we provide rules for iteration (line 1), if-then-else on a
type (line 2 and 4), type-construction and destruction (lines
3, 5 and 6), and application of web services (lines 3 and 5).
We use a cost model to eliminate non-sensible derivations
(such as using the author’s last name as the publisher, and
so on).

Naturally, the quality of the generated candidate compo-
sitions depends on the choice of the derivation rules. The set
of rules used in this paper, which are shown to be sound ex-
perimentaly, are based on previous work on schema match-
ing, type derivation and tree edit distance, which are areas
related to this work as we explain in Section 2. However,
our algorithmic framework is generic and a different set of
rules can be specified according to the application needs1.
In addition to the rules, the quality of the derivations is de-
pendent on the naming quality of the WSDL files for the
web services. Our case studies show that one can still find
useful derivations using real-life WSDL files.

In this paper, we present our theoretical and algorithmic
results on thetype-derivation problem.

2 Related Work

Tree edit distance works [16, 21] (see [3] for a sur-
vey) define a minimal set of operations (typically add node,
delete node, and relabel node) to tackle the problem of
transforming a labeled treeT1 to a labeled treeT2 apply-
ing a minimum sequence of operations. Our problem is
more complex since the labels of an XML Schema tree carry
additional information (e.g., list, union, complex type, tag
name, base-type, and so on) which makes plain relabeling
inapplicable. For example, if two XML Schema trees differ
only on the label of a single node, whose label is “union”
for the first tree and “list” for the second, then they have
unit distance in tree edit distance, but they are incompatible
in our framework. Tree matching works [4] have the same
limitation.

Dong et al. [6] propose a method to discover similar
Web Services based on the textual descriptions (in WSDL)
and their input/output parameters’ names. It does not deal
with composition however. Paolucci et al. [11] describe a
framework to semantically match Web services described
using DAML-S. Recent work has tackled the problem of
composing web services by exploiting the flow diagrams
that represent them. In particular, web services are viewed
as state machines [20, 18, 1, 2].

Wombacheret al. [18] determines if a composition is
valid by the intersection of the corresponding state ma-

1For instance, if we want to create more conservative compositions, we
can remove the optional rule (described in Figure 3).

chines. Furthermore, since the web services are modeled as
transition structures, one can verify the web service compo-
sition by simulation [9] or by model-checking methods [5].
Such works, which are complementary to our approach, as-
sume access to the behavioral characteristics of the service
which may or may not be available; we only assume ac-
cess to the service type signature which is typically avail-
able through WSDL (and XML Schema). In SWORD [12],
web services are treated as input-output functions, and a set
of rules of composition is specified. In our work, we also
treat web services as functions, but work with a more com-
plex set of rules that are capable constructing more sophis-
ticated composition plans.

Schema matching tackles the problem of finding corre-
spondences between the elements of two given schemas.
Much work has been conducted on matching relational
schemata [14], but recently there has also been work on
matching of semi-structured schemata [13, 17, 15, 7, 8].
These algorithms match two schemata by matching their
tree structures, exploiting possible semantic constraints
[7, 17, 15]. In [8], the management of these mappings is
considered. In contrast, our work tackles the problem of
transforming a set of base types (schemata) to a target type
using the available web services as transformation tools.
The web services can be invoked in various ways during
the transformation process according to a set of derivation
rules.

3 The Optimal Type-Derivation Problem

In this section, we formally define the optimal type-
derivation problem with respect to an arbitrary set of deriva-
tion rules. Then, we introduce a set of XML-centric rules
which are used to capture the ways in which XML Schemas
can be modified, combined, and web services invoked, in
the derivation process. These rules naturally correspond to
programming constructs found in BPEL, such as sequential
and parallel invocations, iteration over lists, and branch-
ing based on node-types. We also included limited struc-
tural transformations, which can easily be implemented by
XQuery, as part of the rule-set. Derivations using these rules
correspond to compositions of web services coupled with
possible structural transformations.

We represent an XML Schema as a tree of labeled nodes.
The fragment of XML Schema we consider contains com-
plex types of sequence, choice, and elements can have
minOccurs and maxOccurs constraints. As a labeled tree,
each node can be a tag name, a complex type construc-
tor (sequence, union), or a primitive type such asint or
string. A union-node represents achoice-complex type,
that is, the instance of which can only be one of the chil-
dren types in accordance with the XML Schema specifica-
tion. Each node may optionally have a multiplicity modifier
[m,n] indicating that in the instance, its occurrence is be-
tweenmandn inclusively – this corresponds to the minOc-
curs and maxOccurs constraints in XML Schema. We call
a nodeoptional if it is either aunion-node, or a node with

2

minOccurs = 0 constraint. Types can, thus, be represented
by terms such asUNION(title(string), ISBN(string)). A web ser-
vice is simply a multi-input-multi-output function of the
form f : s1,s2, · · · ,sn→ t1, · · · tm wheresi and ti are com-
plex types.

PROBLEM FORMULATION : Let Ai andB be sets of types,
called environments, andsi andt types. We writeAi ⊢ si to
mean that the typesi can be derived from the environment
Ai . Intuitively, an environmentAi is the collection of avail-
able types, andAi ⊢ si is to say that, by some means, we can
derivesi from Ai . A derivation-rule, or simply arule, has
the form

A1 ⊢ s1 · · · An ⊢ sn

B⊢ t
r.

It reads that ifsi can be derived from the environmentAi ,
thent can be derived from the environmentB. The rule can
be written asr(B ⊢ t) to indicate thatr derivest from the
environmentB. A rule is grounded if it requires noAi ⊢ si ,
written /0

B⊢t . We further assume that each ruler carries a cost
given by a generic cost functioncost(r(B⊢ t)). Derivation
rules can be composed in the natural way to form deriva-
tions.

Formally, aderivation D(B⊢ t) is defined as,

• any ruler(B⊢ t) is a derivation, and

• if r(B⊢ t) is a rule of the form
A1 ⊢ s1 · · · An ⊢ sn

B⊢ t
r,

andDi(Ai ⊢ si) are derivations, then

D1(A1 ⊢ s1) · · · Dn(An ⊢ sn)

B⊢ t
r is a derivation.

• Nothing else is a derivation forB⊢ t.

A derivationD(B⊢ t) = {Di(Ai⊢ti)}i
B⊢t r can be viewed as a tree

of rules, with the root being the ruleAi⊢ti
B⊢t r, and sub-trees

Di(Ai ⊢ ti). It says that typet is derived from the environ-
ment B by the derivationD. The derivation is grounded
if its leaf-rules are all grounded. The cost for a derivation
D(B⊢ t), written‖D(B⊢ t)‖ is defined as,

• if D(B⊢ t) = r(B⊢ t), then‖D(B⊢ t)‖= cost(r(B⊢ t)),

• if D(⊢ t) =
D1(A1⊢s1) ··· Dn(An⊢sn)

B⊢t r, then

‖D(B⊢ t)‖= cost(r(B⊢ t))+g(‖D1(A1 ⊢ s1)‖, . . . ,‖Dn(An ⊢ sn)‖),

whereg(· · ·) is either sum, or maximum2 depending on the
rule r.

Definition 1. Theoptimal type derivation problemis: given
a rule set R, a cost functioncost, an environment A and a
type t, find a grounded derivation D(A⊢ t) with the minimal
cost‖D(A⊢ t)‖.

2In most cases, the cost of a derivation is the sum the costs of the sub-
derivations and the applied rule. However, as defined in Figure 3, if the
applied rule isunion-rule, then we take the maximum of the costs of the
sub-derivations.

The classical tree-edit distance problem [3] is a special
instance of the optimal type derivation problem where the
environment contains the source tree, and the derived type
is the target tree. There are three rules:insert-, delete-
and replace, each of unit cost. Tree edit-scripts corre-
spond to derivations where the cost is always additive. The
derivations, as defined, generalize tree-edit scripts in vari-
ous ways. Derivations, in general, edit multiple trees, or
types, in the environment to derive the new tree, and the
rules allowed are a richer set that includes the basic tree-
edit operations, but also ways of invoking web services.

From this point, we refer to types in the environment as
thebase-types, and the type to be derived as thetarget type.

3.1 Derivation rules for XML Schema

We use rules to express ways in which XML-documents
(more accurately XML Schemas) can be transformed, com-
bined and evaluated by web services. The set of rules in-
clude basic structural transformations (similar to the clas-
sical tree-edit operations), merging structures (substituting
parts of a schema document with parts from other schema
documents), and finally applying web services (evaluating
a tuple of documents using available web services). In this
framework, the web service composition problem is for-
mally posed as atype-derivation problemin which thebase-
typesare the available inputs, and thetarget typeis the de-
sired output. A derivation of the target type is then a plan of
how the available web services can be composed, together
with possibly some structural modifications to the interme-
diate results, to produce the desired output.

/0
A⊢ t

MEM, if t ∈ A.
A1 ⊢ t1 A2 ⊢ t2 · · ·Ai ⊢ tnS

i Ai ⊢ c(t1, t2, . . . , tn)
CON

A⊢ t
A⊢ t|p

DES, wherep is not under an optional node.

A⊢ t
A⊢ t|p̄

DEL
A⊢ t A⊢ s

A⊢ t←
p

s
INS

A⊢ t A⊢ s
A⊢ t[s]p

REP

Figure 1. Structural transformations

BASIC STRUCTURAL TRANSFORMATION RULES: The
first set of rules deals with structural transformations. We
refer to this set of rules as thestructural rules, shown in
Figure 1.
Membership:If type t is part of the environment, then it can
be derived from the environment by themembership-rule
(MEM).
Construct: One can derive new types from existing
types by introducing new tags. Suppose one has
derived ISBN(string) and city(string), then cer-
tainly, we should be able to construct a new element
X(ISBN(string), city(string)) by introducing the
new tagX. This is captured by theconstruction-rule (CON)
shown in Figure 1.
Destruct: Contrary to theconstruct-rule, suppose that

3

/0
A⊢ address(· · ·)

MEM

A⊢ postal(string)
DES

/0
A⊢ person(age(int),name(string))

MEM

/0
A⊢ address(· · ·)

MEM

A⊢ city(string)
DES

A⊢ person(age(int),city(string))
REP

A⊢ office(postal(string), person(age(int), city(string)))
CON

Figure 2. A derivation plan.

we have the element sequence(title(string),
ISBN(string)), then it is reasonable to derive
ISBN(string) from it. Denote the sub-type (i.e., the
sub-tree) of typet located from the root along a pathp by
t|p. Thedestruction-rule (DES) derives the sub-typet|p of
type t as long ast|p is not under someoptionalnode. The
reason that we do not allow applications of thedestruct-rule
at a sub-type under an optional node is simply that at the
instance level, that sub-type may not be present. These
sub-types are accessible by the complex rules presented in
Figure 3.
Delete: The delete-rule (DEL) removes a sub-tree from a
tree.
Insert: Similarly, one can insert a sub-type under a type as
described by theinsert-rule (INS). Denote the result of in-
serting types into typet under the node located at pathp
ast ←

p
s. If one can derivet ands, then application of the

insert-rule derivest←
p

s.

Replace:The replace-rule (REP) allows one to replace a
sub-type at pathp of a typet with another derived types,
written t[s]p.

This set of rules is not minimal in the sense that, for
instance, thereplace-rule is equivalent to composition of
insert and delete-rules. However, depending on the cost
function, it may be cheaper to replace rather than delete
and then insert.

Example: Suppose the set of base-types is

A =

{

address :

[

city : string
postal : string , person :

[

age : integer
name : string

}

And the target typet is office :





postal : string

person :

[

age : integer
city : string

One derivationD(A⊢ t) is shown in Figure 2. In the plan,
the target type is derived by replacing the sub-treename
underperson with the sub-treecity which is derived by
destructing the typeaddress. Together, with the sub-tree
postal, one uses construction to derive the final type.2

Note that the rules do not pay attention to the sequence of
the children nodes. We actually ignore the order among the
children nodes in the type, even though in general, XML
Schema is order sensitive. The alternative is to introduce
an additional structural rule,permute, which re-orders the
children nodes under a given parent node. In this paper, we
do not consider permutation, thus consider two nodes equal
if their children are equal upto permutation.

A⊢ union(t1, t2, · · ·) A∪{ti} ⊢ t for all ti
A⊢ t

UNI

A⊢ s1 · · ·A⊢ sm A∪{t1, t2 · · · tn} ⊢ t

A⊢ t
APP(f)

where there is a web servicef : s1,s2, · · ·sm→ t1, · · · , tn.

A⊢ s[m,n] A∪{s} ⊢ t

A⊢ t[m′,n′]
MAP wherem′ ≤m,n′ ≥ n.

/0
A⊢ s[0,n]

OPTN
,

s
A⊢ s[m,n]

LIST,m≤ 1

A⊢ c(t1, t2, · · · , tn) A⊢ c(s1,s2, · · · ,sm)

A⊢ c(u1, . . . ,um+n)
CAT

where{ui}= {si}∪{ti} in bag semantics.

Figure 3. More complex XML-centric rules

DEALING WITH WEB-SERVICES ANDXML-SCHEMA:
Clearly, structural rules are not suitable to lead to automa-
tion of web service compositions: they do not deal with
important parts of XML Schema, in particular,union nodes
in the type, andminOccurs andmaxOccurs constraints of
elements. Furthermore, they do not capture web services.
Thus, we extend the rule set to include rules dealing with
union’s, web services and finally dealing withminOccurs,
maxOccurs constraints.
Union: The union-rule (UNI) reads as: ifA can derive
union(t1, t2, · · ·) and for all i ≤ n, ti together withA can
derivet, then,A can derivet. Consider the following exam-
ple: LetA = {c(union(a(b),b))}, andt = b. There is only
one base-type. We cannot derive the targett from the base-
type by structural-rules since destruction cannot be applied
below aunion-node. However, using theunion-rule, one
can derivet:

A⊢ c(union(a(b),b)), A∪{a(b)} ⊢ b, A∪{b} ⊢ b

A⊢ b
UNI

Apply: Theapply-rule (APP) allows one to use an available
web service to transform the tuple of input schemas to the
output schema. It reads, iff : s1,s2, · · · → t1, t2, . . . is an
available web service, and from the environmentA, si are
derivable, andA plus{t j} can derivet, then we can derivet
from A using the web service.

For example, a web service
getPrice : book,ISBN[0,1]→ price creates a rule

A⊢ book A⊢ ISBN[0,1] A∪{price} ⊢ t
A⊢ t

APP.

4

Let A = {books(book[1,∞])}.

/0
A⊢ books(book[1,∞])

MEM

A⊢ book[1,∞]
DES

/0
A∪book⊢ book

MEM
/0

A∪book⊢ ISBN[0,1]
OPTN

/0
A∪book∪price⊢ price

MEM

A∪{book} ⊢ price
APP

A⊢ price[1,∞]
MAP

Figure 4. A derivation usingapply, optionalandmap-rules.

Map, Optional and List:The rules map (MAP), optional
(OPTN) and list (LIST) deal with elements with minOccurs
and maxOccurs constraints.MAP allows one to map a list
of elements of types into a list of elements of typet given
that t can be derived froms and the other base-types, and
that the multiplicity constraint ont is more relaxed than the
constraint fors. OPTN andLIST allow the creation of an ele-
ment with multiplicity constraints from one without.

An example of using some of these rules along
with the web servicegetPrice described above to de-
rive the target typet = price[1,∞] from the base-type
{books(book[1,∞])} is shown in Figure 4.

CAT is thecatenate-rule which allows catenation of chil-
dren of two nodes if they have the same label.

COSTS OF DERIVATIONS: The cost of each rule is given
by a generic cost functioncost. The cost function also de-
termines the overall cost of a derivation. Given a deriva-
tion D = D1,D2,···Dn

A⊢t r, whereD1, . . . ,Dn are also derivations,
if the rule r is not theunion-rule, then‖D‖ = cost(r) +
∑n

i=1‖Di‖. But in the case of theunion-rule, we define
‖D‖= cost(r)+max{‖Di‖ : 1≤ i ≤ n}.

THE COMPLEXITY OF TYPE-DERIVATION : The com-
plexity of the type-derivation problem depends on the
derivation rules we consider. In general, the problem is
intractable. The source of intractability lies on the XML-
centric rules in Figure 3.

Theorem 1. If we consider only the union- and apply-rules,
the decision problem of type-derivation is coNP-hard, and
if we consider only the catenate-rule with constant cost, the
optimal type derivation problem is NP-hard.

In the following section, a dynamic programming so-
lution is presented, and is shown to be optimal in some
special cases of the type-derivation problem. The algo-
rithm performs recursive back-tracking search from the tar-
get type back to the base-types. It is shown that the back-
tracking algorithm for solving the optimal type-derivation
problem with respect to the structural-rules is in polyno-
mial time. For the intractable cases, we bound the depth of
back-tracking along only the problematic rules.

4 Type-Derivation Algorithms

We present a dynamic programming algorithm, which
we will refer to as the Back Tracking (BT)-algorithm, for
solving the type derivation problem. It starts with the tar-
get type, and back-tracks by considering the possible rules

that could have been used until a complete derivation plan
is found. Given the base-typesA, and a target typet, we
construct a set of derivation plans to be considered, denoted
by C (A⊢ t), and an optimal plan is simply given by

Dopt
C

(A⊢ t) = argmin
{

‖D‖ : D ∈ C (A⊢ t)
}

, (1)

where‖D‖ is the cost with respect to the cost model used.
The definition ofC (A ⊢ t) will recursively make use of
Dopt(A′ ⊢ t ′) of some environmentA′ and typet ′. The prop-
erties of the algorithm, such as its guaranteed termination,
time complexity, and optimality, all depend on the choice
of C (A ⊢ t). Therefore, the computation forDopt

C
(A ⊢ t) is

completely characterized by the definition of the consider-
ation setC (A ⊢ t) and the choice of the cost model. The
structure of theBT-algorithm is as follows.

opt plan(A:base-types,t:target type)
| C = consider(A,t);
| if(C = /0) return NON DERIVABLE;
| else return minimal plan in C ;

consider(A:base-types, t:target type)
| construct C with recursive calls to opt plan();
| return C ;

In the subsequent sections, we describe the details of proce-
dureconsider().

First we show how the case of structural-rules can be
solved by this approach in polynomial time with a choice
of C (A⊢ t) which will be described and analyzed in detail.
Then it is extended to encompass the rest of the rules.

DEALING WITH STRUCTURE-TRANSFORMATION RULES:
Let us restrict our attention only to the set of structural-
transformation rules described in Figure 1. We first
construct a set of maximal common-prefix embeddings
which are defined below. Each embedding corresponds to
a derivation, and the derivations of the maximal common-
prefix embeddings form the consideration set needed in the
BT-algorithm.

Recall that we view types as trees. Thetree domain
dom(t) of a typet is simply all the paths of the nodes int.
Let s andt be two type trees. We define apartial common-
prefix embeddingbetweens and t to be a partial function
θ : dom(s)→ dom(t) such that it satisfies the following con-
dition:

• θ(0) = 0, i.e., it maps the root ofs to the root oft.

• ∀p ∈ dom(s), θ(p) is defined=⇒ label(p) = label(θ(p)),
i.e.,θ maps only nodes ofs to nodes oft with the same label.

• ∀p ∈ dom(s), θ(p) is defined =⇒ θ(parent(p)) =
parent(θ(p)), i.e.,θ preserves the parent-child relation.

5

a

a a

ab

d bc

e

b

ca
a b

d e f

a b

0 0

00 0001 01

011
000

000 001 002

0010 0011

010

0110 0111 0000

010 011

Figure 5. A partial common-prefix embedding from
s (left) to t (right).

Partial common-prefix embeddings are henceforth re-
ferred to simply as embeddings. Computing embeddings
betweensandt can be done recursively in a straightforward
way: start at the root nodes ofs andt, stop if they differ in
labeling or multiplicity, otherwise, build all possible match-
ings of the children nodes, and continue with the matched
pairs.

The embeddingθ is similar to the edit-script mapping
found in tree-to-tree editing [3]. However, here, we do not
allow relabeling tag names of XML elements in one oper-
ation. In order to perform this, one must first derive the
children of the element (e.g. destruction), followed by a
construction using the new tag name.

The domain of θ is dom(θ) = {p ∈ dom(s) :
θ(p) is defined}, and the range ofθ is rng(θ) = {θ(p) : p∈
dom(θ)}. For the same typess, t, we say that one embed-
ding θ1 is greater than anotherθ2 if dom(θ1) ⊃ dom(θ2).
The non-embedded nodes ofs are dom(s)− dom(θ), and
similar for t are dom(t)− rng(θ). The frontier of θ in s,
Fr(θ|s) is the most upper non-embedded nodes ins. The
frontier Fr(θ|t) in t is similarly defined.

Example: Consider the two typess and t shown in Fig-
ure 5. The embeddingθ in Figure 5 isθ = {0 7→ 0, 00 7→
01, 01 7→ 00, 011 7→ 000}. Its domain and range are
dom(θ) = {0,00,01,011}, rng(θ) = {0,00,01,000}. The
frontiers are Fr(θ|s) = {000,001,002,010,0110,0111} and
Fr(θ|t) = {0000,010,011}.

Next we show how to recursively construct a deriva-
tion from an embedding. Assuming that we already have
the optimal derivationsDopt(A ⊢ s) and {Dopt(A ⊢ t|p) :
p ∈ Fr(θ|t)} with some environmentA, we form the plan
Ds,θ(A ⊢ t) that simulates the procedure in Figure 6. The
derivation planDs,θ(A ⊢ t) works as follows. First it gen-
eratess usingDopt(A ⊢ s) (line 1). Next,Ds,θ replaces top
unwanted nodes ins by nodes int that share the same par-
ent (lines 5-6). Then it adds the rest of the top nodes in
t that are not already ins after the replacements (line 7).
Finally, it removes all the unwanted nodes ins not already
replaced (lines 11-13). It is easy to see thatDs,θ(A⊢ t) only
needsreplace, deleteand insert-rules and the derivations
Dopt(A⊢ s), Dopt(A⊢ t|p) for p∈ Fr(θ|t).
Example: For the embedding of Figure 5, the fron-
tiers are Fr(θ|t) = {t.0000, t.010, t.011} and Fr(θ|s) =
{s.000,s.001,s.002,s.010,s.0110,s.0111}.

1 derives from A usingDopt(A⊢ s)
2 for eachp∈ Fr(θ|t),
3 derivet|p from A usingDopt(A⊢ tp)
4 if childn(θ−1(parent(p)))∩Fr(θ|s) 6= /0, then
5 pick one from childn(θ−1(p))∩Fr(θ|s), sayq,
6 replaceq with t|p in s to derives[t|p]q.
7 else
8 addt|p under the nodeθ−1(parent(p)) in s.
9 end if
10 end for
11 for eachq∈ Fr(θ|s) not deleted or replaced,
12 delete the sub-typeq from s.
13 end for

Figure 6. The procedure equivalent toDs,θ(A⊢ t).

For p= t.0000, parent(p) = t.000. Soθ−1(parent(p)) =
s.011, and childn(θ−1(parent(p))) ∩ Fr(θ|s) =
{s.0110,s.0111} which is non-empty. Therefore, according
to the procedure in Figure 6,Ds,θ(t) non-deterministically
pickss.0110 to be replaced byt.0000. The sub-types.0111
is deleted since it is not replaced by anything.

This is repeated for all the other nodes in Fr(θ|t), and to
summarize, we get a planDs,θ(A⊢ t) as follows.
1. Replaces.0110 witht.0000,s.000 witht.010,s.001 witht.011.
2. Removes.002,s.010 ands.0111.
3. No inserts are needed in this case.

At last, we construct the consideration set. The plans
Ds,θ(t) provide the building blocks to the consideration set
for the structural-rule set. Given the base-types in the en-
vironment A, and the target typet = c(t1, t2, · · · , tn), the
consider() procedure constructs the consideration set as
follows:

C
STR(A⊢ t) =

{

Dopt(A⊢ t1) · · · Dopt(A⊢ tn)
A⊢ t

CON

}

∪

{

Ds,θ(t) : s is a subtype inA not under optional-node andθ ∈ CP(s, t)
}

where CP(s, t) is the set of all maximal partial common-
prefix embeddings froms to t. In C STR(A ⊢ t), we consider
the case that the typet is derived by construction from its
childrenti (each of which is optimally derived byDopt(A ⊢
ti)), and the cases in whicht is derived from a subtypes in A
by structural modification, which are the plans{Ds,θ(A⊢ t)}.

The derivation ofs in Ds,θ(t) simply consists of ap-
plications of themembership- and destruct-rules. Note
that the construction ofDs,θ(t), and thus the definition of
C STR(A ⊢ t) make use ofDopt(A ⊢ t). So computation for
Dopt(A⊢ t) is recursive.

Proposition 1. If the children of any node in A have distinct
labels, then the recursive computation of Dopt(A ⊢ t) using
C STR(A⊢ t) terminates in polynomial time.

Proposition 2. The recursive computation for Dopt(A ⊢ t)
based onC STR(A⊢ t) terminates and is the optimal deriva-
tion if only structural-transformation rules with constant
costs are allowed.

An immediate corollary is that the optimal derivation
problem with respect to the structural-rules with constant

6

costs that satisfies the distinct labels among siblings can be
solved exactly in polynomial time.

DEALING WITH THE COMPLEX RULES: To incorporate
the complex-rules, we augment the consideration setC (A⊢
t) to incorporate theunion-, apply-, optional- map- and the
catenate-rules.

C
UNI(A⊢ t) =

{

DDES(A⊢ union(ti)) Dopt(A∪{ti} ⊢ t)
A⊢ t

UNI

}

,

whereunion(t1, t2, · · ·) are the union sub-types found in
A that are not under some other union. The derivation
DDES(A ⊢ union(t1, t2, . . .)) is simply to obtain the sub-
typeunion(t1, t2, . . .) from A using themembershipandde-
struct-rules.

C
APP(A⊢ t) =

{

Dopt(A⊢ si) Dopt(A∪{t j} ⊢ t)

A⊢ t
APP

}

for each available web servicef : s1,s2, · · · → t1, t2, . . .
wheret is one of the output types.

If the target type is a type with multiplicity constraints,
i.e., of the formt[m,n], then consider alsoC MAP andC OPT:

C
MAP(A⊢ t[m,n]) =

{

DDES(A⊢ s[m′,n′]) Dopt(A∪{s} ⊢ t)
A⊢ t[m,n]

MAP

}

wheres[m′,n′] are nodes with minOccurs and maxOccurs
constraints inA that are not under an optional node and with
m≤m′ andn′ ≤ n.

We also consider all ways thatt[m,n] can be created by
theoptional- andlist-rules.

C
LIST(A⊢ t[m,n]) =















{

/0
t[0,n] OPTN,

Dopt(A⊢t)
t[0,n] LIST

}

for m= 0,
{

Dopt(A⊢t)
t[0,n] LIST

}

for m= 1,

/0 else.

Thus, the augmented consideration set is:

C = C STR∪C UNI ∪C APP∪C MAP ∪C LIST
.

A straightforward recursive computation ofDopt(A ⊢ t)
does not terminate using the new consideration set since
the same rule can potentially be applied repeatedly. The
solution is to maintain a set of avoidance rule setX during
the back-tracking recursion – these are the rules not to be
applied. So, during the back-tracking, we compute an op-
timal planD(A ⊢ t|¬X) that does not use any rules inX .
The recursive definition for the consideration sets become,
for instance forC APP: Let X ′f = X ∪{APP(f)} be the new
avoidance set that avoids applying the web servicef .

C
APP(A⊢ t|¬X) =

{

Dopt(A⊢ s1|¬X
′
f) Dopt(A⊢ s2|¬X

′
f) · · ·

A⊢ t
APP

}

The avoidance set is augmented in a similar way when
we back-track along the other rules. The avoidance set
increases strictly during recursion, so the evaluation of
Dopt(A ⊢ t|¬ /0) is guaranteed to terminate, but in general
in exponential time, which is clearly not acceptable in prac-
tice.

The exponential blow-up is due to the branching when
back-tracking along theunion- andapply-rules. So, we sim-
ply terminate the back-tracking if the number of avoided
web services or unions reach their respective bounds. This

Nmax
ws : the bound on service composition,

Nmax
uni : the bound on number ofunion-rules.

1 opt plan(A,t,X)
2 | if num of APP in X > Nmax

ws or
3 | num of UNI in X > Nmax

uni then
4 | return NON-DERIVABLE;
5 | end if
6 | C = consider(A, t, X);
7 | return minimal cost plan in C ;

8 consider(A, t, X)
9 | C = C STR(A⊢ t)∪C UNI(A⊢ t|¬X)

∪ C APP(A⊢ t|¬X);
10 | if t = t ′[m,n] then
11 | C = C ∪C MAP(A⊢ t)∪C LIST(A⊢ t)
12 | end if
13 | return C

Figure 7. TheBT-bnd-algorithm

corresponds to finding a derivation plan that does not make
use of consecutively composed web services of length
greater than the bound. The variation of theBT-algorithm
with bounded back-tracking will be referred to as theBT-
bnd-algorithm. The overallBT-bnd-algorithm is shown in
Figure 7. Note, if we remove lines 2–5 in Figure 7, we get
back theBT-algorithm.

It is possible to extend theBT-algorithm to deal with
more rules in case additional derivations rules become avail-
able. For instance, we have not included thecatenate-rule
as part of the search, but it can be easily added by, yet
again, augmenting the consideration setC (A ⊢ t). Given
t = c(t1, t2, · · · , tn), one can consider all plans of the form

Dopt(A⊢ c(ti1 , ti2 , · · ·)) Dopt(A⊢ c(t j1 , t j2 , · · ·))

A⊢ c(t1, t2, · · · , tn)
CAT,

where{i1, i2, · · ·}∪{ j1, j2, · · ·} = (1..n). Of course, there
are exponentially many such plans to consider, so a similar
bounded search heuristics is needed. We expect that this can
be done for a great deal of other potentially useful rules.

AN APPLICATION OF THEALGORITHM: We present
sample results from the application of our techniques
on real services. We have applied theBT-algorithm
to a group of real internet web services described in
ws.strikeiron.com/USDAData?WSDL. This group of web
services provide access to a database of nutrient content of
various food items. There are five services available offer-
ing searching and querying access to the database. Due to
space limitation, only the relevant types and operations in
the WSDL file are shown in condensed form in Figure 8.

A useful service is to retrieve nutrient information
by keyword search. This service is not immediately
offered. However, the operationSearchFood provides
keyword search service but returnsNDBNumbers as part
of its output type SearchFoodByDescriptionResult,
and operationCalcNutrients accepts NDBNumber as
part of its input type and returns the nutrient con-
tent in its output type. We let the base-types be
A= {FoodKeywords(str),License(str)}, and the target
t = MyNutrient[0,inf](NutrientValues[0,inf]). Each

7

SearchFoodByDescription

FoodKeywords [0:1] FoodGroupCode [0:1]

String String

SearchFoodByDescriptionResult

ArrayOfSearchByKeywordsOutput

SearchByKeywordOutput [0:Inf]

NDBNumber LongDescription FoodGroupCode

CalculateNutrientValues

LicenseKey NDBNumber [0:1] AmountInGrams [0:1] AmountInOunces [0:1]

CalculateNutrientResult

NDBNumber LongDescription NutrientValues [0:Inf]

NutrientNumber Description Unit GramValue

(a)

(b)

(c)

(d)

CalculateNutrientValuesResponse

SearchFoodByDescription SearchFoodByDescriptionResultSearchFood :

CalculateNutrientValues CalculateNutrientValuesResponseCalcNutrients :

(e)

Figure 8. The types and operations in the WSDL file

MyNutrient element consists of a list ofNutrientValues
corresponding to the nutrients in some given food item. A
derivationD(A⊢ t) is a composition that allows one to ob-
tain a collection ofMyNutrient elements from a keyword
represented byFoodKeywords.

The cost functioncost(r(A ⊢ t)) that is used assigns a
cost to each ruler and is insensitive to the environment
A and the target typet. We assign a heavy cost to penal-
ize theconstruct-rule and theoptional-rule, a small cost to
favor web services’apply-rule, and equal cost to all other
rules. This cost-model reflects the preference of derivations
for using composition of web services to produce the target
type rather than using the structural-rules. One can explore
more complicated cost-functions depending on the applica-
tion, but in our experiments, this rather simple choice of
the cost function allows theBT-algorithm to successfully
report correct derivations; in this caseD(A ⊢ t), makes use
of the two web services and some structural construction
and destruction. Similar results were obtained for other web
service scenarios as well; we omit them, as well as detailed
traces of the execution of the algorithm, due to space con-
straints.

5 Experimental evaluation

This section describes in detail the set of experiments
performed to evaluate the performance of the algorithms.
We have implemented theBT- and BT-bnd-algorithm
based on the recursive definition ofDopt(A ⊢ t|¬X), and
C (A ⊢ t|¬X). Some optimizations in the search are pos-
sible. For instance, when backtracking along theunion-rule

in C UNI , we test to see ifDopt(A∪ {ti} → t) ever explic-
itly usesti in derivingt. If not, then one concludes that the
environmentA is sufficient for derivingt optimally, thus,
the algorithm can safely avoid considering derivingt from
union(ti) using theunion-rule.

In order to improve efficiency, we amortize the recursion
calls by maintaining an index of intermediate environments
A, typest and the avoidance setX and the corresponding
derivationDopt(A⊢ t|¬X).

The parameters that are varied are the size of the base-
types and the target type, the number of web-services, the
number of union-nodes found in the base-type, and finally
the number of minOccurs, maxOccurs constraints in the
base-types. We examine the scalability of the algorithm in
terms of the number of derivation plans considered during
the search, the total run-time, and the memory consumption.
The base-types are generated based on the schemas speci-
fied in the benchmark XBench [19]. However, in order to
explore the scalability of the algorithm, for larger datasets
and have ample flexibility in varying parameters of inter-
est, we introduce additional nodes to these schemas. The
additional tag names are randomly sampled from a fixed al-
phabet set, and the number of children of each node is ran-
domly determined to be between 3-10. These experiments
are carried out on a SunFire V440 server running Solaris 8
with SPECInt2k rated at 703 and SPECFP2k 1054.
SIZE OF INDIVIDUAL BASE -TYPES: We use 5 base-types
based on the XBench schemas. The target type is a tree
constructed based on the base-types by combining random
sub-types from the base-types. The size of the target type
is fixed at 50 nodes. There are nounion-nodes, and there
are 2 single-input web-services. The parameter we vary is
the size of the individual base-types – from 10 nodes to 500
nodes. We also vary the size of the web-services’ input-type
and output-type from 5 to 50 nodes.

Figure 9(a) shows that the number of plans generated
during the search has a polynomial growth with respect to
the size of the base-types. Note that when the size of the
individual base-types exceeds 200 nodes, the rate of growth
changes from polynomial of higher power to nearly linear.
The explanation is that since we have a fixed-size alphabet,
repeated sub-types are found more frequently in the base-
types, thus, more of the plans in the consideration set are
found in the index, and do not need to be generated from
scratch. Increasing the input/output type size for the web
services uniformly increases the number of plans consid-
ered.

Figure 9(b) shows the run-time of the search with respect
to the individual base-type size. The run-time increases
polynomially with respect to the individual base-type size.
Note that it does not display the near-linear behavior for
larger base-types as was the case for the number of plans
considered. This is due to the fact that the overall run-time
includes time for both building the common-prefix embed-
dings and build the sub-plans. While the index helps in
generating the sub-plans, building the common-prefix em-
bedding still requires traversing through the base-types,and

8

(a) Number of plans generated (b) Run-time (c) Memory

Figure 9. Performance with increasing base-type size

Figure 10. The performance with increasing number of base-types

Figure 11. Performance with increasing target size

remains dominant.
Figure 9(c) shows the total memory used during the

search. Note that it is proportional to the number of plans
generated. When the web-services have larger input-output
types, theBT-algorithm needs to consider more plans, thus
taking time and memory. However, the trend remains con-
sistent.
NUMBER OF BASE-TYPES: We also measure the perfor-
mance with respect to the number of base-types. The num-
ber of base-types is increased from 1 to 200 while the size is
fixed at 20 nodes. The other parameters remain unchanged.
The number of plans generated, run-time and memory us-
age are shown in Figure 10. We see again the effect of the
changing rate of growth for the number of plans generated.
This is due to exactly the same reason as in Figure 9(a).

From Figure 9 and Figure 10, we verify that the per-
formance is polynomial with respect to the size of the set
of base-types, and is quite capable of handling large base-
types, as well as a large number of them.

SIZE OF TARGET TYPE: For the next set of measure-
ments, we fix the size of base-types to 20 nodes, and utilize
10 base-types for derivation. Again, the number of web-
services is fixed at 2. We vary the target type size from 10
to 1000 to explore the performance when deriving a very
large target type. The number of plans generated and the
run-time are shown in Figure 11. Observe, that unlike the
case of increasing base-types, the run-time becomes nearly
linear when the target type size exceeds the threshold of
200. Since the target is so much larger than the base-types
and the outputs of the web-services, construction time for
the common-prefix tree is determined by the base-type size
and no longer by the target type size. In conclusion, theBT-
algorithm scales well with respect to the size of the target-
type.
NUMBER OF WEB-SERVICES: We study the performance
characteristics in terms of larger number of web-services.
The base-types are fixed at 50 nodes, 5 base-types, and the
target type is fixed at 50 nodes. The number of web-services
is varied from 1 to 10. Each web-service has 2 input types,
each with 5 nodes. We compare the performance of theBT-
algorithm andBT-bnd-algorithm with different bounds on
the composition length.

Figure 12(a) shows the number of plans considered by
theBT-algorithm. As was shown in Section 4, an exponen-
tial number of plans are generated. By bounding the length
of the composition to 3, only a polynomial number of plans
are generated as it is shown in Figure 12(b) (1). Also in Fig-
ure 12(b) (2), we show the effect of increasing the length of
the bound from 3 web-services to 4; it is evident that the
performance implication is marginal and the overall trend is
low polynomial. We also change the number of input types

9

(a) TheBT-algorithm w. increasing number of
WS

(b) TheBT-bnd-algorithm w. increasing num-
ber of WS

(c) The BT- and BT-bnd-algorithm w. in-
creasing unions

Figure 12. The performance ofBT- andBT-bndalgorithms

to 4, and bound the composition length to 3 as shown in the
same figure (3), again observing a smooth performance im-
plication. The absolute run-time for the experiments in this
figure are shown in seconds as follows:

Num of W.S.: 2 5 8 10
(2) Bnd-WS = 3, Num of Inp = 2 32 51 69 82
(3) Bnd-WS = 4, Num of Inp = 2 32 57 90 108
(4) Bnd-WS = 3, Num of Inp = 4 38 66 94 113

demonstrating very reasonable performance.
NUMBER OF union-NODES: Another source of exponen-
tial explosion for the search space is the number of union-
nodes in the base-type. The next set of results show the
performance with increasing number of union-nodes for
the BTand BT-bnd-algorithms. We also vary the num-
ber of children of the union-nodes. The number of plans
grows exponentially with respect to the number of unions
in the unbounded case, as expected, and polynomially in
the bounded case as shown in Figure 12(c). Corresponding
absolute run time in seconds is as below.

Num of UNION-nodes 2 5 8 10
Bnd-UNI = 2, Num Children = 3 2 15 44 74
Bnd-UNI = 3, Num Children = 3 2 51 172 263
Bnd-UNI = 2, Num Children = 5 3 6 53 89

The experiments demonstrate that the algorithms are
scalable with respect to the size of base-types and the tar-
get type, and sensitive to rules such asapplyandunion that
require multiple backtracking matching our analytical ex-
pectation. These rules create an exponential explosion to
the amount of search required. Placing bounds on the com-
position length and the number of union nodes to realistic
values, make the problem tractable as demonstrated by our
experiments.

6 Conclusions

We have presented a rule-based framework for web ser-
vice composition. The problem of web service composi-
tion is seen as a optimal type derivation problem which is
shown to be intractable in general. We have characterized
a useful tractable class, and proposed suitable heuristicsfor
the general case. The experimental results demonstrate the
feasibility of our approach.

As part of on-going research, we are interested in ex-
perimenting with diverse cost models and rule sets, as well
as incorporating semantics into our framework in order to
improve the quality of the composition.

References

[1] B. Benatallah, Q.Z. Sheng, A.H.H. Ngu, and M. Dumas. Declarative composi-
tion and peer-to-peer provisioning of dynamic web services. InICDE, 2002.

[2] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella,
and Rick Hull. Automatic composition of transition-based semantic web ser-
vices with messaging. InVLDB, 2005.

[3] Philip Bille. Tree Edit Distance, Alignment Distance and Inclusion.Technical
report TR-2003-23 in IT University of Copenhagen, 2003.

[4] Sudarshan S. Chawathe and Hector Garcia-Molina. Meaningful change detec-
tion in structured data. InSIGMOD, 1997.

[5] A. Deutsch, L. Sui, and V. Vianu. Specification and Verification of Data Driven
Web Services.PODS, 2004.

[6] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity Search
for Web Services.VLDB, 2004.

[7] J. Madhavan, P. Bernstein, and E. Rahm. Generic Schema Matching with Cu-
pid. Proceedings of VLDB, 2001.

[8] S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm. Supporting executable
mappings in model management. InSIGMOD, 2005.

[9] S. Narayanan and S. McIIraith. Simulation, Verification and Automated Com-
position of Web Services.WWW, 2002.

[10] N. Onose and J. Simeon. XQuery at Your Web Service.WWW, 2004.

[11] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara.
Semantic matching of web services capabilities. InISWC, 2002.

[12] Shankar R. Ponnekati and Armando Fox. SWORD: A developer toolkit forweb
service composition. InWWW, 2002.

[13] Lucian Popa, Yannis Velegrakis, Renee J. Miller, Mauricio A. Hernandez, and
Ronald Fagin. Translating web data. InVLDB, 2002.

[14] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching.The VLDB Journal, 10(4):334–350, 2001.

[15] Erhard Rahm, Hong-Hai Do, and Sabine Mabmann. Matching large XML
schemas.SIGMOD Record, 33(4):26–31, 2004.

[16] Dennis Shasha and Kaizhong Zhang. Fast algorithms for the unit cost editing
distance between trees.J. Algorithms, 11(4):581–621, 1990.

[17] Hong Su, Harumi Kuno, and Elke A. Rundensteiner. Automating the transfor-
mation of XML documents. InWIDM, 2001.

[18] A. Wombacher, Peter Fankhauser, B. Mahleko, and E. Neuhold. Matchmaking
for business processes based on choreographies. InIEEE International Confer-
ence on e-Technology, e-Commerce and e-Service (EEE), 2004.

[19] B.B. Yao, M.T. Ozsu, and N. Khandelwal. XBench benchmark and perfor-
mance testing of xml dbmss. InICDE, pages 621–632, 2004.

[20] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality
driven web services composition. InWWW Conference, 2003.

[21] Kaizhong Zhang, Jason T. L. Wang, and Dennis Shasha. On the Editing Dis-
tance between Undirected Acyclic Graphs and Related Problems.International
Journal of Foundations of Computer Science, 1995.

10

