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Abstract

Many online services like Twitter and GNIP offer streaming
programming interfaces that allow real-time information fil-
tering based on keyword or other conditions. However, all
these services specify strict access constraints, or charge a
cost based on the usage. We refer to such streams as “hid-
den streams” to draw a parallel to the well-studied hidden
Web. At the same time, the users’ interest is often captured
by complex classification models that, implicitly or explicitly,
specify hundreds of keyword-based rules, along with the rules’
accuracies.
In this paper, we study the problem of how to best utilize a con-
strained streaming access interface to maximize the number of
retrieved relevant items, with respect to a classifier, expressed
as a set of rules. We consider two problem variants. The Static
Hidden Stream Filtering problem assumes that the popularity
of the keywords is known and constant across time. The Dy-
namic Hidden Stream Filtering problem lifts this assumption,
and can be viewed as an exploration-vs.-exploitation problem.
We show that both problems are NP-hard, and propose exact
and bounded approximation algorithms for various settings,
including various access constraint types. We experimentally
evaluate our algorithms on real Twitter data.

1 Introduction
Popular social sites like Twitter, Tumblr, reddit, wordpress,
Google+, YouTube, etc. have tenths of millions of new entries
every day – e.g., Twitter has 400 million and Tumblr has
72 million new entries every day – making the process of
locating relevant information challenging. To overcome this
information overload, there are well-known solutions on the
area of information filtering. An information filtering system
separates relevant and irrelevant documents, to obtain the
documents that a user is interested in. Generally, during a
filtering process, a classifier categorizes each document and
assigns a score that can be used to rank the final results. We
focus on such filtering models.

Ideally, the content provider stores the user profiles and
filters each document to decide if it should be returned to a
user. However, most current providers of streaming data, such
as Twitter, do not provide complex filtering interfaces, such
as user-defined classifiers. Instead, they allow specifying a
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filtering profile that consists of sets of keywords (filters) that
return matching documents; currently the limit is 400 such
keyword filters. We refer to such streams with strict access
constraints as “hidden streams” to draw a parallel to the
hidden Web research (Raghavan and Garcia-Molina 2000),
indicating that the stream is only available through querying.
If a document matches any of the filters on the profile it is
returned to the user. The interface often imposes additional
rate constraints, capping the maximum amount of documents
that can be retrieved through any given filter. We refer to
this type of constrained filtering interface as keyword-based
hidden stream interface.

The simple but limited keyword-based hidden stream inter-
face poses unique challenges on how to best map a complex
document classifier to a filtering profile. This is the main
problem studied in this paper. In particular, the user of the
keyword-based hidden stream interface must set filters that
return as many relevant documents as possible, while at the
same time respecting the access constraints of the interface.
Two typical access constraints are (i) a constraint on the num-
ber K of the keyword filters and (ii) a constraint on the rate
R of returned documents. For example, for Twitter, we have
K = 400 and R ≈ 1% of total tweets’ rate in Twitter.

In this work, our goal is to provide classifier-based docu-
ment filtering capabilities on top of a keyword-based hidden
stream interface on hidden streams. The properties of rele-
vant documents that we want to filter are described by a rule-
based classifier, which consists of a set of keyword-based
rules along with corresponding accuracies. For instance, a
politics classifier may consist of hundreds of rules like “if
keywords ‘health’ and ‘policy’ are contained then relevant
with precision 0.8.” Many other types of classifiers like deci-
sion trees (Quinlan 1987) and linear classifiers (Towell and
Shavlik 1993; Fung, Sandilya, and Rao 2005) can be easily
converted to sets of rules; hence we believe that our modeling
is quite general.

Note that the key difference of our problem to the well-
studied document filtering problem (Belkin and Croft 1992)
is that in the latter the filtering algorithm has access to the
whole stream, and decides which documents are of inter-
est. In our case, we do not have immediate access to the
documents, and we are accessing them through a “hidden
document stream” using a limited querying interface, and try
to decide where to allocate our capped querying resources.



The problem has the following key challenges: (i) The
number of rules in the classifier may be higher than the num-
ber K of filters, or may return more than R documents per
time period. (ii) There is overlap on the documents returned
by rules (filters), e.g., rules “Obama” and “Washington” may
return many common documents. Note that many interfaces
like Twitter only allow conjunctive queries without nega-
tion, which makes overlap a more severe challenge. (iii) The
data in streams changes over time as different keywords be-
come more or less popular, due to various trends. Given that
hidden streams only offer access to a small subset of their
documents, how can we identify such changes and adapt our
filters accordingly?

This paper makes the following contributions:
1. We introduce and formally define the novel problem of

filtering on hidden streams.
2. We introduce the Static Hidden Stream Filtering prob-

lem, which assumes that the popularity of the keywords is
known and constant across time (or more formally, at least
in the next time window). We show that this problem is
NP-Complete, and propose various bounded error approxi-
mate algorithms, for all problem variants, with respect to
access constraints and rules’ overlap.

3. We introduce the Dynamic Hidden Stream Filtering prob-
lem which assumes keywords distributions are changing
over time in the hidden stream. This problem can be
viewed as an exploration-vs.-exploitation problem. We
present algorithms to select the best set of filters at any
time, by balancing exploitation – using effective rules ac-
cording to current knowledge – and exploration – checking
if the effectiveness of other rules increases with time.

4. We experimentally evaluate our algorithms on real Twitter
data

2 Problem Definition
Keyword-based Hidden Stream Interface: A document
stream S is a list of documents d1, d2, · · · , dt published
by the content provider. Each document has a timestamp
that denotes its creation/posting time. The user has access
to the document stream through a Keyword-based Hidden
Stream Interface, which is a filtering service maintained by
the content provider that allows users to access the data.
The user specifies a filter set Φ of keyword-based filters,
Φ = {F1, F2, · · · , Fn}. Each filter Fi is a list of terms
w1, w2, · · · , wq . The filter set can change over time; we use
Φt to denote the filter set used at time t. Given a set of filters,
the service filters and returns the documents that match any
of the filters. To simplify the presentation, we assume in the
rest of the paper that a filter Fi matches a document if the
document contains all the keywords in the filter (conjunctive
semantics), which is the semantics used by popular services
like Twitter. Other semantics are also possible.

Example: Assume that we are interested in documents
related to job offers on Twitter. Some possible filters to ex-
tract documents are: F1= {job}, F2={health}, F3={legal,
assistant}.�

The service establishes a usage contract that consists of a
set of access constraints. We study in detail two important

Table 1: Filter Usefulness for the Jobs Domain.
Filter Precision Coverage Filter Precision Coverage

jobs 0.71 4680 engineer 0.93 945
manager 0.97 835 health 0.83 205
legalAssist. 0.84 65 nurse 0.94 570
rn 0.96 140

and popular types of constraints (both used in Twitter): (i)
the filters number constraint specifies a maximum number
K of filters that may be active at any time, that is, |Φ| ≤ K;
(ii) the rate constraint R specifies the maximum number of
documents per time unit that the service may return to the user
across all filters. If the filters return more than R documents
during a time unit, we assume the service arbitrarily decides
which documents to discard. We refer to this as interface
overflow.

Note that the rate constraint is necessary to make the prob-
lem interesting. Otherwise we can create very general filters
and obtain all the documents in the stream. However, even
in this case accessing the full stream can be very costly on
network/storage resources for both the user and the provider.

Alternative cost models are possible. For instance, one
may have an access budget B and pay a fixed cost for each
returned document or for each filter (less practical since a
general filter may return too many documents). We could
also include a cost overhead for each deployed filter plus a
fixed cost per document. Our algorithms focus on the above
(K,R) constraints, but most can be adapted for such cost
models. For instance, a budget B on the number of retrieved
documents for a time period t is equivalent to the R rate
constraint when R = B/W (assuming the rate is constrained
in time windows of length W or wider).

Filtering Classifier: So far we have described the capabil-
ities of the interface to the hidden stream. Now, we describe
the modeling of the useful documents for the user, that is,
the documents that the user wants to retrieve from the hidden
stream. We define usefulness as a function that assigns to
each document a label in {True, False} . If the document
is useful for the user the usefulness will be True, else False.

The most common way to estimate the usefulness of a
document is using a document classifier (Sebastiani 2002).
The most common features in document classifiers, which
we also adopt here, are the terms (keywords) of the document.
Further, we focus on rule-based classifiers, which are popular
for document classification (Provost 1999). Another advan-
tage of using rule-based classifiers is that several other types
of classifiers can be mapped to rule-based classifiers. (Han
2005)

Formally, the rule-based classifier is a set of rules Ψ =
{L1, · · · , Lm}, where each rule Li has the form

w1 ∧ w2 ∧ · · · ∧ wq
p−→ True

This rule says that if a document d contains all terms
w1, w2, · · · , wq, then d is useful. The ratio of useful docu-
ments is the precision of the filter (probability) p(Fi). The
number of total documents that are returned is the coverage
c(Fi). The number u(Fi) of useful documents of filter Fi is
u(Fi) = c(Fi) · p(Fi). The set of all filters that are created



Figure 1: Filter Selection
Table 2: Useful Documents

Document Useful

Brownsville Jobs: Peds OT job: Soliant Health #Jobs T
Army Health care Job: EMERGENCY PHYSICIAN #amedd#jobs T
RN-Operating Room-Baylor Health Care - Staffing #Nursing #Jobs T
#5 Health Benefits Of Latex You Should Know #article 57954 F
Heel spurs causing foot pain #health #wellness #pain #aging #senior F
Signed up for Community Change in Public Health #communitychange. F

in this way is our set of candidate filters Ω.
Optimization Problems The idea is maximize the number

of useful documents returned by the Hidden Stream. Clearly,
not all filters in the set of candidate filters can be used in
the filter set, since |Φ| may exceed K or their combined
documents rate may exceed R. Further, selecting the K rules
with highest precision may not be the best solution either,
since these rules are generally too specific and may have
very small coverage (number of matched documents in the
document stream during a time window).

Figure 1 shows the various components of the frame-
work. The full document stream is only visible to the service
provider. This differentiates our problem from the classic
information filtering problem. The service only returns doc-
uments that are matched by the filters. Table 2 shows an
example of documents that match the filter F2={health},
which is specified for a classifier related to job offers. Some
of the documents are useful as they are related to our domain.
Others are related with generic health content but not to jobs.

Filters overlap: A key challenge is that filters have over-
lap among each other, that is, the same document may be
returned by multiple filters.

Let c(Φ) and u(Φ) be the numbers of unique and unique
useful documents that match any of the filters in Φ, respec-
tively. Finally, p(Φ) = u(Φ)/c(Φ). Knowing the n-way
overlap for any set of n filters in Ω is intractable due to the
exponential number of such sets and the dynamic nature of
the stream.

Hence, in this paper we only consider pairwise (2-way)
overlaps between filters. We define u(Fi, Fj) and c(Fi, Fj)
as the numbers of useful and matched documents shared
between filters Fi and Fj , respectively. Hence, we assume
that all n-way overlaps, n > 2, are zero, in the inclusion-
exclusion formula, which leads to:

u(Φ) ≈
∑
Fi∈Φ

u(Fi)−
∑
Fi∈Φ

∑
Fj∈Φ

u(Fi, Fj) (1)

Clearly, keeping higher levels of overlap may improve the
accuracy of filter selection algorithms, but by their nature
classifier rules have little overlap, which makes this limitation
less important, as shown in Section 5.

The pairwise overlaps can be represented in an overlap
graph, shown in Figure 2, where each filter is a node and
there is an edge if the filters have a non-empty overlap
(c(Fi, Fj) > 0).

Hidden Stream Filtering Problem: Our objective is to
maximize the number of useful documents in the filtered
stream without violating the usage contract, which consists
of access constraintsK andR. We refer to the pair (K,R) as
our budget. In our problem setting, the precisions of the filters
are known from a separate process, which we consider to
be well-calibrated to report accurate precision numbers. For
instance, we may periodically use crowdsourcing to estimate
the precision of each classifier on a training set of documents.
To simplify the presentation, we view the precision of each
filter as fixed, but our methods can also apply to a changing
but known precision.

The first problem variant assumes that for each filter F
in the set of candidate filters we know its coverage c(F )
and c(F ) is fixed (or almost fixed) across time windows. In
practice, we could estimate the coverages based on an initial
sample of the documents. It is reasonable to assume that the
coverage is fixed for topics with small or slow time variability
like food-related discussions, but it is clearly unreasonable
for fast changing topics like sports events or news (Dries and
Ruckert 2009).

Figure 2: Overlap Graph

Problem 1 (Static Hidden Stream Filtering). SHSF Given
a keyword-based hidden stream interface with access restric-
tions (K,R), a set Ω of candidate filters with known useful-
ness, coverage and pairwise overlap values, select the filters
set Φ ⊆ Ω such that the number of expected useful documents
is maximized, while not violating restrictions (K,R). �

Given that our main goal is to maximize the number of
useful documents returned by the selected filters, we want
to check that the total estimated filters coverage is close to
the maximum rate R; if it is lower then we have unused
budget, and if it is higher then the service will arbitrarily drop
documents, possibly from the high precision filters which is
undesirable.

Example Table 1 shows a set of candidate filters with
their coverage and precision values. Suppose we are given
constraints K = 2 and R = 5000 for the time window
corresponding to the coverage numbers in Table 1. For the
sake of simplicity let’s assume that the filters are independent,
that is, there are no documents retrieved by multiple filters.
Then the best solution would be the filter set Φ={F1={jobs},



Table 3: Notation.

Notation Details

Ω Candidate filters
m number of candidate filters,m = |Ω|
Fi A filter
Φ Selected Filters (Φ ⊆ Ω)
n Number of selected filters (n = |Φ|)
K Constraint on number of filters in Φ

R Rate constraint
u(Φ) Usefulness of Φ, i.e. number of useful documents
c(Φ) Coverage of Φ, i.e. number of matched documents
p(Φ) Precision of Φ. p(Φ) = u(Φ)/c(Φ))
c(Fi, Fj) Overlap coverage for Fi, Fj

u(Fi, Fj) Overlap usefulness for Fi, Fj

F2={health}}, which is expected to return 0.71·4680+0.83·
205 = 3493 useful documents. �

As mentioned above, the assumption of the static prob-
lem variant that the coverage of filters is known and does
not change with time is unreasonable is many settings. Pe-
riodically sampling the streaming service to recompute the
coverage estimates would take up some of our access budget,
which we generally prefer to use for the subset of selected
filters Φ. To address this challenging setting, we define a dy-
namic variant of the problem, where in addition to selecting
the filters that will maximize the expected number of useful
documents, we must also continuously estimate the current
coverage of “promising” filters in the set of candidate filters.

This can be modeled as a exploration vs. exploitation
problem (Kaelbling, Littman, and Moore 1996) where we
must both use the filters that are expected to give the most
useful documents given the access constraints, but we must
also learn the coverages of other promising filters, which may
be used in future time windows.
Problem 2 (Dynamic Hidden Stream Filtering). DHSF
Given a keyword-based hidden stream interface with access
restrictions (K,R), and a set Ω of candidate filters with
known precisions, but unknown and changing coverages and
pairwise overlaps, select filters set Φ ⊆ Ω for the next time
window such that the number of expected useful documents
is maximized, while not violating restrictions (K,R). �

Table 3 summarizes the notation.

3 Static Hidden Stream Filtering Problem
In this section we present a suite of algorithms for the Static
Hidden Stream Filtering (SHSF) problem. We discuss three
variants of this problem, based on which of the K and R bud-
get constraints are specified: SHSF-K, SHSF-R, and SHSF-
KR, which have K, R or both K and R, respectively. We first
analyze their complexity and then present efficient algorithms
to solve them. Given that all problem variants are intractable
we focus on heuristic algorithms and approximation algo-
rithms with provable error bounds.

3.1 Complexity Analysis
We first show that all versions are strongly NP-Complete even
if we know the usefulness/coverage and pairwise overlaps at

Table 4: Proposed Algorithms for SHSF Problem.

Algorithm K, R? Error Complexity

GREEDY-COV/PREC R,KR Unbounded O(|Ω|K)

GREEDY-COV K 1− e O(|Ω|K)

TreeFPTA R,KR 1− ε O(K6logm)

any point in time. In other words, with complete information
of the future, the selection problem is intractable.

Theorem 1. The SHSF-K, SHSF-R and SHSF-KR problems
are Strongly NP-Complete.

Proof: We first show that SHSF-K is Strongly NP-
Complete. We reduce to Maximum Independent Set (MIS).
For each vertex in MIS we create a filter Fi with profit ui = 1.
For each edge we create an edge with overlap 1. If the MIS
graph has an independent set of sizeK then SHSF −K will
find a solution of usefulness K using exactly K filters. For
SHSF-R, we just set R = K and use the same MIS reduction.
Finally, SHSF-KR is harder than both SHSF-K and SHSF-R
and it can use the proof of any of the two. �

The strong NP-Completeness means that there is not even
a pseudo-polynomial approximate algorithm for these prob-
lems. If we assume that there are no filter overlaps then theR
(and KR) problem variant can be mapped to the 0-1 knapsack
problem, mapping each element to a filter. As a direct conse-
quence, we can then use the knapsack pseudo-polynomial al-
gorithms to solve SHSF-R and SHSF-KR (Hochbaum 1996).
We also propose a novel pseudo-polynomial algorithm when
only the strongest filter overlaps are considered; see TreeF-
PTA below.

3.2 SHSF Algorithms
We show that the considered budget constraints directly affect
the difficulty of the problem as well as the proposed solutions.
A summary of the proposed algorithms is presented in Table 4.
The table shows the complexity and approximation bounds
achieved by the different algorithms we propose to solve all
the variants of the SHSF problem, where we note that in the
first two algorithms the error is with respect to all pairwise
overlaps, whereas in TreeFPTA the error is with respect to
the most important overlaps as explained below.

GREEDY-COV: Given the candidate filters Ω we evalu-
ate the usefulness of each rule. Then our algorithm greedily
adds the filter Fi that has the maximum residual contribution
considering the selected filters Ξ (GREEDY-COV). The resid-
ual contribution is calculated as the usefulness of the filter
considered u(Fi), minus all the overlaps c(Fi, F∗) with the
filters that are already in the solution. This process continues
until we violate any of the constraints K or R. GREEDY-COV
is a 1− e approximation for the SHFS-K problem. The proof
is based on the Maximum Set Coverage Greedy approxima-
tion (Hochbaum 1996).

GREEDY-PREC instead greedily selects filters with max-
imum residual precision. Residual precision is the precision
p(Fi) of filter Fi if there is no overlap among filters, whereas
if there is overlap, we compute the new precision of Fi con-
sidering the residual precision and coverage with respect to



the selected filters Ξ. GREEDY-PREC has no error bound
for any problem variant.

The intuition why the greedy algorithms have generally
unbounded error is as follows. In the case of GREEDY-
COV, the algorithm is blind to the filter effectiveness. If R
is a critical constraint picking low precision elements can
waste the budget very quickly. On the other hand, GREEDY-
PREC could be wasteful when K is the critical constraint.
Commonly, a rule with high precision can be expected to be
highly specific, bringing a small number of useful documents.
Selecting highly selective rules will squander the rule budget.

TreeFPTA Here we relax one of the complexity dimen-
sions of the problem, namely we only consider an overlaps
tree instead of an overlaps graph. We first show an exact
pseudo-polynomial dynamic programming algorithm for the
SHFS-R problem. However, this solution is infeasible, and
for that we propose a polynomial-time approximation scheme
(FPTAS) that is 1 − ε approximate. Finally, we extend the
algorithm to handle both K and R.

Pseudopolynomial dynamic programming algorithm:
This algorithm considers the most important pair-wise over-
laps, in a style similar to how the Chow-Liu factoriza-
tion (Chow and Liu 1968) is used to model pair-wise de-
pendencies, in order to approximate more complex joint dis-
tributions. The Chow-Liu factorization considers that each
node (filter in our case) is only correlated with a single other
node, its parent, where we choose as parent a highly corre-
lated node. Then, the inference process is tractable. We use a
similar idea to reduce the effect of multi-way dependencies,
but in our case each node overlaps not only with its parent,
but also with its children.

Given the overlap graph we set the weight of each edge to
be the number of useful elements that are in the intersection.
Then we compute a maximum spanning tree on this graph.
The intuition is that we minimize the information loss keeping
the most important overlaps. We assume an empty filter is
the root, making the overlap tree connected.

Example of overlap tree: Consider the filters overlap
graph in Figure 2. The tree in Figure 3 presents the maximum
spanning tree for the same graph adding an extra empty filter
to make the tree connected. Now, the overlap effects are
bound to parent-child relations. For example, if we pick both
“RN” and “health” we need to account for the effect of the
overlap of both. On the other hand, “jobs” and “health” are
assumed to have no overlap.�

Figure 3: Overlap Tree
After the tree transformation, the interaction effects are

local. This means the residual precision or coverage for any

filter only is affected by its parent and children. This local
effect allows to isolate the optimal solution of any sub-tree
with root β, as the only element that can affect it is the parent
parent(β) of its root. For that, the dynamic programming
algorithm must compute for each sub-tree two solutions: the
optimal solution assuming parent(β) is selected and not
selected. Further, for each subtree we must store the optimal
solution assuming a usefulness of x ∈ {0, . . . , R} for this
sub-tree. That is, for each sub-tree, we need to store up to
2 ·R solutions.

Using this property we can establish a dynamic program-
ming algorithm that finds the optimal solution. A bottom-up
process finds the optimal solution for each sub-tree until we
get to the root, by considering all combinations of sharing
the R budget across siblings.

For every sub-tree rooted with root β, Let costpβ(x) be
the minimum rate we can use to achieve a usefulness of
exactly x given that parent(β) is selected (p = 1) or not
(p = 0). Let γj be each one of the children of β. Let cRes(β)
the residual utility of β given that parent(β) is selected, i.e
c(β)− c(β, parent(β)). In the same way we define uRes(β)
for residual usefulness.

Then, the following recurrence defines a pseudo-
polynomial exact solution for SHSF-R.
costp=1

β (x) = min

{
min∑
ji=x

∑
costp=0

γj (ji),

min∑
ji=(x−u(β))

c(β) +
∑

costp=1
γj (ji)}

}
costp=0

β (x) = min

{
min∑
ji=x

∑
costp=1

γj (ji),

min∑
ji=(x−uRes(β))

{cRes(β) +
∑

costp=1
γj (ji)}

}

Lemma 1. The dynamic algorithm described above gener-
ates an exact solution for the SHFS-R assuming that the
pair-wise overlaps are the only overlaps among filters.

Proof sketch: By Induction. Consider a tree with root β
and assume the algorithm already calculated costp=1

γj) (x) and
costp=0

γj (x) for each child of β and x ∈ 0 . . . U |Ω|, where
U is the maximum usefulness for any filter. Let assume
that the parent(β) will not be selected (p = 0). Then, the
minimum coverage with usefulness u is the minimum of
(1) adding β to the solution and find the optimal way to select
x− u(β) matches, from its child’s considering the overlaps
(β, γj). Hence, we combine the costp=1

γj (x) assuming they
are independent. (2) We do not add β and we find the optimal
way to obtain u matches using only the child’s assuming they
are independent. In the case we add p = 1 we only need to
take the effect on β.

TreeFPTA Algorithm In above algorithm, given the op-
timal solution OPT (that is, the maximum usefulness of a
set of filters that have joint coverage up to R), we need to
calculate all the possibles values for every possible value
x ∈ 0 . . . OPT . This is clearly infeasible as OPT is inde-
pendent of the number of filters. For that, we rescale OPT to
make it dependent on the size of Ω, and we study an approxi-
mation of the solution based on a problem transformation.



We adapt the knapsack polynomial-time approximation
scheme (FPTAS) (Hochbaum 1996) to our problem. The
algorithm scales the profit (usefulness) of each filter to a new
ũ(Fi) and then solves the scaled problem using the pseudo-
polynomial algorithm presented above. The modification
guarantees that the algorithm finishes in a polynomial number
of steps on Ω. Let U be the maximum usefulness for any
filter and let factor = εU

|Ω| , where ε is the approximation
ratio and can be modified. We modify each usefulness as
ũ(Fi) = d u(Fi)

factor e and the residuals r̃u(Fi) = d ru(Fi)
factor e . We

call this algorithm TreeFPTA

Lemma 2. TreeFPTA is a 1 − ε approximation assuming
knowledge of the pair-wise overlaps

The proof of the approximation bound is similar to the
one used for the knapsack problem (Hochbaum 1996). This
solution modifies the cost by scaling the contributions for
each object. As filters have dependencies, the transformation
to knapsack is not straightforward. To overcome the effect of
residual utilities, we create extra variables that are activated
when two neighbor filters are selected. These new variables
are affected in the same way as regular contributions when
scaled.

A simple modification can be used to obtain an algorith for
the SHSF-KR variant. We add an extra dimension that consid-
ers the number of filters used in the selection. costp=1

β (x, k)
is the minimum coverage to obtain a usefulness xwith exactly
k filters. The pseudo-polynomial approximation depends on
K, instead of |Φ|.

4 Dynamic Hidden Stream Filtering Problem
Solution Challenges and Overview We focus on the sce-
nario where the precision of filters is known at any time, but
we must maintain the coverage values. The precision can be
updated by periodically crowdsourcing subsets of the stream
for classification, or by applying the same rules (and corre-
sponding filters) that we generate for external data sources
like news articles during the same time window. Dynami-
cally updating the precision of stream classification rules has
been studied in previous work, which we could apply in our
problem as well (Nishida, Hoshide, and Fujimura 2012).

We propose an exploration vs. exploitation approach,
inspired by Multi-Armed Bandit solutions (Anantharam,
Varaiya, and Walrand 1987) (see Related Work section). The
idea is, given our budget constraints K and R, to exploit the
filters that we believe that will give us a high profit (many
useful documents) given the current knowledge of all filters’
coverages, but also explore some promising filters in Ω− Φ
to update their coverage estimates and check if their benefit
may surpass that of the selected ones in Φ. Exploration also
allows us to adapt to non-stationary domains.

Given a sample of new documents in the current time
window, and previous coverage values, we compute estimates
of the filter coverages ĉi(t), and of the filter usefulness values
ût(Fi) at time t for filter Fi:

ût(Fi) = p(Fi)× ĉt(Fi) (2)

We show how ĉt(Fi) is estimated using ˆct−1(Fi) later.

Table 5: Proposed Algorithms for DHSF Problem Variants.

Problem Algorithm Description

DHSF-R DNOV-R Select by Precision
DHSF-K DNOV-K Select by Estimated Usefulness
DHSF-KR DNOV-KR Hybrid

In each time window we need to take K decisions, that
correspond to the filters that will be selected in that step.
After the window is finished we use the new information to
update the estimates, and we start the process again.

Some of the challenges of selecting the best filters in DHSF
problem, which make the problem significantly different
from the well-studied Multi-Armed Bandit problem, are: (i)
Weighted Cost: The cost of a filter changes over time and
we only know an estimate of it. In the simple multi-armed
bandit problem, the cost of playing in any machine is the
same, that is, filters are not weighted. (ii) Overlap: Due to
filters overlap, the cost of a filter is not constant but depends
on the other filters that are scheduled in the same window.
Further, the profit (usefulness) of the solution is not simply
the sum of the profit of each filter.(iii) Non-Stationary: Some
domains are highly dynamic and precision/coverage have a
high variance.

4.1 DHSF Algorithms
In this section we present algorithms for the DHSF problem,
which are summarized in Table 5. To simplify the presen-
tation, we first present the algorithms assuming no overlap
among filters; as we see the problem is hard even under this
assumption. At the end of the section we discuss how we
maintain estimates of overlap among filters and how these
estimates are incorporated into the presented algorithms.

DHSF-R Problem: In DHSF-R the rate is the critical (and
only) constraint. We order the filters by decreasing precision
and add to Φ until we fill the R rate. As precision is static
in our setting, this algorithm is not completely dynamic, and
work very similar to the static version, GREEDY-PREC.

The main difference is how to maintain some estimate
of the coverage, as we need this value to decide if a filter
is added in the solution The modified algorithm is called
DNOV-R.

To maintain an estimate of the coverage (Equation 2), our
scheduling approach will leverage well-known Reinforce-
ment Learning Strategies (Kaelbling, Littman, and Moore
1996). These strategies have strong theoretic guarantees on
simple scenarios like the Simple Multi-Armed Bandit prob-
lem. However, they have also been shown to be successful on
problems that break the model assumptions (independence
of the decisions, stationary model, complex payoff).

To maintain estimates of coverage, a simple model is to
use the average of the coverage we obtain each time the
filter is scheduled (selected in Φ). This estimate is the
MLE for the stationary model. Nevertheless, as we consider
non-stationary distributions, we expect that an exponential
weighted model that gives a higher importance to new obser-
vations will perform better. This model has been successfully



used for adaptive training models (Kaelbling, Littman, and
Moore 1996). In particular, we update the estimated coverage
in each step using the following equation:

ˆct+1(Fi)← ĉt(Fi) + α · (ct+1(Fi)− ĉt(Fi))

where ĉt(Fi) is the estimated coverage for the filter Fi
at moment t, and ct(Fi) is the coverage for the particular
iteration. α controls the weights (decay) of the previous
estimates.

DHSF-K Problem: Here, we want to add filters that have
the highest usefulness. To maintain an estimate of the useful-
ness we use equation 2. The coverage estimate is calculated
in the same way as before. However compared with the pre-
vious version we do not select by a fixed value but schedule
the selection depending on the current usefulness estimates.

To balance the exploration and exploitation, we use a vari-
ation of the soft-max action selection presented in (Kaelbling,
Littman, and Moore 1996). The idea is to select the filters
using a probability distribution P; that weighs each filter de-
pending on the expected profit. Ranking using the soft-max
allows us to focus the exploration of the most promising fil-
ters. The probability of selecting the filter Fi is given by the
following distribution:

Pt(Fi) =
eût(Fi)/τ∑

Fj∈Ω e
ût(Fj)/τ

The parameter τ is commonly connected to the concept
of temperature. If the temperature is very high, the system
tends to be random, that is, it performs more exploration. If
the temperature cools down the system becomes more greedy
and tries to select the most relevant filter, that is, exploitation
dominates. In the experiments we start from a smaller τ and
slowly colds (logarithmically) until it reaches an effective
value, as discussed in the Experimental section.

The soft-max rule provides a framework to take one deci-
sion. However our scheduler must take several (K) decisions
in each window. We use a greedy loop that selects a single
filter using the soft-max probabilities, and then updates the
rest of the probabilities given the selected filter.

DHSF-KR Problem: When we have both constraints, the
problem becomes how to decide which of the two is the
critical constraint in each step, so that we make a selection
accordingly. For instance, if we have used up half of our K
filters, but only 10% of the rate R, then K becomes more
critical, and the selection of the next filter should take this
into account.

The idea is to combine the two previous approaches, se-
lecting one of them for each greedy selection of a filter. In
particular we select by precision (as in GREEDY-PREC) if
the ratio between the remainder rate and R is less than the
remainder number of filters and K, otherwise we use the
usefulness (as in DNOV-K). Algorithm 1 shows this hybrid
algorithm, which we call DNOV-KR. generateDistribution-
Precision() assigns to each filter a probability proportional to
its precision.

Account for the overlap among filters
To handle the overlap among filters, we maintain estimates

of the overlap values. The two key challenges are how to
obtain these estimates and how to use them.

Algorithm 1 DNOV-KR
1: procedure DNOV-KR(F,K,R, τ )
2: G← ∅
3: i← 0;R′ ← R
4: while i < K ∧ |G| < R do
5: if (K − i)/K < R′/R then
6: P← generateDistributionUsefulness()
7: else
8: P← generateDistributionPrecision()
9: end if

10: p← random(0, 1)
11: j ← select softmax(Ω, P, p, τ)
12: if |Fi ∪G| < R then
13: R′ = R′ − c(Fj)
14: G = G ∪ Fi

15: Ω = Ω− Fj

16: end if
17: i← i+ 1
18: end while
19: end procedure

For the first challenge, let ct(Fi, Fj) be is the number of
documents matching both filters Fi and Fj , during the time
window starting at time t. Then we want to obtain an estimate
ĉt+1(Fi, Fj) for the next window. This estimated is value
whenever Fi or Fj is selected (is in Φ). If Fi ∈ Φ, then we
count how many documents returned satisfy each of the other
filters Fj , even if Fj 6∈ Φ. Then we estimate the overlap as:

ˆct+1(Fi, Fj)← ĉt(Fi, Fj) + α(ct+1(Fi, Fj)− ĉt(Fi, Fj))
To obtain the number of documents that are useful in the

intersection we are faced with a problem. As we do not
know the precision on the intersection we can assume the
worst case and use the maximum of the two filters we are
considering. In particular:

ût(Fi, Fj) = max(p(Fi), p(Fj)) · ĉt(Fi, Fj) (3)

Given now the pairwise estimates we can use these values
to update the probabilities in each step of the algorithm, con-
sidering the filters that are already selected. For example, if
we have three filters F1, F2, F3 and we have already selected
F1, then DNOV-K would calculate P using usefulness values
u(F2)− u(F12) and u(F3)− u(F13).

5 Experimental Evaluation
In the following section we describe the data acquisition
process and how we create the set of candidate filters Ω
using rule-based classification methods. Then we present our
results for the Static Hidden Stream Filtering problem and
its variants. Finally, we present the results for the Dynamic
Hidden Stream Filtering problem.

5.1 Data Acquisition and Rule Generation
We obtained the tweets from the Twitter public Streaming
API, without specifying any conditions, which returns about
one percent of the total traffic, between January 1st and Jan-
uary 31st of 2013. We removed the tweets that do not con-
tain any hashtag (we build classifiers based on hashtags) or
are not in English (using http://code.google.com/p/language-
detection/). Tweets are normalized to remove user names,
URLs, the retweet symbol (RT), and the pound (#) character
on hashtags. Finally, we remove tweets that have less than
10 characters. Table 6 shows the statistics of the dataset.



Table 6: Dataset and Rules Descriptive Statistics

#Avg. Tweets per Day 4.2M
#Avg. Tweets per Day (Hashtag) 800K
#Tweets per Day (Hashtag+English+ Norm.) 303K
#Tweets Full DataSet (Hashtag+English+Norm.) 9.4M

#Rules Per Hashtag (Min,Max,Avg) 3/96/18.1
#Conflicts (5%) 14.1
Precision Per Rule (Min,Max,Avg) 0.05/1.0/0.45
Coverage Per Rule (Min,Max,Avg) 5/37803/307.6

We divide time in windows of 4 hours, that is, there are 6
windows per day, and 6 ·31 = 186 in total. We assign a tweet
to a window based on its timestamp. The first 48 hours (12
windows) are used as training set to obtain the candidate set
of filters Ω. For the static problem variants, the training set
is also used to obtain the precisions and the initial coverages
of the filters, whereas for the dynamic problem variants it
is only used to obtain the precisions of the rules. The rest
windows are used for evaluation.

Hashtags are used to build classifiers to evaluate our meth-
ods. That is, each hashtag is viewed as a topic, and we build
a classifier that uses the rest keywords (excluding the hashtag
itself) in the tweets that contain the hashtag to predict if the
hashtag is present or not. Hashtags have been used to build
Twitter classifiers before (Nishida, Hoshide, and Fujimura
2012).

We obtain the top 100 most frequent hashtags in the first
48 hours, ignoring those that do not represent a topic, specifi-
cally the ones that contain any of the following patterns: FF,
FOLLOW, F4F , JFB, TFB, RT, 0DAY, TFW. These hashtags
refer to meta-content in the network instead of a particular
topic. They are also highly abused by spammers.

For each hashtag, we generate classification rules using a
modified version of WEKA’s 3.7.9 Ripper implementation
ti make compatible with the IREP algorithm (Cohen 1995).
The modifications are as follows: (i) Rules are constrained
to the existence of the terms (keywords), that is, we disallow
negated features. This is consistent with the Twitter Stream-
ing API, which does not allow negation conditions. (ii) The
minimum precision as stop condition is ignored. In the de-
fault version a rule is accepted if the precision is at least half
of the covered examples. The reason we ignored this parame-
ter is to get more rules in Ω, given that our goal is to achieve
maximum recall. (iii) We increase the Description Length
parameter used as stopping criterion is increased, augmenting
the number of rules generated by IREP. (iv) We do not run
the post-optimization section of the algorithm.

We use 10 cross-validation for training-pruning. As the
dataset is highly unbalanced we use all the tweets that are
tagged with a hashtag and only 1% of the ones that are not
when we create the training set. The positive/negative ratio is
then around 1/10 on the training set. Table 6 shows the best,
lowest and average precision/coverage and number of filters
for our 100 hashtags. To measure the amount of overlap we
show the number of pairs with high overlap, i.e the number
of documents covered by both filters divided by the number
of documents covered by any filter is at least 0.05). As we

can see the number of pairs of rules that have conflicts is
small.

5.2 Static Hidden Stream Filtering (SHSF)
Problem

Our experiments simulate an environment where the budget
is divided for multiple use cases. This means we simulate
multiple users and requirement sharing the bigger budget.
Our strategies allows to give to divide K and R in a fair way
for this settings.

As mentioned above, we use the training set to obtain our
initial estimates of precision and coverage. The ultimate
evaluation metric is the number of useful documents (tweets
that contain the hashtag) in each window, given the selected
filters. We use different values of K and R. The value of
R is expressed as a percentage of document returned if we
use all the filters in Ω. We use R ∈ {50, 25, 12.5, 6.25}.
For K we use values {2, 4, 8, 16, 32}. The value ε is set
to be a 0.8 for the approximation algorithms. We compare
both our approximation algorithm TreeFPTA and the greedy
GREEDY-COV. As a baseline we use the rules as returned by
the original algorithm. We call this algorithm RULEORDER.

Note that a user may share his/her budget across several
topics or an application may share the budget between multi-
ple users. Hence, even though Twitter’s K = 400 may sound
large, it is too small if it must accommodate many classifiers,
where each classifier may only use as few as K = 5 or less.

Note that GREEDY-COV rate is very close to R, because
on the one hand it underestimates the rate by assuming that
the overlapping posts between a new filter and the already
selected filters are distinct to each other, and on the other
hand overestimates the rate by assuming all n-way (n > 2)
overlaps are zero. However, this is not the case for TreeFPTA,
because it underestimates the rate in two ways: by assum-
ing n-way (n > 2) overlaps are zero and ignoring some
2-way overlaps. For that, we also show the performance of
TreeFPTA for input R′ = 1.1 ·R, which leads to actual rate
R.

Table 7 shows the number of the returned useful (contain-
ing the hashtag) documents in the test set, averaged over the
time windows in the test set considering all theK andR com-
binations. We see that two of the proposed strategies clearly
improve the baseline. GREEDY-PREC’s meticulous selec-
tion favors rules with higher precision rather than usefulness.
The TreeFPTA approximation is at least 7-9% superior than
GREEDY-COV. Nevertheless, we note that GREEDY-COV
is competitive while having lower complexity and an easier
implementation.

Table 7 also compares the average number of returned
documents (regardless of usefulness) over all windows in
the test set, for all the strategies considering all K,R com-
binations. We see that GREEDY-PREC has the smallest
number of returned documents, that is, it uses the smallest
ratio of the available rate budget R. On the other hand, the
GREEDY-COV and TreeFPTA algorithms have similar num-
ber of returned documents.



Table 7: SHSF-KR averaged for multiple rates and rates.

Algorithm Useful Covered Precision

RULEORDER 2265 (+ 0%) 15837 (+ 0%) 0.14
GREEDY-PREC 1191 (-48%) 2288 (-86%) 0.52
GREEDY-COV 2475 (+ 9%) 24067 (+52%) 0.10
TreeFPTA 2695 (+18%) 26203 (+65%) 0.10

Table 8: DHSF-K/R averaged for multiple R and K.

Algorithm Usef. Cov. Prec. Usef. Cov. Prec.

Only-R Only-K

DNOV-K 0.80 0.95 0.06 0.70 0.68 0.13
DNOV-R 0.86 0.89 0.07 0.51 0.21 0.30
ORACLE 1.00 1.0 0.07 1.00 1.0 0.12
RANDOM 0.73 0.94 0.05 0.37 0.33 0.13

5.3 Dynamic Hidden Stream Filtering (DHSF)
Problem

This section study the behavior of the strategies to solve the
DHSF problem. Again, we use the first 48 hours to obtain
the initial rules. We use the precision in the training set as
our oracle precision, that is, we assume the precision is fixed.
On the other hand, we assume no initial knowledge of the
coverage of each filter; we consider an initial filter coverage
of R/K for each filter. Parameter α is set to 0.95 and the
temperature is updated as τ(t) = 1.0/log(t) + 1.0 where t is
the current time window, until it reaches τ = 2/7, and then
remains constant. We found that these parameters perform
reasonably in our experimental setting.

We use the strategies DNOV-R, DNOV-K and DNOV-KR.
We also add two baselines: the first one is a version of the
GREEDY-COV with perfect knowledge, i.e., we know the
actual coverage of all the filters in each step (clearly this is
unrealistic). The idea is to use this baseline as an oracle to
compare against. The second baseline selects a random set
of rules and uses it if it does not breach any of the constraints.
The reason is to see if our algorithms are performing better
than a random selection process. We call this algorithms
ORACLE and RANDOM.

Table 8 shows the results for the DHSF-R problem aver-
aged over different rates R (3%, 6%, 12% and 25%). All the
strategies are pretty close to the fully informed (ORACLE)
strategy. As the number of rules we can add is unbounded,
we can fit as many rules as we can until we get the bound
R. As expected, selecting by precision is the best strategy
when we are only bounded by rate. The reasoning is that this
strategy will fill the budget with small rules at the beginning,
reducing later regret. In particular for lower rates (3%, 6%)
DNOV-R is 15%-20% better than DNOV-K.

Table 8 shows the results for the DHFS-K problem average
for different values of K (4,8,16). In this case we expect
that selecting by usefulness we can use the rule budget ef-
ficiently. As we can see the DNOV-K is the best algorithm
out-performing the selection by precision. The DNOV-R is at
least 25% worst that our best strategy, but still improve the
random strategy.

Figure 4 shows the results for DHSF-KR problem. As the
number of rules plays an important role we see that strategies

Table 9: DHSF-KR averaged for multiple R and K.

Algorithm Useful Covered Precision Overflow

DNOV-K 0.60 0.59 0.13 11 (6%)
DNOV-R 0.23 0.48 0.26 10 (6%)
DNOV-KR 0.60 0.58 0.13 5 (2%)
ORACLE 1.00 1.00 0.13 22 (12%)
RANDOM 0.39 0.33 0.11 8 (5%)

that consider the usefulness are better than DNOV-R. Combin-
ing the precision is positive, as the hybrid seems to improve
the basic DHSF-K algorithm.

In general, our algorithms outperform the random baseline.
However, selecting by precision seems to be a poor strategy
when we consider both K and R constraints. The usefulness
directed strategy is better across all the combinations. The
hybrid algorithm, which combines both paradigms, is more
robust and effective in general, improving the usefulness
strategy.

Table 9 summarizes the performance of all the tech-
niques averaged across different K (4,8,16) and R
(3%,6%,12%,25%,50%) values. All the numbers are nor-
malized against the ORACLE strategy. As we can see the
proposed strategies are between 40-70% better than the base-
line (RANDOM). If we optimize for usefulness then DNOV-K
and DNOV-KR are the best strategies. If we optimize for pre-
cision or we want to reduce the number of overflows (times
the selection goes over the rate R) then DNOV-R is the best
strategy.

6 Related Work
Information Filtering The motivation of our work is similar
to the classical Personalized Information Filtering Problem
(Hanani, Shapira, and Shoval 2001; Belkin and Croft 1992;
Foltz and Dumais 1992). However, in our case the stream is
hidden, and we have strict access constraints. Other filtering
works related to our application are: incremental explicit
feedback (Allan 1996; Sheth and Maes 1993), implicit feed-
back (Morita and Shinoda 1994) and social filtering (Morita
and Shinoda 1994). The last aspect is interesting as users
would share filters or profiles instead of documents.

Exploring Hidden Web Databases The Hidden
Web (Bergman 2001) is the part of the Web that
is accessible through forms, instead of hyperlinks.
Many approaches on how to crawl, estimate, catego-
rize (Gravano, Ipeirotis, and Sahami 2003), or obtain
relevant documents (Hristidis, Hu, and Ipeirotis 2011;
Ntoulas, Pzerfos, and Cho 2005) from these sources have
been studied. Our problem can be viewed as a streaming
version of this problem, since the hidden stream can only
be accessed through a restricted query form, which are for
instance the calls to the Twitter Streaming API.

Multi-Armed Bandits and Adaptive Learning A related
problem to our problem is the multi-player multi-armed ban-
dit (Anantharam, Varaiya, and Walrand 1987) problem. In
this game a player faces n machines/bandit where each ma-
chine is characterized by some fixed expectation of winning
θ. In each turn, the player can play K levers from the n ma-



(a) K=8, R=6% (b) K=8, R=12% (c) K=8, R=25% (d) K=8, R=50%

Figure 4: Accumulated Useful Documents by the DHFS-KR strategies.

chines. The paper present a strategy with bounded guarantees
on the expected winnings. However, the process does not
consider a budget similar to our rateR. Another problem that
can be also related is the budgeted multi-armed bandit (Tran-
Thanh et al. 2010). In this case each pulling of a lever has
a cost ci and the player has a budget B for all his plays. A
difference with our approach is we have a budget per play,
instead of unified budget.

7 Conclusions
We presented the Hidden Stream Filtering problem, where
a service provider allows access to a stream of documents,
through keyword-based continuous queries (filters). The user
must also honor an access contract that includes restrictions
on how the service can be used. We focused on two com-
mon constraints: maximum number of filters and maximum
rate of documents returned in a unit of time. We showed
that selecting the best filters to maximize the number of use-
ful documents returned is NP-Complete, so we proposed
heuristics and approximation algorithms with provable error
bounds.
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