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ABSTRACT 
An increasing amount of data is produced in the form of text 
streams − these can be RSS news feeds, TV closed captions, 
emails, etc. We study the problem of answering keyword queries 
on multiple textual streams. We define the result of a keyword 
query inspired by previous work on keyword search on static 
databases. A result to a query is a combination of streams 
“sufficiently correlated” to each other that collectively contain all 
query keywords within a specified time span. On the algorithmic 
side, in this paper we focus on the component of continuously 
monitoring the streams and outputting results as soon as they are 
available.  

Keywords: text streams, keyword search, continuous 
queries 

1. INTRODUCTION 
An increasing amount of data is produced in the form of 
text streams − these can be RSS news feeds, TV closed 
captions, emails, etc. We explore techniques for extracting 
useful information from a collection of text streams. The 
scenario that we consider is quite intuitive; let’s assume 
that a professional analyst would like to continuously be 
informed about occurrences of a topic, a topic that can be 
described by several keywords.  Information can be 
provided by various feeds in a streaming fashion. In order 
to motivate better our example with recent events, let us 
consider the case of a journalist that might be interested in 
tracking down people’s stories in the state of Florida and 
how they perceive that recent hurricane events affect 
housing prices. Chat streams and newsgroups can provide a 
wealth of information on opinions of individuals. 
Assuming that there is a mechanism for extracting the text 
feeds from such sources (since they are channeled 
unencrypted), the interested user can set up a continuous 
query on a collection of streams of the form: {Florida, 
hurricane, housing}. 

The tackled problem has common characteristics to the 
areas of keyword search on databases and subscription/alert 
services (e.g., Google Alerts). We briefly elaborate on the 
differences to these areas. 
Keyword search on databases provides support for 
discovery of associations between the query keywords in a 

structured or semistructured database; the keywords of the 
query do not have to be present in the same document, but 
can reside at different locations. However, the data sources 
are inherently static or updated in a batch fashion, and there 
is no notion of streaming and evolving textual data. The 
posed queries address only a specific time snapshot of the 
database. That is, keyword search techniques are not 
designed to efficiently tackle the incremental data additions 
and removals of streaming data, or even to progressively 
update correlations between the modified data sources. 
Alert systems over text sources, on the other hand, can 
provide support for streaming sources. The result in this 
case is any instance of a stream that contains all query 
keywords within a specified time span. However, each 
stream is typically processed separately and the execution 
is equivalent to independently posing the continuous query 
on each of the streams. Notice that inter-correlations 
between different sources are ignored, and all keywords of 
the query are expected to reside on the same stream. 
However, considering the associations between the textual 
sources is very important, not only for limiting the false 
hits (explained below) of a keyword search algorithm, but 
also for allowing extended search capabilities, where 
fragments of the posed query can exist within different text 
streams.  
In this work we borrow ideas from both these areas to 
facilitate keyword search over a time span on multiple 
textual streams, taking their correlations into account. The 
proposed system allows the inclusion of the inherent 
temporal dimension into the problem, enabling the 
execution of more complex keyword queries with temporal 
constraints, where the keywords don’t have to reside in the 
same stream, but can be distributed over different streams. 
In order to avoid multiple spurious matching between 
streams of data that are unrelated to each other, we also 
impose the additional constraint for the results to exist 
within “sufficiently” correlated streams of data. For 
instance, if stream A mentions the words ‘Florida’ and 
‘housing’ and stream B mentions ‘hurricane’, but stream B 
is a cocktails’ recipes stream (‘hurricane’ is a name of a 
cocktail), then the combination of streams A and B is not a 
good answer to the query. The reason is that streams A and 
B are not correlated, as they discuss different domains. Due 
to lack of space we do not show how the stream * Partly supported by NSF grant IIS-0534530. 



associations within a time window are defined and 
computed. An overview of the architecture is provided in 
Figure 1.  
The applications of the above framework are quite 
extensive: 
1. Subscription services, alert and recommendation 

systems that inform users of streams containing 
individual preferences. 

2. Intelligent monitoring of a server’s text content, either 
for the purposes of enforcing filtering mechanisms, or 
for categorizing and classifying the textual content 
more accurately. 

3. More efficient collection, filtering and understanding 
of the diverse news feeds (closed captioning, CNN 
headlines, etc) for media people (e.g. journalists). 

4. Better understanding and analysis of social or 
streaming networks, through correlation analysis of the 
textual chains of messages (e.g. from chat server 
messages or email logs). 

5. Crime prevention through more efficient monitoring of 
unencrypted (or lightly encrypted) Internet text 
channels by law enforcement or government entities. 

 

 
Figure 1: Overview of the proposed methodology. 

In our work, we present algorithms that can efficiently 
query a multiplicity of text streams given a set of 
keywords. Matches are identified within a specified time 
window and are presented in real-time, by assembling 
together relevant pieces of information from multiple 
associated streams. The high-performance of the 
algorithms is due to their incremental nature. The 
algorithms perform a minimal amount of computation for 
each new stream event (new piece of data transmitted 
through a stream) in order to examine for a potential new 
result, given specified user preferences. A high level 
illustration of the proposed methodology is provided in 
Figure 1. 
In our solution, we segregate the problem of maintaining 
the association degrees between the text streams, from the 

problem of assembling and producing the results in a 
pipelined manner. Additionally, we identify and compare 
alternative strategies which are preferable for different 
problem settings. 
The contributions of this paper are the following: 
1. We formally define the problem of keyword search 

across multiple text streams. We also identify the key 
user-defined parameters to calibrate the results. 

2. We present efficient algorithms that can assemble, 
process and output query results in real-time, i.e., as 
they become available.  

3. To evaluate the quality of the results, as well as the 
performance of the proposed algorithms, we conduct a 
case study using the publicly available ENRON email 
dataset, as our experimental testbed. We adapt this 
dataset in our system prototype, by viewing email 
threads as continuous text streams.  

2. RELATED WORK 
There has been a great corpus of work [ACD02, BNH+02, 
GSVG98, HGP03, HP02] on keyword proximity search on 
static databases. These works follow various techniques to 
overcome the NP-completeness of the Group Steiner 
problem, to which the keyword proximity search problems 
can be reduced. ObjectRank [BHP04], which returns single 
objects and not associations between objects as the above 
work, ranks the results of keyword queries using the 
authority flow factor. However, all this work assumes that 
the data is static and the time dimension of the problem is 
not taken into account. 
Top-k ranked query works [FLN01] compute efficiently 
the top results given ranked lists of attribute values for the 
set of objects, whereas top-k ranked join queries Ilyas et al. 
[IAE03] compute the top results of a join given a ranking 
function. In contrast to our problem, the set of objects is 
static and there is no notion of time. 
Subscription systems [FJL+01,FCFP05] answer continuous 
user queries by examining documents in separation, in 
contrast to this work where we combine information from 
various streams to construct a result. 
The area of query processing in streams has received much 
attention [ABB+02, AN04, CGMR05, ZKOS05]. These 
works tackle traditional queries with emphasis on the 
efficient aggregation, load balancing and stream 
dissemination. In contrast, our work focuses primarily on 
the stream analytic part, providing estimations on query-
specific associations between the streams. We have 
presented a preliminary problem description in a recent 
poster [HVVY06]. 
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3. NOTATION AND DESCRIPTION OF 
THE PROBLEM  
Definition 1 [Text Stream] A text stream S:=(S.description, 
S.participants,S.events) consists of a description, an 
(optional) list of participants and a continuous and 
asynchronous sequence of events S.events:=(e1,,e2,…) of 
the form e:=(e.t, e.content), where timestamp e.t denotes 
the occurrence of event and content e.content is a text 
string associated with e. Therefore, a stream S∈A* × (R× 
A*)N, A = {a,b,..z}* and an instance of it is 
Si:=(Si.description, Si.participants,((Si.ei1.t, Si.ei1.content), 
(Si.ei2.t, S.ei2.content),…)), where the notation eij describes 
the event j of stream Si . The subscript i may be omitted 
during the course of the paper when the stream reference is 
not ambiguous in the current context.  � 
The description S.description is a text string providing a 
concise explanation of the stream content (e.g., the 
description element of the channel in RSS [RSS05]. For 
example for a news feed from CNN, this field can hold the 
value: “CNN news”, while an event e can contain the title 
of a news event. The participants’ field is empty in the case 
of a news stream, however can be utilized when 
transmitting chat data (e.g. chat session). For this situation 
an event is a single message of a participant of the chat 
session. Timestamp is the time the message was submitted 
and content is the text of the message. (Content could also 
include the sender of the message, but this complicates 
things since the list of participants of a stream is stored 
separately as we explain later.) The above notation only 
attempts to provide a high level abstraction of the problem, 
without going into details of the actual structural data 
organization into XML, which is not within the scope of 
this work. 
We assume there is a set S={S1,…,Sp} of p text streams. For 
example, p chat sessions occur concurrently. 
The association weight a(Sx,Sy) between two text streams 
Sx, Sy denotes how relevant these text streams are. We do 
not discuss the computation of a(Sx,Sy) in this paper. 

 
Figure 2: Representation of streaming textual content. 

Text stream graph 
Given a set S of text streams and the association weights 
between them, we construct the undirected text stream 
graph G(S,E) by creating a node for each text stream in S 
and an edge with weight a(Sx,Sy) between each pair Sx, Sy 
of text stream nodes with nonzero association weight 
a(Sx,Sy).�  

 
Figure 3: Text stream graph for streams of Figure 2. 

Figure 3 shows a possible text stream graph for the streams 
of Figure 2. 
Event tree  
A text stream tree Q is a subtree of G. For example, S1-S2 
is a text stream tree (path in this case) for the graph of 
Figure 3. An event tree T is a stream tree, where a set of 
events is selected from each text stream/node. For example, 
S1(e11)-S2(e21) is an event tree for the streams of Figure 2, 
where the event e11 (resp. e21) is selected from S1 (resp. S2). 
An event tree T is also characterized by its start and end 
time, T.start and T.end, respectively, which are defined as 
follows: T.start = mint {eij.t | eij∈T} and T.end = maxt  {eij.t 
| eij∈T}. 
The score of an event tree T is  
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which ensures that larger trees receive smaller score. If we 
would take the sum of the weights instead, then the score 
of an event tree would increase as the event tree gets bigger 
which is counterintuitive, since smaller event trees 
typically correspond to tighter association. For example, 
the score of S1(e11)-S2(e21) is 0.2. Notice that the score of an 
event tree only depends on the corresponding streams and 
not on the particular events. 

Continuous Keyword Query 

Definition 2 [Continuous Keyword Query] A continuous 
keyword query (simply called query henceforth) 
q:=(q.keywords, q.matchingWindow, q.associationThreshold) 
consists of a set of keywords 
q.keywords:=(kw1,…,kwm)∈(A*)N, a time window length 
q.matchingWindow, and a real number 
q.associationThreshold . 
The answer of a query q on a set S of text streams is a 
sequence of all event trees T with the following properties: 
1. T (specifically, the events in T) contains all keywords in 

q.keywords, and 
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2. T is minimal, that is, we cannot remove any leaf (an 
event of a leaf stream or a leaf stream altogether) and 
still have all keywords contained, that is, there is no leaf 
event e∈T such that keywords(e)⊂keywords(T-e), and 

3. the events in T occur within a window of time length 
q.matchingWindow, that is, 
T.end-T.start ≤ q.matchingWindow, and 

4. T is the maximum spanning tree1 on the subgraph GT of 
G that only contains the nodes/streams of T, and 

5. score(T) ≥ q.associationThreshold. � 
 
The fourth property is used to ensure that the strongest 
connections between the text streams of a result are used to 
construct the event tree. For example, consider an event 
tree T consisting of the three streams in Figure 3. Then, T 
can only be S3-S1-S2, but not S1-S3-S2 or S1-S2-S3, where the 
particular events for each stream are omitted for 
conciseness. The reason is that a(S1,S2)  and a(S1,S3) are the 
two largest association weights.  
For instance, the query in Figure 2 has the following 
answer: S2(e21,e22), S1(e11)-S2(e22). The second result would 
be missed by a traditional alert system. Also note that 
S1(e11)-S3(e31) is not an answer because streams S1 and S3 
are not correlated (see Figure 3). 

4. CHALLENGES AND OVERVIEW OF 
OUR APPROACH 
Given the previous work in keyword proximity search 
[GSVG98, BNH+02, ACD02, HP02], a direct approach of 
answering a continuous keyword query q, is to repeatedly 
apply a keyword proximity algorithm for each new event.  
In particular, one could execute the following algorithm for 
every new event of the text stream set S;  
• First, construct a document D(S) for each text stream S 

that contains S.description concatenated with the 
contents of all events of S with timestamp not older 
than 
tnow-q.matchingWindow2.  

• Second, compute the text stream graph G for the 
association window [tnow-associationWindow,tnow].  

• Third, construct the document graph GD by replacing 
each node S of G with D(S).  

• Finally, execute a keyword proximity search algorithm 
on GD to compute all event trees.  

                                                           
 
1 The opposite of a minimum spanning tree, since higher edge 

weights denote higher association in our problem. 
2 To be more formal, we should create a node for each event and 

connect nodes/events of the same stream with an edge with 
infinite weight. 

The described algorithm is very expensive and inefficient 
because for every new event, all structures need to be 
initialized and recomputed from scratch. In particular, for 
each new event an expensive join to find all event trees has 
to be computed. This returns all combinations of text 
streams that contain all keywords and are also minimal. In 
addition to that, the weights of the text stream graph G are 
recomputed for each event. An alternative solution would 
be to execute this algorithm periodically (e.g., every 10 
min). This approach, however, compromises the 
responsiveness of the system, which deviates significantly 
from the desired real-time.  

5. INCREMENTALLY COMPUTE EVENT 
TREES 
In Definition 2, matchingWindow is a property of the query 
q. However, to simplify the explanation of the tree 
algorithm as well as the complexity analysis we introduce 
an equivalent dynamically-changing threshold L, which 
specifies time in terms of number of query-related events.  
A query-related event eQR has the following property: 
q.keywords ∩ eQR.content ≠ ∅. Therefore, they characterize 
events containing at least one of the query keywords. For 
example, if q.matchingWindow=1h and in the last hour 15 
query-related events have arrived, then L=15. In order to 
simplify the analysis of the algorithm complexity we adapt 
the use of L as a measure of the window length.  

 

 
The key idea of the algorithm is to maintain a forest C of 
query-related events (i.e., events that contain some query 
keyword), where each path from a root to a leaf represents 
a combination of events ordered by ascending timestamps. 
Each level of C corresponds to a single event e and each 
node of this level determines if e is considered in the 
corresponding root-to-leaf path. Each such path becomes a 
candidate result as we explain below. 

Figure 4: Tree Algorithm. 

TreeAlgorithm(input: query q, threshold L) 
/*We assume that forest C of events is in steady state, that 
is, it has depth L*/ 
1. x:=0 /*x is number of pruned nodes at each step*/ 
2. For each new event e do 
   { 
3.   Remove from C all roots  
     /*that is, all instances of the oldest 
       event in C*/ 
4.   For each of the 2L-1-pl leftmost leaves in C do 
5.      Add two children: null and e  
        /*a pointer to e is stored*/ 
6.   pl:=0 /*pl is number of pruned leaves*/ 
7.    For each non-null leaf node u created in Line 4 do 
8.    If keywords(e)⊆keywords(L-1 ancestors of u) then 

/*keywords(e)=q.keywords∩e.content*/ 
      { 
9.       prune(u) 
10.      pl:=pl+1 
      } 
11.  For each non-pruned and non-null leaf u created
      in line 4 do 
      { 
12.   Let p be the path starting at a root of C and
       ending at u  
13.    T := getResult(p,q) 
14.    If T not null then output event tree T 
     } 
   } 



In particular, each node on the i-th level of C 3 can either be 
a special node called null node or refer to the (L-i)-th latest 
event. For each new event e that contains any of the 
keywords q.keywords of q, we add a new level of leaves at 
the bottom of C. The candidate results (event trees) of q are 
all paths from a root to a leaf in C. 
Intuitively, each such path in C represents a combination of 
events across a single or multiple text streams that is 
minimal (removing an event from the path removes a query 
keyword from it) and also different from all other paths. 
Hence, if such a path contains all keywords then it satisfies 
all properties of Definition 2 but the last two. 
To ensure the fourth property we compute the maximum 
spanning tree for the graph GT containing the text streams 
in the path. Then the score of T is computed by Equation 1. 
The tree algorithm is described in Figures 4 and 5 where 
we assume the algorithm is in its steady state, that is, at 
least L query-related events have been processed. Hence, 
we do not show the special initializing conditions to handle 
the first L events of the streams. Consequently, C always 
has L levels. 

 

 
Notice how in Line 4 of Figure 4 we only “expand” 2L-1-pl 
leaf nodes. We subtract pl, which is the number of leaves 
pruned in the previous step, since we do not expand pruned 
leaves. The rationale behind 2L-1 is that at most 2L leaves 
are needed, which is formally  proven later in Theorem 1. 
The pruning condition of Line 8 eliminates paths that 
provably cannot lead to a minimal result in the current or 
any future step (i.e., future event). Being more precise, if 
the current event does not add any keyword to the path of 
length L (that is, the current event plus the L-1 ancestors), 
then no minimal result can be generated from this path. 
Example 3: Consider query q with q.keywords:= (Florida, 
mortgage), L=3, q.matchingWindow=1, and three text 
streams S1, S2, S3 with the following time-interleaved 
sequence of events (only the query-related events are 
shown): 
e1: in stream S1, e1.content = “Florida real estate is hot.” 
e2: in stream S2, e2.content = “I live in Florida.” 
                                                           
 
3  more formally, on the i-the level of a tree in C 

e3: in stream S3, e3.content = “More people apply for 
mortgage.” 
e4: in stream S1, e4.content = “Florida is growing.” 
e5: in stream S2, e5.content = “People move to Florida.” 
 
Also assume for simplicity that the association weights 
between S1, S2, S3 are fixed to a(S1,S2)=1.5, a(S1,S3)=0.5, 
a(S2,S3)=1.2. 
Figure 6 shows snapshots of the forest C after e3, e4 and e5. 
Solid-line circles denote leaf nodes that correspond to a 
result, and dotted-line circles are the nodes that do not 
output a result, because the score of the event tree is less 
than q.associationThreshold. Furthermore, we cross out 
leaf nodes that are pruned due to the condition of line 8 of 
Figure 4. 
One can observe that only the 2L-1=4 leftmost leaf nodes 
are expanded, and also only L levels are stored at any time.  
Also, we note that in this example the maximum spanning 
trees computed in Figure 5 are simply single edges since 
only two stream nodes are in graph GT for any candidate 
result.� 
 
6. EXPERIMENTS 
In our experiments we used the Enron emails dataset (see 
[KY04] for a description). After cleaning the data we 
ended up with 217,087 distinct emails, which we partition 
into 147,917 email threads as follows. Two emails u, v 
belong to the same thread if all of the following apply:  
• There is at least one common participant (sender or 

recipient) between u and v. 
• The subjects of u, v are the same modulo “Re:”, “Fw:” 

prefix 
• The timestamps of u, v differ by at most 3 months. 
The emails of the dataset correspond to events in our 
framework, where the timestamp is the email timestamp 
and the content is the combination of the subject and the 
body. (The email subject could also be viewed as part of 
the description.) Therefore, now an email thread 
corresponds to a stream of text.  
In order to evaluate the performance of the Tree algorithm, 
we separate the execution of the algorithm from the edge 
weights calculation. That is, the times reported in this 
section do not include the time for the graph maintenance, 
which for this experiment are already precomputed. 
Additionally, since the Tree algorithm is executed for each 
query-related event (i.e., an event that contains at least one 
of the query keywords), we measure the execution time per 
query-related event.  

 

Figure 5: Event tree computation algorithm. 

getResult(input: path p, query q) 
1.  If events in p do not contain all keywords in
      q.keywords then 
2.     return null 
3. Construct subgraph GT of G that contains all
     event-nodes in p 
4.  Compute maximum spanning tree of text streams V of GT 
5.  Construct event tree T from V by replacing each
     text stream S by its events in p 
6.  If score(T)≥q.associationThreshold then 
7.     return T  
8.  return null 



 
Figure 6: Snapshots of forest C in Tree algorithm. 

We measure the query execution time per query-related 
event. We utilize two keywords per query and test the 
performance of the system on 50 continuous keyword 
queries. In Figure 7 we report the median execution time 
over all queries, in order to remove the bias of either very 
short or very large queries (containing either very 
infrequent or very frequent words). Clearly, the system 
can return results in time less than a second, even for 
large values of L (L=16), which can typically corresponds 
to hundreds or thousands of events and cover a extensive 
query time range. 
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Figure 7: Median execution times for varying L. 
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