
A System for Keyword Search on Textual Streams

Vagelis Hristidis* Oscar Valdivia* Michail Vlachos Philip S. Yu

School of Computing and Information Sciences
Florida International University

{vagelis, oscar.valdivia}@cis.fiu.edu

IBM T. J. Watson Research Center
mvlachos@cs.ucr.edu, psyu@us.ibm.com

ABSTRACT
An increasing amount of data is produced in the form of text
streams − these can be RSS news feeds, TV closed captions,
emails, etc. We study the problem of answering keyword queries
on multiple textual streams. We define the result of a keyword
query inspired by previous work on keyword search on static
databases. A result to a query is a combination of streams
“sufficiently correlated” to each other that collectively contain all
query keywords within a specified time span. On the algorithmic
side, in this paper we focus on the component of continuously
monitoring the streams and outputting results as soon as they are
available.

Keywords: text streams, keyword search, continuous
queries

1. INTRODUCTION
An increasing amount of data is produced in the form of
text streams − these can be RSS news feeds, TV closed
captions, emails, etc. We explore techniques for extracting
useful information from a collection of text streams. The
scenario that we consider is quite intuitive; let’s assume
that a professional analyst would like to continuously be
informed about occurrences of a topic, a topic that can be
described by several keywords. Information can be
provided by various feeds in a streaming fashion. In order
to motivate better our example with recent events, let us
consider the case of a journalist that might be interested in
tracking down people’s stories in the state of Florida and
how they perceive that recent hurricane events affect
housing prices. Chat streams and newsgroups can provide a
wealth of information on opinions of individuals.
Assuming that there is a mechanism for extracting the text
feeds from such sources (since they are channeled
unencrypted), the interested user can set up a continuous
query on a collection of streams of the form: {Florida,
hurricane, housing}.

The tackled problem has common characteristics to the
areas of keyword search on databases and subscription/alert
services (e.g., Google Alerts). We briefly elaborate on the
differences to these areas.
Keyword search on databases provides support for
discovery of associations between the query keywords in a

structured or semistructured database; the keywords of the
query do not have to be present in the same document, but
can reside at different locations. However, the data sources
are inherently static or updated in a batch fashion, and there
is no notion of streaming and evolving textual data. The
posed queries address only a specific time snapshot of the
database. That is, keyword search techniques are not
designed to efficiently tackle the incremental data additions
and removals of streaming data, or even to progressively
update correlations between the modified data sources.
Alert systems over text sources, on the other hand, can
provide support for streaming sources. The result in this
case is any instance of a stream that contains all query
keywords within a specified time span. However, each
stream is typically processed separately and the execution
is equivalent to independently posing the continuous query
on each of the streams. Notice that inter-correlations
between different sources are ignored, and all keywords of
the query are expected to reside on the same stream.
However, considering the associations between the textual
sources is very important, not only for limiting the false
hits (explained below) of a keyword search algorithm, but
also for allowing extended search capabilities, where
fragments of the posed query can exist within different text
streams.
In this work we borrow ideas from both these areas to
facilitate keyword search over a time span on multiple
textual streams, taking their correlations into account. The
proposed system allows the inclusion of the inherent
temporal dimension into the problem, enabling the
execution of more complex keyword queries with temporal
constraints, where the keywords don’t have to reside in the
same stream, but can be distributed over different streams.
In order to avoid multiple spurious matching between
streams of data that are unrelated to each other, we also
impose the additional constraint for the results to exist
within “sufficiently” correlated streams of data. For
instance, if stream A mentions the words ‘Florida’ and
‘housing’ and stream B mentions ‘hurricane’, but stream B
is a cocktails’ recipes stream (‘hurricane’ is a name of a
cocktail), then the combination of streams A and B is not a
good answer to the query. The reason is that streams A and
B are not correlated, as they discuss different domains. Due
to lack of space we do not show how the stream * Partly supported by NSF grant IIS-0534530.

associations within a time window are defined and
computed. An overview of the architecture is provided in
Figure 1.
The applications of the above framework are quite
extensive:
1. Subscription services, alert and recommendation

systems that inform users of streams containing
individual preferences.

2. Intelligent monitoring of a server’s text content, either
for the purposes of enforcing filtering mechanisms, or
for categorizing and classifying the textual content
more accurately.

3. More efficient collection, filtering and understanding
of the diverse news feeds (closed captioning, CNN
headlines, etc) for media people (e.g. journalists).

4. Better understanding and analysis of social or
streaming networks, through correlation analysis of the
textual chains of messages (e.g. from chat server
messages or email logs).

5. Crime prevention through more efficient monitoring of
unencrypted (or lightly encrypted) Internet text
channels by law enforcement or government entities.

Figure 1: Overview of the proposed methodology.

In our work, we present algorithms that can efficiently
query a multiplicity of text streams given a set of
keywords. Matches are identified within a specified time
window and are presented in real-time, by assembling
together relevant pieces of information from multiple
associated streams. The high-performance of the
algorithms is due to their incremental nature. The
algorithms perform a minimal amount of computation for
each new stream event (new piece of data transmitted
through a stream) in order to examine for a potential new
result, given specified user preferences. A high level
illustration of the proposed methodology is provided in
Figure 1.
In our solution, we segregate the problem of maintaining
the association degrees between the text streams, from the

problem of assembling and producing the results in a
pipelined manner. Additionally, we identify and compare
alternative strategies which are preferable for different
problem settings.
The contributions of this paper are the following:
1. We formally define the problem of keyword search

across multiple text streams. We also identify the key
user-defined parameters to calibrate the results.

2. We present efficient algorithms that can assemble,
process and output query results in real-time, i.e., as
they become available.

3. To evaluate the quality of the results, as well as the
performance of the proposed algorithms, we conduct a
case study using the publicly available ENRON email
dataset, as our experimental testbed. We adapt this
dataset in our system prototype, by viewing email
threads as continuous text streams.

2. RELATED WORK
There has been a great corpus of work [ACD02, BNH+02,
GSVG98, HGP03, HP02] on keyword proximity search on
static databases. These works follow various techniques to
overcome the NP-completeness of the Group Steiner
problem, to which the keyword proximity search problems
can be reduced. ObjectRank [BHP04], which returns single
objects and not associations between objects as the above
work, ranks the results of keyword queries using the
authority flow factor. However, all this work assumes that
the data is static and the time dimension of the problem is
not taken into account.
Top-k ranked query works [FLN01] compute efficiently
the top results given ranked lists of attribute values for the
set of objects, whereas top-k ranked join queries Ilyas et al.
[IAE03] compute the top results of a join given a ranking
function. In contrast to our problem, the set of objects is
static and there is no notion of time.
Subscription systems [FJL+01,FCFP05] answer continuous
user queries by examining documents in separation, in
contrast to this work where we combine information from
various streams to construct a result.
The area of query processing in streams has received much
attention [ABB+02, AN04, CGMR05, ZKOS05]. These
works tackle traditional queries with emphasis on the
efficient aggregation, load balancing and stream
dissemination. In contrast, our work focuses primarily on
the stream analytic part, providing estimations on query-
specific associations between the streams. We have
presented a preliminary problem description in a recent
poster [HVVY06].

…

Text source 1

Text source 2

Text source n

… …

a=0.5

a=0.6

Documents from multiple streaming sources
Continuous Query over time range
Correlations identified

Continuous Query
over time range

CCoonnttiinnuuoouuss KKeeyywwoorrdd SSeeaarrcchh oonn MMuullttiippllee TTeexxtt SSttrreeaammss

()

3. NOTATION AND DESCRIPTION OF
THE PROBLEM
Definition 1 [Text Stream] A text stream S:=(S.description,
S.participants,S.events) consists of a description, an
(optional) list of participants and a continuous and
asynchronous sequence of events S.events:=(e1,,e2,…) of
the form e:=(e.t, e.content), where timestamp e.t denotes
the occurrence of event and content e.content is a text
string associated with e. Therefore, a stream S∈A* × (R×
A*)N, A = {a,b,..z}* and an instance of it is
Si:=(Si.description, Si.participants,((Si.ei1.t, Si.ei1.content),
(Si.ei2.t, S.ei2.content),…)), where the notation eij describes
the event j of stream Si . The subscript i may be omitted
during the course of the paper when the stream reference is
not ambiguous in the current context. �
The description S.description is a text string providing a
concise explanation of the stream content (e.g., the
description element of the channel in RSS [RSS05]. For
example for a news feed from CNN, this field can hold the
value: “CNN news”, while an event e can contain the title
of a news event. The participants’ field is empty in the case
of a news stream, however can be utilized when
transmitting chat data (e.g. chat session). For this situation
an event is a single message of a participant of the chat
session. Timestamp is the time the message was submitted
and content is the text of the message. (Content could also
include the sender of the message, but this complicates
things since the list of participants of a stream is stored
separately as we explain later.) The above notation only
attempts to provide a high level abstraction of the problem,
without going into details of the actual structural data
organization into XML, which is not within the scope of
this work.
We assume there is a set S={S1,…,Sp} of p text streams. For
example, p chat sessions occur concurrently.
The association weight a(Sx,Sy) between two text streams
Sx, Sy denotes how relevant these text streams are. We do
not discuss the computation of a(Sx,Sy) in this paper.

Figure 2: Representation of streaming textual content.

Text stream graph
Given a set S of text streams and the association weights
between them, we construct the undirected text stream
graph G(S,E) by creating a node for each text stream in S
and an edge with weight a(Sx,Sy) between each pair Sx, Sy
of text stream nodes with nonzero association weight
a(Sx,Sy).�

Figure 3: Text stream graph for streams of Figure 2.

Figure 3 shows a possible text stream graph for the streams
of Figure 2.
Event tree
A text stream tree Q is a subtree of G. For example, S1-S2
is a text stream tree (path in this case) for the graph of
Figure 3. An event tree T is a stream tree, where a set of
events is selected from each text stream/node. For example,
S1(e11)-S2(e21) is an event tree for the streams of Figure 2,
where the event e11 (resp. e21) is selected from S1 (resp. S2).
An event tree T is also characterized by its start and end
time, T.start and T.end, respectively, which are defined as
follows: T.start = mint {eij.t | eij∈T} and T.end = maxt {eij.t
| eij∈T}.
The score of an event tree T is

∑ ∈

=

TSSedge
yx

yx SSa),(),(
1

1score(T)
 (1)

which ensures that larger trees receive smaller score. If we
would take the sum of the weights instead, then the score
of an event tree would increase as the event tree gets bigger
which is counterintuitive, since smaller event trees
typically correspond to tighter association. For example,
the score of S1(e11)-S2(e21) is 0.2. Notice that the score of an
event tree only depends on the corresponding streams and
not on the particular events.

Continuous Keyword Query

Definition 2 [Continuous Keyword Query] A continuous
keyword query (simply called query henceforth)
q:=(q.keywords, q.matchingWindow, q.associationThreshold)
consists of a set of keywords
q.keywords:=(kw1,…,kwm)∈(A*)N, a time window length
q.matchingWindow, and a real number
q.associationThreshold .
The answer of a query q on a set S of text streams is a
sequence of all event trees T with the following properties:
1. T (specifically, the events in T) contains all keywords in

q.keywords, and

t1

“Florida hurricane is catastrophic”

t2

“The efforts after the hurricane
in Florida”

“Microsoft releases new XBOX”

t1
“Housing prices
rise”

t1

t2

“Oil prices fall.”

associationWindow

Query = {‘Florida’, ‘Hurricane’, ‘Housing’}

tnow

S1

S2

S3

e11 e12

e21

e31

e22

e32

“Ninja Gaiden:
Hurricane Pack for
XBOX”

t2

S1 S2

S3

0.2

-0.77 -0.51

2. T is minimal, that is, we cannot remove any leaf (an
event of a leaf stream or a leaf stream altogether) and
still have all keywords contained, that is, there is no leaf
event e∈T such that keywords(e)⊂keywords(T-e), and

3. the events in T occur within a window of time length
q.matchingWindow, that is,
T.end-T.start ≤ q.matchingWindow, and

4. T is the maximum spanning tree1 on the subgraph GT of
G that only contains the nodes/streams of T, and

5. score(T) ≥ q.associationThreshold. �

The fourth property is used to ensure that the strongest
connections between the text streams of a result are used to
construct the event tree. For example, consider an event
tree T consisting of the three streams in Figure 3. Then, T
can only be S3-S1-S2, but not S1-S3-S2 or S1-S2-S3, where the
particular events for each stream are omitted for
conciseness. The reason is that a(S1,S2) and a(S1,S3) are the
two largest association weights.
For instance, the query in Figure 2 has the following
answer: S2(e21,e22), S1(e11)-S2(e22). The second result would
be missed by a traditional alert system. Also note that
S1(e11)-S3(e31) is not an answer because streams S1 and S3
are not correlated (see Figure 3).

4. CHALLENGES AND OVERVIEW OF
OUR APPROACH
Given the previous work in keyword proximity search
[GSVG98, BNH+02, ACD02, HP02], a direct approach of
answering a continuous keyword query q, is to repeatedly
apply a keyword proximity algorithm for each new event.
In particular, one could execute the following algorithm for
every new event of the text stream set S;
• First, construct a document D(S) for each text stream S

that contains S.description concatenated with the
contents of all events of S with timestamp not older
than
tnow-q.matchingWindow2.

• Second, compute the text stream graph G for the
association window [tnow-associationWindow,tnow].

• Third, construct the document graph GD by replacing
each node S of G with D(S).

• Finally, execute a keyword proximity search algorithm
on GD to compute all event trees.

1 The opposite of a minimum spanning tree, since higher edge

weights denote higher association in our problem.
2 To be more formal, we should create a node for each event and

connect nodes/events of the same stream with an edge with
infinite weight.

The described algorithm is very expensive and inefficient
because for every new event, all structures need to be
initialized and recomputed from scratch. In particular, for
each new event an expensive join to find all event trees has
to be computed. This returns all combinations of text
streams that contain all keywords and are also minimal. In
addition to that, the weights of the text stream graph G are
recomputed for each event. An alternative solution would
be to execute this algorithm periodically (e.g., every 10
min). This approach, however, compromises the
responsiveness of the system, which deviates significantly
from the desired real-time.

5. INCREMENTALLY COMPUTE EVENT
TREES
In Definition 2, matchingWindow is a property of the query
q. However, to simplify the explanation of the tree
algorithm as well as the complexity analysis we introduce
an equivalent dynamically-changing threshold L, which
specifies time in terms of number of query-related events.
A query-related event eQR has the following property:
q.keywords ∩ eQR.content ≠ ∅. Therefore, they characterize
events containing at least one of the query keywords. For
example, if q.matchingWindow=1h and in the last hour 15
query-related events have arrived, then L=15. In order to
simplify the analysis of the algorithm complexity we adapt
the use of L as a measure of the window length.

The key idea of the algorithm is to maintain a forest C of
query-related events (i.e., events that contain some query
keyword), where each path from a root to a leaf represents
a combination of events ordered by ascending timestamps.
Each level of C corresponds to a single event e and each
node of this level determines if e is considered in the
corresponding root-to-leaf path. Each such path becomes a
candidate result as we explain below.

Figure 4: Tree Algorithm.

TreeAlgorithm(input: query q, threshold L)
/*We assume that forest C of events is in steady state, that
is, it has depth L*/
1. x:=0 /*x is number of pruned nodes at each step*/
2. For each new event e do
 {
3. Remove from C all roots
 /*that is, all instances of the oldest
 event in C*/
4. For each of the 2L-1-pl leftmost leaves in C do
5. Add two children: null and e
 /*a pointer to e is stored*/
6. pl:=0 /*pl is number of pruned leaves*/
7. For each non-null leaf node u created in Line 4 do
8. If keywords(e)⊆keywords(L-1 ancestors of u) then

/*keywords(e)=q.keywords∩e.content*/
 {
9. prune(u)
10. pl:=pl+1
 }
11. For each non-pruned and non-null leaf u created
 in line 4 do
 {
12. Let p be the path starting at a root of C and
 ending at u
13. T := getResult(p,q)
14. If T not null then output event tree T
 }
 }

In particular, each node on the i-th level of C 3 can either be
a special node called null node or refer to the (L-i)-th latest
event. For each new event e that contains any of the
keywords q.keywords of q, we add a new level of leaves at
the bottom of C. The candidate results (event trees) of q are
all paths from a root to a leaf in C.
Intuitively, each such path in C represents a combination of
events across a single or multiple text streams that is
minimal (removing an event from the path removes a query
keyword from it) and also different from all other paths.
Hence, if such a path contains all keywords then it satisfies
all properties of Definition 2 but the last two.
To ensure the fourth property we compute the maximum
spanning tree for the graph GT containing the text streams
in the path. Then the score of T is computed by Equation 1.
The tree algorithm is described in Figures 4 and 5 where
we assume the algorithm is in its steady state, that is, at
least L query-related events have been processed. Hence,
we do not show the special initializing conditions to handle
the first L events of the streams. Consequently, C always
has L levels.

Notice how in Line 4 of Figure 4 we only “expand” 2L-1-pl
leaf nodes. We subtract pl, which is the number of leaves
pruned in the previous step, since we do not expand pruned
leaves. The rationale behind 2L-1 is that at most 2L leaves
are needed, which is formally proven later in Theorem 1.
The pruning condition of Line 8 eliminates paths that
provably cannot lead to a minimal result in the current or
any future step (i.e., future event). Being more precise, if
the current event does not add any keyword to the path of
length L (that is, the current event plus the L-1 ancestors),
then no minimal result can be generated from this path.
Example 3: Consider query q with q.keywords:= (Florida,
mortgage), L=3, q.matchingWindow=1, and three text
streams S1, S2, S3 with the following time-interleaved
sequence of events (only the query-related events are
shown):
e1: in stream S1, e1.content = “Florida real estate is hot.”
e2: in stream S2, e2.content = “I live in Florida.”

3 more formally, on the i-the level of a tree in C

e3: in stream S3, e3.content = “More people apply for
mortgage.”
e4: in stream S1, e4.content = “Florida is growing.”
e5: in stream S2, e5.content = “People move to Florida.”

Also assume for simplicity that the association weights
between S1, S2, S3 are fixed to a(S1,S2)=1.5, a(S1,S3)=0.5,
a(S2,S3)=1.2.
Figure 6 shows snapshots of the forest C after e3, e4 and e5.
Solid-line circles denote leaf nodes that correspond to a
result, and dotted-line circles are the nodes that do not
output a result, because the score of the event tree is less
than q.associationThreshold. Furthermore, we cross out
leaf nodes that are pruned due to the condition of line 8 of
Figure 4.
One can observe that only the 2L-1=4 leftmost leaf nodes
are expanded, and also only L levels are stored at any time.
Also, we note that in this example the maximum spanning
trees computed in Figure 5 are simply single edges since
only two stream nodes are in graph GT for any candidate
result.�

6. EXPERIMENTS
In our experiments we used the Enron emails dataset (see
[KY04] for a description). After cleaning the data we
ended up with 217,087 distinct emails, which we partition
into 147,917 email threads as follows. Two emails u, v
belong to the same thread if all of the following apply:
• There is at least one common participant (sender or

recipient) between u and v.
• The subjects of u, v are the same modulo “Re:”, “Fw:”

prefix
• The timestamps of u, v differ by at most 3 months.
The emails of the dataset correspond to events in our
framework, where the timestamp is the email timestamp
and the content is the combination of the subject and the
body. (The email subject could also be viewed as part of
the description.) Therefore, now an email thread
corresponds to a stream of text.
In order to evaluate the performance of the Tree algorithm,
we separate the execution of the algorithm from the edge
weights calculation. That is, the times reported in this
section do not include the time for the graph maintenance,
which for this experiment are already precomputed.
Additionally, since the Tree algorithm is executed for each
query-related event (i.e., an event that contains at least one
of the query keywords), we measure the execution time per
query-related event.

Figure 5: Event tree computation algorithm.

getResult(input: path p, query q)
1. If events in p do not contain all keywords in
 q.keywords then
2. return null
3. Construct subgraph GT of G that contains all
 event-nodes in p
4. Compute maximum spanning tree of text streams V of GT
5. Construct event tree T from V by replacing each
 text stream S by its events in p
6. If score(T)≥q.associationThreshold then
7. return T
8. return null

Figure 6: Snapshots of forest C in Tree algorithm.

We measure the query execution time per query-related
event. We utilize two keywords per query and test the
performance of the system on 50 continuous keyword
queries. In Figure 7 we report the median execution time
over all queries, in order to remove the bias of either very
short or very large queries (containing either very
infrequent or very frequent words). Clearly, the system
can return results in time less than a second, even for
large values of L (L=16), which can typically corresponds
to hundreds or thousands of events and cover a extensive
query time range.

1 3 5 8 12 16
10

-2

10
-1

10
0

10
1

10
2

10
3

L

Ti
m

e
(m

se
c)

2 keywords, median response time

Figure 7: Median execution times for varying L.

7. REFERENCES
[ABB+02] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon

McAlister, Jennifer Widom: Characterizing Memory
Requirements for Queries over Continuous Data
Streams. PODS 2002

[ACD02] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer:
A System For Keyword-Based Search Over
Relational Databases. ICDE, 2002

[AN04] Ahmed Ayad, Jeffrey F. Naughton: Static
Optimization of Conjunctive Queries with Sliding
Windows Over Infinite Streams. SIGMOD 2004

[BHP04] A. Balmin, V. Hristidis, Y. Papakonstantinou:
Authority-Based Keyword Queries in Databases
using ObjectRank. VLDB, 2004

[BNH+02] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti
and S,Sudarshan: Keyword Searching and Browsing
in Databases using BANKS. ICDE, 2002

[CGMR05] Graham Cormode, Minos N. Garofalakis, S.
Muthukrishnan, Rajeev Rastogi: Holistic Aggregates
in a Networked World: Distributed Tracking of
Approximate Quantiles. SIGMOD 2005

[FCFP05] Cristian Fiorentino, Mariano Cilia, Ludger Fiege,
Alejandro P. Buchmann: Building a Configurable
Publish/Subscribe Notification Service. DAIS 2005

[FJL+01] Françoise Fabret, Hans-Arno Jacobsen, François
Llirbat, João Pereira, Kenneth A. Ross, Dennis
Shasha: Filtering Algorithms and Implementation for
Very Fast Publish/Subscribe. SIGMOD 2001

[FLN01] R. Fagin, A. Lotem, M. Naor. Optimal aggregation
algorithms for middleware. PODS, 2001

[GGR03] Sumit Ganguly, Minos N. Garofalakis, Rajeev
Rastogi: Processing Set Expressions over Continuous
Update Streams. SIGMOD 2003

[GSVG98] R. Goldman, N. Shivakumar, S.
Venkatasubramanian, H. Garcia-Molina: Proximity
Search in Databases. VLDB, 1998

[HGP03] V. Hristidis, L. Gravano, Y. Papakonstantinou:
Efficient IR-Style Keyword Search over Relational
Databases. VLDB, 2003

[HP02] V. Hristidis, Y. Papakonstantinou: DISCOVER:
Keyword Search in Relational Databases. VLDB,
2002

[HVVY06] Vagelis Hristidis, Oscar Valdivia, Michalis
Vlachos, Philip S. Yu: Continuous Keyword Search
on Multiple Text Streams. Poster paper, ACM CIKM
2006

[IAE03] Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid:
Supporting Top-k Join Queries in Relational
Databases. VLDB 2003

[KY04] B. Klimt and Y. Yang. Introducing the Enron corpus.
First Conference on Email and Anti-Spam (CEAS),
2004

 [RSS05] RSS 2.0 Specification.
http://blogs.law.harvard.edu/tech/rss, 2005

[ZKOS05] Rui Zhang, Nick Koudas, Beng Chin Ooi, Divesh
Srivastava: Multiple Aggregations Over Data
Streams. SIGMOD 2005

e1 ∅

e2 ∅

e3 ∅ e3 ∅

e2∅

e3 ∅ e3 ∅

e4 ∅ e4 ∅ e4 ∅ e4 ∅

∅ e3

e4 ∅ e4 ∅

e5 ∅ e5 ∅ e5 ∅ e5 ∅

(a) (b) (c)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

