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Abstract—Recent works have shown the benefits of keyword proximity search in querying XML documents in addition to text

documents. For example, given query keywords over Shakespeare’s plays in XML, the user might be interested in knowing how the

keywords cooccur. In this paper, we focus on XML trees and define XML keyword proximity queries to return the (possibly

heterogeneous) set of minimum connecting trees (MCTs) of the matches to the individual keywords in the query. We consider

efficiently executing keyword proximity queries on labeled trees (XML) in various settings: 1) when the XML database has been

preprocessed and 2) when no indices are available on the XML database. We perform a detailed experimental evaluation to study the

benefits of our approach and show that our algorithms considerably outperform prior algorithms and other applicable approaches.

Index Terms—Lowest common ancestor, tree proximity search, XML keyword search.
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1 INTRODUCTION

KEYWORD search is a user-friendly information discovery
technique that has been extensively studied for text

documents. Keyword proximity search is well-suited to
XML documents as well, which are often modeled as
labeled trees [3]. For example, consider a document
consisting of (marked up) Shakespeare’s plays in XML. A
user might be interested in matching the query keywords
“mother, king, brother” and determining where they
cooccur and within what context. For example, they may
all appear within the same line or it may be that “king” and
“brother” appear in a line of a speech and “mother” appears
in another line of the same speech, and so on.

In the case of XML trees, the problem of keyword

proximity search reduces to the problem of finding the

subtrees rooted at the lowest common ancestors (LCAs) of

the XML nodes that contain the keywords. Recently, a large

corpus of work [18], [14], [19], [20] has been conducted on

efficiently finding the LCAs of the query keyword nodes in

XML trees.
However, these works focus on computing the LCA

nodes and not the whole XML subtrees rooted at the LCA

nodes. These subtrees are needed in order to rank the

results and display them to the user since ranking typically

depends on the types of the connections. Furthermore, Xu

and Papakonstantinou [20] and Li et al. [18] provide

efficient algorithms for locating only the Smallest LCAs

(see Section 6).
This paper presents algorithms to compute the Minimum

Connecting Trees (MCTs) of the nodes that contain the

keywords, that is, the subtrees rooted at the LCAs of the

nodes that contain the keywords. We make the following

technical contributions:

. We formulate two main problems: 1) identifying and
presenting in a compact manner all MCTs which
explain how the keywords are connected and
2) identifying only MCTs whose root is not an
ancestor of the root of another MCT.

. We design and analyze efficient algorithms to
compute MCTs in two cases: 1) when the XML data
has been preprocessed and relevant indices have
been constructed and 2) when the XML data has not
been preprocessed, i.e., the XML data can only be
processed sequentially.

. We perform a detailed experimental evaluation to
study the benefits of our approach and show that
our algorithms considerably outperform both prior
algorithms for keyword proximity on labeled graphs
[7], [17], [13] as well as other applicable approaches.

Notice that this work only focuses on how to efficiently

return the connections between the nodes that contain the

keywords. However, similarly to previous LCA works [20],

[18], it does not solve the problem of how to rank these

connections. Intuitively, the MCT is the basic connecting

component between objects of a tree, although the specific

strength of this connection has its own merit. The ranking

problem has been studied in previous works [14], [7], [12].

The combination of our execution framework with these

ranking techniques is left as future work.
The rest of this paper is organized as follows: We

describe the notation we use and formulate the problems in

Section 2. Our algorithms for the case of indexed XML data

are presented in Section 3 and, for unindexed data, in

Section 4. We present a detailed experimental evaluation of

our algorithms in Section 5. Related work is discussed in
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Section 6 and we conclude with directions for further work

in Section 7.

2 FRAMEWORK

2.1 Notation

We use the conventional labeled directed tree notation to

represent XML documents. Each node v of the tree

corresponds to an XML element and is labeled with a tag

�ðvÞ. If v is a leaf node, it also has a string value valðvÞ that

contains a list of keywords. We assume that each node v has

a unique id idðvÞ. Fig. 1 illustrates a tree that will be used in

the examples. idðvÞ is the first component of the 4-tuple

associated with each node v. The other three components

will be explained in Section 3.2, where we first make use of

these components.
A keyword query is simply a set of keywords k1; . . . ; km. It

returns a compact representation of the set of trees that

connect the nodes that contain the keywords in their value

or their tag. The following discussion formally defines and

motivates the semantics.

Definition 2.1 (MCT and LCA). The minimum connecting

tree (MCT) of nodes v1; . . . ; vm of the input labeled tree T is

the minimum size subtree TM of T that connects v1; . . . ; vm.
The root of the tree is called the lowest common ancestor

(LCA) of the nodes v1; . . . ; vm.

An MCT of keywords k1; . . . ; km is an MCT of nodes

v1; . . . ; vm that contain the keywords. For example, the

MCTs (1) and (2) are two of the MCTs of the query “Tom,

Harry” and the MCTs (3), (4), and (5) correspond to the

query “Tom, Dick, Harry.”

a1  p1 ! a2; ð1Þ

a8  p4  s3 ! p5 ! a9; ð2Þ

According to the typical assumption of keyword
proximity systems [7], [13], [17], [16], [4], smaller MCTs
are considered better solutions since they provide a closer
connection between the keywords. However, our frame-
work and algorithms are not tied to a particular ranking
function since we focus on efficiently generating all the
MCTs. In our running example, MCT (1) is better than
MCT (2) since MCT (1) shows that Tom and Harry are
coauthors, while MCT (2) merely shows that they both had
papers in the same session of the conference. Similarly,
MCT (3) is better than MCT (5) since MCT (5) shows that the
three authors are linked through three different papers in
the same session, while MCT (3) shows that they are linked
through only two different papers in the same session.
Indeed, we will later augment our keyword queries to
bound the size of the MCTs, since, beyond a size, the result
is often uninteresting.

The set of MCTs is often overwhelmingly large since it
may contain the following form of data redundancy, which
leads to a number of MCTs that is exponential in the
number of keywords in the query. Consider a list l1 of nodes
that contain k1, a list l2 of nodes that contain k2, and so on,
up to a list lm of nodes containing km. Suppose node n is the
pairwise LCA of the nodes of the m lists and all nodes are at
equal distances from n. In our running example, there is
such a list ½a2; a3� of “Tom” nodes (jl1j ¼ 2) and a list ½a6; a8�
of “Harry” nodes (jl2j ¼ 2), such that their common LCA is
c1 (conference). Then, there are jl1j � jl2j � . . .� jlmj MCTs.
Notice that if there are i; j such that jlij > 1 and jljj > 1, then
each MCT can be implied (inferred) by the other MCTs and
the set of MCTs is redundant. For example, the MCTs

a2  p1  s1  c1 ! s2 ! p3 ! a6; ð6Þ

a3  p2  s1  c1 ! s3 ! p4 ! a8 ð7Þ

of query “Tom, Harry” together imply the MCTs

a2  p1  s1  c1 ! s3 ! p4 ! a8; ð8Þ

a3  p2  s1  c1 ! s2 ! p3 ! a6: ð9Þ

The encoding of the set of MCTs in grouped distance trees
resolves this problem. We first define distance MCTs.

Definition 2.2 (DMCT). Consider nodes v1; . . . ; vm of the input
tree T . The Distance MCT (DMCT) TD ¼ dðTMÞ of the MCT

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 4, APRIL 2006

Fig. 1. Input labeled tree used in examples.



TM of nodes v1; . . . ; vm is the minimum node-labeled and edge-

labeled tree such that:

1. TD contains the nodes v1; . . . ; vm,
2. TD contains the LCAs u1; . . . ; uk of any pair of nodes
ðvi; vjÞ, where vi; vj 2 ½v1; . . . ; vm�; i 6¼ j, and

3. there is an edge labeled with the number ‘ between any
two distinct nodes n; n0 2 fv1; . . . ; vm; u1; . . . ; ukg if
there is a path of length ‘ from n0 to n in TM and the
path does not contain any node n00 2 fu1; . . . ; umg
other than n and n0.

The DMCT (10) corresponds to the MCT (1) and the

DMCTs (11)-(14) correspond to the MCTs (6)-(9).

a1  
1
p1 !

1
a2; ð10Þ

a2  
3
c1 !

3
a6; ð11Þ

a3  
3
c1 !

3
a8; ð12Þ

a2  
3
c1 !

3
a8; ð13Þ

a3  
3
c1 !

3
a6: ð14Þ

Notice that the exponential explosion in the number of

keywords is still present. Grouped DMCTs resolve the

problem (if possible) by grouping together DMCTs of the

same structure.

Definition 2.3 (GDMCT). A Grouped DMCT of a tree T is a

labeled tree where edges are labeled with numbers and nodes

are labeled with lists of node ids from T .
A DMCT D belongs to a GDMCT G if D and G are

isomorphic. Assuming that f is the mapping of the nodes of D
to the nodes of G, which induces a corresponding mapping,
also called f , of the edges of D to the edges of G, the following
must hold:

1. If nD is a node of D, nG is a node of G and
fðnDÞ ¼ nG, then the label of nG contains the id of nD.

2. If eD is an edge of D, eG is an edge of G and
fðeDÞ ¼ eG, then the label of eD and the label of eG are
the same number.

The GDMCT (15) captures DMCTs (11)-(14). The nota-

tion u1½a2; a3� indicates that the label of the node u1 is ½a2; a3�.

u1½a2; a3�  
3
u0½c1� !

3
u2½a6; a8�: ð15Þ

Note that each tree that is an instance of a GDMCT and

is also a subtree of the XML data tree T is a DMCT of an

MCT of T .
We define the size of a GDMCT (or DMCT) to be the sum

of the weights of its edges. We often eliminate from the

solution those trees whose sizes exceed a user-provided size

threshold K.

2.2 Problems

We consider two closely related keyword search problems

in this paper.

Problem 1 (All GDMCTs Problem). Given an input labeled
tree T , keywords k1; . . . ; km, and an integer K, find the
minimal set of tuples ðn;GÞ, where G is a GDMCT whose root
has list label ½n� such that:

1. n is an LCA of k1; . . . ; km.
2. Each DMCT D of size up to K rooted at node n that is

an LCA of k1; . . . ; km belongs to at least one GDMCT
G such that ðn;GÞ is a tuple.

3. If any node id ni is removed from the label
½n1; . . . ; ni; . . . ; nm� of a node n0 2 G of a tuple
ðn;GÞ, then there is at least one DMCT D of size up
to K that does not belong to any tuple though it is
rooted at the LCA n of k1; . . . ; km.

4. Every node ni of the label ½n1; . . . ; ni; . . . ; nm� of a
node n0 contains the same subset S of keywords from
k1; . . . ; km.1

5. The size of G is no more than K.

The query “Tom, Harry” with K ¼ 5 returns the relation
(16), while the same query with K ¼ 3 returns (17).

f ðp1; u1
1½a1�  

1
u1

0½p1� !
1
u1

2½a2�Þ
ðs1; u2

1½a1�  
2
u2

0½s1� !
2
u2

2½a3�Þ
ðp3; u3

1½a5�  
1
u3

0½p3� !
1
u3

2½a6�Þ
ðs3; u4

1½a8�  
2
u4

0½s3� !
2
u4

2½a9�Þ g;

ð16Þ

f ðp1; u1
1½a1�  

1
u1

0½p1� !
1
u1

2½a2�Þ
ðp3; u3

1½a5�  
1
u3

0½p3� !
1
u3

2½a6�Þ g:
ð17Þ

A closely related problem to Problem 1, discussed next,
is one which returns only GDMCTs whose roots (i.e., the
LCAs) are not themselves ancestors of roots of other
returned GMDCTs.

Problem 2 (Lowest GDMCTs Problem). Given an input
labeled tree T , keywords k1; . . . ; km, and an integer K, find the
minimal set of tuples ðn;GÞ such that:

1. ðn;GÞ is a tuple for Problem 1, i.e., the All GDMCTs
Problem, and

2. if ðn0; G0Þ is also a tuple for Problem 1, then n is not an
ancestor of n0.

For Problem 2, the query “Tom, Harry,” with K ¼ 3 still
returns (17), while the same query with K ¼ 5 returns (18).
Note that the tuple with n ¼ s1 from (16) is no longer a
solution for the Lowest GDMCTs Problem since it is an
ancestor of node p1 which is part of a solution.

f ðp1; u1
1½a1�  

1
u1

0½p1� !
1
u1

2½a2�Þ
ðp3; u3

1½a5�  
1
u3

0½p3� !
1
u3

2½a6�Þ
ðs3; u4

1½a8�  
2
u4

0½s3� !
2
u4

2½a9�Þ g:
ð18Þ

In this paper, we focus our attention on these two
problems. We also consider variants of Problems 1 and 2,
where we are interested in returning only the LCAs (not the
complete GDMCTs), provided there is at least one DMCT
rooted at the LCA with size no more than K. We refer to
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these variants as the “All LCAs Problem” and the “Lowest
LCAs Problem” in the paper.

Notice that, in practice, one may augment GDMCTs with
additional information about their nodes. For example, one
may ask that the title of the paper is always displayed along
with the paper. Schmidt et al. [17] have introduced the
“target objects” concept to handle this requirement. For
simplicity, we will neglect such augmentations since they
do not affect the performance issues that are the focus of
this paper.

In the sequel, we design efficient algorithms for these
problems and experimentally evaluate them under two
cases: 1) when the XML data has been preprocessed and
relevant indices have been constructed before the keyword
query is evaluated (Section 3) and 2) when the XML data
has not been preprocessed, i.e., the XML data can only be
processed sequentially (Section 4).

3 ALGORITHMS: INDEXED XML DATA

In this section, we first focus on Problem 1 (All GDMCTs)
and design two competitive algorithms to solve it: a
straightforward, nested-loops algorithm and a more
sophisticated stack-based algorithm that is tailored to the
XML tree structure in identifying LCAs and GDMCTs. We
then discuss the modifications to our stack-based algorithm
that are needed to solve the variants (Lowest GDMCTs, All
LCAs, and Lowest LCAs) of our core problem. These
algorithms are compared experimentally in Section 5.

3.1 All GDMCTs: Nested Loops Algorithm

Intuitively, the nested loops algorithm (NL) for the case of
indexed XML data operates over separate lists of nodes,
LðkÞ, one for each query keyword, k, to identify the
GDMCTs whose sizes are no more than the user-provided
threshold, K. The master index for the nested loops
algorithm is organized as an inverted index, as follows: A
hash table (the keywords are the keys) of all the keywords
in the XML data tree T is created and, for each keyword k,
we keep a list LðkÞ (value of hash table) of the nodes n of T
that contain k, where each node n is stored with its path-id:
the list of node ids along the path from the root of T to n.
This choice facilitates the easy identification of the LCA and
the GDMCT of a set of nodes, which can be determined by
simply examining the path-ids of the respective nodes. This
index is built in one pass over T before any query arrives.
For example, some entries in the master index for the XML
tree of Fig. 1 are shown below.

Tom: ½½r; c1; s1; p1; a2�, ½r; c1; s1; p2; a3�, ½r; c1; s2; p3; a5�,
½r; c1; s3; p5; a9��

Dick: ½½r; c1; s1; p2; a4�, ½r; c1; s2; p3; a7�, ½r; c1; s3; p6; a10��
Harry: ½½r; c1; s1; p1; a1�, ½r; c1; s2; p3; a6�, ½r; c1; s3; p4; a8��

The execution stage of the Nested Loops Algorithm,
using this index, is presented in Fig. 2. Essentially, it checks
all combinations of nodes from the keyword lists, computes
an MCT (minimum connecting tree) for each combination,
and then merges the resulting MCT into the list of result
GDMCTs, provided its size is within the user-specified
threshold.

For example, given the keyword query “Tom, Harry”
and a threshold K ¼ 3, the Nested Loops algorithm would
examine the 12 node-pairs in the cross-product of the index
entries for Tom and Harry, compute 12 MCTs, determine
that only two of them meet the threshold, and, finally,
return two GDMCTs (see relation (17)).

There are two main sources of inefficiency in the Nested
Loops algorithm. First, as illustrated in the above example,
it has to check all the combinations of nodes from the
keyword lists, i.e., getMCT(.) is called jLðk1Þj � � � � � jLðkmÞj
times. Second (not illustrated in the above example), the
grouping of the results into GDMCTs is not tightly
integrated with the algorithm and a lookup to the array R

is required for each relevant MCT found.
We next present a stack-based algorithm that overcomes

both these sources of inefficiency, is tailored to the XML tree
structure in identifying GDMCTs, and delivers performance
that is considerably better than the Nested Loops Algorithm.

3.2 All GDMCTs: Stack-Based Algorithm

Our stack-based algorithm, which we refer to as SA, makes
use of a node numbering system, which associates
(start, end, depth) numbers with each node in the
XML tree, where start and end correspond to the first
and the final times the node is visited in a depth-first
traversal of the XML tree, and depth is the depth of the
node from the root of the tree. In Fig. 1, we depict the
(start, end, depth) numbering with each node as the
last three components of the 4-tuple. For example, the
numbering associated with s1 is ð3; 16; 2Þ. Such a numbering
has been repeatedly utilized (see, e.g., [21], [5]), in a variety
of XML related algorithms.

This numbering permits efficient checking of ancestor-
descendant (or containment) relationships (by comparing
containment of the corresponding (start, end) intervals)
and can also be used to determine the distance between an
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ancestor and a descendant node in the XML tree (by

computing the difference between corresponding depths).

This latter fact (only exploited in [21], [5] to check parent-

child relationships) will be very useful for us to efficiently

compute sizes of MCTs. For example, one can determine

that s1 is an ancestor of a4 (since the interval ð3; 16Þ contains

the interval ð13; 14Þ) and also determine that the distance

between them is 2 (i.e., 4� 2), without knowing the

intermediate node between s1 and a4.

3.2.1 Index Structure and Algorithm

Intuitively, the stack-based algorithm for computing

GDMCTs on indexed XML data operates over lists of

nodes, two for each query keyword (these lists are

described below). It:

. maintains candidate LCA nodes on a stack,

. computes and maintains partial GDMCTs at each
candidate LCA for subsets of query keywords, and

. computes and outputs result GDMCTs when all
descendant nodes of a candidate LCA are known to
have been examined.

In order to do so, the lists associated with each keyword k

need to contain, in addition to the nodes of T that contain k,

ancestors of these nodes as well. This is because, while the

(start, end, depth) numbers suffice to check ancestor-

descendant relationships, they are insufficient to identify

the lowest common ancestors. For example, one would not

be able to determine that the lowest common ancestor of a1

(with node numbering ð5; 6; 4Þ) and a3 (with node number-

ing ð11; 12; 4Þ) is s1 (with node numbering ð3; 16; 2Þ).
Indexing by keyword is provided by the master index,

which is organized as an inverted index, as follows: A hash

table of all the keywords in the XML data tree T is created

and, for each keyword k, we keep two lists:

. LðkÞ of the nodes of T that contain k in T and

. LaðkÞ of the ancestors of nodes in LðkÞ.
That is, the (master) index consists of two lists (LðkÞ and

LaðkÞ) for each keyword. Each node is stored as

ðid; start; end; depthÞ and LðkÞ and LaðkÞ are sorted in

ascending start order. This index is also built in one pass

over T before any query arrives. For example, the entries for

keywords Tom, Dick, and Harry in the index for the XML

tree of Fig. 1 are shown below.

Tom: L ¼ ½ða2; 7; 8; 4Þ, ða3; 11; 12; 4Þ, ða5; 19; 20; 4Þ,
ða9; 33; 34; 4Þ�

La ¼ ½ðr; 1; 42; 0Þ, ðc1; 2; 41; 1Þ, ðs1; 3; 16; 2Þ, ðp1; 4; 9; 3Þ,
ðp2; 10; 15; 3Þ, ðs2; 17; 26; 2Þ, ðp3; 18; 25; 3Þ,
ðs3; 27; 40; 2Þ; ðp5; 32; 35; 3Þ�

Dick: L ¼ ½ða4; 13; 14; 4Þ, ða7; 23; 24; 4Þ, ða10; 37; 38; 4Þ�
La ¼ ½ðr; 1; 42; 0Þ, ðc1; 2; 41; 1Þ, ðs1; 3; 16; 2Þ,

ðp2; 10; 15; 3Þ, ðs2; 17; 26; 2Þ, ðp3; 18; 25; 3Þ;
ðs3; 27; 40; 2Þ, ðp6; 36; 39; 3Þ�

Harry: L ¼ ½ða1; 5; 6; 4Þ, ða6; 21; 22; 4Þ, ða8; 29; 30; 4Þ�
La ¼ ½ðr; 1; 42; 0Þ, ðc1; 2; 41; 1Þ, ðs1; 3; 16; 2Þ,

ðp1; 4; 9; 3Þ, ðs2; 17; 26; 2Þ, ðp3; 18; 25; 3Þ;
ðs3; 27; 40; 2Þ, ðp4; 28; 31; 3Þ�

While the La lists in this index are not present in the

index for the nested loops algorithm, each entry in the L

and La lists is small and of fixed size, unlike in the nested

loops index (where the entry size depends on the length of

the path from the root of the XML tree). The asymptotic size

complexity of the master index for the Stack Algorithm is

better than that of the master index for the Nested Loops

Algorithm. This is because each ancestor of a node contain-

ing keyword k is represented only once in the Stack

Algorithm’s master index, whereas each ancestor is

represented in the path-ids of the Nested Loops Algor-

ithm’s master index as many times as it has descendants

that contain keyword k. Hence, generally deeper (respec-

tively, more shallow) trees require less (respectively, more)

storage for the SA master index, compared to the Nested

Loops Algorithm index. We shall also show empirically, in

Section 5, that the sizes of the master indices for the two

algorithms are not substantially different.
We next describe the execution stage of the Stack

Algorithm in more detail. To clarify the description and

point out the novel contributions of the algorithm, we split

it into two parts. The first part (Fig. 3) describes how the

selected list of nodes is traversed in a depth-first manner

and the nodes are pushed and popped from the stack. This

type of stack-based traversal has been successfully applied

in previous works [5], [10] to efficiently answer XML join

queries as we explain in Section 6. The second and novel

part (Fig. 4) of the SA algorithm is the processing and

bookkeeping performed at each stack operation (i.e., push

and pop) in order to maintain a minimum amount of

information that allows the efficient and timely output of

the GDMCTs.
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The stack S consists of entries of the form (s:nodeID,

s:GDMCTs), where s:GDMCTs is a list of GDMCTs found

so far rooted at the node with id s:nodeID. These GDMCTs

may be partial, i.e., contain a subset of the query keywords,

and are annotated with the keywords their nodes contain.
The algorithm scans the list L consisting of nodes that

either contain at least one keyword or are ancestors of at

least two nodes that contain the query keywords; these are

the only nodes that have the chance of being an LCA or
participating in a GDMCT. Nodes of L are being pushed
and popped from the stack S as the scanning proceeds. In
particular, at the end of each iteration of the main loop (i.e.,
of the loop of lines 2-6 of Fig. 3), the top entry of S contains
the node n with the highest start value seen so far. The
other entries of the stack correspond to the ancestors of n.
Before n is pushed onto the stack, all the stack entries that
do not correspond to ancestors of n are popped from S. This
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Fig. 4. Operations of the Stack Algorithm for all GDMCTs problem.



is accomplished by the loop of lines 4-5 of Fig. 3. When an
entry h is popped from S, any complete GDMCTs from
h:GDMCTs are output (line 5 of Fig. 4). The remaining
GDMCTs are partial. Since there is a possibility that the
parent of h may have descendants that have the keywords
that the partial GDMCTs miss, the partial GDMCTs of h
become partial (or complete) GDMCTs of its parent h0.
Notice that the entry h0 may already have partial GDMCTs
that reflect the keywords found in descendants of h0 that
were inspected before h. The transfer of each partial
GDMCT G of h to the set of GDMCTs of h0 follows the
following steps:

. Modify G to reflect the new root (lines 10-15) of
Fig. 4.

. Check to see if G satisfies the pruning condition
(line 16 of Fig. 4).

Once we have the modified and pruned set of partial
GDMCTs of h, we compare them against the GDMCTs of its
parent h0 and create new GDMCTs as is appropriate (line 17
of Fig. 4), which we merge with the GDMCTs of h0. In
particular, we create a new GDMCT for each pair of
GDMCTs from h and h0 that can be “glued” together to
contain a larger subset of the keywords (lines 23-26 of Fig. 4).
Finally, we merge (line 18 of Fig. 4) into the same GDMCT
every pair of GDMCTs from h and h0 that are isomorphic to
ensure the minimality of the number of produced GDMCTs.

Notice that the reason that the result GDMCTs rooted at
node h are output when h is popped from the stack (line 5
of Fig. 4) and not when they are initially produced (lines 17,
22-27 of Fig. 4) is because there could be more GDMCTs that
are “mergeable” with the GDMCTs already produced
(lines 18, 28-33 of Fig. 4).

3.2.2 Illustrative Example

We illustrate the execution of our Stack Algorithm, using an
example, with two query keywords “Tom, Harry,” and a
threshold of 3. The master index lists L and La are shown
above for these query keywords. In line 3, the intersection of
LaðTomÞ and LaðHarryÞ would produce the list

½ðr; 1; 42; 0Þ; ðc1; 2; 41; 1Þ; ðs1; 3; 16; 2Þ;
ðp1; 4; 9; 3Þ; ðs2; 17; 26; 2Þ; ðp3; 18; 25; 3Þ; ðs3; 27; 40; 2Þ�:

Notice that the entries ðp2; 10; 15; 3Þ, ðp4; 28; 31; 3Þ, and
ðp5; 32; 35; 3Þ are not present in this list since they are
ancestors of only one of the query keywords and, hence, can
neither be an LCA nor be a part of any GDMCT.

The Stack Algorithm then iteratively chooses entries
from (the conceptual union of) LðTomÞ, LðHarryÞ, and this
intersection. Some of the initial stack states in the execution
are depicted below:

1. The first four entries in the intersection of the Las are
pushed on S.

2. The first entry a1 from LðHarryÞ is pushed on S and
a partial GDMCT is created; the superscript of 2 in
the GDMCT of a1 indicates a match for the second
query keyword “Harry.”

3. When examining the first entry a2 from LðTomÞ, the
top of stack a1 is popped and a new GDMCT is
created at p1.

4. The first entry a2 from LðTomÞ is pushed on S and a
partial GDMCT is created; the superscript of 1 in the
GDMCT of a2 indicates a match for the first query
keyword “Tom.”

5. When examining the second entry a3 from LðTomÞ,
the top of stack a2 is popped and new (combined)
GDMCTs are created at p1. Note that a solution has
been found, but it is not output yet.

6. When examining the second entry a3 from LðTomÞ,
the top of stack p1 is also popped and the answer
ðp1; a

1
2  

1
p1 !

1
a2

1Þ is output. Additional GDMCTs
are also associated with the (new) top of stack s1.
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7. The entry a3 from LðTomÞ is then pushed on the
stack and a partial GDMCT is created.

8. When examining the next entry s2 from the inter-

section of LaðTomÞ and LaðHarryÞ, the top of stack a3

is popped, new GDMCTs are created, and merged

with the GDMCTs associated with s1. In particular,

the GDMCT s1 !
2
a1

3 is created (since a3 is at distance

2 from s1) and merged with s1 !
2
a1

2 resulting in

s1 !
2 ½a1

2; a
1
3�. The GDMCT a1

3  
2
s1 !

2
a2

1 is not

created since its size (of 4) exceeds the user-defined

threshold of 3.

9. Entries from the lists continue being examined, new
GDMCTs are created and pruned until all the
answers are output.

3.3 Lowest GDMCTs: Stack-Based Algorithm

We now present a simple modification of the Stack
Algorithm of Fig. 3 and Fig. 4 to efficiently answer
Problem 2 (the Lowest GDMCTs Problem). This is the case
when the user is interested only in the lowest GDMCTs, i.e.,
those GDMCTs whose roots are not ancestors of other
returned GDMCT roots. The key observation is that once we
output the GDMCTs of a node u (in line 5 of Fig. 4), none of
the ancestors of u in the stack can be LCAs of returned
GDMCTs; hence, we can remove all of them from the stack!
Specifically, we can add the following lines after line 5 of
the Stack Algorithm in Fig. 4.

As an example, consider again the query keywords
“Tom, Harry,” but with a threshold of 5. Once the first
solution ðp1; a

1
2  

1
p1!

1
a2

1Þ is output in Step 6 (in the
illustrative example of Section 3.2.2), the stack is emptied.
Thus, no GDMCT with an LCA of c1 or s1 would be
returned. (Note that, in the All GDMCTs Problem for this
example, the solution ðs1; a

1
3  

2
s1 !

2
a2

1Þ would also be
returned.) We refer to this algorithm as SALowAll.

3.4 LCAs: Stack-Based Algorithms

The Stack Algorithm can also be easily modified to solve the
All LCAs Problem and the Lowest LCAs Problem, where

the user is not interested in the GDMCTs, but only in the
LCA nodes. Essentially, the algorithms, which modify SA

and SALowAll and which we refer to as SAOne and
SALowOne, respectively, would still need to maintain
GDMCTs with stack nodes, with two simplifications:

. Procedure Merge(.) in Fig. 4 could be simplified, no
merging of GDMCTs would need to be done, and
line 33 could be replaced by:

. It is possible to output an LCA early when the first
GDMCT (with all keywords) is computed for that
node (in Procedure CreateNewGDMCTs(.) in Fig. 4),
instead of waiting until the node is popped from the
stack.

An important point to note is that, while tempting, it
does not suffice to simply 1) maintain, with each stack
node u, the distance di to the closest descendant ui of u
found so far containing keyword ki and 2) produce an
output when each distance has been filled in and the sum of
the distances is � K. This is because, except for the special
case of two query keywords, the size of a GDMCT is not
simply the sum of the distances from the LCA to each of the
nodes containing the m keywords.

3.5 Complexity Analysis

This section presents (Section 3.5.3) a worst-case complexity
analysis for SA. Before doing so, we perform an analysis of
the maximum number of the resulting GDMCTs
(Section 3.5.1) and we discuss how individual operations
of SA can be performed in linear time on the size of the
GDMCTs (Section 3.5.2).

3.5.1 Total Number of GDMCTs

We show that, in the worst case, the numbers of DMCTs
and of GDMCTs are exponential on the number of
keywords. However, under reasonable assumptions ex-
plained below, the worst-case number of GDMCTs is
smaller than that of DMCTs. Also, notice that, in practice,
the number of GDMCTs is typically much smaller than the
number of DMCTs due to the grouping.

Consider a query with m keywords k1; k2; . . . ; km. Let
LðkiÞ be the list of the nodes of tree T that contain
keyword ki. A DMCT can be obtained by combining one
node from each of the m lists LðkiÞ; 1 � i � m. Thus, in the
worst case, the total number of DMCTs is given by
�m
i¼1jLðkiÞj, which is exponential in m. GDMCTs group

isomorphic DMCTs to provide a more compact result. But,
what is the worst-case total number of GDMCTs? We show
that this can also be exponential in m.

In particular, consider a node n that has each of the
m keywords ki in its subtree and each keyword ki occurs at
h different depths d ¼ 1; . . . ; h in the subtree rooted at n. It
is easy to see that there has to be a different GDMCT for
each combination of (keyword, depth). In this case, there
are �m

i¼1h ¼ hm GDMCTs, which is exponential in m.
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However, under reasonable assumptions, the number of
GDMCTs is asymptotically smaller than that of DMCTs.
Consider the simple case where GDMCTs have no internal
nodes, no node contains more than one keyword, and the
XML tree has height H. Then, the maximum possible
number of DMCTs is �m

i¼1jLðkiÞj as above, but the
maximum number of GDMCTs is Hm (each of the
m keywords can be in depth 1; . . . ; H). Hence, if H is
viewed as a constant, the number of GDMCTs is asympto-
tically smaller than that of the DMCTs.

3.5.2 Complexity of Finding Isomorphic GDMCTs

Deciding when two GDMCTs can be merged in SA is
expensive unless we refine the representation of GDMCTs.
In this section, we describe a canonical representation of a
GDMCT that allows 1) a rapid determination of whether
GDMCTs can be glued together in CreateNewGDMCTs
(lines 23-25 of Fig. 4) and 2) checking whether two GDMCTs
are isomorphic, permitting them to be merged (lines 31-33
of Fig. 4). In this canonical representation:

. Each node in the GDMCT is annotated with the
keywords in its subtree, in lexicographic ordering,
and the size of its subtree.

. The children subtrees (rooted at nodes n1; . . .nj) of
node n are ordered according to lexicographic
ordering of the annotations of the roots of these
children subtrees.

Given this canonical representation, one can linearize the
GDMCTs in an XML-like nested representation with start
and end tags, obtained from the node annotations. Given
this linearized representation:

. Checking whether two GDMCTs can be glued
together requires checking if their keyword sets are
disjoint and, if their combined size does not exceed
K, which can be checked using their annotations in
the canonical representations; this can be done in a
single pass of the GDMCTs, that is, in linear time on
the size of the GDMCTs.

. Checking whether two GDMCTs are isomorphic can
be done by equating the canonical representations;
this can be done in linear time on the size of the
GDMCTs as well.

3.5.3 Time Complexity of SA

In the SA algorithm, each node in L (which is computed in
GetList) is pushed on to the stack and popped from the
stack, at most once. When a node is popped from the stack,
its GDMCTs need to be compared (and possibly merged)
with the GDMCTs of its parent node in the stack. Since each
operation on a pair of GDMCTs can be done in linear time
on the size of the GDMCTs, the total time complexity of SA
is a function of the total number of GDMCT comparisons,
which is quadratic in the total number of GDMCTs. As a
result, in the worst-case, we have:

Theorem 1. The time complexity of SA is

OðjLj þK � ð�m
i¼1jLðkiÞjÞ

2ÞÞ:

4 PROCESSING UNINDEXED XML DATA

In this section, we consider the case when no master index
is available on the XML data tree and the goal is to
efficiently solve the All GDMCTs Problem for a specific
keyword query (with a threshold). Both the Nested Loops
Algorithm and the Stack Algorithm have straightforward
adaptations to work without index lists by doing a single
pass over the data tree. In particular, NLStream, which is
the streaming version of NL, first traverses in one pass the
data tree to create the index lists of the query keywords and
then executes the NL algorithm.2 The streaming version of
the Stack Algorithm, which we refer to as SAStream, is
realized by making the following changes to the Stack
Algorithm of Fig. 3 and Fig. 4. Notice that NLStream makes
an additional pass over the data tree, unlike SAStream

which just makes a single pass.

5 EXPERIMENTAL EVALUATION

We have designed and performed a comprehensive set of
experiments to understand the performance of the pro-
posed algorithms. We used both real and synthetic data
sets. The synthetic data sets were generated using the
XMark benchmark [2] for various database sizes. We also
used the DBLP database [1] to explore the performance of
our algorithms using more realistic data distributions. The
experiments were conducted on a Xeon 2.2GHz computer
with 1GB of RAM running Windows 2000 Professional. The
algorithms were implemented in Java and the parsing of the
XML files is performed using the SAX API of the Xerces
Java Parser.3 The master index is implemented as a Java
Hashtable persistent object.

There are three main parameters affecting the perfor-
mance of our algorithms, namely, 1) the value of K
denoting the threshold, 2) the number m of keywords,
and 3) the size of the data set. To better understand the
performance of our algorithms for keywords of different
selectivities, we perform experiments using sets of key-
words having different frequencies, namely, low, corre-
sponding to keywords with frequency between 1 and 10 in
each data collection, medium, corresponding to keywords
with frequency 11-200, and high, corresponding to key-
words with frequency above 200. The number of keywords
in each frequency range in the different data sets used is
shown in Table 1.

The experiments are divided into three classes. First, we
evaluate the proposed algorithm SA and its variants
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2. The main drawback of this approach is that the indexing and the
execution stages are separated, which means that the entire inverted index
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3. http://xml.apache.org/xerces-j/.



SALowAll, SALowOne. As a baseline for comparison, we
use the algorithm NL, which computes LCAs and GDMCTs
using a nested loops approach. We also evaluate an
improvement of this basic strategy that uses the optimal
algorithm for identifying the LCA of a pair of keywords
[15]. This algorithm, NLOpt, still considers all pairs of
keywords in a nested loops fashion, but it identifies the
LCA of a pair very efficiently, namely, in Oð1Þ time. Next, in
Section 5.2, we evaluate our algorithms for the case when no
indices are available on the XML data. Each value reported
in our graphs is an average collected from 50 repetitions of
the experiment. Finally, we compare the SA algorithm
against algorithms for keyword proximity search on labeled
graphs [16], [17], [4]. However, since the algorithms of the
prior work operate on data stored in relational database
systems, we also built a version of the SA for XML data
stored in a relational database so that the comparison is
straightforward.

5.1 Evaluating SA and Its Variants

Our first experiment evaluates the index size requirements
of the proposed SA algorithm for different sizes of XML
data collections of the XMark benchmark. First, we compare
the size of the index required by the Stack Algorithm (SA)
compared to the Nested Loops Algorithm (NL) for various
XMark data set sizes. We allocate 4 bytes for each node
identifier and each start, end value in the depth-first
numbering, and 1 byte for the depth number. Since the
start value serves as a unique node identifier as well, we
take this into account in our space computation for the SA

index. Table 2 presents the index size of SA compared with
that of NL, for various database sizes generated using the
generation tools available in the XMark benchmark. Con-
sidering the entries of the table, it is evident that the index
size requirements of SA are about 33 percent higher than

that of NL. As we will soon demonstrate, SA introduces this
small space overhead in order to provide orders of
magnitude performance improvements.

Fig. 5 presents the performance of the algorithms as K
(the distance threshold) increases for a fixed number of
keywords (equal to two) for the XMark 100MB and the
DBLP data sets. In the rest of the section, due to space
considerations, we do not present the graphs for low
frequency keywords since we have found that they take
constant time (up to 20 msec, which is the disk access time)
to execute. For the same reason, we only present results for
(the most common in practice) medium frequency key-
words for DBLP because we use the larger XMark data set
to show how the time scales for frequent keywords (we
have found that DBLP scales following the same patterns).

It is evident that SA is considerably superior to both NL

and NLOpt. SA’s performance benefits are pronounced
when high frequency keywords are involved since the
number of nodes from the underlying XML tree involved in
the operation increases considerably. NL incurs high over-
head because it considers all possible pairs of nodes
containing the query keywords and groups the results in
GDMCTs. NLOpt also considers all pairs, although each
pair requires much less time to process (compared to NL)
and, thus, its performance is somewhat improved. Disk
access appears to be the dominating factor in Fig. 5a and
Fig. 5c (because relatively smaller lists of nodes are involved
due to medium frequency query keywords), whereas
processing time is the dominating performance factor in
Fig. 5b. Table 3 presents the average number of GDMCTs
for the various keyword frequencies in the 100MB XMark
data set, for different threshold values. It is evident that the
number of GDMCTs produced in the case of high frequency
keywords is much higher, contributing considerably to the
increased overhead of NL and NLOpt, in addition to their
inherent overhead of considering all node pairs. The trend
for all algorithms is to experience a degradation in their
performance as K increases for a specific data size and

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 4, APRIL 2006

TABLE 1
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in the Data Sets Used

TABLE 2
Index Size Requirements of SA

Fig. 5. Varying K. (a) XMark 100MB, medium frequency. (b) XMark 100MB, high frequency. (c) DBLP, medium frequency.



keyword frequency because the expected size of the stack
nodes involved in the operation increases. Notice that, for
algorithms SALowAll and SALowOne, this degradation in
performance is not significant, even compared to
algorithm SA, since the output produced by these algo-
rithms is much smaller. In particular, it is interesting to
observe that, for the Algorithm SALowOne, which produces
the least output, its performance appears almost insensitive
to the range of K values tested. In contrast, it only depends
on the specific data set and, subsequently, on the
corresponding query keyword frequency.

Fig. 6 presents the results of an experiment exploring the
performance impact of an increasing number of keywords
for a fixed threshold K ¼ 5. Notice that, for clarity of
display, NLOpt is not plotted since its performance is very
close to NL. Since NL considers all combinations of key-
words, one from each keyword list, its performance
deteriorates exponentially to the number of keyword lists.
Algorithm SA and its variants are capable of scaling

gracefully to an increasing number of keywords since they
perform a single pass over the keyword lists and their
performance benefits are substantial.

Fig. 7 presents the performance of the algorithms for
increasing database size, for various values of the distance
threshold K; notice the log scale on the Y axis. To isolate the
effects of increasing data size, we present the results for
keywords selected uniformly at random among the
1,000 keywords with the highest frequency in each data
set, respectively. The results, which are shown in Fig. 7,
indicate that the proposed algorithms scale gracefully with
increasing database size, exhibiting almost linear increase in
performance with database size. The scalability limitations
of algorithm NL are evident in the figure. Increasing the
database size is expected to increase, in effect, the absolute
frequencies of the 1,000 most frequent keywords, which is
the keyword collection from which our queries are derived.
As a result, by increasing the database size, the keyword
lists provided as input to each algorithm, respectively, are
much larger in size. Table 4 presents some statistics of the
distribution of frequencies of the 1,000 most frequent
keywords, as the size of the data sets increases. It is evident
that the top 1,000 keyword frequencies increase substan-
tially with increasing database size.

5.2 Evaluating the SAStream Algorithm

We now present the evaluation of the variants of our
algorithms for nonindexed data, where the execution times
increase dramatically due to the lack of indexing that leads
to reading the whole XML file. Fig. 8 compares algorithms
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TABLE 3
Average Number of GDMCTs for the 100MB Xmark Data Set

for Medium and High Frequency Keywords

Fig. 6. Varying number of keywords m. (a) XMark 100MB, medium frequency. (b) XMark 100MB, high frequency. (c) DBLP, medium frequency.

Fig. 7. Varying database size. (a) XMark, K = 5. (b) XMark, K = 15.



NLStream and SAStream for increasing values of the
distance threshold K, for two keywords, for medium and
high frequency keywords. Notice that NLStream initially
parses the XML document, constructing indices, and then
operates on those indices. In contrast, Algorithm SAStream

can operate immediately in conjunction with document
parsing. In Fig. 8a, since we are dealing with not so frequent
keywords, NLStream’s performance is dominated by the
time to read the document and create the keyword lists and,
thus, its performance appears to increase only marginally
with increasing values of K. Fig. 8c presents a breakdown
of the times spent at the two stages of NLStream’s
execution. In effect, SAStream produces the desired result
faster than the time required by NLStream to identify the
relevant keywords and build indices. The performance
advantages of SAStream are pronounced as the frequency
of the keywords involved in the operation increases since its
performance is linear in the size of the document.
Contrasting Fig. 8b and Fig. 8d, we observe that the time
required by NLStream to produce the output increases
since larger lists of nodes are involved in the operation. The
performance advantages SAStream offers in this case are
substantial.

In Fig. 9a and Fig. 9b, we present the performance of
SAStream and NLStream as the number of keywords
increases, for a fixed distance threshold K ¼ 5. In Fig. 9c
and Fig. 9d, we present a breakdown of the times taken by
algorithm NLStream at the various stages of its execution.
NLStream’s execution time increases exponentially with m,
in contrast to SAStream, whose times remain relatively
stable since document parsing and identification of relevant
answers are interleaved. As observed in Fig. 9c and Fig. 9d,
parsing time is the dominating factor in the performance of
NLStream, with processing time becoming significant as
the number of keywords increases.

5.3 Adaptation of SA Algorithm for DBMS

Next, we compare SA against three systems that perform
keyword proximity search on labeled graphs: DBXplorer
[4], DISCOVER [16], and XKeyword [17] (see Section 6 for a
short description of these works). Since all of them operate
on data stored in a relational database, in order to have a
fair comparison, we implemented a version of SA which
operates on data stored in a DBMS.

In particular, the exact same indexing method is used as
in XKeyword and DISCOVER. That is, Oracle Intermedia
Text Index4 is used to find the nodes that contain the
keywords. The nodes of the tree along with their (start, end,
depth) triplet are stored in a relation, which we refer to as
Master relation, whose text attributes are indexed by Oracle
Intermedia. The runtime of the algorithm consists of two
stages: reading the text index to get the nodes/tuples that
contain the keywords and their ancestors and executing the

SA algorithm on these nodes. Given the nodes that contain
the keywords, their ancestors are computed using the (start,
end) information on which a B+ index has been built. The
index reading stage to find the nodes with the keywords is
identical to the one used in XKeyword and DISCOVER.
However, these works continue by building a set of
intermediate tables (tuple sets) and, finally, executing a
set of join queries to produce the results. On the other hand,
SA does not need to access the database any more to
compute the results. Fig. 10 compares the performance of
these algorithms for the DBLP data set. Fig. 10b analyzes the
cost of each algorithm into the costs of the consisting stages.
Notice that we do not include DBXplorer in the graphs since
it is slower than DISCOVER due to the lack of common
subexpressions reuse.

Finally, notice that the performance of SA decreases
considerably when building the master index as described
above since two steps are needed to get the keyword lists:
First, query the DBMS text index to get the node ids and,
second, get the corresponding (start, end, depth) triplets
from the Master relation. On the other hand, these triplets
are retrieved in a single step using the file-based master
index described in Section 3.2.1.

6 RELATED WORK

6.1 Lowest Common Ancestor

The first area of research relevant to this work is the
computation of the LCA of a set of nodes of a data tree.
Schmidt et al. [19] present an algorithm, which, for two
keywords, is the same as the Nested Loops algorithm (NL)
we present. For more than two keywords, their semantics
are different from the traditional proximity search seman-
tics [13]. In particular, their algorithm inputs a set of
relations (i.e., sets of nodes of different types) that contain
the keywords and outputs all pairwise LCAs and not global
LCAs. Notice that the nodes are grouped by type and not by
keywords, so there could be pairwise LCAs that only
contain the same keyword twice. Also, notice that they use a
schema, in contrast to our work.

Li et al. [18] and XKSearch [20] defined Smallest LCAs
(SLCAs) to be LCAs that do not contain other LCAs. Li et al.
[18] incorporated SLCA search in XQuery. The algorithms
of XKSearch benefit from the observation that, in contrast to
the general LCA problem, the number of smallest LCAs is
bounded by the size of the smallest keyword list. Conse-
quently, in [20], the keyword lists of the inverted index are
themselves indexed and indexed lookup is used to find
potential matches in the large keyword lists. The algorithm
has a generalization to finding all LCAs, but then its key
observation does not apply and, more importantly, it has no
efficient way to produce summaries (such as the GDMCTs)
of why each result node is an LCA. The algorithm in [20]
cannot be straightforwardly modified to support the
general LCA problem.

XRANK [14] and XSEarch [12] return subtrees as
answers to the keyword queries. However, the algorithm
of XRANK does not return MCTs to explain how the
keywords connect to each other. Furthermore, only the most
specific result is output. They also present a ranking
method which, given a tree t containing the keywords,
assigns a score to t using an adaptation of PageRank [9] for
XML databases. Their ranking techniques are orthogonal to
the retrieval and, hence, can easily be incorporated in our
work. XSEarch focuses on the semantics and the ranking of
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TABLE 4
Statistics on the Frequency of 1,000 Most Frequent Keywords

for Increasing Database Size for XMark Data
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Fig. 8. Varying K in the algorithms for nonindexed, 100 MB XMark data. (a) Medium frequency. (b) High frequency. (c) NLStream components

(medium freq). (d) NLStream components (high freq).

Fig. 9. Varying the number of keywords in the streaming algorithms, 100MB XMark Data. (a) Medium frequency keywords. (b) High frequency

keywords. (c) NLStream components (medium freq). (d) NLStream components (high freq).



the results and, during execution, they use an all-pairs
index to check the connectivity between the nodes.

Efficiently computing the lowest common ancestor (LCA)
of a pair of nodes in a tree is a problem that has received a
lot of attention in the theoretical community and efficient
approaches in main memory are known for its solution [15],
[6]. In particular, given a tree, after suitable preprocessing it
is possible to construct data structures, to answer to LCA
queries (given a pairs of nodes report the node which is the
LCA of the pair in the tree) in Oð1Þ time. The construction is
relatively involved (the interested reader could consult [15])
and efficient, provided that the data structures fit in
memory. We adapt suitably modified algorithms proposed
for main memory LCA of a pair of nodes, making them
suitable for the problems we consider herein (algorithm
NLOpt), and use them as a basis for comparison with our
solutions.

6.2 Proximity Search on Labeled Graphs

Proximity search on labeled graphs [13], [7], [16], [17], [4]
has been suggested as an effective information discovery
method. In most works, the labeled graph is derived by
connecting the tuples of a relational database by primary
key/foreign key links. Agrawal et al. [4], Hristidis and
Papakonstantinou [16], and Bhalotia et al. [7] are particu-
larly built for relational databases: SQL queries are used to
derive the result. More recent works [17], [7] use XML data
as the motivation for labeled graphs; the edges correspond
to element/subelement connections or IDREF links.

The algorithms for keyword proximity search in labeled
graphs are intrinsically expensive, heuristics-based, and
typically use various forms of precomputation in order to
improve the performance. They do not significantly exploit
the special case where the data structure is a tree.

Goldman et al. [13] retrieve and rank objects according to
their proximity from other objects of interest in a labeled
graph. They show how to speed up the computation of the
pairwise distances between any two nodes of the graph by
precomputing a hub structure. The choice of hubs is guided
by heuristics. However, when calculating the distance
between two sets S1, S2 of nodes, all combinations of nodes
from S1, S2 are tested for results, leading to a quadratic
(cubic for three keywords, etc.) cost similar to the Nested
Loops algorithm (NL) of Fig. 2. They propose a way to
avoid this quadratic number of disk accesses by clustering
objects of the same type (e.g., movies or actors), which is a
solution that can work for keywords appearing as tag

names in an XML document, but is not realistic for arbitrary
keywords. And, still their algorithm suffers from a quad-
ratic (or more) number of comparisons.

The BANKS system [7] finds MCTs in a labeled graph by
using an approximation to the Steiner tree problem, which
is NP-hard. The key idea (we omit optimization details) is
the following: BANKS progressively calculates the neighbor
sets Ni of distance up to K of every node ui that contains a
keyword and outputs a spanning tree T when the root of T
is found in the intersection of the Nis. This leads, similarly
to Goldman et al. [13], to a quadratic (for two keywords)
number of comparisons, in contrast to our one pass
algorithms. Their implementation is tuned for a graph that
fits in main memory.

DISCOVER [16], XKeyword [17], and DBXplorer [4] are
systems working on top of relational databases, facilitating
keyword search for relational [16], [4] and XML databases
[17]. DISCOVER and DBXplorer output trees of tuples
connected through primary-to-foreign key relationships
that contain all the keywords of the query. They first get
from the master index the tuples that contain the keywords
and then generate a set of SQL queries corresponding to all
different ways to connect the keywords based on the
schema graph. XKeyword extends the work of DISCOVER
by materializing path indices in a relational database to
reduce the number of joins in the generated SQL queries.
These works rely on a schema, in contrast to this work.
More importantly, since the data structure is a graph, it is
impractical to store all the connections between all pairs of
nodes in the inverted index of the keywords. Hence, they
may need to read from the disk an unbounded number of
connecting tuples to discover the connections between the
keyword nodes. In contrast, in our work, we index the
nodes that contain the keywords along with their “co-
ordinates” in the source tree, which leads to a single disk
access per keyword in the typical case (when the set of
nodes that contain each keyword fits in a disk page). In
Section 5.3, we compare these works to an adaptation of our
approach for a DBMS. This adaptation removes our
advantage of tightly integrating the keyword index with
the representation of the “coordinates” of the nodes.
However, we show that we still perform considerably
better than these works.

Finally, stack-based algorithms for processing XML
queries have been proposed recently in the literature
computing containment joins [5] as well as holistic joins
[10]. Our algorithms differ from these algorithms in that we
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Fig. 10. Compare to DBMS-based approaches. (a) DBLP, two keywords. (b) DBLP, two keywords, K ¼ 5.



incrementally maintain and output LCAs and GDMCTs,
which are considerably more complex than checking
ancestor-descendant relationships.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the problem of XML
keyword queries, with the aim of identifying the most
specific context elements (i.e., LCAs) that contain all the
keywords, along with a compact description of their
witnesses (i.e., GDMCTs). We have proposed and evaluated
efficient algorithms for a number of variants of this problem
and have established that the context of XML keyword
queries can indeed be efficiently determined as part of
query evaluation.

Our work opens the door to a number of different
avenues of research in XML keyword queries. What would
Information Retrieval style approximate matching look
like? Our stack-based algorithms maintain partial GDMCTs
during query evaluation; are these the desired answers to
approximate keyword queries? What is the analog of tf�idf
for ranking the results of XML keyword queries? What are
appropriate linguistic mechanisms to incorporate our key-
word querying primitives into XQuery? We are currently
exploring some of these promising directions of research.
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