

Experiences on Processing Spatial Data with
MapReduce*

Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

Florida International University
School of Computing and Information Sciences

11200 SW 8th St, Miami, FL 33199
{acary001,sunz,vagelis,rishen}@cis.fiu.edu

Abstract. The amount of information in spatial databases is growing as more
data is made available. Spatial databases mainly store two types of data: raster
data (satellite/aerial digital images), and vector data (points, lines, polygons).
The complexity and nature of spatial databases makes them ideal for applying
parallel processing. MapReduce is an emerging massively parallel computing
model, proposed by Google. In this work, we present our experiences in
applying the MapReduce model to solve two important spatial problems: (a)
bulk-construction of R-Trees and (b) aerial image quality computation, which
involve vector and raster data, respectively. We present our results on the
scalability of MapReduce, and the effect of parallelism on the quality of the
results. Our algorithms were executed on a Google&IBM cluster, which
became available to us through an NSF-supported program. The cluster
supports the Hadoop framework – an open source implementation of
MapReduce. Our results confirm the excellent scalability of the MapReduce
framework in processing parallelizable problems.

1 Introduction

Geographic Information Systems (GIS) deal with complex and large amounts of
spatial data of mainly two categories: raster data (satellite/aerial digital images), and
vector data (points, lines, polygons). This type of data is periodically generated via
specialized sensors, satellites or aircraft-mounted cameras (sampling geographical
regions into digital images), or GPS devices (generating geo-location information).
GIS systems have to efficiently manage repositories of spatial data for various
purposes, such as spatial searches, and imagery processing. Due to the large size of
spatial repositories and the complexity of the applications to process them, traditional
sequential computing models may take excessive time to complete. Emerging parallel
computing models, such as MapReduce, provide a potential for scaling data
processing in spatial applications.

* This research was supported in part by NSF grants IIS-0837716, CNS-0821345, HRD-

0833093, EIA-0220562, IIS-0811922, IIP-0829576 and IIS-0534530, and equipment support
by Google and IBM.

2 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

The goal of this paper is to present to the research community our experiences
from using the MapReduce model to tackle two typical and representative spatial data
processing problems. The first problem involves vector spatial data and the second
involves raster data.

The first problem is the bulk-construction of R-Trees [1], a popular indexing
mechanism for spatial search query processing. We show how previous ideas, like the
ordering of multi-dimensional objects via space-filling curves, can be used to create a
MapReduce algorithm for this problem. We also discuss how our solution is different
from previous approaches on parallelizing the construction of an R-Tree.

The second problem processes aerial digital imagery, and computes and stores
image quality characteristics as metadata. Original images may contain inaccurate,
distorted, or incomplete data introduced at some phase of imagery generation; for
example, a portion of an image may be completely blank. Pre-computed metadata is
important in dynamic imagery consistency checking, and allows the appropriate
mosaicing with better sources to improve the imagery display. This problem is
naturally parallelizable since each tile can be potentially processed independently. In
practice, the amount of data processed by each cluster processor depends on the file
system characteristics like the minimum processing unit.

Both problems were solved and evaluated on a Google&IBM cluster supplied by
the NSF Cluster Exploratory (CluE) program [2][3]. We present our experiences on
using such a cluster in practice and deploying MapReduce jobs.

The key contribution of this work is as follow:
• We present techniques for bulk building R-trees using the MapReduce

framework.
• We present how MapReduce can be applied to massively parallel processing

of raster data.
• We experimentally evaluated our algorithms in terms of execution time,

scalability and quality of the output. We provide various metrics to measure
the quality of the resulting R-Tree.

This paper is organized as follows. Section 2 describes the steps in deploying
MapReduce applications on the Google&IBM’s cluster, as well as some physical
configurations. Sections 3 and 4 present the detailed MapReduce algorithms for our
two target problems. Section 5 presents experimental results of our algorithm
implementations for different settings. Section 6 discusses related works. Last,
Section 7 concludes our work.

2 Using MapReduce in Practice

The cluster used in this paper is provided by the Google and IBM Academic Cluster
Computing Initiative [2][3]. The cluster contains around 480 computers (nodes)
running open source software including the Linux operating system, XEN hypervisor
and Apache's Hadoop [4], which is an open source implementation of the MapReduce
programming model. Each node has half terabytes storage capacity summing up to
about 240 Terabytes in total. Access to the cluster is provided through the Internet by
a SOCKS proxy server. SOCKS is an Internet protocol that secures client-server
communications over a non-secure network.

Experiences on Processing Spatial Data with MapReduce* 3

There are three main steps in interacting with the cluster, as shown in Figure 1. (1)
Input data is uploaded into the cluster. The user uses file system shell scripts provided
by the Hadoop Distributed File System (HDFS), which is an integral part of the
Apache Hadoop project; HDFS is a clone project of Google’s files system GFS [5].
(2) A user develops a Hadoop application and submits it to the cluster via Hadoop
command. Hadoop applications are usually developed in Java, but other languages are
supported, like C++ and Python. (3) After application execution is completed, the
output is downloaded to the user’s local site with Hadoop file system shell scripts.

Fig. 1. Google, IBM Academic Cluster Overview

MapReduce programming model requires expressing the solutions with two
functions: map and reduce. A map function takes a key/value pair, executes some
computation, and emits a set of intermediate key/value pairs as output. A reduce
function merges all intermediate values associated with the same intermediate key,
executes some computation on them, and emits the final output. More complex
interactions can be achieved by pipelining several MapReduce compounds in a
workflow fashion. A data set is stored as a set of files in HDFS, which are in turn
stored as a sequence of blocks (typically of 64MB in size) that are replicated on
multiple nodes to provide fault-tolerance. An interested reader may refer to
MapReduce Google’s work [6] and open source Hadoop documentation [4] for a
detailed description of MapReduce and Hadoop concepts.

3 Building R-Tree with MapReduce

This section discusses a MapReduce-based algorithm for building an R-Tree index
structure [1] on a spatial data set in parallel fashion. Let us start our description by
defining the problem. Let D be a spatial data set composed of objects oi, i=1, .., |D|.
Each object o has two attributes <o.id, o.P>, where o.id is the object’s unique
identifier and o.P is the object’s location in some spatial domain; other attributes are
possible, but we concentrate on these only for our R-Tree construction purpose. The

4 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

R-Tree minimum bounding rectangles (MBRs) are created based on the objects’
spatial attribute o.P. Identifiers o.id are used as references to objects stored in the R-
Tree leaves.

The proposed method consists of three phases executed in sequence, as can be seen
in Figure 2. First, the spatial objects are partitioned into groups. Then, each group is
processed to create a small R-Tree. Finally, the small R-Trees are merged into the
final R-Tree. The first two phases are executed in MapReduce, while the last phase
does not require high computational power, thus it is executed sequentially outside of
the cluster.

Fig. 2. Phases involved in building an R-Tree index for a data set D in MapReduce.

The three main phases of the algorithm are:

1 Computation of partitioning function f. The inputs for this phase are the data set D
and a positive number R, which represents the number of partitions. The purpose of
f is to assign any object of D into one of the R possible partitions. The function is
computed in such a way that applying f on D yields R (ideally) equally-sized
partitions. In practice, minimal variance in sizes is acceptable. At the same time, f
attempts to put objects that are close in the spatial domain in the same partition.
The output of this phase is a function f which takes as input an object location o.P
and outputs a partition number. Note that no actual partitioning or data moving

Experiences on Processing Spatial Data with MapReduce* 5

happens at this point. The next phase utilizes f for such purpose. More details of
this step are presented in Section 3.1.

2 R-Tree construction. During this phase, the function f calculated in the first phase
is used by Mappers to divide D into R partitions. Then, R Reducers build R
independent “small” R-Tree indices simultaneously on their input partitions. The
output of this phase is a set of R independent R-Trees. Details of this step are
presented in Section 3.2.

3 R-Tree consolidation. This phase combines the R individual R-Trees, built in the

second phase, under a single root node to form the final R-Tree index of D. This
phase can be as simple as making the R R-Trees children of a single root node, or it
may require adding a few extra levels (at most one in practice) if R exceeds the
capacity of a single node. Since this phase is not computationally intensive for R
under a few hundreds or thousands, it is executed by a single process outside the
cluster. The logic to run this phase is fairly simple, so no further elaboration will be
done on this step.

3.1 Partitioning Function

The purpose of the partitioning function f is to provide a means for assigning objects
of D to a pre-defined number of R partitions. We use the idea of mapping multi-
dimensional spaces into an ordered sequence of single-dimensional values via space-
filling curves for this purpose. This idea has been studied in the literature as a way to
numbering objects in multi-dimensional spaces [7, 8]. In our present problem, we map
objects’ location attribute o.P into such curves. We use the Z-order curve [9] in our
experiments in Section 5.1. The partition number of an object o is determined by
f(o.P), which evaluates to a value from the set {1, 2, .., R}. By using a space-filling
curve, the partitioning function f achieves two goals:

• Generate R (almost) uniformly-sized partitions, and
• Preserve spatial locality. If two distinct objects o1 and o2 are close to each other

in the spatial domain, then they are likely to be assigned to the same partition,
i.e. f(o1.P) = f(o2.P).

Next, we propose a MapReduce algorithm to define f.

MapReduce Algorithm

The general idea is inspired by the TeraSort Hadoop application [10], which partitions
an input data set via data sampling. Given a data set D and target number of partitions
R, the MapReduce algorithm runs M Mappers that collectively take L sample objects

from D (that is, each Mapper samples
�� objects) and emit their single-dimensional

values S={U(oi.P), i=1, .., L} given a space filling curve U. Then, a single Reducer
sorts S, and determines a list S´ of R-1 splitting points that split the ordered sequence
of samples into R equal-sized partitions. Then, in general, an object o belongs to
partition j if S´[j-1] < U(o.P) ≤ S´[j]. Thus, f utilizes the splitting points in S´ to assign
objects to partitions.

6 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

The specific MapReduce key/value input pairs as well as outputs are presented in
Table 1. Mappers read in total L samples at random offsets of their input D, and
compute their single dimensional value with the space-filling curve U. The
intermmediate key equals to C which is a constant, whose value is irrelevant, that
helps in sending Mappers’ outputs to a single Reducer. The Reducer receives the L
single-dimensional values generated by Mappers, and sorts them into an auxiliary list
u1, ..,uL, from which R-1 elements are taken starting at the ����-th element and

subsequently at fixed-length offsets
�� to form a list S´ of splitting points.

Table 1. Map and Reduce inputs/outputs in computing partitioning function f.

Function Input: (Key, Value) Output: (Key, Value)
Map (o.id, o.P) (C, U(o.P))

Reduce (C, list(ui, i=1, .., L)) S´

An important observation in the sampling process is that Mappers read input data

from the distributed storage at block-sized amounts, which is a Hadoop distributed
file system parameter specifically tuned for load balancing large files across storage
nodes. Thus, all Mappers, except perhaps for the last one, will read the same amount
of data, equal to the file system’s block size.

The rationale of the splitting points in S´ is that they provide good enough
boundaries to sub-divide D into R partitions since they come from randomly sampled
objects. Experiments in section 5.1 show very low standard deviation (under 1%) on
the number of objects per partition. Formally, the function f is defined as follows:

���. 	�
 � 1, ���. 	� � �´�1��, �´�� � 1� � ���. 	� � �´���, �
 2, … , � � 1�, ���. 	� � �´�� � 1� � (1)

This computation is characterized by running multiple Mappers (samplig data) and
one Reducer (sorting samples), which may become a limiting factor in scalability. If
the size of S becomes sufficiently large, then the TeraSort [10] approach can be used
to sort its items in parallel, which makes the algorithm more scalable.

3.2 R-Tree Construction

In this phase, R individual R-Tree indices are built concurrently. Mappers partition
the input data set D into R groups using the partitioning function f. Then, every
partition is passed to a different Reducer, which independently builds an R-Tree on its
input. Next, every Reducer outputs a root node of their constructed R-Trees, so R sub-
trees are written to the file system at the end of this phase.

Input and output key/value pairs are shown in Table 2. Mappers read their input
data in its entirety and compute objects assigned partitions via f(o.P). Then, every
Reducer receives a number of input objects A for which an R-Tree is built and its root
emitted as output. Since f balances partitions, it is expected that all Reducers will

receive a similar number of objects (� ~ | |�), thus executing similar amount of work

Experiences on Processing Spatial Data with MapReduce* 7

in constructing their R-Trees. However, good balancing depends on the underlying
space-filling curve U used by f, and the number of sampled objects L. More samples
help in tuning the splitting points, but incur in larger sorting time of L elements.

Table 2. MapReduce functions in constructing R-Trees.

Function Input: (Key, Value) Output: (Key, Value)
Map (o.id, o.P) (f(o.P), o)

Reduce (f(o.P), list(oi, i=1, .., A)) tree.root

Another concern is the quality of the produced R-Trees in relation to the parameter

R. In Section 5.1, we provide some initial insight into this direction by measuring R-
Tree parameters such as area and overlap in a simplified way, and plotting their MBRs
for visual analysis.

4 Tile Quality Computation Using MapReduce

This section discusses a MapReduce algorithm to compute the quality information of
aerial/satellite imagery. Such information is useful for fast identification of defective
image portions, e.g. blank regions inside a tile or a group of tiles, and subsequent
dynamic image patching using better imagery available at rendering time. For a given
tile, we define a pixel as “bad” if all the values of its samples are below or above
some predefined value.

Fig. 3. Tile quality computation algorithm overview.

Image tiles are stored in customized DOQQ files [11], augmented with a
descriptive header. Let d be a DOQQ file and t be a tile inside d, d.name is d’s file
name and t.q is the quality information of tile t. More details of our data set are
presented in Section 5.2. Figure 3 depicts the execution overview of our MapReduce
algorithm. The algorithm runs on a tile by tile basis within the boundaries of a given
DOQQ file, computing a bitmap per tile where a tile pixel is associated to a bit that is
set to 1 if the pixel is deemed “bad”, and 0 otherwise.

MapReduce Algorithm

Each DOQQ file is first partitioned into several splits, each of which is then processed
by a separate Mapper. Splits are carefully generated by parsing tiles out of the input
file until the size of all the tiles is close (little smaller) to the block size of the

8 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

underlying distributed file system or end of file is reached. In doing so, tile
boundaries are preserved between different splits. Then, each Mapper will have to
read at most two blocks of a file. This helps reduce data transfer time between nodes
because different blocks of a file are usually stored on separate nodes. Tiles (values)
inside one split are identified by d.name and t.id (keys) and combined as key/value
input for Mappers.

Table 3. Input and output of map and reduce functions

Function Input: (Key, Value) Output: (Key, Value)
Map (d.name+t.id, t) (d.name, (t.id, t.q))

Reduce (d.name, list(�!" . #$, !". %�) Quality-bitmap of d

The input and output key/value pairs for Mappers and Reducers are described in
Table 3. The Mapper decompresses the JPEG tile t, iterates through each pixel of t to
obtain quality information t.q (a bitmap, one bit per pixel) and compresses it using
Run-length encoding (RLE) algorithm. After that, it emits the intermediate key/value
pair with d.name as the key and t.q as the value. The Reducer merges all the t.q
bitmaps that belongs to a file d and writes them to an output file, containing image
quality for d, as shown in Figure 3.

5 Experiments

This section presents and discusses the experimental results we obtained by running
the algorithms described in Sections 3 and 4 as Hadoop applications on the
Google&IBM cluster presented in Section 2. All the data sets used in this section are
real spatial data sets supplied by the High Performance Database Research Center at
Florida International University [12]. At the time of experimentation, there were jobs
running in the cluster from other researchers that share this resource, thus some
fluctuation in the results is expected.

5.1 R-Tree Construction

Data sets and Setup

Experiments are executed on two real spatial data sets. Data set descriptions are
shown in Table 4. The points in the data sets are angular coordinates in (latitude,
longitude) format. In the following experiments, we use the Z-order space-filling
curve [9] as U function to map the two-dimensional points into a single dimension.
We used 3% of each data set as sampling size L (see first phase of the algorithm in
Section 3). Data sets are in tabular structured format (CSV), where each line
represents an object. We used Hadoop supplied functions to read objects (text lines)
from the data sets. During the second phase, Reducers build their individual R-Trees
in-memory (to avoid high disk latencies in maintaining the tree along object
insertions), then the trees are peristed on Hadoop distributed file system.

Experiences on Processing Spatial Data with MapReduce* 9

Time Performance

This experiment consists of building R-Tree indices on the Google&IBM cluster
changing the parameter R in phase-2, that is, the number of concurrently-built R-
Trees, from 2 up to 64. As R varies, job completion times are measured for Mappers
and Reducers as well as quality statistics on the resulting R-Trees. As a reference, we
also ran a single-process R-Tree construction on a dedicated local machine with Intel
Xeon E7340 2.4GHz processor and 8GB of RAM running Windows OS; we could
not run the single process in the cluster since we do not have login access to
individual nodes. Thus, cluster and single process times are not comparable due to
dissimilar hardware.

Table 4. Spatial data sets used in experiments.

Data
set

Objects
(millions)

Data size
(GB) Description

FLD 11.4 5 Points of properties in the state of Florida.

YPD 37 5.3
Yellow pages directory of points of businesses mostly
in the United States but also in other countries.

Table 5. MapReduce job completion times (in minutes) for the Phase 1 (MR1), and various
Reducers (R) in Phase 2 (MR2) of building an R-Tree. Also, completion times for single-
process (SP) constructions ran on a local machine are shown.

MR1: Partitioning

Function
MR2: R-Tree
Construction

Data
set R Map Reduce Map Reduce

Total
MR1+MR2

FLD 2 0.35 0.28 0.40 24.12 25.15
 4 0.28 0.23 0.40 11.07 11.98
 8 0.47 0.22 1.73 5.62 8.03
 16 0.30 0.22 0.40 3.05 3.97
 32 0.48 0.23 0.40 1.95 3.07
 64 0.28 0.33 0.45 1.60 2.67

SP - - - - 27.34

YPD 4 0.47 0.38 0.47 52.57 53.88
 8 0.22 0.45 0.72 25.42 26.80
 16 0.40 0.43 0.38 8.93 10.15
 32 0.40 0.43 0.42 4.65 5.90
 64 0.40 0.42 0.88 2.55 4.25
 SP - - - - 63.98

Table 5 shows MapReduce job completion times for R-Tree construction phases 1

and 2 on both spatial data sets as well as for a single-process build (SP); for YPD we
start at R=4 due to memory limitations in cluster nodes for building in-memory trees
with less number of Reducers. We do not include phase-3 processing times since it is
of little significance compared to the other phases. Phase-1 (partitioning function
computation) takes very little time, which is expected since sorting L=3% of objects
from a data set can be quickly done in memory by the single reducer in this phase; for
our largest data set YPD, about 1 million elements are sampled. Our Z-order values

10 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

are 8-byte sized elements, so around 8MB of RAM is needed to execute the sort,
which is much less than the memory of each cluster node. Likewise, Mappers in
phase-2 read data sequentially and execute inexpensive Z-order value computations
on their inputs.

(a) FLD data set (b) YPD data set

Fig. 4. MapReduce job completion times for various number of reducers in phase-2 (MR2).

The most computationally intensive part is performed by Reducers in phase-2,
where the actual R-Tree constrution occurs. The fewer the number of Reducers, the
longer the R-Tree construction takes, since each task receives larger number of
objects. Figure 4 shows job completion times as stacked bars of the map and reduce
execution times. In this figure, almost linear scalability is observed as more
parallelism is induced by increasing R in phase-2. As expected, the improvement rate
is high for few Reducers but drops as the number of Reducers increases since
partitioning overheads in phase-1 (MR1) start becoming significant compared to R-
Tree build time in phase-2 (MR2). In fact, for larger values of R, the dominating time
component is given by MR1 which, as can be seen in Table 5, is almost constant for a
given data set. Thus, much less improvements are expected as R is increased beyond
64.

Although we cannot compare our MapReduce and single process (SP) times due to
mismatch in hardware, the MapReduce parallelization certainly yields performance
benefits for large-scale data sets. For example, it takes more than an hour to
sequentially build the YPD R-Tree, while in parallel the task can be achieved in less
than 5 minutes with 64 Reducers. However, the resulting R-Trees are different due to
differences in object insertion sequences. Later in this section we measure and discuss
R-Tree quality parameters for both cases.

Figure 5 presents percentages of performance gains in job completion times in
relation to subsequent increases in the number of Reducers in the second phase of the
algorithm. For example, in the YPD dataset, going from 4 to 8 Reducers we observe
50% decrease in job completion time, which represents linear scalability. On the other
hand, going from 8 to 16 Reducers shows super-linear gains (62%). We pressume this
may be due to heterogeneous nodes in the cluster (eventually the job with R=16 was

0.00

10.00

20.00

30.00

40.00

50.00

60.00

4 8 16 32 64
T

im
e

(m
in

)

Reducers

MR2

MR1

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2 4 8 16 32 64

T
im

e
(m

in
)

Reducers

MR2

MR1

Experiences on Processing Spatial Data with MapReduce* 11

executed on faster nodes), or it may be the cluster resources were idler during that
period. As discussed, as we increase the number of Reducers, performance gains are
less significant because the execution time for the first phase, which has a sequential
component (Reduce), stays almost constant.

(a) FLD data set (b) YPD data set

Fig. 5. MapReduce job percentage of performance gains as the number of reducers is increased.

Quality of Generated R-Trees

We use equations (2) and (3) below to compute the area and overlap metrics
respectively for a given consolidated R-Tree with root T:

�&'(�)�
 * �&'(�)" . +,��-
"./

(2)

01'&2(3�)�
 * * �&'(�)" . +,� 4)5 . +,� �-
5."6/

-
"./

(3)

where n is the number of children (small R-Trees generated by Reducers) of T, and Ti
is the i-th child node of T. Note that other metrics of R-Tree quality could be
considered as well, e.g., consider all the nodes of the R-Tree instead of just the top
level. Minimal area and overlap are known to improve search performance [13] since
they increase path pruning abilities of R-Tree navigation algorithms.

Table 6 shows quality metrics on the consolidated R-Trees built for various
number of Reducers and single process (SP); for reference, the U.S. Census Bureau
reports Florida state land area roughly as 54,000 square miles as of 2000 [14]. As
expected, we see the total MBR area and the overlap increase as the parallelism (R)
increases because the construction of each small R-Tree is unaware of the rest of the
data set, lowering the chance of co-locating neighbor objects within the same R-tree.
This means that we degrade the R-Tree quality without gaining in execution time. The

0.00

0.10

0.20

0.30

0.40

0.50

0.60

4 8 16 32 64

%
P

er
fo

rm
an

ce
 g

ai
n

Reducers

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

8 16 32 64

%
P

er
fo

rm
an

ce
 g

ai
n

Reducers

12 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

latter can adversely effect performance of search algorithms, such as nearest neighbor
type of queries, due to extra I/Os incurred in traversing multiple sub-trees.

Table 6. Statistics on consolidated R-Trees built by various number of Reducers (R), and single
process (SP) construction.

Objects per Reducer Consolidated R-Tree

Data
set R Average Stdev Nodes Height Area (sq.mi) Overlap (sq.mi)

FLD 2 5,690,419 12,183 172,776 4 132,333.9 304.4
 4 2,845,210 6,347 172,624 4 106,230.4 4,307.9
 8 1,422,605 2,235 173,141 4 103,885.8 17,261.9
 16 711,379 2,533 162,518 4 96,443.1 21,586.3
 32 355,651 2,379 173,273 3 140,028.7 80,389.1
 64 177,826 1,816 173,445 3 152,664.2 96,857.7

SP 11,382,185 0 172,681 4 746,145.0 1,344,836.8

YPD 4 9,257,188 22,137 568,854 4 26,510,946.3 21,574,857.8
 8 4,628,594 9,413 568,716 4 23,160,080.0 20,480,729.6
 16 2,314,297 7,634 568,232 4 67,260,270.0 54,582,299.8
 32 1,157,149 6,043 567,550 4 68,626,854.9 54,008,538.5
 64 578,574 2,982 566,199 4 69,791,363.8 55,064,139.4

SP 37,034,126 0 587,353 5 164,966,688.5 658,583,322.6

Fig. 6. MBR plotting for FLD data set on an R-Tree built by a single process.

For a sequential construction (SP), we observe these metrics are much worse,

especially the overlap factor, since objects are not spatially shuffled but rather
inserted in the data set original sequence. Thus, higher performance penalties are
expected in SP constructed R-Trees. On the other hand, the tree height slightly
decreases for FLD for R beyond 32 because more small trees means that each one of
them may be shorter, while for YPD the height increases by one level for the SP case.

Experiences on Processing Spatial Data with MapReduce* 13

In general, small variations in tree height is less significant from a performance
standpoint.

Fig. 7. MBR plotting for FLD data set for R-Tree built by MapReduce with R=4.

Fig. 8. MBR plotting for FLD data set for R-Tree built by MapReduce with R=8.

To visually study the effect of increasing R over the MBR distribution, we have
plotted the MBRs of the resulting R-Trees for the case of 4 and 8 Reducers in Figures
7 and 8 respectively for the Florida state data set (FLD). Also the same type of graph
is shown in Figure 6 for the SP R-Tree. In neither case is the root MBR plotted since
it is common for all trees.

A few observations can be made from the MBR plottings. First, the partitioning
mechanism employed in our algorithms seems to be effective in preserving spatial

14 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

locality. This results in individual Reducers indexing highly localized objects; their
boundaries, however, result in multiple overlappings, which are inevitable. Second, as
the number of Reducers is increased from 4 to 8, the plotting shape resembles more
the actual shape of the Florida state; that is, R=8 reduces wasted areas (where no
actual objects are located) as the Area statistic confirms in Table 6. In fact, Table 6
shows steady decrease in area from 2 to 16 Reducers; after that the area keeps on
increasing. Third, when the R-Tree is built on the original sequence of objects (no
object shuffling) in SP mode, large wasted areas are generated as can be observed in
Figure 6. From a performance optimization perspective, MapReduce generated R-
Trees seem to be better tuned than their single-process counterpart. Therefore, we see
promising performance improvements in MapReduce generated R-Trees, which
deserve closer verification.

5.2 Tile Quality

Data set and Setup

The data set used in the experiments is a 3-inch resolution aerial imagery of Miami
Dade County of Florida. The size of the data set is about 52GB after compression.
Imagery data is stored as compressed DOQQ file format. There are 482 compressed
DOQQ files, each of which contains 4096 tiles. Each tile is 400 by 400 pixels and has
3 bytes for each pixel as the Red, Green and Blue channel. The size for each tile is
480,000 bytes uncompressed and compressed tile is about 50 KB each.

Experiments

Two experiments are carried out for this data set. The first experiment uses a subset of
the data set that is a re-sampled version of the original one. It is about 20GB and has
482 files with 1024 tiles each. The size of the files ranges from several megabytes to
around 80 megabytes, and the number of Reducers is varied from 4 to 512. The
second experiment uses different sized subsets of the original data set. The size of the
files ranges from 2GB to 16GB, and the number of Reducers is fixed at 256.

In the first experiment, the number of Mappers is also fixed, determined by the
data set size. Thus, the execution time of the map phase is similar through different
runs, as can be seen in Figure 9 (a). The execution time slightly fluctuates because
there were other concurrent jobs running in the cluster at the same time. As the
number of Reducers increases, the execution time of the reduce phase largely
decreases for smaller number of reducers, and less improvements are obtained for
larger number of reducers. This is because the same amount of work is now shared by
more Reducers. When the number of Reducers is larger than 64, the execution time of
the reduce phase stabilizes to around 2.5 minutes. This could be explained by the
launching time of Reducers dominating the whole time at this point. With 64
Reducers, each of them will be writing around 482/64 ≈ 8 files. The time taken to
write 8, 4 (128 Reducers) or even less files is negligible compared with the launching
time of that many Reducers.

In the second experiment, Figure 9 (b), as the size of the data set increases with
constant number of reducers (256), the execution time of the map phase hardly
changes, which is consistent with the data parallelization provided by the MapReduce

Experiences on Processing Spatial Data with MapReduce* 15

model, that is, more Mappers are engaged in processing the data. The execution time
of the reduce phase increases because there are now more files to be written with the
same number of Reducers.

(a) Fixed data size, variable Reducers (b) Variable data size, fixed Reducers
Fig. 9. MapReduce job completion time for tile quality computation

6 Related Work

Space-filling Curves

The idea of using space-filling curves to map multi-dimensional spaces into a single
dimension has been studied for the case of spatial databases [15, 8]; popular space-
filling curves, such as Peano and Hilbert, have been studied in great level of detail.
We used the Z-order curve in our experiments. This curve showed high spatial
locality preservation for our experimented real data sets. Other curves can certainly be
evaluated, which goes beyond our focus on the parallelization of two concrete spatial
problems with MapReduce.

Parallel R-Tree Constructions

Previous works on R-Tree parallel construction have faced several intrinsic
distributed computing problems such as data load balancing, process scheduling, fault
tolerance, etc., for which they elaborated special-purpose algorithms. Schnitzer and
Leutenegger [16] propose a Master-Client R-Tree, where the data set is first
partitioned using Hilbert packing sort algorithm, then the partitions are declustered
into a number of processors (via an specialized declustering algorithm), where
individual trees are built. At the end, a master process combines the individual trees
into the final R-Tree. Another work by Papadopoulos and Manolopoulos [17]
proposed a methodology for sampling-based space partitionining, load balancing, and
partition assignment into a set of processors in parallely building R-Trees. They also
discuss some alternatives when the global (consolidated) index has imperfections
such as different heights across individual R-Trees.

0

5

10

15

20

25

4 8 16 32 64 128 256 512

T
im

e
(m

in
)

Reducers

Reduce
Map

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8 16

T
im

e
(m

in
)

Size of data (GB)

Reduce
Map

16 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

In MapReduce, these parallel computing concerns are abstracted out from the
application logic, and managed transparently as part of the MapReduce framework.
Further, all nodes in the cluster access a common distributed file system, with
automatic fault-tolerance and load balancing support, where data locality is employed
as base criterion to assign Mappers and Reducers (preferably) to nodes already
containing the input data. In contrast, traditional parallel processing works assume
every node has its own storage, in a shared-nothing type of architecture, where data
transfer among nodes becomes an important optimization goal.

MapReduce on Spatial Data

MapReduce framework was used to solve another spatial data problem by Google
[18], where they study the problem of road alignment by combining satellite and
vector data. This work concentrates on the complexities of the problem, which are
more challenging than the MapReduce algorithms.

Schlosser et al. [19] worked on building octrees in Hadoop for later use in earth-
quake simulations at large-scale. Their approach builds a tree in a bottom up fashion.
The map function in the first iteration generates leaf nodes, then the reduce function
coalesces homogeneous leaf nodes into a subtree. Subsequent iterations have identity
functions in mappers, and successively use reduce functions to construct the final tree.

Relationship to MPI

Message Passing Interface (MPI) [20] is a specification of a language-independent
communication model targeted at writing parallel programs, and it is widely used in a
variety of computer cluster platforms. MPI libraries provide primitives and
functionality for communication control among a set of processes. Typically,
developers need to add explicit calls to synchronize processes and move data around.
The key differences between MPI and MapReduce is that MapReduce exploits its
simplified model to automatically parallelize tasks (Mappers and Reducers), hiding
from programmers the need to worry about process communication, fault-tolerance,
and scalability, which are transparently managed by key components, such as cluster
management system and distributed file system, that the MapReduce framework is
built-upon [6]. For example, for the R-Tree case study, the Java implementation of the
Map and Reduce functions of the first phase, and Map of the second phase have each
less than 40 lines of code. The Reduce function in the second phase has about 70 lines
of code since it includes extra code for persisting the tree on the distributed file
system and collecting build statistics. These numbers do not include application-
specific routines, which are needed regardless of the parallel model.

In MapReduce, the underlying assumption is that the solution can be expressed in
terms of the Map and Reduce functions working on key/value pairs. In some cases
this may not be natural, such as relational joins or multi-stage processes, and can lead
to inefficiencies. Then, MPI-like parallel implementations have more opportunities to
address application-specific optimizations, due to its finer process control. However,
high-level languages have been proposed to address this problem in MapReduce
architectures by providing efficient primitives for massive data analysis combining
SQL-like declarative style and MapReduce procedural programming [21][22].

Experiences on Processing Spatial Data with MapReduce* 17

7 Conclusions

In this paper, we used the MapReduce programming model to solve two important
spatial problems on a Google&IBM cluster: (a) bulk-construction of R-Trees and (b)
aerial image quality computation, which involve vector and raster data, respectively.
The experimental results we obtained indicate that the appropriate application of
MapReduce could dramatically improve task completion times. Our experiments
show close to linear scalability. However, performance is not the only concern for R-
Tree construction, which is sensitive to the ordering of objects in its input, but also the
quality of the result. MapReduce generated R-Trees have improved quality in terms of
MBR area and overlap measurements compared to the single-process construction
counterpart. No such quality problem arises in the aerial image quality computation.
Our experience in this work shows MapReduce has the potential to be applicable to
more complex spatial problems.

References

[1] Antonin Guttman: R-Trees: A Dynamic Index Structure for Spatial Searching. SIGMOD
1984:47-57.

[2] NSF Cluster Exploratory Program: http://www.nsf.gov/pubs/2008/nsf08560/nsf08560.htm
[3] Google&IBM Academic Cluster Computing Initiative:

http://www.google.com/intl/en/press/pressrel/20071008_ibm_univ.html
[4] Apache Hadoop project: http://hadoop.apache.org
[5] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file system, SIGOPS

Operating Systems Review, Volume 37, Issue 5, pp. 29-43, 2003.
[6] Dean, J. and Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In

Proceedings of the 6th Conference on Symposium on Opearting Systems Design &
Implementation, USENIX Association, Volume 6, pp. 10-10, December 2004.

[7] Tetsuo Asanoa, Desh Ranjanb, Thomas Roosc, Emo Welzld and Peter Widmayer: Space-
filling curves and their use in the design of geometric data structures, Theoretical
Computer Science, Volume 181, Issue 1, pp. 3-15, July 1997.

[8] J. K. Lawder and P. J. H. King: Using Space-Filling Curves for Multi-dimensional
Indexing, Book Advances in Databases, Springer Berlin, Volume 1832, pp. 20-35, 2000.

[9] Morton, G. M.: A computer Oriented Geodetic Data Base; and a New Technique in File
Sequencing, Technical Report, Ottawa, Canada: IBM Ltd., 1966.

[10] Owen O'Malley: TeraByte Sort on Apache Hadoop, Yahoo!, May 2008.
[11] Doqq file format: http://egsc.usgs.gov/isb/pubs/factsheets/fs05701.html
[12] High Performance Database Research Center (HPDRC), Research Division of the Florida

International University, School of Computing and Information Sciences, University Park,
Telephone: (305) 348-1706, FIU ECS-243, Miami, FL 33199.

[13] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard Seeger: The R*-tree: an
efficient and robust access method for points and rectangles, Volume 19, Issue 2, pp. 322-
331, 1990.

[14] U.S. Census Bureau, Florida State and County QuickFacts,
http://quickfacts.census.gov/qfd/states/12000.html last revised: 25-Jul-2008.

[15] David J. Abel, David M. Mark: A comparative analysis of some two-dimensional
orderings, International Journal of Geographical Information Science, Volume 4, Issue 1,
pp. 21 - 31, January 1990.

18 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

[16] Schnitzer B., Leutenegger S.T.: Master-client R-trees: a new parallel R-tree architecture,
In Proceedings of the 11th International Conference on Scientific and Statistical Database
Management, pp. 68-77, August 1999.

[17] Apostolos Papadopoulos, Yannis Manolopoulos: Parallel bulk-loading of spatial data,
Parallel Computing, Volume 29, Issue 10, pp. 1419 - 1444, October 2003.

[18] Xiaqing Wu, Rodrigo Carceroni, Hui Fang, Steve Zelinka, Andrew Kirmse: Automatic
alignment of large-scale aerial rasters to road-maps, Geographic Information Systems,
Proceedings of the 15th annual ACM international symposium on Advances in geographic
information systems, Article No. 17, 2007.

[19] Schlosser S. W., Ryan M. P., Taborda R., Lopez J., O'Hallaron D. R., and Bielak J.:
Materialized community ground models for large-scale earthquake simulation, In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, Conference on High
Performance Networking and Computing, pp. 1-12, 2008.

[20] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[21] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, D. Stott Parker. Map-reduce-merge:
simplified relational data processing on large clusters. Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, pp 1029-1040, 2007.

[22] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins.
Pig latin: a not-so-foreign language for data processing. Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pp 1099-1110, 2008.

