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Abstract lem of web service composition becomes a type-derivation

problem as followsGiven a collection g of base types, de-

This paper studies a problem of web service composi-scribed in XML Schema, a collection S of web services, and
tion from a syntactic approach. In contrast with other ap- atarget type t, derive t fromglusing the services in S.
proaches on enriched semantic description such as state- The target type is derived by applying a set of derivation-
transition description of web services, our focus is in the rules, or simply rules. These rules, which we will present
case when only the input-output type information from the in detail, describe the ways in which new types are derived
WSDL specifications is available. from existing ones by application of web services. The tar-

The web service composition problem is formally for- get type is derived from the base types by a series of ap-
mulated as deriving a given desired type from a collec- plications of these rules, which include sequential or lpara
tion of available types and web services using a prescribedlel invocation of web services, and iteration over contain-
set of rules with costs. We show that solving the minimal ers. Each step of a derivation (application of a rule) incurs
cost composition is NP-complete in general, and presenta cost according to a cost model, which generally favors
a practical solution based on dynamic programming. Ex- derivations with fewer rule applications (i.e., fewer stru
periements using a mixture of synthetic and real data setstural transformations and web service applications).

show that our approach is viable and produces good results. Example: Consider the typeooks which is a collection of
book €lements. Eachook element is identified either by its
title or its ISBN number, along with the author names and
the publisher.

1 Introduction

. title:string or
uniont - s stri ng
. . ) . books : book[1, 0] : .| fname:string
Several efforts, including the Web Service Conversation Uthors | | e : string
Language (WSCL), the Business Process Execution Lan- publ i sher - string

guage for Web Services (BPELWS), and the integration of ) .
web service calls on XQuery [10] address the issue of webSuppose that we have two web services described as fol-
service composition. A natural problem is to automate the lows:

composition of web services. Towards this goal, a large L o _
. . i title :string bestprice . nuneric

corpus of work has focused on composing semantically  ver : [ bl sher * stri { bookstor e - st

rich (sematically annotated) web services. For instance, i PUbTISher - string ooKstore - string

[2, 5, 1] web services are modeled as finite-state machines ] o bestprice : nuneric

that reflect their functionality, and their composition ar ez ISBNLSUING = | okstore : string

modeled as compositions of state machines. Such a seman-

tically rich description of the web services allows disagve  Suppose that one wishes to find the best prices of all the

of high-quality compositions [2] as well as verification of books in a collection (of typsoks). The target type is:

existing ones [5]. However, WSDL, which is the currently

widely adopted standard for description of web services, of

fers limited syntactic description of the services Withyonl

such limited information on the input-output types of the )

web services, is it possible to produce compositions to per-  One can manually verify that the target typetprices

form specific tasks? can indeed be derived from the collection of base tylpes
In this paper, we propose a syntactic approach to web {books} and web serviceS= {vs1,vs2}. The derivation is not

service composition, given only their WSDL descriptions. Unique, but a sensible one is the following.

In particular, we view the web services as black boxes ca-

pable of transforming XML fragments of the input type to

XML fragments of the output type, and hence the prob-

bestprice I nuneric

best pri ces : best pri ce[1, 0] [ bookst ore © stri ng



?elrt'(‘a’f‘;'tznﬂf:f&“h . chines. Furthermore, since the web services are modeled as
> ifitis idengﬁed by its title, tﬁesﬁ tr_a_nsition structures, one can verify the wgb service cempo

3. pass the title and publisher informatiorvgs, sition by simulation [9] or by model-checking methods [5].

4. else, ifitis identified by its ISBN, then Such works, which are complementary to our approach, as-
5. passthe ISBN number te2. . sume access to the behavioral characteristics of the servic
6. Take the outputs and form the collecti@st pri ces.

which may or may not be available; we only assume ac-

The rules proposed in this paper support this derivation cess to the service type signature which is typically avail-
as we provide rules for iteration (line 1), if-then-else on a able through WSDL (and XML Schema). In SWORD [12],
type (line 2 and 4), type-construction and destructiore@in  web services are treated as input-output functions, antl a se
3, 5 and 6), and application of web services (lines 3 and 5).of rules of composition is specified. In our work, we also
We use a cost model to eliminate non-sensible derivationstreat web services as functions, but work with a more com-
(such as using the author’s last name as the publisher, angblex set of rules that are capable constructing more sophis-
S0 on). ticated composition plans.

Naturally, the quality of the generated candidate compo-  Schema matching tackles the problem of finding corre-
sitions depends on the choice of the derivation rules. The sespondences between the elements of two given schemas.
of rules used in this paper, which are shown to be sound ex-Much work has been conducted on matching relational
perimentaly, are based on previous work on schema matchschemata [14], but recently there has also been work on
ing, type derivation and tree edit distance, which are areasmatching of semi-structured schemata [13, 17, 15, 7, 8].
related to this work as we explain in Section 2. However, These algorithms match two schemata by matching their
our algorithmic framework is generic and a different set of tree structures, exploiting possible semantic conssaint
rules can be specified according to the application néeds [7, 17, 15]. In [8], the management of these mappings is
In addition to the rules, the quality of the derivations is de considered. In contrast, our work tackles the problem of
pendent on the naming quality of the WSDL files for the transforming a set of base types (schemata) to a target type
web services. Our case studies show that one can still findusing the available web services as transformation tools.

useful derivations using real-life WSDL files. The web services can be invoked in various ways during
In this paper, we present our theoretical and algorithmic the transformation process according to a set of derivation

results on theype-derivation problem rules.

2 Related Work 3 The Optimal Type-Derivation Problem

Tree edit distance works [16, 21] (see [3] for a sur-
vey) define a minimal set of operations (typically add node,
delete node, and relabel node) to tackle the problem of
transforming a labeled treg to a labeled tred, apply-
ing a minimum sequence of operations. Our problem is
more complex since the labels of an XML Schema tree carry
additional information (e.g., list, union, complex typegt
name, base-type, and so on) which makes plain relabelin(_:g
inapplicable. For example, if two XML Schema trees differ
only on the label of a single node, whose label is “union”
for the first tree and “list” for the second, then they have
unit distance in tree edit distance, but they are incomfgatib
in our framework. Tree matching works [4] have the sam
limitation.

Dong et al. [6] propose a method to discover similar
Web Services based on the textual descriptions (in WSDL)
and their input/output parameters’ names. It does not deal
with composition however. Paolucci et al. [11] describe a
framework to semantically match Web services described : Lo :
using DAML-S. Recent work has tackled the problem of ;?rr i(sr?gq_uinlfnﬁ’ounn_h%g)é ?éparepsr;n;g\g;?/gs_sg;gg :ygé
composing web services by exploiting the flow diagrams that is, the instance of which can only be one of the éhil-
that represent_them. In particular, web services are Vieweddren t)’/pes in accordance with the XML Schema specifica-
as state machines [20,18,1,2]. ... tion. Each node may optionally have a multiplicity modifier

Wombacheret al. [18] determines if a composition is 1 1 ingicating that in the instance, its occurrence is be-
valid by the intersection of the corresponding state Ma- yeenmandn inclusively — this corresponds to the minOc-

For instance, if we want to create more conservative compositive curs and maxOccurs constraints in XML Schema. We call
can remove the optional rule (described in Figure 3). a nodeoptionalif it is either auni on-node, or a node with

In this section, we formally define the optimal type-
derivation problem with respect to an arbitrary set of deriv
tion rules. Then, we introduce a set of XML-centric rules
which are used to capture the ways in which XML Schemas
can be modified, combined, and web services invoked, in
the derivation process. These rules naturally correspond t
rogramming constructs found in BPEL, such as sequential
nd parallel invocations, iteration over lists, and branch
ing based on node-types. We also included limited struc-
tural transformations, which can easily be implemented by
XQuery, as part of the rule-set. Derivations using thesesrul
correspond to compositions of web services coupled with
€ possible structural transformations.

We represent an XML Schema as a tree of labeled nodes.
The fragment of XML Schema we consider contains com-
plex types of sequence, choice, and elements can have
minOccurs and maxOccurs constraints. As a labeled tree,
each node can be a tag name, a complex type construc-




m nCccurs = 0 constraint. Types can, thus, be represented
by terms such aeN O\itle(string), ISBN(string)). A web ser-
vice is simply a multi-input-multi-output function of the
form f . 5,9, -+, — t1,-- -ty Wheres andt; are com-
plex types.

PROBLEM FORMULATION: LetA; andB be sets of types,
called environments, argl andt types. We writéA - 5 to
mean that the typg can be derived from the environment
Aj. Intuitively, an environmen# is the collection of avail-
able types, and\ - s is to say that, by some means, we can
derives from A;. A derivation-rule or simply arule, has

the form
Ak An sy
Bt

It reads that ifs can be derived from the environmeft,
thent can be derived from the environme®t The rule can
be written ag (B t) to indicate thar derivest from the
environmentB. A rule is grounded if it requires n&; - s,
written %. We further assume that each rulearries a cost
given by a generic cost functiarost(r (B t)). Derivation
rules can be composed in the natural way to form deriva-
tions.

Formally, aderivation DB} t) is defined as,

r.

e any ruler(BFt) is a derivation, and

ALk st
e if r(BF1t) is arule of the form
andD;j(A F 5) are derivations, then

Dn(An k)

Ank s

f
Bt

D]_(A]_ [ S]_)

Bt is a derivation.

r

e Nothing else is a derivation fda | t.

A derivationD(BFt) = Wr can be viewed as a tree

of rules, with the root being the rul E‘ r, and sub-trees

Di(A Ft). It says that type is derived from the environ-
ment B by the derivationD. The derivation is grounded
if its leaf-rules are all grounded. The cost for a derivation
D(Bt), written||D(B - t)]| is defined as,

e if D(BF-t) =r(Btt), then|D(BFt)|| = costr(BFt)),
o if D(F t) _ Di(Asks1) o Dn(Anksh

[D(BF1)| = costr(BF1)) +g([Di(Arks1)ll,- -, [IPn(An ) ),

whereg(- - -) is either sum, or maximurhdepending on the
ruler.

) r, then

Definition 1. Theoptimal type derivation probleis: given
a rule set R, a cost functiocost, an environment A and a
type t, find a grounded derivation(B.- t) with the minimal
cost||D(AFt)].

2In most cases, the cost of a derivation is the sum the coste afuth-
derivations and the applied rule. However, as defined inrei@y if the
applied rule isunionrrule, then we take the maximum of the costs of the
sub-derivations.

The classical tree-edit distance problem [3] is a special
instance of the optimal type derivation problem where the
environment contains the source tree, and the derived type
is the target tree. There are three ruléssert, delete
and replace each of unit cost. Tree edit-scripts corre-
spond to derivations where the cost is always additive. The
derivations, as defined, generalize tree-edit scripts i va
ous ways. Derivations, in general, edit multiple trees, or
types, in the environment to derive the new tree, and the
rules allowed are a richer set that includes the basic tree-
edit operations, but also ways of invoking web services.

From this point, we refer to types in the environment as
thebase-typesand the type to be derived as tiagget type

3.1 Derivation rules for XML Schema

We use rules to express ways in which XML-documents
(more accurately XML Schemas) can be transformed, com-
bined and evaluated by web services. The set of rules in-
clude basic structural transformations (similar to thescla
sical tree-edit operations), merging structures (sulist
parts of a schema document with parts from other schema
documents), and finally applying web services (evaluating
a tuple of documents using available web services). In this
framework, the web service composition problem is for-
mally posed as gype-derivation problerim which thebase-
typesare the available inputs, and tterget typeis the de-
sired output. A derivation of the target type is then a plan of
how the available web services can be composed, together
with possibly some structural modifications to the interme-
diate results, to produce the desired output.

AFty Aty Aty

0 MEM, if t € A. CON

Akt
Akt

AFt[p
AFt

AFtly

DES, wherep is not under an optional node.

AFt AFs
Ak tsp

At Aks
AFI?S

DEL REP

Figure 1. Structural transformations

BASIC STRUCTURAL TRANSFORMATION RULES  The
first set of rules deals with structural transformations. We
refer to this set of rules as th&ructural rules, shown in
Figure 1.

Membershipif typet is part of the environment, then it can
be derived from the environment by tmeembershigule
(MEM).

Construct: One can derive new types from existing
types by introducing new tags. Suppose one has
derived | SBN(string) and city(string), then cer-
tainly, we should be able to construct a new element
X(1'SBN(string), city(string)) by introducing the
new tagX. This is captured by theonstructionarule (CON)
shown in Figure 1.

Destruct: Contrary to theconstructrule, suppose that




0 MEM

0 0 MEM Araddress(---) DES
Araddress(---) MEZS Arperson(age(int), name(string)) Arcity(string)
Arpostal (string) Arperson(age(int),city(string)) con
Aroffice(postal (string), person(age(int), city(string)))
Figure 2. A derivation plan.

we have the elementsequence(title(string), At union(ty,to,--) AU{ti} Ftforallt;
I SBN(string)), then it is reasonable to derive Art UN
I SBN(string) from it. Denote the sub-type (i.e., the Abs Absn AU{tita- -t} bt APR(f)
sub-tree) of type located from the root along a paghby ARt _
t|p. Thedestructionrule (DES) derives the sub-tyjg, of where there is a web servide s1,%,---sm — t1,-+ , tn.
typet as long ag|, is not under §om_epﬂonal node. The AFsmn AU{sH-t
reason that we do not allow applications of thesstructrule MAP wherem! <mn' >n.

at a sub-type under an optional node is simply that at the At ] s
instance level, that sub-type may not be present. These| argony °°™  argmng -STM=!
sub-types are accessible by the complex rules presented in ' '

Figure 3. Abctyty, - th) AR C(S1, S, . Sm)

Delete: The deleterule (DEL) removes a sub-tree from a Al c(U,...,Unin) CAT

tree. where{u;} = {s} U{ti} in bag semantics.

Insert: Similarly, one can insert a sub-type under a type as

described by thénsertrule (INS). Denote the result of in- Figure 3. More complex XML-centric rules

serting types into typet under the node located at paph
ast — s. If one can derive ands, then application of the

p
insertrule derives « s.
p DEALING WITH WEB-SERVICES ANDXML-SCHEMA:

Replace:The replacerule (REP) allows one to replace a Cjearly, structural rules are not suitable to lead to automa
sub-type at pattp of a typet with another derived typs,  tjon of web service compositions: they do not deal with
writtent(s]p. _ L important parts of XML Schema, in particulani on nodes
This set of rules is not minimal in the sense that, for j, the type, andri nCccur s andmaxCeeur s constraints of
instance, theeplacerule is equivalent to composition of  glements. Furthermore, they do not capture web services.
insert and deleterules. However, depending on the cost Thys we extend the rule set to include rules dealing with
function, it may be cheaper to replace rather than delete on’s, web services and finally dealing withnQccur s,

and then insert. maxQccur s constraints.
, Union: The unionrule (uni) reads as: ifA can derive
Example: Suppose the set of base-types is union(ty,tp,---) and for alli < n, t; together withA can
o N derivet, then,A can derivea. Consider the following exam-
A= {address ; { S-S erson : [ age . I nt eger } ple: LetA= {c(union(a(b),b))}, andt = b. There is only
postal - string name . string one base-type. We cannot derive the tatdedm the base-
type by structural-rules since destruction cannot be agdpli
_ postal . string below auni on-node. However, using thenion-rule, one
And the target typeisoffice: | . [ age i nt eger can derive:
city :string

One derivatiorD(Al-t) is shown in Figure 2. Inthe plan, A c(union(a(b),b)), AU{a(b)} - b, AU{b}Fb y
the target type is derived by replacing the sub-tmege AFDb
underper son with the sub-treei ty which is derived by )
destructing the typaddr ess. Together, with the sub-tree  Apply: Theapply-rule (apr) allows one to use an available
post al , one uses construction to derive the final type. web service to transform the tuple of input schemas to the
Note that the rules do not pay attention to the sequence ofoutput schema. It reads, if : s;,%,--- — ty,tz,... is an
the children nodes. We actually ignore the order among the@vailable web service, and from the environméns; are
children nodes in the type, even though in general, XML derivable, andA plus {t; } can derive, then we can derive
Schema is order sensitive. The alternative is to introducefrom A using the web service.
an additional structural rulegermute which re-orders the For example, a web service
children nodes under a given parent node. In this paper, wegetPrice : book, ISBN[0,1] — price Creates a rule
do not consider permutation, thus consider two nodes equal
if their children are equal upto permutation.

NI

AtFbook AF ISBN[O,1] AU{price}l—tAP

At P



LetA= {booksbooKz1,])}.

0 0
A+ bookghbookz1, ) MEM Aubookr book MEM

Aubookr- ISBN[0, 1] OPTN

0 0 — MEM
Aubookupricer price
APP

A booK1, o]

AF pricel, o]

b .
Au{book: + price VAP

Figure 4. A derivation usingapply, optionalandmaprules.

Map, Optional and List:The rulesmap (maP), optional
(opTN) andlist (LisT) deal with elements with minOccurs
and maxOccurs constraintsiap allows one to map a list
of elements of typa into a list of elements of typegiven
thatt can be derived frons and the other base-types, and
that the multiplicity constraint ohis more relaxed than the
constraint fors. opTnandLisT allow the creation of an ele-
ment with multiplicity constraints from one without.

An example of using some of these rules along
with the web servicgget Price described above to de-
rive the target type = price[l,o] from the base-type
{books(book[1,])} is shown in Figure 4.

cAT is thecatenaterule which allows catenation of chil-
dren of two nodes if they have the same label.

COSTS OF DERIVATIONS  The cost of each rule is given
by a generic cost functiocost The cost function also de-
termines the overall cost of a derivation. Given a deriva-
tion D = BL02-Dnr \whereDy, ..., Dy are also derivations,

if the rule r is not theunionrule, then||D|| = cos{r) +

S 1|Dill. But in the case of thenionrule, we define
[ID|| = cost(r) + max{||Di|| : 1 <i < n}.

THE COMPLEXITY OF TYPE-DERIVATION:  The com-
plexity of the type-derivation problem depends on the

that could have been used until a complete derivation plan
is found. Given the base-typds and a target typg, we
construct a set of derivation plans to be considered, ddnote
by ¢ (AFt), and an optimal plan is simply given by

DPY(AFt) =argmin{[D[| :De c(AF1)}, (1)
where||D|| is the cost with respect to the cost model used.
The definition of c (A t) will recursively make use of
DOPY A’ I-t") of some environmend’ and typet’. The prop-
erties of the algorithm, such as its guaranteed termination
time complexity, and optimality, all depend on the choice
of c(At-t). Therefore, the computation f@°" (A t) is
completely characterized by the definition of the consider-
ation setc (A t) and the choice of the cost model. The
structure of thé8T-algorithm is as follows.

opt _pl an( A base-types, t:target type)
| ¢ = consider(At);
| if(c=0) return NON.DERI VABLE;
| else return minimal planin c;
consi der (A: base-types, t:target type)
| construct ¢ with recursive calls to opt_plan();
| return c;

In the subsequent sections, we describe the details of proce

derivation rules we consider. In general, the problem is dureconsi der ().

intractable. The source of intractability lies on the XML-
centric rules in Figure 3.

Theorem 1. If we consider only the union- and apply-rules,

the decision problem of type-derivation is coNP-hard, and
if we consider only the catenate-rule with constant cost, th

optimal type derivation problem is NP-hard.

In the following section, a dynamic programming so-

lution is presented, and is shown to be optimal in some
special cases of the type-derivation problem. The algo-

rithm performs recursive back-tracking search from the tar

get type back to the base-types. It is shown that the back-,

tracking algorithm for solving the optimal type-derivatio

First we show how the case of structural-rules can be
solved by this approach in polynomial time with a choice
of ¢ (A+t) which will be described and analyzed in detail.
Then it is extended to encompass the rest of the rules.

DEALING WITH STRUCTURE-TRANSFORMATION RULES:
Let us restrict our attention only to the set of structural-
transformation rules described in Figure 1. We first
construct a set of maximal common-prefix embeddings
which are defined below. Each embedding corresponds to
a derivation, and the derivations of the maximal common-
prefix embeddings form the consideration set needed in the
BT-algorithm.

Recall that we view types as trees. Ttiee domain

pr_oblgm with respect to the structural-rules is in polyno- dom(t) of a typet is simply all the paths of the nodestin
mial time. For the intractable cases, we bound the depth of|_et s andt be two type trees. We definegpartial common-

back-tracking along only the problematic rules.

4 Type-Derivation Algorithms

We present a dynamic programming algorithm, which
we will refer to as the Back Trackind3{)-algorithm, for
solving the type derivation problem. It starts with the tar-

get type, and back-tracks by considering the possible rules

prefix embeddindpetweens andt to be a partial function
6 :dom(s) — dom(t) such that it satisfies the following con-
dition:

e 0(0) =0, i.e., it maps the root afto the root oft.

e Vp e dom(s), B(p) is defined = labelp) = label6(p)),
i.e.,8 maps only nodes afto nodes of with the same label.

e Vp € dom(s), O(p)isdefined = O(parentp))
paren{B(p)), i.e.,0 preserves the parent-child relation.



0010

0011 0000

Figure 5. A partial common-prefix embedding from
s (left) tot (right).

Partial common-prefix embeddings are henceforth re-

ferred to simply as embeddings. Computing embeddings

betweersandt can be done recursively in a straightforward
way: start at the root nodes sfandt, stop if they differ in
labeling or multiplicity, otherwise, build all possible tch-

1 derivesfrom A usingD°PY(Al-s)

2 for eachp € Fr(0]t),

3 derivet|p from A usingD°P{(A - tp)

4 if childn(6~1(parentp))) N Fr(8|s) # 0, then
5 pick one from childii®—(p)) N Fr(8|s), sayq,
6 replaceq with t|, in sto derivest|p]q.

7 else

8 addt|p under the nodé~(parentp)) in s.
9 end if

10 end for

11 for eachq € Fr(8]|s) not deleted or replaced,
12 delete the sub-typgfroms.

13 end for

Figure 6. The procedure equivalent @sg(Aft).

For p =t.0000, pareritp) = t.000. S8~ (parentp))
s011, and child®~%(parentp))) N Fr(6|s)

ings of the children nodes, and continue with the matched {5.0110.0111} which is non-empty. Therefore, according

pairs.

The embeddind is similar to the edit-script mapping
found in tree-to-tree editing [3]. However, here, we do not
allow relabeling tag names of XML elements in one oper-
ation. In order to perform this, one must first derive the
children of the element (e.g. destruction), followed by a
construction using the new tag name.

The domain of 8 is dom®) = {p € dom(s) :
B(p) is defined, and the range dis rng(8) = {B(p) : p€
dom(B)}. For the same typest, we say that one embed-
ding 01 is greater than anothé if dom(61) > dom(6,).
The non-embedded nodes @fre dongs) — dom(8), and
similar fort are donft) — rng(8). The frontier of 8 in s,
Fr(8|s) is the most upper non-embedded nodes.irThe
frontier Fr(B|t) in t is similarly defined.

Example: Consider the two types andt shown in Fig-
ure 5. The embeddin@ in Figure 5is6 = {0+— 0, 00—
01, 01+~ 00, 011+ 000C}. Its domain and range are
dom(8) = {0,00,01,011}, rng(6) = {0,00,01,000}. The
frontiers are H©|s) = {000,001,002 01001100111} and
Fr(6Jt) = {0000 010 011}. O
Next we show how to recursively construct a deriva-
tion from an embedding. Assuming that we already have
the optimal derivationdD'(A - s) and {DPYA - t|p) :
p € Fr(B|t)} with some environmend, we form the plan
Dse(AFt) that simulates the procedure in Figure 6. The
derivation planDsg(A - t) works as follows. First it gen-
eratess usingD°P A+ s) (line 1). Next,Dgg replaces top
unwanted nodes iaby nodes irt that share the same par-
ent (lines 5-6). Then it adds the rest of the top nodes in
t that are not already is after the replacements (line 7).
Finally, it removes all the unwanted nodessinot already
replaced (lines 11-13). Itis easy to see thag (A t) only
needsreplace, deleteandinsertrules and the derivations
DOPYAL-s), DPYAL-t|p) for p € Fr(O]t).
Example:  For the embedding of Figure 5, the fron-
tiers are F{B|t) = {t.000Qt.010,t.011} and F(B|s) =
{s5.0005.001,5.002s.010,5.0110s.0111}.

to the procedure in Figure ®sp(t) non-deterministically
pickss.0110 to be replaced y0000. The sub-type 0111
is deleted since it is not replaced by anything.

This is repeated for all the other nodes iri@r), and to
summarize, we get a pldbsg (A t) as follows.
1. Replaces.0110 witht.0000,s.000 witht.010,s.001 witht.011.
2. Removes.002,s.010 ands.0111.

3. No inserts are needed in this case. ) O
At last, we construct the consideration set. The plans

Dsp(t) provide the building blocks to the consideration set
for the structural-rule set. Given the base-types in the en-
vironmentA, and the target typé = c(ty,tp,--- ,ty), the

consi der () procedure constructs the consideration set as

Dpt(A t)Dpt(A t)
STR 1 n
A }_ —

{Dsp(t) : sis a subtype irA not under optional-node artle CP(s,t) }

CON}U

where CRs;t) is the set of all maximal partial common-
prefix embeddings frorstot. In ¢STR(A-t), we consider
the case that the typeis derived by construction from its
childrent; (each of which is optimally derived by°Pi(A -
t;)), and the cases in whictis derived from a subtypein A
by structural modification, which are the plafisg(A-t)}.

The derivation ofs in Dsg(t) simply consists of ap-
plications of themembership and destructrules. Note
that the construction dDsg(t), and thus the definition of
cSTR(A-t) make use 0D°P(At). So computation for
DOPYAI-1) is recursive.

Proposition 1. If the children of any node in A have distinct
labels, then the recursive computation dPIDA - t) using
cSTR(AFt) terminates in polynomial time.

Proposition 2. The recursive computation for®(A - t)
based oncSTR(A - t) terminates and is the optimal deriva-
tion if only structural-transformation rules with constan
costs are allowed.

An immediate corollary is that the optimal derivation
problem with respect to the structural-rules with constant



costs that satisfies the distinct labels among siblings ean b
solved exactly in polynomial time.

DEALING WITH THE COMPLEX RULES  To incorporate
the complex-rules, we augment the consideratior $At—
t) to incorporate themnion, apply-, optionat map and the
catenaterules.

DPES(At- union(t;))
Akt

t X
CON(AL 1) = { D°p(Au{t,}H)UN|}’
whereunion(ty,ty,---) are the union sub-types found in
A tElgt are not under some other union. The derivation
DPES(A F union(ty,tp,...)) is simply to obtain the sub-

typeunion(ty,ty,...) from Ausing themembershigndde-
structrules.
APP}

for each available web servick: si,5, - — t1,1o,...
wheret is one of the output types.
If the target type is a type with multiplicity constraints,
i.e., of the formt[m, n], then consider alsoMAF and ¢ ©FT:

DPES(AL- g, n']) DOPYAU{s} Ft) MAP}

AFt[m,n|
wheres[m’, '] are nodes with minOccurs and maxOccurs
constraints imA that are not under an optional node and with
m<m andn’ <n.
We also consider all ways thgm, n] can be created by
theoptionat andlist-rules.

DOPYAU{tj} 1)
Akt

CAPP(ALt) = { DPHAF )

cMAP (A t[m,n]) :{

- o OPTN S LiST) form=0,
Ak t[m, = DOPYAFt _
> (At[m,n)) t[é‘n] ) LIST} form=1,
else

Thus, the augmented consideration set is:
c= CSTRUCUNI UCAPPUCMAP UCUST.

A straightforward recursive computation 8PPY(A - t)

weX: the bound on service composition,
N : the bound on number afion-rules.
1 opt_plan(At, x)
2 | if numof APPin x >NJ& or
3 numof UNI in x >NJ& then
4 | return NON-DERI VABLE;
5 | endif
6 | ¢ =consider(A t, Xx);
7 | return mnimal cost planin c;
8 consider(A t, x)
9 | c¢=cSTRAFtYUCYN(AFt]-x)
U cAPP(AEt]-x);
10 | if t=t[mn] then
1 | c=cUcMPAFt)UCHST(AFT)
12 | endif
13 | return ¢

Figure 7. TheBT-bnd-algorithm

corresponds to finding a derivation plan that does not make
use of consecutively composed web services of length
greater than the bound. The variation of 8i€-algorithm
with bounded back-tracking will be referred to as Bi&
bnd-algorithm. The overalBT-bnd-algorithm is shown in
Figure 7. Note, if we remove lines 2-5 in Figure 7, we get
back theBT-algorithm.

It is possible to extend thBT-algorithm to deal with
more rules in case additional derivations rules becomé-avai

able. For instance, we have not included tia¢enaterule
as part of the search, but it can be easily added by, yet

again, augmenting the consideration s¢A + t). Given
t =c(t1,t2,- -+ ,ty), one can consider all plans of the form

DOPYAF c(tiy, by, -+))  DOPYAR c(tjy,tjp, )
Al c(ty, 2, ,t)
where{iy,iz,--- }U{]j1,]J2,--- } = (1..n). Of course, there

are exponentially many such plans to consider, so a similar
bounded search heuristics is needed. We expect that this can

CAT,

does not terminate using the new consideration set sincée done for a great deal of other potentially useful rules.
the same rule can potentially be applied repeatedly. The

solution is to maintain a set of avoidance rule seduring

AN APPLICATION OF THEALGORITHM: We present

the back-tracking recursion — these are the rules not to besample results from the application of our techniques

applied. So, during the back-tracking, we compute an op-

timal planD(A+ t|—x) that does not use any rules in

on real services. We have applied tlBI -algorithm
to a group of real internet web services described in

The recursive definition for the consideration sets become,ys st rj kei r on. com USDADat a?W8DL. This group of web

for instance forcAPP: Let x{ = x U {app(f)} be the new
avoidance set that avoids applying the web serv¥ice

APP}

DOPYAF s1|-xf) DOPYAL sp|=xf)- -
Akt

CAPP(AI—tﬁX)—{

The avoidance set is augmented in a similar way when
we back-track along the other rules. The avoidance setby keyword search.
increases strictly during recursion, so the evaluation of offered.

DOPYA - t|-0) is guaranteed to terminate, but in general
in exponential time, which is clearly not acceptable in prac
tice.

The exponential blow-up is due to the branching when
back-tracking along thenion- andapply-rules. So, we sim-
ply terminate the back-tracking if the number of avoided

services provide access to a database of nutrient content of
various food items. There are five services available offer-
ing searching and querying access to the database. Due to
space limitation, only the relevant types and operations in
the WSDL file are shown in condensed form in Figure 8.

A useful service is to retrieve nutrient information
This service is not immediately
However, the operatioBear chFood provides
keyword search service but returiSBNunbers as part
of its output type Sear chFoodByDescri ptionResult,
and operationCal cNutri ents accepts NDBNumber as
part of its input type and returns the nutrient con-
tent in its output type. We let the base-types be
A= {FoodKeywords(str),License(str)}, and the target

web services or unions reach their respective bounds. Thig = MyNutrient[0,inf](NutrientValues[0,inf]). Each



SearchFoodByDescription SearchFoodByDlescriptionResull in CUNI, we test to see iDOpI(AU {tl} s t) ever eXpIiC-
itly usest; in derivingt. If not, then one concludes that the
environmentA is sufficient for derivingt optimally, thus,
String String SearchByKeywordOutput [0:1nf] the algorithm can safely avoid considering derivingom
union(tj) using theunionrule.
In order to improve efficiency, we amortize the recursion
calls by maintaining an index of intermediate environments

FoodKeywords [0:1] FoodGroupCode [0:1] ArrayOfSearchByKeywordsOutput

NDBNumber  LongDescription ~ FoodGroupCode
(b)

CalculateNutrientValues A, typest and the avoidance sat and the corresponding
N T derivationDPY(A - t|-x ).
LicenseKey =~ NDBNumber [0:1]  AmountinGrams [0:1]  AmountinOunces [0:1] The parameters that are Varied are the Size of the base_
© types and the target type, the number of web-services, the
number of union-nodes found in the base-type, and finally
CaleulateNutrientValuesResponse the number of minOccurs, maxOccurs constraints in the
CalculateNutrientResult base-types. We examine the scalability of the algorithm in
NOBNurESr LongDesaiption mwues o] terms of the number of Qerivation plans considered duri_ng
N the search, the total run-time, and the memory consumption. _
NutrientNumber Description Unit ~ GramValue The base-types are generated based on the schemas speci-

fied in the benchmark XBench [19]. However, in order to

@
explore the scalability of the algorithm, for larger datase

SearchFood : SearchFoodByDescription —» SearchFoodByDescriptionResult and have amp|e f|eX|b|||ty in Varying parameters of inter-
CalcNutrients : CalculateNutrientValues ——> CalculateNutrientValuesResponse est, we introduce additiona| nodes to these SChemaS. The
© additional tag names are randomly sampled from a fixed al-

phabet set, and the number of children of each node is ran-
Figure 8. The types and operations in the WSDL file  domly determined to be between 3-10. These experiments

are carried out on a SunFire V440 server running Solaris 8

with SPECInt2k rated at 703 and SPECFP2k 1054.
M/Nut ri ent element consists of a list dlit ri ent Val ues SIZE OF INDIVIDUAL BASE-TYPES: We use 5 base-types
corresponding to the nutrients in some given food item. A based on the XBench schemas. The target type is a tree
derivationD(A - t) is a composition that allows one to ob- constructed based on the base-types by combining random
tain a collection ofyNut ri ent elements from a keyword  sub-types from the base-types. The size of the target type
represented boodKeywor ds. is fixed at 50 nodes. There are noi on-nodes, and there

The cost functiorcost(r(AFt)) that is used assigns a are 2 single-input web-services. The parameter we vary is

cost to each rule and is insensitive to the environment the size of the individual base-types — from 10 nodes to 500
A and the target type. We assign a heavy cost to penal- nodes. We also vary the size of the web-services’ input-type
ize theconstructrule and theoptionatrule, a small costto ~ and output-type from 5 to 50 nodes.
favor web servicesapply-rule, and equal cost to all other Figure 9(a) shows that the number of plans generated
rules. This cost-model reflects the preference of derimatio  during the search has a polynomial growth with respect to
for using composition of web services to produce the targetthe size of the base-types. Note that when the size of the
type rather than using the structural-rules. One can egplor individual base-types exceeds 200 nodes, the rate of growth
more complicated cost-functions depending on the applica-changes from polynomial of higher power to nearly linear.
tion, but in our experiments, this rather simple choice of The explanation is that since we have a fixed-size alphabet,
the cost function allows thBT-algorithm to successfully — repeated sub-types are found more frequently in the base-
report correct derivations; in this caBgA - t), makes use  types, thus, more of the plans in the consideration set are
of the two web services and some structural constructionfound in the index, and do not need to be generated from
and destruction. Similar results were obtained for othdy we scratch. Increasing the input/output type size for the web
service scenarios as well; we omit them, as well as detailedservices uniformly increases the number of plans consid-

traces of the execution of the algorithm, due to space con-ered. _ .
straints. Figure 9(b) shows the run-time of the search with respect

to the individual base-type size. The run-time increases
. . polynomially with respect to the individual base-type size
5 Experimental evaluation Note that it does not display the near-linear behavior for
larger base-types as was the case for the number of plans
This section describes in detail the set of experiments considered. This is due to the fact that the overall run-time
performed to evaluate the performance of the algorithms.includes time for both building the common-prefix embed-
We have implemented th&T- and BT-bnd-algorithm  dings and build the sub-plans. While the index helps in
based on the recursive definition BPP(A - t|-.x ), and generating the sub-plans, building the common-prefix em-
C(AFt|-x). Some optimizations in the search are pos- bedding still requires traversing through the base-tyaed,
sible. For instance, when backtracking alonguh&n-rule
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Figure 9. Performance with increasing base-type size
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remains dominant.

SIZE OF TARGET TYPE For the next set of measure-
ments, we fix the size of base-types to 20 nodes, and utilize
10 base-types for derivation. Again, the number of web-
services is fixed at 2. We vary the target type size from 10
to 1000 to explore the performance when deriving a very
large target type. The number of plans generated and the
run-time are shown in Figure 11. Observe, that unlike the
case of increasing base-types, the run-time becomes nearly
linear when the target type size exceeds the threshold of
200. Since the target is so much larger than the base-types
and the outputs of the web-services, construction time for
the common-prefix tree is determined by the base-type size
and no longer by the target type size. In conclusionBhe
algorithm scales well with respect to the size of the target-

type.

Figure 9(c) shows the total memory used during the NUMBER OF WEB-SERVICES We study the performance
search. Note that it is proportional to the number of plans characteristics in terms of larger number of web-services.
generated. When the web-services have larger input-outpuThe base-types are fixed at 50 nodes, 5 base-types, and the
types, theBT-algorithm needs to consider more plans, thus target type is fixed at 50 nodes. The number of web-services
taking time and memory. However, the trend remains con- is varied from 1 to 10. Each web-service has 2 input types,

sistent.

NUMBER OF BASETYPES. We also measure the perfor-

each with 5 nodes. We compare the performance oBihe
algorithm andBT-bnd-algorithm with different bounds on

mance with respect to the number of base-types. The numthe composition length.

ber of base-types is increased from 1 to 200 while the size is

Figure 12(a) shows the number of plans considered by

fixed at 20 nodes. The other parameters remain unchangedhe BT-algorithm. As was shown in Section 4, an exponen-
The number of plans generated, run-time and memory us-tial number of plans are generated. By bounding the length
age are shown in Figure 10. We see again the effect of theof the composition to 3, only a polynomial number of plans
changing rate of growth for the number of plans generated.are generated as it is shown in Figure 12(b) (1). Also in Fig-

This is due to exactly the same reason as in Figure 9(a).

ure 12(b) (2), we show the effect of increasing the length of

From Figure 9 and Figure 10, we verify that the per- the bound from 3 web-services to 4; it is evident that the
formance is polynomial with respect to the size of the set performance implication is marginal and the overall trend i
of base-types, and is quite capable of handling large basefow polynomial. We also change the number of input types
types, as well as a large number of them.
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Figure 12. The performance dBT- andBT-bndalgorithms

to 4, and bound the composition length to 3 as shown in the

As part of on-going research, we are interested in ex-

same figure (3), again observing a smooth performance im-perimenting with diverse cost models and rule sets, as well

plication. The absolute run-time for the experiments is thi
figure are shown in seconds as follows:

Num of W.S.: 2 5 8

10

(2)Bnd-WS =3,Numofinp=2 32 | 51 | 69 | 82
(3) Bnd-WS =4, Numoflnp=2 32 | 57 | 90 | 108 1]
(4) Bnd-WS =3, Numofinp=4 38 | 66 | 94 | 113

demonstrating very reasonable performance. 2
NUMBER OF uni on-NODES. Another source of exponen-

tial explosion for the search space is the number of union- [3]
nodes in the base-type. The next set of results show the
performance with increasing number of union-nodes for
the BTand BT-bnd-algorithms. We also vary the num- (5]
ber of children of the union-nodes. The number of plans
grows exponentially with respect to the number of unions g
in the unbounded case, as expected, and polynomially in
the bounded case as shown in Figure 12(c). Corresponding!”]
absolute run time in seconds is as below. -

Num of UNION-nodes 2|1 5 8 10
Bnd-UNI=2, Num Children=3| 2 | 15 | 44 | 74 19]
Bnd-UNI =3, Num Children=3| 2 | 51 | 172 | 263
Bnd-UNI =2, Num Children=5| 3 | 6 | 53 | 89 [10]

The experiments demonstrate that the algorithms are[11
scalable with respect to the size of base-types and the tarfi2
get type, and sensitive to rules suchegply andunionthat
require multiple backtracking matching our analytical ex- [13]
pectation. These rules create an exponential explosion to[
the amount of search required. Placing bounds on the com
position length and the number of union nodes to realistic |15
values, make the problem tractable as demonstrated by our
experiments. [16]

. [17]

6 Conclusions
[18]
We have presented a rule-based framework for web ser-

vice composition. The problem of web service composi- [19]
tion is seen as a optimal type derivation problem which is
shown to be intractable in general. We have characterized?’l
a useful tractable class, and proposed suitable heurfstics
the general case. The experimental results demonstrate thé"!
feasibility of our approach.

10

as incorporating semantics into our framework in order to
improve the quality of the composition.
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