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Abstract—Authority flow techniques like PageRank and ObjectRank
can provide personalized ranking of typed entity-relationship graphs.
There are two main ways to personalize authority flow ranking:
Node-based personalization, where authority originates from a set
of user-specific nodes; Edge-based personalization, where the im-
portance of different edge types is user-specific. We propose the
first approach to achieve efficient edge-based personalization using
a combination of precomputation and runtime algorithms.

In particular, we apply our method to ObjectRank, where a per-
sonalized weight assignment vector (WAV) assigns different weights
to each edge type or relationship type. Our approach includes a
repository of rankings for various WAVs. We consider the following
two classes of approximation: (a) SchemaApprox is formulated as
a distance minimization problem at the schema level; (b) DataAp-
prox is a distance minimization problem at the data graph level.
SchemaApprox is not robust since it does not distinguish between
important and trivial edge types based on the edge distribution
in the data graph. In contrast, DataApprox has a provable error
bound. Both SchemaApprox and DataApprox are expensive so we
develop efficient heuristic implementations, ScaleRank and PickOne
respectively. Extensive experiments on the DBLP data graph show
that ScaleRank provides a fast and accurate personalized authority
flow ranking.

Index Terms—object search, personalization, PageRank, approxi-
mation algorithms

1 INTRODUCTION
The success of PageRank [1] in ranking Web pages resulted
in many flavors of authority flow-based ranking techniques
for data in entity-relationship graphs [2], [3], [4], [5].
A key feature of ranking in entity-relationship graphs is
that they provide intuitive personalization opportunities by
adjusting the authority flow parameters associated with each
edge type or relationship type. Authority originates from a
query- or user-specific set of objects, and spreads via edges
whose authority flow weights is determined by their edge
(relationship) type. For instance, a paper-to-paper citation
edge may have a higher authority flow weight than the
paper-to-author edge in a bibliographic data graph.

Two fundamental approaches have been proposed to
personalize authority flow ranking: (a) Node-based per-
sonalization: a personalized base set, i.e., the authority
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originates from a query- or user-specific set of objects;
(b) Edge-based personalization: personalized weight as-
signment vector (WAV) which assigns a weight to each
edge (relationship) type. We use ObjectRank [4], [6] as an
exemplar of this latter class.

Both approaches are computationally expensive and do
not support interactive response times for on-the-fly and
scalable personalization. Authority flow techniques typi-
cally require dozens of iteration across the data graph.
Previous work [2], [7], [8], [9], [10], [11], [12] has ad-
dressed the performance of the node-based personalization
approach. There is no work to facilitate efficient computa-
tion of edge-based personalization. Our specific challenge is
on-the-fly execution of authority flow fixpoint computation
for a user-specific or query-specific weight assignment
vector (WAV). While we use ObjectRank as an exemplar,
our approach is applicable to other authority flow ranking
techniques like [13], [14].

Given a keyword query, ObjectRank [4], [6] first com-
putes the base set of nodes in the data graph that contain
the query keywords. Then, authority flows from the base
set to the whole data graph, until the authority scores on
the nodes converge (Equation 3). The nodes with the top
score are returned. The authority transfer edges of the data
graph are represented by a transition matrix. More details
are presented in Section 2.1.

Figure 1 [6] shows the authority transfer schema graph
for DBLP, a bibliographic database for computer science
publications [15]. There are 8 edge types and each edge
type is associated with a numeric value representing the
personalized authority weight in WAV Θ; e.g., a weight of
0.2 for the edge type from Paper to Author. It has been
argued that iteratively adjusting the WAVs on the DBLP
graph is an effective query refinement mechanism [16].

As another example, consider the biological Web at the
NIH [17]; we show a subset of its authority transfer schema
graph in Figure 2. As explained in Varadarajan et al. [5],
a biologist user may assign more importance (higher edge
weight) to a protein-to-protein edge type, whereas another
user may assign a higher importance to a paper-to-paper
citation edge type.

Since users submit their queries and personalized WAV
Θ on-the-fly, a key challenge is to compute personalized
rankings online and to quickly provide answers to the
user. Clearly, computing each personalized ranking at query



2

Fig. 1. The DBLP authority transfer schema graph in
ObjectRank ([6]).

Fig. 2. Biomedical authority transfer schema graph.

time will not support online ranking. The other extreme
of computing all possible personalized rankings a priori
and storing them is infeasible. Our solution is a pragmatic
hybrid solution. We will maintain a repository of pre-
computed rankings. At query time, an approximate per-
sonalized ranking may be computed using some chosen set
of pre-computed candidate rankings from the repository.

Fig. 3. Incorporate personalized authority flow in
user queries.

Figure 3 illustrates how a user interacts with the ranking
system at precomputation and query times. During pre-
computation, the user-specific personalized WAV can be
computed in two ways: (a) It can be set for each user by
domain experts according to the user’s profile [5], [6]. (b)
WAV Θ is learned automatically by interacting with the
user and exploiting user relevance feedback as explained
in [16]. At query time, the system selects m candidate
rankings from the repository, which are used to estimate
the ranking for the requested Θ. This personalized ranking

is input to the Query Execution module, which combines
this ranking with other query-specific or query-independent
factors and returns the query results.

Note that the authority flow ranking of the entities is
just one of the factors used for ranking. In the same
spirit, PageRank [1] was presented as a query-independent
ranking of the pages, which is then combined with query-
specific factors. We assume the same setting here.

Example: For the schema graph of Figure 1, a user who
believes that citations are the only important authority
vote in a bibliographic database, may have WAV Θ =
(0.3, 0.3, 0.3, 0.1, 0.7, 0, 0.2, 0.2), which corresponds to the
edge weights shown on the figure. Note that the paper
citation edge has weight 0.7. Another user who believes that
a good author almost always authors good papers, could
have Θ = (0.3, 0.3, 0.3, 0.1, 0.3, 0, 0.4, 0.8), where the last
coordinate corresponds to the Author-to-Paper edge. These
WAVs are computed either automatically using [16] or by
a domain expert.

The goal of this paper is to facilitate efficient
ObjectRank execution for varying WAVs. Suppose
that the repository of rankings contains rankings
for WAVs: Θ1 = (0.7, 0.3, 0.3, 0.1, 0.2, 0, 0.2, 0.2),
Θ2 = (0.3, 0.3, 0.3, 0.1, 0.7, 0.2, 0.2, 0.2), Θ3 =
(0.1, 0.3, 0.1, 0.1, 0.1, 0, 0.2, 0.3). Our algorithms select a
subset with m of these rankings and appropriately combine
them to efficiently compute the ranking for the user WAV
Θq , without having to execute the expensive iterative
ObjectRank algorithm. �

We consider the following challenges for our repository
based approximation approach: (1) The best m candidate
rankings must be selected at query time. (2) The m rankings
must be appropriately combined in order to estimate the
ranking for the given personalized WAV. (3) The approx-
imate personalized ranking should be close to the ideal
ranking so as to guarantee high quality. (4) The approximate
ranking should be computed efficiently.

This paper makes the following contributions:
• Consider a user WAV Θq , its transition matrix Aq for

ObjectRank computation, and the ideal ranking Rq .
We consider the following two classes of approxima-
tion algorithms: (a) SchemaApprox is defined at the
schema level and employs a least squares formulation
to choose the m-best candidates so that the combined
Euclidean distance of these m candidates Θcomb, to
Θq , is minimized. (b) DataApprox is defined at the
data level. DataApprox computes a weighted combi-
nation of m candidate rankings; to do so it solves an
optimization problem so that the maximum norm (δ),
over all elements of the aggregate transition matrix of
DataApprox and Aq , is minimized.

• We prove that DataApprox has provable error bounds.
We introduce the concept of an aggregate surfer and
prove an authority flow linearity theorem for authority
flow rankings.

• DataApprox and SchemaApprox are too expensive to
facilitate interactive query response. ScaleRank and
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PickOne are two heuristics. ScaleRank chooses m
candidates from the repository based on their Eu-
clidean distance to Θq of the user; this is inspired
by SchemaApprox and hence ScaleRank can also be
viewed as a hybrid algorithm combining SchemaAp-
prox and DataApprox. ScaleRank applies linear pro-
gramming to solve the DataApprox optimization prob-
lem, and explores techniques to reduce the search so
that it can be applied to large data graphs. PickOne is
a greedy solution to SchemaApprox.

• We conduct extensive experiments to evaluate the
execution time and the quality for ScaleRank and
PickOne, i.e., how close the approximate ranking is to
the ideal ranking Rq . The experiments are conducted
on the complete DBLP dataset. We use the well known
Spearman’s Footrule distance [18] as a proxy for the
quality of the solution. ScaleRank outperforms Pick-
One in quality while achieving fast response times.

The paper is organized as follows. Section 2 reviews
background and related work. Section 3 defines approx-
imations SchemaApprox and DataApprox and proves the
linearity theorem for authority flow weights. Section 4
anayzes the errors of the two approaches. Section 5 de-
scribes the system architecture and Section 6 presents the
ScaleRank algorithm and its analysis. Experimental results
are described in Section 7, and we conclude in Section 8.

2 BACKGROUND AND RELATED WORK

2.1 Authority Flow Ranking: The ObjectRank Al-
gorithm
Given a keyword query, ObjectRank [4], [6] first computes
the base set of nodes in the data graph that contain the
query keywords. Then, authority flows from the base set
to the whole data graph, until the authority scores on the
nodes converge (Equation 3). The nodes with the top score
are returned. As mentioned in Section 1, we focus on the
WAV personalization and hence we assume the base set is
the whole graph (referred as Global ObjectRank in [6]).
That is, when we say ObjectRank, we usually mean Global
ObjectRank.

ObjectRank personalizes ranking in Entity-Relationship
graphs; it models nodes as entity types and groups edges
by their edge type or semantic type. Authority flow is
personalized by a weight assignment vector (WAV) Θ for
the semantic edge types. In Figure 1, there are 8 edge types.

The transition matrix AOR of ObjectRank depends
on the authority transfer Θ specified on the schema
graph; however, AOR is defined at the level of the
data graph. To demonstrate the relationship of the
ObjectRank transition matrix and the PageRank transition
matrix, without loss of generality we assume that
the objects of the same type are grouped together.
Consider an authority transfer schema graph with t
entity types. The weight assignment vector (WAV) Θ =
{α1,1, α1,2, ..., α1,t, α2,1, α2,2, ..., α2,t, ..., αt,1, αt,2, ..., αt,t}
represents the authority transfer weights. AOR contains
t × t submatrices. Each submatrix entry of the transition

Fig. 4. Authority Flow Instance Graph

matrix AOR is multiplied by the authority transfer weight
for the corresponding semantic edge type. AOR can be
expressed as follows:

AOR =


α1,1A1,1 α1,2A1,2 · · · α1,tA1,t

α2,1A2,1 α2,2A2,2 · · · α2,tA2,t

...
...

...
αt,1At,1 αt,2At,2 · · · αt,tAt,t

 (1)

The submatrix Ap,q contains authority transfer proba-
bilities from objects of type p to objects of type q. Let
eT (vi, vj) be the semantic type of edge (vi, vj) in the
data graph. Let α(eT (vi, vj)) denote the weight assignment
for eT (vi, vj). OutDeg(vi, e

T (vi, vj)) is the number of
outgoing edges from page vi, of type eT (vi, vj). The
submatrix Ap,q is defined as follows:

Ap,q[i, j] =

{ 1
OutDeg(vi,eT (vi,vj))

if (vi,vj) exists
0 otherwise.

(2)
Example: Figure 4 shows an instance of the authority
transfer schema graph in Figure 1, where we show that the
BLINKS SIGMOD 2007 paper cites the ObjectRank VLDB
2004 paper. Note that the weights would change if the rest
of the graph is added, e.g., the 0.7 flow from BLINKS to
ObjectRank would be divided by the number of citations
of BLINKS. If we order the 4 nodes as Y1,Y2,P1,P2, then:

AOR =


0 0 0.3 0
0 0 0 0.3

0.1 0 0 0
0 0.1 0.7 0


�

Let ATOR denote the transpose of AOR. The ObjectRank
vector ROR is recursively defined as follows in Equation
3:

ROR = εATOR ·ROR + (1− ε)P (3)

where P is a vector that specifies the nodes of the graph
that are the authority sources. In ObjectRank, P specifies
the nodes that contain the query keywords (all nodes for
Global ObjectRank).

In addition to ObjectRank, which is an extension of the
PageRank authority flow ranking method, HITS [19] or its
extensions [20] may also be used for authority flow-based
personalization.
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2.2 Approximation methods

The node-based personalization problem as well as a cor-
responding linearity theorem has been studied in [2], [7],
[8], [9], [10]. The approach in [8] is based on a linearity
theorem that is used to combine multiple personalized
PageRank vectors. Let vector vP be the personalization
vector that replaces P ; then the personalized PageRank
equation is as follows:

RP = εAT ·RP + (1− ε)vP (4)

RP is the personalized PageRank vector (PPV) for vP .
Theorem 1: (The Linearity Theorem) [8], [10] For any

personalization vectors vP1 and vP2, if RP1 and RP2 are
the two corresponding PPVs, then for any constants β1, β2
≥ 0 such that β1 + β2 = 1,

β1RP1+β2RP2 = εAT ·(β1RP1+β2RP2)+(1−ε)(β1vP1+β2vP2)

Based on Theorem 1, [10] proposed a technique that en-
codes personalized ranking vectors as partial vectors. They
also presented efficient dynamic programming algorithms.
In [7], an algorithm that simulates random walks is used to
pre-compute an index database of personalized PageRank
vectors (fingerprints). [2], [9] consider using a personal-
ized base set on entity-relationship graphs. They do not
consider personalized weight assignments a la ObjectRank.
HubRank [2] employs query log statistics to select a small
fraction of nodes, and computes and stores fingerprints for
these nodes. A small subgraph is identified at query time to
form approximate personalized PageRank vectors. BinRank
[9] stores subgraphs such that any keyword query can
be answered by performing ObjectRank on one subgraph.
lgOR [5] is an extension of ObjectRank that is tailored to
a layered graph; this is a restricted graph where there can
only be edges between nodes in adjacent layers. A graph-
sampling technique is applied to approximate the lgOR
scores. The problem is reduced to estimating a subgraph
for the result graph, such that with high confidence the
relative error of computing lgOR on the subgraph is small.
The sampling technique of lgOR was only applied to a
layered graph and cannot be applied directly to approximate
ObjectRank on a general graph. PopRank [13] applied the
idea of authority flow rankings to Web objects. A simple
simulated annealing algorithm is presented to learn a good
query-independent weight assignment. Given a ranking,
[16] learns the WAV for every user and query using
relevance feedback. A preliminary version of this work,
with no error bounds, ScaleRank optimizations or detailed
experimentation, was published as a workshop paper [21].

2.3 Non-Authority Flow Personalization

We summarize alternative approaches to personalization.
Trust and similarity have been used to compute person-
alized rankings [22]. These concepts are captured from
explicit user input and implicit user behavioral patterns to
describe the user’s taste and preference. [23] consider the
Web community of a specific user in personalization. Past
interactions of the user with the search engine are used to

improve future search results. For each Web community,
its neighborhoods including the documents linked to, or
from, documents in the community are determined. The
query answers are ordered to reflect the number of times
these community neighborhoods have been visited. [24],
[25], [26], [27] proposed adapting search results based on
users’ history, navigational history, browsing history, or
query history. There are multiple data mining techniques
that can be applied to extract usage patterns from Web logs
[24], [25].

Albeit the various personalization works, there is no
technique to approximate edge-based personalization for
authority-flow ranking.

3 APPROXIMATION USING A REPOSITORY

3.1 The Problem Definition
Consider user WAV Θq , the ObjectRank transition matrix
Aq , and ranking Rq . Our problem can be described infor-
mally as follows: Given a set of M candidate rankings in a
repository, choose the m best candidates using some metric
and appropriately combine their rankings, so that it provides
an approximate ranking of the highest quality, compared
to Rq . The objective for the concrete problem needs to
satisfy the following requirements: 1) We should choose
an appropriate distance metric to choose the candidate
rankings. 2) The distance should be easy to compute. 3)
The distance metric should be correlated to the approxima-
tion quality (e.g., Spearman’s Footrule). We expect that a
stronger correlation will improve the choice of candidate
rankings and the approximation quality. We formalize the
problem as follows:

Problem statement:
Let S = {(Θ1, R1), (Θ2, R2), · · · , (ΘM , RM )} be the
ranking repository of M precomputed ranking vectors and
their corresponding weight assignment vectors. Let Θq be
the user weight assignment vector. The goal is to approx-
imate the authority flow ranking for Θq efficiently, with
the maximal quality, by utilizing the precomputed ranking
vectors in the repository.

3.2 Distances to Choose Candidate Rankings
Consider q, WAV Θq , transition matrix Aq , and ranking Rq .
Further consider any candidate Θcand , Acand and Rcand

from the repository that may be used to approximate Rq .
For SchemaApprox, defined at the schema level, we

consider a schema level metric to choose candidates;
SchemaApprox should minimize the distance of this metric
between Θcand and Θq . We considered the Euclidean
distance π = ||Θcand − Θq||2 and the first norm π1

= ||Θcand −Θq||.
For DataApprox, defined at the level of the data graph,

we consider an objective function that will minimize the
distance between Acand and Aq . Let matrix Adiff =
Acand − Aq . The difference between Acand and Aq can
be naturally represented by the matrix norms of Adiff . The
definition for entry-wise matrix norm is an extension to
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Fig. 5. The correlation between π and Spearman’s
Footrule distance (SchemaApprox).

the definition for vector norm [28]. Using the p-norm for
vectors, we have the following:

‖Adiff ‖p =

 m∑
i=1

n∑
j=1

|Adiff [i, j]|p
1/p

When p = 2, this is the Frobenius norm, and when p =∞
this is the maximum norm. The alternatives for the distance
to be considered for DataApprox are as follows:
• The maximum norm for Adiff ,

δ = max{i,j}{|Adiff [i, j]|}.
• The 1-norm for Adiff , σ =

∑
i,j |Adiff [i, j]|.

• The Frobenius norm for Adiff , φ =√∑
i,j Adiff [i, j]2.

It is widely accepted that an order based ranking is
the best measure of quality. We therefore consider the
well known Spearman’s Footrule Distance [29] between the
approximate ranking R and the ideal ranking Rq as a proxy
for the quality of our approximate solutions. Unfortunately,
minimizing an order based ranking is theoretically very
difficult; thus, we are unable to apply an order based
ranking when solving SchemaApprox or DataApprox.

To empirically understand the correlation behavior
between the distance metrics that are minimized by
SchemaApprox or DataApprox, and the Spearman’s
Footrule distance, we generate a ranking repository with
1000 random authority flow rankings for the DBLP dataset.
We consider a test set of 20 user WAVs Θq , where non-
zero edge weights are used only for Paper-Paper and Paper-
Author edges, i.e., authority flows only on these edge
types. The purpose of this experiment is to see which
distance measures seem to correlate more strongly with the
ranking distance; these measures are then used to guide
our optimization challenge. Note that in our evaluation,
reported in Section 7, we considered several test WAVs
where many (all) edge types may be assigned non-zero
values.

Fig. 6. The correlation between δ and Spearman’s
Footrule distance (DataApprox).

We compute the distances π1 and π used for SchemaAp-
prox, as well as the 3 norms δ, σ and φ used for
DataApprox, over the 20 user WAVs; we report on the
average over the 20 user WAVs. We also compute the
average Spearman’s Footrule Distance over the 20 user
WAVs. Figure 5 is a scatterplot of the distance π against
the Spearman’s Footrule distance. Figure 6 is the corre-
sponding plot for δ. Each point in the plot is a candidate
ranking in the repository. The lines in the figures are the
linear trendlines. The correlation coefficients are 0.4191 (δ),
0.3459 (σ), 0.4036 (φ), 0.45968 (π) and 0.40815 (π1). We
conclude that the matrix norm δ seems to be the best metric
for DataApprox and the Euclidean distance π is best for
SchemaApprox.

Note that the correlation for π appears higher than that
for δ for this test set of WAVs; these WAVs only have
a non-zero edge weight for the Paper-Paper and Paper-
Author edges. This no longer holds for the richer test WAVs
of Section 7, where all edge weights may have non-zero
values. A related discussion of the pros and cons of solving
SchemaApprox or DataApprox is (somewhat) independent
of the relative correlation of π or δ; this discussion is
presented in Section 3.3.

3.3 Solution Approaches

SchemaApprox: Approximation at the schema level
Recall that SchemaApprox uses the Euclidean distance π.

Let Θcomb be a linear combination of m weight assignment
vectors (WAVs) selected from the repository S . The goal
is to find β values used to combine the m WAVs, such that
the Euclidean distance π between the linear combination
Θcomb and the user WAV Θq is minimized.

SchemaApprox is defined as follows:
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minimize π = ||Θcomb −Θq||2
subject to:

Θcomb =
∑m
l=1 βlΘl∑m

l=1 βl = 1
0 ≤ βl for all 1 ≤ l ≤ m

(5)

DataApprox: Approximation at the data graph level
First, we introduce the linearity theorem, which is proved

below. Given two weight assignment vectors, there exists a
random walk that is defined by combining their independent
random walks; the ranking vector is a linear combination
of the two independent ranking vectors.

Theorem 2: (Authority Transfer Weights Linearity
Theorem) Let R1 and R2 be two ranking vectors for
weight assignment vectors Θ1 and Θ2 respectively. Let A1

and A2 be the corresponding transition matrices. Let β1,
β2 be constants such that β1, β2 ≥ 0 and β1 + β2 =
1. For a random walk with transition matrix A, where
A[i, j] = β1A1[i,j]R1[i]+β2A2[i,j]R2[i]

β1R1[i]+β2R2[i]
, the ranking vector is

R = β1R1 + β2R2.
To be more general, Theorem 2 is extended to m surfers

as follows: We are given a set of m weight assignment
vectors and their corresponding ranking vectors S =
{(Θ1, R1), (Θ2, R2), · · · , (Θm, Rm)}. Let Al be the tran-
sition matrix for Θl. We define the behavior of an aggregate
surfer with transition matrix Aagg(S) as follows:

Aagg(S)[i, j] =

∑m
l=1 βlAl[i, j]Rl[i]∑m

l=1 βlRl[i]
(6)

From Theorem 2 and particularly from its generalization
(Equation 6) we infer that if we select m rankings and
compute appropriate β’s to combine them such that
Aagg(S)[i, j] =

∑m
l=1 Al[i,j]Rl[i]βl∑m

l=1 Rl[i]βl
is close to Aq , then∑

i=1...m βi ·Ri is a good approximation of Rq . We define
the DataApprox optimization problem as follows:

minimize δ
subject to:

|Aagg(S)[i, j]−Aq[i, j]| ≤ δ, for all (i, j)∑m
l=1 βl = 1
0 ≤ βl for all 1 ≤ l ≤ m

(7)

3.4 Proof and Intuitive View of Theorem 2
Proof: We first show that A is row stochastic given

that A1 and A2 are row stochastic. We know that∑n
j=1A1[i, j] = 1 and

∑n
j=1A2[i, j] = 1. For any row

i, we have:∑n
j=1A[i, j] =

β1R1[i]
∑n

j=1 A1[i,j]+β2R2[i]
∑n

j=1 A2[i,j]

β1R1[i]+β2R2[i]

= β1R1[i]+β2R2[i]
β1R1[i]+β2R2[i]

= 1

If we complement the random walk with jumps from
dangling pages then the Markov Chain we defined is
irreducible and aperiodic. The ranking scores converge to
a unique vector R. Next we show that R converges to
β1R1 + β2R2.

β1R1 + β2R2

= β1(εAT1 R1 + (1− ε)P ) + β2(εAT2 R2 + (1− ε)P )
= ε(β1A

T
1 R1 + β2A

T
2 R2) + (β1 + β2)(1− ε)P

= ε(β1A
T
1 R1 + β2A

T
2 R2) + (1− ε)P

Let v1 = β1A
T
1 R1 + β2A

T
2 R2 and v2 = AT (β1R1 +

β2R2). Next we show that v1 = v2. For the j-th entry
v1[j] in vector v1, we have:

v1[j]
= β1(

∑n
i=1A1[i, j]R1[i]) + β2(

∑n
i=1A2[i, j]R2[i])

=
∑n
i=1 β1A1[i, j]R1[i] + β2A2[i, j]R2[i]

=
∑n
i=1

β1A1[i,j]R1[i]+β2A2[i,j]R2[i]
β1R1[i]+β2R2[i]

(β1R1[i] + β2R2[i])

=
∑n
i=1A[i, j](β1R1[i] + β2R2[i])

= v2[j]

Since β1AT1 R1 +β2A
T
2 R2 = AT (β1R1 +β2R2), we have:

β1R1 + β2R2 = εAT (β1R1 + β2R2) + (1− ε)P

This concludes the proof that R = β1R1 + β2R2.
An intuitive view of Theorem 2 (Authority Transfer

Weights Linearity Theorem) is that if we know the behavior
of two individual random surfers, that is, the way they
“surf” (A1, A2) and the expected probability of being at
each page (R1, R2), then for a new random surfer, who
“surfs” in a way that combines the two surfers, specifically
β1A1[i,j]R1[i]+β2A2[i,j]R2[i]

β1R1[i]+β2R2[i]
where β1 and β2 are constants,

then the expected probability of the new surfer being at
each page (R) is a linear combination of R1 and R2:
R = β1R1+β2R2. We call this random surfer an aggregate
surfer.

3.5 Complexity of SchemaApprox

SchemaApprox, which is defined in Equation 5, can be
solved using an approach to solve the Least Squares Prob-
lem [30]. A linear system of equations is overdetermined
if there are more equations than unknowns, which often
requires an approximate solution; it is as follows:

n∑
j=1

Xijβj = yi, (i = 1, 2, · · · ,m)

There are m linear equations, n unknowns (β1, β2, · · · , βn),
and m > n. Let X be the m × n matrix representing all
coefficients Xij and β be the vector of all βj . The system
can be written as Xβ = y.

Since an overdetermined system usually has no solution,
the goal is to find the β vector that is the closest to
satisfying all the equations. Least squares is one of the
commonly used approximation criterion. The intuition is
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to minimize the distance between Xβ and y. The least
squares problem formulation is as follows:

argminβ

m∑
i=1

|yi −
n∑
j=1

Xijβj |2 = argminβ ||y −Xβ||2

The least squares problem can be solved using the
Singular Value Decomposition (SVD) of a matrix [31].
SVD is an important factorization of matrix. The SVD of
an m × n matrix X can be computed in O(mn2) using a
2-stage algorithm [30].

Given that the SchemaApprox problem can be mapped
to the least squares problem, the only known approach to
solve SchemaApprox has cubic complexity.

The complexity of DataApprox is discussed in Section 6.

4 ERROR ANALYSIS FOR SCHEMAAPPROX
AND DATAAPPROX

4.1 SchemaApprox
The properties that describe the behavior of SchemaAp-
prox are unknown, i.e., there is no linearity theorem that
describes the behavior of a random walk based on Θcomb,
with respect to the random walk based on Θq . The reason,
intuitively, is that SchemaApprox operates on the schema
graph instead of the data graph, and hence it ignores much
of the information of the data graph. In particular, since
SchemaApprox minimizes π, based on Θq defined at the
schema level, it is insensitive to the properties of the actual
data graph, in particular, the edge distribution for the
different edge types.

In the rest of this section, we demonstrate a linearity
theorem and error bound for DataApprox that is dependent
on δ; recall that δ is a maximum bound on the distance
between any element of the approximate transition matrix
ADA chosen by DataApprox, and AOR, the ideal tran-
sition matrix. Since SchemaApprox does not utilize the
edge distribution of the data graph, we know that it will
not be associated with a similar maximum bound on the
distance between any element of the approximate transition
matrix ASA chosen by SchemaApprox, and AOR, the ideal
transition matrix. Further, our experiments will show that
the data graph has a significant impact on the quality of the
approximation.

To summarize, SchemaApprox can be reduced to a
problem with cubic complexity. The approximate solution,
represented by the transition matrix ASA, cannot provide
an error bound on the quality of SchemaApprox. For all of
these reasons, we do not attempt to solve SchemaApprox,
but instead rely on a heuristic as will be discussed in
Section 7.

4.2 DataApprox
In this section, we provide a bound on the error correspond-
ing to the ranking vector produced by DataApprox when it
combines m candidate rankings. We use the L1 distance, a
score-based distance, to determine the error; this distance
is often used for error analysis. However, we note that the

order of rankings and metrics such as P@K is more relevant
to the user. Therefore, we report on the Spearman’s Footrule
distance [32] in our evaluation in Section 7.

The intuition behind the bound is as follows: Using
the Authority Weights Linearity Theorem, the DataApprox
ranking is described as a linear combination of candidate
rankings. Simultaneously, the ranking for the aggregate
surfer can be computed by applying traditional iterative
approaches to reach convergence [1], [6], [33]. Thus, we
can apply the iterative approach to obtain a bound.

Let RDA and ROR be the ranking vectors from DataAp-
prox (approximate) and ObjectRank (exact) respectively,
each with length n, where n is number of nodes in the
graph. Let |E| be the number of edges in the graph. We
will derive the L1 distance between RDA and ROR, ‖
RDA−ROR ‖1. Let RrDA and RrOR be the ranking vectors
after the r-th iteration from DataApprox and ObjectRank.
We first derive the error bound for the base case when
r = 1.

Lemma 4.1: After the first iteration, the DataApprox
ranking vector R1

DA satisfies the following:

‖ R1
DA −R1

OR ‖1≤ ε|E|δ

Proof:

‖ R1
DA −R1

OR ‖1
(i) =

∑n
j=1 |R1

DA[j]−R1
OR[j]|

(ii) =
∑n
j=1 |ε

∑n
i=1ADA[i, j] · 1 + (1− ε)d(j)

−ε
∑n
i=1AOR[i, j] · 1− (1− ε)d(j)|

(iii) = ε
∑n
j=1

∑n
i=1 |ADA[i, j]−AOR[i, j]|

(iv) ≤ ε|E|δ

We first expand the L1 distance by the definition. In
Equation ii, we calculate R1

DA[j] and R1
OR[j] assuming

initial scores for DataApprox and ObjectRank are all 1s.
d(j) represents the probability to jump to page vi. In
ObjectRank, d(j) = 1/|S| if page vj contains the keyword,
where |S| is the number of pages that contain the keyword;
otherwise, d(j) = 0. We replace |ADA[i, j]−AOR[i, j]| by
δ in Inequality iv, which is specified by Equation 7. Since
the number of non-zero entries in the graph is the number
of edges |E|, we concludes the proof in Inequality v.

Next we develop the error bound for the L1 distance
‖ RrDA −RrOR ‖1 after r iterations.

Lemma 4.2: After an arbitrary positive integer r > 1
iterations, the DataApprox ranking vector RrDA satisfies:

‖ RrDA −RrOR ‖1≤ ε ‖ Rr−1DA −R
r−1
OR ‖1 +εδn
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Proof:

‖ RrDA −RrOR ‖1
(i) =

∑n
j=1 |RrDA[j]−RrOR[j]|

(ii) =
∑n
j=1 |ε

∑n
i=1ADA[i, j] ·Rr−1DA [i] + (1− ε)d(j)

−ε
∑n
i=1AOR[i, j] ·Rr−1OR [i]− (1− ε)d(j)|

(iii) = ε
∑n
j=1

∑n
i=1 |ADA[i, j] ·Rr−1DA [i]

−AOR[i, j] ·Rr−1OR [i]|
(iv) ≤ ε

∑n
j=1

∑n
i=1 |ADA[i, j]Rr−1DA [i]−

ADA[i, j]Rr−1OR [i]|+ ε
∑n
j=1

∑n
i=1 δR

r−1
OR [i]

(v) ≤ ε
∑n
j=1

∑n
i=1ADA[i, j]|Rr−1DA [i]−Rr−1OR [i]|

+εδ
∑n
j=1

∑n
i=1R

r−1
OR [i]

(vi) ≤ ε
∑n
i=1 |R

r−1
DA [i]−Rr−1OR [i]|

∑n
j=1ADA[i, j]

+εδ
∑n
j=1

∑n
i=1R

r−1
OR [i]

(vii) ≤ ε
∑n
i=1 |R

r−1
DA [i]−Rr−1OR [i]|+ εδ

∑n
j=1 1

(viii) ≤ ε ‖ Rr−1DA −R
r−1
OR ‖1 +εδn

The idea of the first three equations in the proof is
identical to the proof for Lemma 4.1, except that the scores
from previous iteration are Rr−1DA and Rr−1OR instead of all
1s in Equation ii. Inequality iv is derived based on the con-
straint that |ADA[i, j] − AOR[i, j]| ≤ δ. Reorganizing the
terms leads to Inequality v and (vi). Because the transition
matrix ADA is column stochastic,

∑n
j=1ADA[i, j] = 1.

Considering
∑n
i=1R

r−1
OR [i] = 1, the inequality is reduced

to vii. The definition of L1 distance concludes proof.
We are now ready to prove the main theorem:
Theorem 3: (DataApprox Error Bound)

‖ RDA −ROR ‖1≤ δ
ε

1− ε
n

Proof:

‖ RrDA −RrOR ‖1
≤ ε ‖ Rr−1DA −R

r−1
OR ‖1 +εδn

≤ ε(ε ‖ Rr−2DA −R
r−2
OR ‖1 +εδn) + εδn

≤ ε2 ‖ Rr−2DA −R
r−2
OR ‖1 +(ε2 + ε)δn

≤ εr|E|δ + (εr + εr−1 + · · ·+ ε)δn

When the number of iterations r becomes infinity, this gives

‖ RDA −ROR ‖1≤ δ
ε

1− ε
n

Previous works [34] have studied the problem of PageR-
ank perturbation stability assuming few edges are changed.
In particular, [34] showed that PageRank is not rank-stable,
that is, even small changes on the graph may lead to big
changes on the ranking. In our case, modifying Θq may
potentially change all edges in the graph. This gives a
bigger importance to the bound of the above theorem, given
the relatively weak correlation of the graph matrix and the
ranking. Further, in Section 7 we show that this theoretical
bound translates to close ranking approximation in practice.

The theorem shows that when δ is very small, DataAp-
prox gives accurate ranking. Another interesting observa-
tion is that the error bound increases with ε, whereas in the
case of PageRank perturbation, it has been shown [35] that
the error decreases with ε. The reason is that in the case
of perturbation, for large ε, the scores of high-score nodes

are influenced by thousands of paths and hence removing a
few edges does not make a difference. On the other hand,
in our problem, larger ε means that the authority transfer
weights are multiplied by a larger constant and hence small
differences in authority bounds translate to large differences
in weights and hence to larger errors.

5 SCALERANK ARCHITECTURE

In this section we discuss the architecture of the ScaleRank
system which is an approximation of DataApprox; the
algorithm is in Section 6. Figure 7 shows the architecture
of ScaleRank. The input is a personalized WAV Θq; the
output are the top K objects based on the personalized
authority score. ScaleRank maintains a repository of M
candidate rankings. For each candidate ranking, its WAV
Θcand, and its ranking vector Rcand, are stored. Given
Θq , the Candidate Ranking Selector selects m candidate
rankings from the M in the repository. We place a bound
on m candidates since m can impact the running time as
will be seen. ScaleRank then finds an efficient solution to
DataApprox and determines β1, . . . , βm, the best way to
combine these m rankings to compute the approximation∑m
i=1 βi · Ri of Rq . Finally a top K algorithm is used to

produce the top K objects.

Fig. 7. The system architecture

Materializing candidate rankings in the repository:
The set of rankings in the repository affects the quality of
our approximation. Ideally, we would pre-compute rankings
for each user’s WAV. This is not feasible since the number
of users may be huge and users may keep changing their
WAVs.

A natural way to materialize candidate rankings is to
generate a grid to represent all possible weight assignments
in Θ for a given granularity, e.g., for each edge type in the
semantic graph, we can select W distinct values that are
uniformly spread over some desired range. One drawback
is that we would have to generate a very large number of
candidate rankings in order to provide a uniform coverage
of all the points in the grid. A small value of W may not
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provide uniform coverage of the grid of values of Θ and
may produce poor candidate rankings.

To overcome this limitation, we generate M (e.g. 1000)
candidate rankings by randomly generating the values of
Θ; each candidate can be considered to correspond to a
randomly selected point of the grid. We found that this
random method provides good uniform coverage of the
grid.

For each candidate ranking i in the repository, its weight
assignment vector Θi and its ranking vector Ri are ma-
terialized. The repository can be represented by a set
{(Θ1, R1), (Θ2, R2), · · · , (ΘM , RM )}.
The candidate rankings selector:
Among the M candidate rankings in the repository, we
choose the m best candidate rankings. The intuition is that
we use the best candidates in the repository to produce
the combined ranking vector, to avoid the prohibitive cost
of combining all candidates in the repository. Therefore,
we use the Euclidean distance ||Θq − Θi||2 between Θq

and each candidate Θi. As we discuss below, this gives
ScaleRank some of the benefits of SchemaApprox, which
picks candidates based on the Θ’s. By referring to a subset
of relevant ranking candidates, ScaleRank is capable to
process much larger datasets compared to DataApprox.
The ScaleRank algorithm:
Given the m best candidates, ScaleRank finds an efficient
solution to DataApprox. Note that the m best candidates are
selected using their WAV only (which is very fast), that is,
using SchemaApprox semantics. Hence, ScaleRank can be
also viewed as a hybrid algorithm that uses SchemaApprox
(π) distance as a first filter and then solves DataApprox
in the next stage. We emphasize however, that ScaleRank
approximates DataApprox in the second stage and it is
not an approximation for SchemaApprox. ScaleRank is
discussed in detail in the next section.
Creating a Merged Top K Ranking:
The problem of combining multiple ranking vectors (sorted
lists) to output the Top K objects is well studied and
there are numerous efficient algorithms [36], [37], [38].
For example, the well known TA algorithm [38] deals with
monotone functions to aggregate the ranking scores. The
weighted sum of the ScaleRank algorithm is a monotone
function. Hence, we use TA to produce the Top K objects.

6 THE SCALERANK ALGORITHM

6.1 The algorithm
The DataApprox problem is to solve Equation 7 where
Aagg(S)[i, j] =

∑m
l=1 Al[i,j]Rl[i]βl∑m

l=1 Rl[i]βl
. The first constraint of

Equation 7 sets an upper bound for the difference between
two matrices. The intuition behind ScaleRank (Figure 8)
is that the optimization problem of Equation 7 can be
solved by solving a series of feasibility problems without
addressing the objective function, that is, one can choose a
δ and check if the constraints hold. Since δ is the absolute
value of the difference between two entries of the two
transition matrices, it is in the range [0, 1]. Therefore, we
can use binary search to find the minimum δ with upper

bound u = 1 and lower bound l = 0. The search continues
until |u − l| < τ , where τ is the user defined accuracy
requirement. Given the candidate rankings S, the data
graph G, the query weight assignment Θq , and accuracy
requirement τ for δ, we describe the ScaleRank algorithm
as follows:

Algorithm ScaleRank(S, G, Θq , τ )
1. u = 1, l = 0
2. min δ = u
3. while (u− l ≥ τ ) do
4. δ = (u+ l)/2
5. if (Feasibility(S, G, Θq , δ))
6. min δ = δ
7. u = δ
8. else
9. l = δ
10. return min δ

Fig. 8. The outline of the ScaleRank algorithm.

The algorithm ScaleRank finds the minimum δ such
that the optimization problem in Equation 7 is feasible, and
stores the β vector which produces min δ in Feasibility
algorithm. The while loop is usually executed for around
10 times if we choose accuracy requirement τ = 0.001.
The Feasibility procedure in Line 5 of algorithm solves the
Linear Programming problem of Equation 7 without the
objective function, that is, for a given δ.

6.2 Reduce the complexity of the feasibility prob-
lem
ScaleRank repeatedly solves a linear programming (LP)
problem. The Simplex algorithm can typically provide
solutions to the LP problem efficiently in practice. There
are |E| non-zero matrix entries, where |E| is the number of
edges in the graph. Recall that m is the number of candidate
rankings and τ be the accuracy requirement for the LP
problem. The binary search to satisfy accuracy requirement
takes at most dlog2 1

τ e iterations. Next, we consider several
techniques to reduce the number of constraints of the LP.

6.2.1 One constraint per semantic type
The first constraint of Equation 7 can be rewritten as
follows with the help of Equation 6:

|
m∑
l=1

βlRl[i](Al[i, j]−Aq[i, j])|−δ
m∑
l=1

βlRl[i] ≤ 0 for all (i, j)

(8)

where in the first constraint of Equation 7, we replace
Aagg(S)[i, j] by Equation 6.

The constraint of Equation 8 addresses the transition
entry differences between the new random walk and ex-
isting random walks. For an important page vi, if vi
leads to thousands of pages, does this imply thousands of
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constraints? We will show we can reduce the number of
constraints dramatically. To do this, we reformulate this
constraint.

We look into the authority flow ranking definition.
Let eT (vi, vj) be the semantic type of edge (vi, vj).
α(eT (vi, vj)) denotes the weight assignment for eT (vi, vj)
in the new query, and αl(e

T (vi, vj)) denotes the weight
assignment for eT (vi, vj) in candidate weight assignment
l. OutDeg(vi, e

T (vi, vj)) is the number of outgoing edges
from page vi, of type eT (vi, vj). According to the authority
flow ranking definition, Aq[i, j] =

α(eT (vi,vj))
OutDeg(vi,eT (vi,vj))

.
Equation 8 becomes as follows:

|
m∑
l=1

βlRl[i]
αl(e

T (vi, vj))− α(eT (vi, vj))
OutDeg(vi, eT (vi, vj))

|− δ
m∑
l=1

βlRl[i] ≤ 0

(9)

From Equation 9, it is clear that for outgoing edges from
page vi, if they belong to the same semantic type, the same
constraint holds. Therefore, for outgoing edges, the number
of constraints can be reduced to the number of semantic
types departing from page vi.

6.2.2 Restricting to U constraints
PageRank-style ranking scores typically conform to a
power law distribution with the Top K pages having very
high scores [39]. Table 1 lists the sum of the normalized
ranking scores of the Top K pages; K ranges from 20 to
2000, for a data graph with 1707898 nodes.

Top K 20 100 500 1000 1500 2000
Sum 0.1302 0.6349 0.9732 0.9858 0.9888 0.9905

TABLE 1
The sum of scores of the Top K pages.

Equation 9 describes the constraints for a node vi for
each of its outgoing edge types eT (vi, vj).

If page vi is assigned high ranking score in existing
ranking Rh, then the similarity of the weight assignment
Θh to the query weight assignment Θq has more impact. In
our LP formulation, we consider Top K pages in all selected
candidate rankings. This way, we do not underestimate
the impact of important pages from any selected candidate
ranking. Let U be the cardinality of the union of the Top K
objects from the m candidates. The number of constraints
would be U in the LP formulation. Other ways to define
U are also possible.

6.2.3 The range for δ
For each edge type T going from an object of type p to an
object of type q (i.e., T = eT (vi, vj) if vi, vj are of type
p, q respectively), it is trivial that Equation 9 is satisfied if

δ ≥ uT = maxl∈1..m{|αl(T )− α(T )|} (10)

given that OutDeg(vi, e
T (vi, vj)) ≥ 1.

Generalizing on all edge types T ∈ 1..t, we know that
all instances of Equation 9 are trivially satisfied if we pick

δ ≥ u = maxT∈1..tuT (11)

Hence, to save time, instead of searching for the smallest
value for δ in [0, 1), we only search for the smallest delta
in [0, u].

7 EXPERIMENTAL EVALUATION

7.1 Experiment Description

7.1.1 The dataset
Bibliographic databases (DBLP or CiteSeer) are frequently
used to evaluate authority flow ranking [6], [2], [16]. We
use the DBLP dataset (June 2008) to build a data graph
that conforms to the schema graph of Figure 1. We crawled
CiteSeerX [40] to get additional citation links. This dataset
contains 8 edge types, 1707898 objects and 7704633 links.

We expect our results on DBLP should hold over a
wide range of datasets since the DBLP graph possesses
the typical power law edge distribution of many real-world
graphs [41]. While our experiments used a WAV vector
with at most 8 values, we think that this too is reasonable.
While some graphs, e.g., the semantic Web, may have
many edge types, it is unlikely that users would provide
a personalization vector covering more than a few edge
types.

7.1.2 Factors affecting the quality of the algorithms
Next, we discuss the impact of the dataset and WAV
characteristics. These observations will help us understand
the experimental results. When an entity type has fewer
outgoing semantic edge types, then their weights are typ-
ically higher in Θ. ObjectRank favors such edge types.
Similarly, the edge distribution at the data graph level has
an impact. Consider an object where the outdegree for one
edge type is significantly smaller than for another. Suppose
their edge weights in Θ are similar. Then ObjectRank
favors links where the outdegree is small. The β vector of
DataApprox, (Aagg(S)[i, j] =

∑m
l=1 Al[i,j]Rl[i]βl∑m

l=1 Rl[i]βl
(Equation

6)) is dominated by links with such smaller outdegree.
Finally, skew in Θq has an impact. If the weights are

similar, then authority flow is uniform. However, when
there is variance among weights, then authority flow is
skewed. We observe in our experiments that the quality
of the approximation can degrade with increasing skew in
Θq .

7.1.3 Evaluation metrics
For a given authority flow weight assignment Θq , we
compute the exact Global ObjectRank ranking vector and
the ScaleRank approximate vector. While the L1 distance
was used to obtain an error bound for ScaleRank, users are
less interested in the actual scores for results and are more
interested in the rank order. In the information retrieval
(IR) literature, metrics such as precision, precision at R
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(PR), mean average precision (MAP), recall and the F-
measure are typically applied to user evaluation of ranked
lists [42]; they work well when there is manually annotated
ground truth. An alternate metric that has been widely
used to evaluate ranking algorithms including PageRank
and personalized PageRank is the normalized Spearman’s
Footrule Distance [29] between two vectors. This metric is
appropriate in cases such as ours where there is no manually
annotated ground truth and the ranked lists produced by two
algorithms are being compared. Since there are many tied
pages with the same score, we use an extension for ranking
with ties [43]. We report on the Spearman’s Distance
averaged over up to 20 user WAVs and the complete result
(or Top K results).

Note that there are no other works that tackle the problem
of efficient personalization for varying WAVs and hence we
do not compare to previous approaches, except the original
ObjectRank execution [6].

7.1.4 Baseline algorithm PickOne

We compare ScaleRank against a baseline algorithm
PickOne. Recall that the Euclidean distance π had the
strongest correlation with the Spearman’s Footrule dis-
tance, for all candidate rankings; this was the motivation
to define SchemaApprox. The PickOne algorithm mimics
SchemaApprox. PickOne calculates the Euclidean distance
||Θq,Θcand||2 and chooses the candidate with the mini-
mum Euclidean distance. Note that PickOne satisfies the
constraint of Theorem 3.

We do not include results for a heuristic implementation
of SchemaApprox that involves combining multiple ranking
for the reasons explained in Section 4.1.

We implemented ScaleRank, PickOne and ObjectRank
in Java. Our experiments were run on a Solaris machine
with two 2.8 GHz dual-core processors and 12 GB RAM.

7.1.5 Ranking repository

Recall that we discussed strategies to generate candidate
rankings in Section 5. We generate 1000 candidate rank-
ings by randomly generating the values of Θ; each candi-
date can be considered to correspond to a randomly selected
point of the grid. The randomized method provides good
uniform coverage of the grid.

We measured the storage requirement for the Top 1000
(K = 1000) objects for 1000 (M = 1000) rankings to
be 30 MB. If we want to reduce the space, the ScaleRank
heuristic can use a smaller K as addressed in Section 6.2.2.
We experiment with K = 50 (see Figure 9) and above.

7.1.6 User and Repository WAVs

In Table 2, we show user WAVs and candidate WAVs
from the repository. The second column shows the
values for Θ for 7 edge types; they are ((con-
ference,year),(year,conference), (year,paper), (paper,year),
(paper,paper), (paper,author), (author,paper)). The is-cited-
by edge (paper,paper) has 0.0 weight.

weight assignment vector
user WAV 1 (1, 0.5, 0.5, 0.33, 0.33, 0.33, 0.1)
user WAV 2 (0.03, 0.4, 0.5, 0.05, 0.02, 0.01, 0.7)
candidate 1 (0.99, 0.18, 0.75, 0.35, 0.30, 0.23, 0.26)
candidate 2 (0.28, 0.18, 0.75, 0.37, 0.22, 0.36, 0.088)

TABLE 2
A sample of user and candidate WAVs.

7.1.7 ScaleRank parameter selection

While there are many parameters, the significant ones are
as follows: (1) M : the number of rankings in the repository;
(2) U : the number of constraints in the LP; (3) τ : a factor
to control the bound on δ. Our experiments show that the
quality of ScaleRank improves with higher values of M
and K (and hence of U ). Increasing M increases the pre-
processing time and repository space, whereas increasing
K increases execution time. The value of τ is less critical
as is observed in the running time presented in Section 7.6.
We found τ of 0.01 to be a good choice.

7.2 The impact of the Top K on ScaleRank

For this experiment we consider the m = 10 best candi-
date rankings chosen by the Candidate Ranking Selector.
We report on the ScaleRank quality (Spearman’s Footrule
distance) as we vary K, which determines the number of
constraints U . Recall from Section 6.2.2 that we consider
only U constraints in the feasibility problem corresponding
to the union of the Top K objects with greatest scores in
the m candidate rankings. We report on the average over 20
user WAVs. Figure 9 reports on the ScaleRank distance of
the whole result lists when K is varied from 50 to 500; the
corresponding number of constraints U ranges from 500 to
5000 for m = 10. The left vertical axis shows the scale for
the Spearman’s Footrule distance. The ScaleRank distance
values are represented by blue crosses, while the distance
values for PickOne are the red squares (horizontal line).
The quality of ScaleRank is much higher than PickOne.
ScaleRank improves on the distance value (approximately
30% – 40%) for this range of increasing K. Interestingly,
increasing U leads to higher delta (weaker theoretical
bound according to Theorem 2) but better error in practice,
because more nodes (constraints) are considered. PickOne
is indifferent to the value of K.

To understand ScaleRank improvement, the right vertical
axis shows the scale of the δ values and the triangles
report on the δ values for ScaleRank. As U (K) increases,
ScaleRank solves for more constraints in the LP and thus
it has a more complete view of the candidate rankings.
Thus, when U is larger, the value of δ typically increases
since the maximum norm δ is computed over a larger set
of elements in the transition matrix. However, ScaleRank
is able to benefit from the additional constraints and is able
to produce a better approximation.
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Fig. 9. The average Spearman’s Footrule distance
when the value of K is varied.

7.3 The Accuracy of the Top K (Top 100) Ranking
Results
As is well accepted in the information retrieval literature,
metrics such as precision and recall, PR, or mean average
precision (MAP) [42] are effective in determining the
accuracy and goodness of a retrieval system. In the ranking
literature, in the absence of human annotated ground truth,
the approach that has been taken is to report on the ranking
of the Top K results, e.g., the Top 100 results. The intuition
is that there is more interest in the accuracy of the Top K
results rather than results that are not in the Top K and
therefore of much less interest to the user.

Algorithm Number of user WAVs Average Distance
ScaleRank 5 0.049
ScaleRank 10 0.079
ScaleRank 15 0.120
PickOne 5 0.084
PickOne 10 0.179
PickOne 15 0.303

TABLE 3
The Spearman’s Footrule Distance for the Top 100

Ranking Results for ScaleRank and PickOne

Table 3 reports on the Spearman’s Footrule distance
for the Top 100 results of ScaleRank and PickOne. We
report for a value of K = 1000 for ScaleRank; PickOne is
indifferent to K. We report on the average distance over
5, 10, and 15 user WAVs for ScaleRank and for PickOne;
we sort the user WAVs by the result accuracy to observe
any trends. As can be observed, the range of values of the
Spearman’s Footrule distance for the Top 100 results are
much higher when compared with the distance over the
entire ranking of the results as reported in Figure 9; this is
to be expected since the Spearman’s distance is normalized
over the cardinality of the results.

What is of note is that ScaleRank provides an accurate
ranking of the Top 100 results for a majority of the user
WAVs; the average distance is as low as 0.049 for the 5
best user WAVs and increases to 0.079 for 10 user WAVs.
The average is 0.120 over all 15 user WAVs. PickOne
is a greedy heuristic and this is reflected in its rapidly

degrading performance. The average distance is 0.084 for
the 5 best user WAVs (compared to 0.049 for ScaleRank).
The distance increases rapidly to 0.179 averaged over 10
user WAVs and to 0.303 over all 15 user WAVs.

These results confirm that a greedy heuristic may provide
an inaccurate ranking of the Top 100 results and justifies
the need for a complex hybrid solution such as ScaleRank.

7.4 The impact of M on ScaleRank
Figure 10 reports on the behavior of ScaleRank and Pick-
One when we increase the number M of rankings in the
repository. We consider 10 different ranking repositories,
whose size varies from M = 100 to 1000. The δ values for
ScaleRank are the triangles, the ScaleRank distance values
are the blue crosses, and the distance for PickOne are the
red squares. When the size of the repository increases,
the value of δ for ScaleRank decreases. To explain, the
algorithm has more candidates to select m, and this leads
to the smaller feasible δ.

We observe that ScaleRank consistently outperforms
PickOne. As M increases, the ScaleRank distance shows
a decreasing trend. PickOne however does not show a
decreasing trend. Recall that PickOne is a greedy heuristic.
With larger M , PickOne may pick a new ranking with
smaller WAV distance. However, from Figure 5, we have
observed that the WAV distance π is not always correlated
with the Spearman’s Footrule distance. Thus, PickOne can
get confused by the larger M . In contrast, the ScaleRank
optimization problem typically always benefits from larger
M .

Fig. 10. The average Spearman’s Footrule distance for
varying M .

7.5 Skewed Weight assignment vector
In this experiment, we show that ScaleRank is much more
robust than PickOne, for different experiment settings. This
is because ScaleRank is sensitive to properties of the data
graph but PickOne is insensitive. We consider user WAVs
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where the authority weights are skewed. For instance,
for Θ = {0.05, 0.02, 0.03, 0.4, 0.4, 0.15, 0.2}, the sum of
outgoing weights for paper is close to 1: 0.4 + 0.4 + 0.15;
this corresponds to edge types (paper,year), (paper,paper),
(paper,author) respectively. In contrast, for the other node
types, the sum of outgoing weights is << 1. The average
distance for ScaleRank varies from 0.08 to 0.10 while the
average distance for PickOne varies from 0.18 to 0.20. For
some user WAVs, the PickOne distance was as high as 0.3.
Typically, the quality of ScaleRank is twice as good as
PickOne.

7.6 Scalerank runtime

We report on the runtime of ScaleRank and compare it to
the exact ObjectRank algorithm. Recall that the average
runtime for ScaleRank is approximately 2 seconds whereas
the exact the ObjectRank computation takes over 5 minutes
for some parameter settings.

The ScaleRank algorithm (Figure 8) employs an LP
subroutine in each iteration of the while loop in lines 3–
9. The number of iterations is a function of the choice
of the accuracy requirement τ . In experiments, we choose
τ = 0.001 which leads to good approximations. For all
cases, ScaleRank is executed for up to 10 iterations.

The ObjectRank algorithm is computed through itera-
tions until convergence. In practice, it takes around 25 iter-
ations on our data graph. In each iteration, the ObjectRank
examines all the edges in the graph.

Our analysis shows that the ScaleRank is an efficient
algorithm, since we typically choose top K less than 500
which leads to good approximation. For ObjectRank, how-
ever, there can be millions of links.

ScaleRank calls an LP solver during the binary search to
find the smallest value of δ. We used an open source LP
solver glpk [44] and its Java interface [45]. It is reported
that the commercial LP solver CPLEX is 10 to 100 times
faster than glpk [46] for a range of problems. Thus, despite
the slower execution of glpk, the execution times reported
in Figure 11 reflect that ScaleRank is efficient and can be
performed online at query time.

For the ObjectRank implementation, we set the damping
factor ε to be 0.85, which is the standard value use in
PageRank and ObjectRank, and the convergence of the
algorithms is identified when the absolute value of the L1

norm is less than 0.1. Typically this takes 25−26 iterations
to converge. The average runtime for ObjectRank on 20
user WAVs is 338 seconds; this is not shown in Figure 11
due to its different scale. Note that this runtime does not
include the preprocessing time required for the graph to be
loaded into memory.

Figure 11 reports on the initialization time, i.e., the time
to pick the m best rankings from the repository; this is
the white bar. The blue bar is the execution time, i.e.,
the time to call the LP solver multiple times. ScaleRank
typically calls the solver 9−10 times to satisfy the accuracy
requirement of τ = 0.001. As K increases, the number of
constraints K in the LP also increases.

Fig. 11. Average runtime of ScaleRank for varying
values of Top K

We conducted further experiments to determine the be-
havior of ScaleRank as we vary other parameters in the
repository. We do not provide detailed figures due to lack
of space. As we vary the number M of candidate rankings
in the repository, for Top K = 500, the initialization
time varied from 0.10 seconds to 0.35 seconds, while the
execution time varied from 0.50 to 0.80 seconds. The
total time was always below 1.0 seconds. Note that as
M increases, the runtime for ScaleRank does not always
increase. As M increases, Scalerank has more choices and
can choose a better set of m best candidates. This usually
reduces the execution time.

To summarize, despite the use of a comparatively slow
LP solver glpk, ScaleRank execution performance is very
fast and makes it an option for runtime personalization.

8 CONCLUSIONS

We addressed the challenge of approximating personal-
ized authority flow ranking. We defined two problems
SchemaApprox and DataApprox that use a repository of
rankings. We proved an Authority Transfer Weights lin-
earity theorem for the aggregate surfer; this also describes
the behavior of DataApprox and provides a bound on its
approximation accuracy. We developed a heuristic solution
ScaleRank for the DataApprox problem. Extensive experi-
ments show that ScaleRank is efficient and has good quality.
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