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Abstract. Ranked queries return the top objects of a database
according to a preference function. We present and evaluate
(experimentally and theoretically) a core algorithm that an-
swers ranked queries in an efficient pipelined manner using
materialized ranked views. We use and extend the core algo-
rithm in the described PREFER and MERGE systems. PRE-
FER precomputes a set of materialized views that provide
guaranteed query performance. We present an algorithm that
selects a near optimal set of views under space constraints.
We also describe multiple optimizations and implementation
aspects of the downloadable version of PREFER. Then we
discuss MERGE, which operates at a metabroker and answers
ranked queries by retrieving a minimal number of objects from
sources that offer ranked queries. A speculative version of the
pipelining algorithm is described.

Keywords: Ranked queries – Merge ranked views – Materi-
alization

1 Introduction

An increasing number of Web applications allow queries that
rank the source objects according to a function of their at-
tributes [7,6,3]. For example, consider a database containing
houses available for sale. The properties have attributes such
as price, number of bedrooms, number of bathrooms, square
feet, etc. For a user, the price of a property and the square feet
area may be the most important issues, equally weighted in the
final choice of a property, and the property’s number of bath-
rooms may also be an important issue, but of lesser weight. The
vast majority of e-commerce systems available for such appli-
cations do not help users in answering such queries, as they
commonly order according to a single attribute. Manual ex-
amination of the query results has to take place subsequently.
In our running example, the user will have to order the prop-
erties according to, say, price and then manually examine the
square feet area and the property’s number of bathrooms. One
may have to inspect a lot of houses until the best combination
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Fig. 1. Preference queries

of important attributes is found, since the cheap houses will
most probably be small and have few bathrooms.

The functionality of ranked queries is exposed to the user
by interfaces such as that of the PREFER system, shown in
Fig. 1. For each attribute, the interface provides a slider bar that
the user adjusts along with the attribute value specified in the
selection. The position of the slider bar expresses the attribute
preference ai that the user assigns to the specific attribute Ai.
One can also specify the number of tuples desired in the query
answer. Once the first set of tuples is returned, the user has the
ability to receive the next bunch of tuples, again ordered by
weighted preference.

Other Web applications allow their users to rank their
source objects according to a few “canned" ranking func-
tions. For example, many Web-based brokers (e.g., Schwab,
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E-Trade) allow the user to declare his/her investment goals and
then return to the user a list of mutual funds ranked in accor-
dance with the user’s goals. For example, if the user declares
that he/she is an aggressive long-term investor, the system
ranks the mutual funds using a function that gives high weight
to the growth rate, low weight to the volatility, and very low
weight to the produced income.

The user in the above examples has a preference regarding
the importance (or weight) of the attributes associated with
the entities (houses and mutual funds) searched. The source
objects may be relational tables, documents, images, or other
types of data where ranked search makes sense. In this pa-
per, we assume that all attributes of an object are contained
in a single relation R(A1, A2, . . . , Ak). In the context of the
PREFER system, the objects reside in a single source. In the
context of MERGE, they reside in multiple sources, where
each source Si contains exactly one relation Ri, and R is the
union of the relations from all sources [12,4,18] (consider the
case where R is “vertically split,” i.e., different attributes of
the same object are found in each source). The user provides a
preference function f(A1, . . . , Ak) and a ranked query returns
the tuples of R ordered according to f(A1, . . . , Ak).

Given current database technology, we have to retrieve the
whole relation R in order to find the top tuples with respect
to a preference function f on the attributes of the relation,
except ifR is already ordered byf . The key observation behind
PREFER and MERGE is that we can efficiently extract the
top results for f from a source that ranks the objects by a
preference function f ′, if f ′ is “close” to f . We apply this
observation to solve two problems: (i) to efficiently evaluate
ranked queries on a single source and (ii) to efficiently merge
the results from multiple sources with different preference
functions at a metabroker.

We present the PipelineResults algorithm that uses a
ranked view V to efficiently answer a ranked query q, which
may have different weight values thanV .A ranked view, which
we also refer to as preference view or just view, is a rela-
tional view that is ordered according to a preference function.
PipelineResults traverses V and outputs the top results of
q in a pipelined manner. Hence the top results of q are output
by retrieving only a prefix of V . Note when the query’s pref-
erence function is “similar” to the view’s preference function,
the required prefix is small. This is known as intuition.

We define the property that the view and the query pref-
erence functions must have in order to be able to output the
top results of the query without retrieving the whole view. We
focus on three types of preference functions: (i) linear com-
binations of the source attributes, (ii) linear combinations of
monotone functions (e.g., logarithmic) of the source attributes,
and (iii) cosine functions (in the sense of cosine functions used
in document retrieval).

The key idea of answering a ranked query using a ranked
view has many applications in database and information re-
trieval problems. We present two applications, PREFER and
MERGE, and the solutions to additional problems they have
posed.

PREFER. PREFER is a system that lies on top of com-
mercial relational databases and allows the efficient evalu-
ation of ranked queries. PREFER is available to download
at http://www.db.ucsd.edu/PREFER. Currently, an application

that answers ranked queries would have to retrieve the whole
database, apply the preference function to each tuple, and sort
accordingly.

The PREFER system provides excellent response time for
ranked queries by using prematerialized ranked views. PRE-
FER works as follows. Given a relation and the performance
requirements of the system, it decides which views should be
materialized. Then, when a ranked query q arrives, PREFER
selects the materialized view V that answers q most efficiently
and runs the PipelineResults algorithm on V to retrieve the
top-N results of q. PREFER’s performance scales gracefully
as more views are materialized and the chances that every
query will find a “similar” view increase. Indeed, PREFER
can provide guarantees on the maximum score of the tuples of
the view prefix, and consequently soft guarantees on the size
of the view prefix that has to be accessed, by materializing
a sufficient number of views. We study how the performance
of PREFER is improved when only a prefix of the views is
materialized (in contrast to [21]) since the last tuples of the
view are usually not needed in answering a top-N query. We
experimentally evaluate this approach.

MERGE. The second application of the PipelineResults
algorithm that we present in this paper is the MERGE system.
MERGE is a system that uses the PipelineResults algorithm
to merge the ranked results coming from multiple sources at a
metabroker (also called metasearcher). A metabroker [16,15]
uses multiple underlying sources to answer user queries by
merging the results that these sources produce (see Fig. 2). For
example, a real estate metabroker allows the user to provide
the weights he/she assigns to the price, year, and square feet
of a house. Then the metabroker contacts multiple real estate
sites, obtains house records, and merges them into a single
answer list.

An example of such a Web site is mySimon.com, which is a
metasearcher for various products like books, computers, etc.
It sends the user’s query to multiple underlying sources (online
retailers) and then merges the results ordered by an attribute
of the products. MERGE is more general in that it allows the
objects to be ordered according to a function of their attributes.
Consider for example two online bookstores that rank their re-
sulting books according to their price and their delivery time,
measured in number of days from today. The first bookstore
assigns a weight of 0.8 to price and 0.2 to delivery time and the
second 0.9 and 0.1, respectively. Now suppose a user request
from the metabroker to rank the books assigning weight 0.7 to
price and 0.3 to delivery time. The naive algorithm would get
all results from both sources, evaluate the user’s preference
function for each book, and output the ranked results. On the
other hand, MERGE only retrieves a prefix of the results from
each source and combines these books to output the top re-
sults at the metabroker. It then keeps retrieving, merging, and
outputting results in a pipelined manner.

The key efficiency problem is how to output the top-N re-
sults of the user query by accessing the minimum prefix of the
result list that each source produces. This is a difficult problem
because the sources typically use different ranking functions
from each other and from the function requested by the user.
The metabroker needs to efficiently access the sources and
merge the results. MERGE uses a merging algorithm based
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on the principles of the PipelineResults algorithm and runs
at the metabroker.

Note that the sources usually have different access speeds.
Hence the slower sources become the bottleneck of the query
at the metabroker. For such cases, we use a modification of
the merging algorithm, which sacrifices some accuracy of the
results in favor of execution time. The speculative version of
the merging algorithm retrieves fewer tuples from the slower
sources in order to output the top-N results of a ranked query.
However, there is a chance that a tuple from a slower source
is mistakenly present in or absent from the output results. The
speculation applied to each source is proportional to its re-
sponse time. We experimentally evaluate the effects of spec-
ulation and show that it considerably boosts the performance
of the MERGE system.

In summary, this paper makes the following contributions:

• We present an algorithm that computes the top-N results
of a query by using the minimal prefix of a ranked view.
Preference functions that are linear combinations of mono-
tone single-attribute functions and cosine preference func-
tions are supported. We also provide a probabilistic analy-
sis that shows how the relationship between the view and
the query preference functions influences the performance
of the PipelineResults algorithm.

• We specify the set of queries for which a view can provide
a guarantee about the number of view tuples examined in
order to provide the top-N tuples of the query.
• We present an approximation algorithm to the NP-hard

problem of selecting the “best views” to build in PREFER
when there is a limitation on the number of views (and
disk space) we can use. We show experimentally that 10–
20 views can provide excellent performance guarantees
for most of the possible queries. We also show that the
performance can be improved by storing only prefixes of
views, as opposed to whole views, and utilize the space to
precompute and save more views.
• We present a pipelined algorithm that merges the ranked

results from multiple sources by retrieving the minimum
prefix from each of them. We also describe a speculative
version of that algorithm to handle slower sources. These
algorithms have been implemented in the MERGE system.
• The performance of PREFER scales with the number of

views that are materialized. We experimentally show that
we can provide guaranteed performance to all queries by
using a reasonable number of views (10-100 in our exper-
iments).
• We present a detailed experimental evaluation comparing

our proposed algorithms with current state of the art and
show that our approach provides good scalability. In par-
ticular, we show that PREFER scales well both in terms
of dataset size and number of attributes. MERGE, on the
other hand, scales well with the number of sources. We
also examine the importance of the distance between the
preference functions of the metabroker and the sources.
• We have developed PREFER on top of a commercial

database management system, demonstrating the practical
utility of our overall approach. A user-friendly interface is
provided that allows the easy deployment of PREFER on
any database.

The paper is organized as follows. In Sect. 2, we discuss
related efforts and describe how this work is related to our
prior work [21]. Section 3 describes the definitions and no-
tation used. Section 4 presents the PipelineResults algo-
rithm and methods for calculating the watermark value for
various preference function types. It also presents the con-
dition that must hold for a preference function for which a
watermark is computable and some improving modifications
to the PipelineResults algorithm. Sections 5 and 6 present
the PREFER and the MERGE systems, respectively. A de-
tailed experimental evaluation of the systems is presented in
Sect. 7. Finally, the details of the implementation of PREFER
are presented in Sect. 8.

2 Related work

There is a considerable body of work on the problems of
optimizing ranked queries and merging ranks from multiple
sources. First, we present related work on the problem of an-
swering a ranked query using a view. Second, the work relevant
to PREFER and MERGE is presented.

Personalization and customization of software compo-
nents (e.g., myexcite.com) can be thought of as simple
expressions of preferences. Agrawal and Wimmers in their
pioneering work [3] put the notion on preferences into per-
spective and introduce a framework for their expression and
combination. Our work essentially deals with the algorithmic
issues associated with the implementation of specific features
of this framework. We adopt terminology in alignment with
the framework of Agrawal and Wimmers [3].

The problem of answering a ranked query using a ranked
view is addressed in [16]. Here the term “user query is man-
ageable by source” is defined to indicate that a ranked user
query can be answered using only a prefix of the source data.
In [16], the same architectural assumptions are made as in our
work (known source ranking function, metabroker retrieves
a prefix of the source), but there is no focus on any specific
class of ranking functions. Consequently, [16] did not provide
a prefix computing algorithm. Our work focuses on a specific
class of functions described in Sect. 3 and fully solves the
problem for this class of functions.

A significant amount of work has been published in recent
years on answering queries using views [19]. The earlier work
focused on conjunctive queries and views (e.g., [2]) and sub-
sequent work extended into more powerful queries, views, and
view set descriptions [9,27,25]. Rewriting aggregate queries
using views has also been addressed [26,8]. The nature of
those algorithms is logic-based rather than quantitative, as is
the case with our algorithms for using a view to answer a query,
since the nature of the queries is very different.

The work closest to PREFER is that of Chang et al. [6].
In this work, an indexing technique called the Onion tech-
nique was introduced to facilitate the answer of linear opti-
mization queries. Such queries are similar to preference se-
lection queries since they retrieve tuples maximizing a linear
function defined over the attributes of the tuples of a relation
R. The key observation behind Onion is that the points of in-
terest lie in the convex hull of the tuple space. Thus the Onion
technique in a preprocessing step computes the convex hull
of the tuple space, storing all points of the first hull in a file,
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Fig. 2. Metabroker architecture

and proceeds iteratively computing the convex hulls of the re-
maining points; it stops when all points in the tuple space have
been placed in one of the convex hull files. Query processing is
performed by evaluating the query and scanning each of these
files, starting from the one storing the exterior convex hull
(since it is guaranteed to contain the first result) and stopping
when all desired results have been produced.

The Onion technique suffers from a few major drawbacks.
Computing convex hulls is a computationally intensive task
with complexity O(n

d
2 ), where n is the number of tuples in

R and d is the number of attributes, making the technique
impractical for large relations with more than two attributes.
Moreover, the technique is very sensitive in performance to
the granularity of the attribute domains. If an attribute has a
very small domain, it is likely that all tuples lie in the same
convex hull; thus a linear scan of the entire dataset is required
to produce the results. The performance of the technique is
highly dependent on the characteristics of the dataset, and no
guarantees in performance can be provided.A major advantage
of PREFER over the Onion technique is that the performance
scales gracefully as the available space increases. In contrast,
Onion does not exploit the availability of some extra space.
We evaluate the performance of Onion in Sect. 7.

Goldstein and Ramakrishnan [14] provide a framework
similar to PREFER for the case of nearest neighbor (NN)
queries. In particular, they propose the P-Sphere tree, which
materializes a set of sample NN queries that are subsequently
used to efficiently evaluate other NN queries. Like PREFER,
their approach scales well when the available space increases.
However, their algorithm is less involved, since once the right
P-Sphere p is found, the points in p are searched for the NN.
In contrast, in our work, finding the right view V is just one of
the challenges. Next, we execute a pipelining algorithm that
retrieves the minimal prefix of V to answer the ranked query.
Another difference is that when a query point in [14] is not
contained in any P-Sphere, the index (P-Sphere tree) is not
used in calculating the NN. Instead, a traditional linear cost
NN algorithm is used. In contrast, in our work, when a query
point is not covered by any view, the most “suitable” view is
used to evaluate the query, which leads to a better performance
than the naive algorithm (scan whole database).

The MERGE work assumes that the source ranking func-
tions are known. This is an assumption that does not generally
apply today to Web sources and search engines. Such systems
typically do not disclose their ranking functions. Our work
can benefit by a class of works that propose ways to get infor-
mation about the source ranking functions by asking training
queries as in [28] or by calibrating the document scores of
the sources using statistics as in [5]. We can employ similar
training techniques to learn the source ranking functions if
they are not given. Equally important for our work are recent
initiatives, such as [15] and [22], that allow search engines to
export their ranking functions.

To the best of our knowledge, no work has been published
on the problem that MERGE tackles, i.e., merging the union
of the ranked results from multiple sources. However, many
papers have been published on answering ranked queries when
the information about each object is distributed across multiple
sources. In [12], [18], [17], and [23], algorithms are provided
to combine ranked lists of attributes in order to efficiently re-
trieve the top results according to an aggregate function of the
attributes. In these papers, a sorted list is used for each at-
tribute in order to efficiently retrieve the top-N ranked results
from a single source. In [4], algorithms are provided to retrieve
the top-N results, even when some of the sources only allow
random access. MERGE is different because our sources or-
der different objects according to functions of their attributes,
instead of ranking the same objects by one attribute each time.

Note the difference between the threshold value defined
in [12] and [4] and the watermark value defined in this work.
In particular, the threshold value is the minimum query score
that the N -th result tuple so far must have in order to output
the top result tuple. On the other hand, the watermark value
is a score with respect to the ranking function of the view and
not of the query; it determines how deep in the ranked view
we must go to output the top result tuple.

Multimedia sources have also received significant atten-
tion in the context of ranked queries [10,13,11,7,12]. In [10]
and [7], it is proposed that merging solutions be ranked for
such sources where objects are ranked according to how well
they match the query values. The solutions in [10], [7], and
[12] are based on a richer architectural framework than the one
we assume in our work. In particular, our algorithm does not
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require any random accesses to the sources, which is a very
important property, as explained in [12]. Other random access
assumptions have been made in [10] and [7].

3 Notation and definitions

This section defines queries, views, sources, and other relevant
notation in the context of PREFER (first) and MERGE (sec-
ond). Let R be a relation with k attributes (A1, . . . , Ak) and let
[mi, Mi] be the domain of attribute Ai, 1 ≤ i ≤ k, mi, Mi ∈
R+. The notation Ai(t) refers to the value of attribute Ai in
the tuple t.

The preference function fq(t),
∏k

i=1[mi, Mi]→ R+ de-
fines a numeric score for each tuple t ∈ R. Every query
q consists of a preference function fq(.) and a single rela-
tion R. The output of the query q is the query result se-
quence Rq = [t1q, t

2
q, . . . , t

n
q ] of the tuples of R such that

fq(t1q) ≥ fq(t2q) ≥ . . . ≥ fq(tnq ). Note that we use the no-
tation tiq to denote the tuple in the i-th position in the result
sequence of q. Views are identical to queries; we use the term
view when to refer to a query whose result has been material-
ized in advance in the system and ranked query (or query) to
refer to a query that the user submitted and the system has to
reply to. We use the term query space to refer to all possible
valid preference queries that can be presented to a relation.

Note that the preference functions handled by PRE-
FER need to satisfy the monotonicity property described in
Sect. 4.2. Some common functions do not satisfy this prop-
erty. For example, in the houses database, a preference func-
tion that ranks the houses according to their distance from an
arbitrarily chosen point cannot be handled because the rank-
ing of a house also depends on the chosen point and not only
on the house’s x and y coordinates.

The algorithms presented in this paper are applicable to a
wide class of preference functions, as described in Sect. 4.2.
In this paper, we provide detailed algorithms for three kinds
of preference functions:

• linear, fv(t) =
∑k

j=1 vjAj(t)
• linear combination of monotone single-attribute functions,

fv(t) =
∑k

j=1 vj ·h(Aj(t)), where h(Aj(t)) is monotone
for j = 1, . . . , k. For example, h(.) = log(.)

• cosine, fv(t) = 1
|t||v|

∑k
j=1 vjAj(t), where |t| denotes

the Euclidean norm of vector t

We chose these functions because they are widely used in
Web and multimedia applications that require ranking and they
can be efficiently pipelined using the techniques we present
in this paper. The vector v = (v1, . . . , vk) is called the pref-
erence vector of the query (view) and each coordinate of the
vector is called attribute preference. We use fv(.) to indicate
that fv is a preference function with preference vector v. With-
out loss of generality, we assume that attribute preferences are
normalized in [0, 1] and that

∑k
j=1 vj = 1. This assumption

is not restrictive since whatever the range of attribute prefer-
ences, they can always be normalized instantly by the system.
Moreover, we choose to adopt such a normalization since we
believe it is in agreement with the notion of preference. The
total preference of a user is 1, and the preference on individ-

ual attributes is expressed as an additive term toward the total
preference.

The following additional definitions are specific to the
MERGE system (Sect. 6). MERGE operates on top of multi-
ple sources S1, . . . , Sn. Each source Si exports a relation Ri.
The exported relations have the same schema or at least some
common attributes. A metabroker [16] M over S1, . . . , Sn ex-
ports the relation R = R1∪R2∪ . . .∪Rn if all relations have
the same schema. If the sources do not have the same schema,
R is defined as follows:

• The set of attributes (A1, . . . , Ak) of R is the union of the
sets of attributes of R1, . . . , Rn.
• If the relation Ri(Ai1 , . . . , Aim

) has a tuple t ≡ [Ai1 :
ai1 , . . . , Aim : aim ], then the relation R has a tuple t′ ≡
[A1 : a1, . . . , Ak : ak] where aj = ail

if Aj ≡ Ail
and

aj = NULL if Aj /∈ {Ai1 , . . . , Aim}.
Each source Si in MERGE supports a set Qi of preference

queries over the exported relation Ri. A metabroker [16] typi-
cally has two problems – first, choosing the right ranked query
to invoke at each source and second, merging the results. We
are concerned with the second problem. To simplify the ab-
straction, we assume that each source outputs a single ranked
query. The metabroker supports preference queries over R that
have the same kind of preference function as the underlying
sources, which also have the same kind of preference func-
tions as each other. We need efficient pipelined execution of
the queries on R. In particular, we want to be able to derive the
top-m tuples [t1q, . . . , t

m
q ] from relation R according to query

q by reading a minimal subset of each relation Ri.

4 Pipelining a ranked query using a ranked view

The algorithm presented next uses a view sequence Rv , which
ranks the tuples of a relation R according to a preference vector
v, in order to efficiently pipeline the output sequence Rq of a
user query q, which ranks the tuples of the relation R according
to the user’s preference vector q. The key to the algorithm is
the computation of a prefix R1

v of Rv that is sufficient to assure
that the first tuple t1q of the sequence Rq is in R1

v . Once the
first tuple of Rq has been retrieved, the algorithm proceeds to
compute the prefix R2

v , to deliver the second tuple of Rq, and
so on, leading to an efficient pipelined production of the query
result.

The algorithm is presented in three steps. First, we define
the first watermark point, whose definition involves only fq(.),
fv(.), and t1v and provides a bound on the view preference score
fv(t1q) of the top result t1q of the query.1 Then Sect. 4.1 provides
the algorithm that pipelines the query output, given an “oracle”
that provides watermark points. The algorithm is applicable
to any function for which one can construct such an “ora-
cle.” Section 4.2 discusses when such an “oracle” is possible
and provides guidelines for the computation of the watermark
for such functions. Detailed computations are presented for
linear, linear combination of monotone single-attribute func-
tions, and cosine functions. Section 4.3 presents an example of

1 The first watermark provides the tightest prefix of Rv given
knowledge of t1v only. One can produce tighter prefixes by using
more tuples from Rv , but this comes at the cost of increased water-
mark point computation and retrieval of more tuples of Rv .
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using this algorithm. Section 4.4 describes a speculative ver-
sion of the pipelining algorithm. Finally, Sect. 4.5 provides a
probabilistic analysis of the algorithm.

Definition 1 (First Watermark) Consider

• the view v consisting of the function fv applied on the
relation R and

• the query q consisting of the function fq applied also on
the relation R.

The first watermark of the user query q in the view Rv is the
maximum value T 1

v,q ∈ R+ with the property:

∀t ∈ R, fv(t) < T 1
v,q ⇒ fq(t) < fq(t1v) (1)

The definition leads to an efficient computation of the water-
mark (Sect. 4.2) since it involves only tuple t1v . According to
the definition, if a tuple t in the view Rv is below the first
watermark T 1

v,q (that is, fv(t) < T 1
v,q), then t cannot be the

top result t1q of the query since at least t1v is higher in the query
result (according to the property fq(t) < fq(t1v)). This implies
that fv(t1q) ≥ T 1

v,q . Hence in order to find t1q , one has to scan
Rv from the start and retrieve the prefix [t1v, t2v, . . . , tw−1

v , twv ),
where twv is the first tuple in Rv with fv(twv ) < T 1

v,q , i.e., tw−1
v

is the last tuple of Rv that is above the watermark. The top
query tuple t1q is the tuple tjv, 1 ≤ j ≤ w − 1 that maximizes
fq(tjv). Furthermore, the prefix [t1v, t2v, . . . , tw−1

v ] allows us to
potentially locate a few more (besides t1q) of the top tuples of
the query result, as the following theorem shows:

Theorem 1 Let [t1q, t
2
q, . . . , t

w−1
q ] be the ranked order, ac-

cording to q, of the tuples [t1v, t2v, . . . , tw−1
v ] that are above

the first watermark. Let s be the index of t1v in this order, i.e.,
t1v ≡ tsq. Then t1q, . . . , t

s
q are the tuples with the highest rank

in the answer of q.

Proof. Clearly fq(t1q) ≥ . . . ≥ fq(tw−1
q ). Moreover, due to

the watermark property (Eq. 1), ∀t, fv(t) < T 1
v,q ⇒ fq(t) ≤

fq(tsq). The theorem follows since fq(tsq) ≤ fq(ts−1
q ) ≤ . . . ≤

fq(t1q). 	

The theorem guarantees that the top-s tuples, according to

fq(.), in the prefix [t1v, t2v, . . . , tw−1
v ] are also the top-s tuples

in the answer of q. That is, it is impossible for a tuple below
the watermark to be one of the top-s tuples.

4.1 The core of the pipelining algorithm

The PipelineResults algorithm in Fig. 4 inputs Rv and com-
putes in a pipelined fashion the N tuples with the highest
score according to q. The algorithm assumes the existence of
a function DetermineWatermark() (see Sect. 4.2) to efficiently
compute the watermark value in Rv . Let s be the number of
tuples output after computing the first watermark. If s ≥ N ,
then our objective has been achieved. Otherwise, we output
the sequence of the top-s tuples from WINDOW, which stores
the set of tuples that have been retrieved from Rv but not yet
output. We select as ttop

v the tuple in WINDOW that maxi-
mizes fq and repeat the process.2 A new sequence of tuples

2 In [21], we select as ttop
v the next unprocessed tuple of Rv , which

is less efficient because it leads to a smaller watermark value.

Rank in view % of queries

1 80
2–20 13.3
21–3000 6.7

Fig. 3. Rank of top query tuple in view

having the highest score according to q among the remaining
tuples will be determined and output.

Note that the number of retrieved tuples could be reduced
by recalculating the watermark value on the fly for each re-
trieved tuple instead of only calculating the watermark once
for each tuple that is output. We call this modified algorithm
PipelineResultsOptimal. In particular, the following lines
replace lines 4 and 7, and line 5 is removed.

4a. repeat {
4b. Get next tuple tw

v from Rv

4c. Let T w
v,q = DetermineWatermark(tw

v )
4d. If T w

v,q > T top
v,q

4e. then{
4f. T top

v,q = T w
v,q

4g. Set ttop
v = tw

v }
4h. } until (fv(tw

v ) < T top
v,q )

7a. Let s + 1 be the index of the first
tuple in the sorted order whose
watermark is lower than fv(tw−1

v )
/* Note that s will always be

equal or greater than
the index of ttop

v */

However, this modification would require calling the
DetermineWatermark(.) as many times as the number
of retrieved tuples instead of the number of output tuples.
Furthermore, we have found that this modification only
marginally reduces the number of retrieved tuples. For exam-
ple, in the case where we have 50,000 tuples in the database,
with 3 attributes and 6 materialized views, the number of re-
trieved tuples is reduced by a factor of between 0.3% and
0.7%, when the number of requested results varies from 1 to
100. The intuition behind this for the case of top-1 queries is
that the top tuple of the view is usually also the top tuple of the
query (see Fig. 3), so it produces a maximal watermark value.
Hence, we do not use this modification in the experiments.

The correctness of the PipelineResults algorithm is proved
as a special case of Theorem 8 of Sect. 6, which con-
siders multiple sources as well. The correctness of the
PipelineResultsOptimal algorithm is proved in the same
way. The PipelineResultsOptimal algorithm is optimal in
the sense described in Theorem 2.

Theorem 2 There is no algorithm that, given a prefix of Rv

and the preference functions fv and fq, outputs a larger prefix
of Rq than the PipelineResultsOptimal algorithm.

Proof. Assume that there was such an algorithm A and that A
outputs one more tuple t than PipelinedMergeOptimal by
retrieving the same prefix P of Rv . Since t was not output by
PipelinedMergeOptimal, its watermark is lower than
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Algorithm PipelineResults(Rv,q,v, N){
1. Let ttop

v ≡ t1v
2. Let WINDOW= ∅
3. while (less than N tuples in the output) {
4. Let T top

v,q = DetermineWatermark(ttop
v )

5. Scan Rv and determine the first tuple twv with fv(twv ) < T top
v,q

6. Add all tuples t ∈ [t1v, tw−1
v ] to temporary relation WINDOW

/*Note that t1v denotes the first tuple of Rv that has not been retrieved yet*/
7. Sort WINDOW by fq

8. Let s be the index of ttop
v in the sorted order

9. Output the first s tuples from WINDOW
10. If the size of WINDOW is s, then set ttop

v ≡ twv
11. else let ttop

v be the tuple with index s + 1 in WINDOW.
12. Delete the first s tuples from WINDOW.
}
}

Fig. 4. Algorithm to output the first N tuples according to q

fv(tw−1
v ), that is, lower than the fv(.) score of the last tu-

ple of P . Then, because the watermark is optimally (tightest)
calculated, there could be a tuple t′ not yet retrieved, with
fv(tw−1

v ) > fv(t′) > Tw−1
v,q and fq(t′) > fq(t). That is, t′

should have been output before t. 	

Corollary 1 There is no sequential scan algorithm that re-
trieves fewer tuples than PipelinedMergeOptimal to an-
swer a ranked query.

4.2 Determining the watermark

In this section, we present a theorem that specifies when the
calculation of a useful watermark value is possible and gen-
eral directions for calculating the watermark value T top

v,q for
two arbitrary preference functions fq, fv . Then we describe
algorithms for the calculation of the watermark value in the
case of linear, linear combination of monotone single-attribute
functions, and cosine functions.

A useful watermark value can be calculated for a source
preference function fv and a ranked query q with preference
function fq, when there exist instances of the source relation
Rv such that the top results of q can be found before retrieving
all the tuples in the source. This property is equivalent to the
manageability property in [16], where a preference function
fq is called manageable at a source S if

∃0 ≤ ε < 1, such that ∀t ∈ R, fq(t) ≥ fv(t)− ε (2)

That is, the manageability property, the existence of a useful
watermark, and Eq. 2 are equivalent. Note that this definition
assumes that 0 ≤ fq(t), fv(t) ≤ 1.

The following theorem is presented in [16].

Theorem 3 Given the source and the query preference func-
tions 0 ≤ fv(t), fq(t) ≤ 1, respectively, a useful watermark
value can be calculated if Eq. 2 is satisfied.

Theorem 4 Given the source and the query preference func-
tions 0 ≤ fv(t), fq(t) ≤ 1, respectively, if there is an attribute
Al such that fv and fq have the same proper monotonicity on
Al, then a useful watermark value can be calculated.

Proof. By Theorem 3, it is enough to prove that Eq. 2 is satis-
fied. We select

ε = max(fv(t)− fq(t)), t ∈ [0, 1]m (3)

We prove that ε < 1. ε can be 1 only when there is a tuple t′
such that fv(t′) = 1 and fq(t′) = 0.Without loss of generality,
assume that both fq and fv are properly increasing with Al.
Then fv(t′) = 1 and fq(t′) = 0 imply that Al(t′) = 1 and
Al(t′) = 0, respectively. Hence we come to a contradiction,
so ε < 1. 	


The following corollary specializes Theorem 4 for linear
functions.

Corollary 2 Given the source and the query linear preference
functions fv(t) =

∑k
j=1 vjAj(t), fq(t) =

∑k
j=1 qjAj(t),

respectively, a useful watermark value can be calculated if
there is an index 1 ≤ l ≤ k such that both vl and ql have the
same sign.

Next, we present a general formula that calculates the wa-
termark value T top

v,q for a tuple ttop and two arbitrary preference
functions fv, fq that satisfy Theorem 3. From Eq. 1 we get

fq(t) < fq(ttop) ⇔ fv(t) < fq(ttop) + fv(t)− fq(t)

and since fv(t) < T top
v,q , we have the following theorem:

Theorem 5 The watermark value T top
v,q for a tuple ttop and

two arbitrary preference functions fv, fq is

T top
v,q = fq(ttop) + min(fv(t)− fq(t)) (4)

where min(fv(t)−fq(t)) is calculated over all tuples t in the
domain of relation R that satisfy the equation3

fv(t) ≤ fv(ttop) (5)

We now focus on three types of preference functions:
linear, linear combination of monotone single-attribute func-
tions, and cosine. The inputs of the DetermineWatermark

3 This condition allows the calculation of a tighter watermark
value.
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algorithm are the user function fq, the view’s function fv , and
a tuple ttop. Consider that the highest possible fv(t) in Eq. 1 is
achieved for an imaginary tuple t′. Thus we will determine the
maximum T top

v,q = fv(t′) value while satisfying the following
equation and thus the watermark.

fq(t′) < fq(ttop) (6)

4.2.1 Watermark computation for linear functions

Since we know the values of ttop, q, and v, we need to come
up with bounds for the values of t ≡ (A1(t), . . . Ak(t)) using
the known parameters to maximize fv(t′) while satisfying the
inequality of Eq. 1 for all t ∈ R. We will subsequently use
these bounds to derive the watermark. Let us express fq(t) =∑k

i=1 qiAi(t) as a function of fv(t) =
∑k

i=1 viAi(t). Thus

fq(t) =
k∑

i=1

qiAi(t) = fv(t) +
k∑

i=1

(qi − vi)Ai(t) (7)

By substituting Eq. 7 into Eq. 1, we get

∀t ∈ R, fv(t) ≤ T top
v,q ⇒ fv(t) +

k∑
i=1

(qi − vi)Ai(t)

≤ fq(ttop) (8)

Consider that the highest possible fv(t) is achieved for t′. It
is:

fv(t′) +
k∑

i=1

(qi − vi)Ai(t′) ≤ fq(ttop) (9)

We will treat Eq. 9 as equality; since the left side of Eq. 9
is linear on fv(t′), the corresponding inequality is trivially
satisfied. Since our objective is to determine the maximum
fv(t′) value that satisfies Eq. 9, which is linear in fv(t′), we
will determine bounds for each attribute Ai(t′) in such a way
that the left part of Eq. 9 is maximized. We determine the
bounds for each attribute Ai(t′) by the following case analysis.
Recall also that each attribute Ai has domain [mi, Mi].
• (qi − vi) > 0 and vi <> 0: In this case, we have

Ai(t′) =
fv(t′)−∑k

j<>i vjAj(t′)
vi

≤ fv(t′)−∑k
j<>i vjmj

vi
(10)

We set Ui =
fv(t′)−∑k

j<>i vjmj

vi
. Since Ai(t′) ≤ Mi, we

have Ai(t′) = min(Ui, Mi).
• (qi − vi) > 0 and vi = 0: then Ai(t′) = Mi

• (qi − vi) = 0: we can ignore this term
• (qi − vi) < 0 and vi <> 0: In this case, we have:

Ai(t′) =
fv(t′)−∑k

j<>i vjAj(t′)
vi

≥ fv(t′)−∑k
j<>i vjMj

vi
(11)

We set Li =
fv(t′)−∑k

j<>i vjMj

vi
. Since Ai(t′) ≥ mi, we

have Ai(t′) = max(Li, mi).

Ai(t′) =




min(
fv(t′)−∑k

j<>i vjmj

vi
, Mi) qi > vi <> 0

Mi qi > vi = 0

0 qi = vi

max(
fv(t′)−∑k

j<>i vjMj

vi
, mi) qi < vi

(12)

Fig. 5. Bounds for Ai

Figure 5 summarizes the results of our analysis for each at-
tribute value Ai(t′). Note that we use the notation Ai(t′) to
denote the bound for the value of attribute Ai. Also note that
when (qi − vi) > 0, we determine an upper bound for the
value of Ai(t′), whereas when (qi − vi) < 0, we determine a
lower bound.

The main difficulty in solving Eq. 9 directly lies in the ex-
istence of min and max terms, with two operands each, in the
expressions derived for the attribute bounds (Fig. 5). Each min
(equivalently max) term, however, is linear on fv(t′); thus it
is easy to determine for which range of fv(t′) values each
operand of min (equivalently max) applies by determining
the fv(t′) value that makes both operands equal. Assume the
expression for attribute bound Ai(t′) contains a min or a max
term. Let ei be the value for fv(t′) that makes both operands
of min or max equal. As fv(t′) varies, we now know exactly
which operand in each min or max term we should use to
determine a bound on the attribute value. Since both Ui and
Li terms are linear on fv(t′), we observe whether fv(t′) lies
on the left or right of ei. There are at most k attribute bound
expressions, and thus 1 ≤ i ≤ k. Possible values of fv(t′)
range between

∑k
i=1 vimi and

∑k
i=1 viMi. If we order the

ei’s, we essentially derive a partitioning of the range of possi-
ble values of fv(t′) in k + 1 intervals, Ii, 1 ≤ i ≤ k + 1. For
each value of fv(t′) in these intervals, the expressions used
to compute each attribute bound are fixed and do not involve
min or max.

We construct a table E having k+1 columns denoting the
value intervals for fv(t′) and k rows denoting the expressions
for each attribute bound. For each entry E(i, j), 1 ≤ i ≤
k, 1 ≤ j ≤ k + 1 in this table, we record the exact expression
that we will use to determine the bound for attribute Ai. If an
attribute bound expression is not a function of fv(t′), we can
just record the value in the suitable entry as a constant. Once
the table is populated, for each value of fv(t′) we know the
attribute bound formulas that comprise the left-hand side of
Eq. 9. Thus we have k + 1 possible expressions for the left
side of Eq. 9. Each expression Ej , 1 ≤ j ≤ k + 1 is produced
by:

Ej = fv(t′) +
k∑

i=1

(qi − vi)E(i, j) (13)

Theorem 6 Setting Ej = fq(t1v), 1 ≤ j ≤ k + 1 and solving
for fv(t′) determines the watermark value.

Proof. For each j, two possibilities exist: (a) the fv(t′) value
computed does not fall in the j-th interval. In this case, the
expression for Ej cannot yield fq(t1v) since Ej produces an
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upper bound for fq(t) by construction; (b) fv(t′) falls in the
j-th range. Since Ej = fq(t1v) is a linear function and has
a unique solution in range j, fv(t′) is the watermark T top

v,q .
Note that the range of possible values for fv(t′) is the same
with the range of possible values for Ej ; thus j will always be
identified. 	


The DetermineWatermark algorithm is shown in Fig. 6.
The algorithm assumes that Table E has been computed in
a preprocessing step. The algorithm uses O(k2) space and
determines the watermark, solving k equations in the worst
case.

Algorithm DetermineWatermark (tuple ttop) {
for j from k + 1 down to 1 {
Solve Ej = fq(ttop

v ) and determine watermark
if watermark ∈ Ij , return watermark
}

}
Fig. 6. Algorithm DetermineWatermark

4.2.2 Watermark computation for linear combination of
monotone single-attribute functions

It is fq(t) =
∑k

i=1 qi · h(Ai(t)) and fv(t) =
∑k

i=1 vi ·
h(Ai(t)). Following a procedure similar to the one for lin-
ear functions, we get

fv(t′) +
k∑

i=1

(qi − vi) · h(Ai(t′)) ≤ fq(ttop) (14)

where the bounds are shown in Fig. 7.

4.2.3 Watermark computation for cosine functions

The calculation of the watermark for a cosine function dif-
fers from the case of linear combination of monotone single-
attribute functions because we cannot have a separate term in
the preference function for each attribute. The reason for this
is the |t| term in f(t) = 1

|t||v|
∑k

j=1 vjAj(t). This means that

h(Ai(t′))

=




min(
fv(t′)−∑k

j<>i vj ·h(mj)
vi

, h(Mi))qi > vi <> 0

h(Mi) qi > vi = 0

0 qi = vi

max(
fv(t′)−∑k

j<>i vj ·h(Mj)
vi

, h(mi)) qi < vi

(15)

Fig. 7. Bounds for h(Ai)

TupleID A1 A2 A3 fv(t) fq(t)

1 10 17 20 16.8 17.2
2 20 20 11 16.4 17.3
3 17 18 12 15.4 16.1
4 15 10 8 10.2 9.9
5 5 10 12 9.8 10.1
6 15 10 5 9 9
7 12 5 5 6.4 5.7

Fig. 8. View Rv and scores of each tuple based on fv and fq

T top
v,q 5..11 11..14 14..17 17..20

A1 5 5 5 fv(t′)−16
0.2

A2
fv(t′)−3

0.4 20 20 20

A3 5 5 fv(t′)−12
0.4

fv(t′)−12
0.4

Fig. 9. Table E

we need to calculate an upper bound for fq(t) − fv(t) as a
whole. Equation 1 can be written as:

fv(t′) + (fq(t′)− fv(t′)) ≤ fq(ttop) (16)

where t′ is the tuple that maximizes fv(t′) while satisfying
Eq. 16. Now we need to find an upper bound for fq(t′)−fv(t′)
to plug it into Eq. 16.

fq(t′)− fv(t′) =
q · t′

|q||t′| −
v · t′

|v||t′| =
t′

|t′| (
q

|q| −
v

|v| ) (17)

Since ( q
|q|− v

|v| ) is fixed for every pair of functions and t
|t| has

size 1, the above expression is maximized when t is parallel
to ( q

|q|− v
|v| ) and its maximum value is | q

|q|− v
|v| |. This means

that the watermark value for a tuple ttop is fv(t′) = fq(ttop)−
| q
|q| − v

|v| |.

4.3 An example

Let us present an example of the algorithm’s operation. As-
sume q is a query with q = (0.1, 0.6, 0.3) and Rv a view
with v = (0.2, 0.4, 0.4). The preference functions of both the
query and the view are linear. Let m1 = m2 = m3 = 5 and
M1 = M2 = M3 = 20. The sequence Rv is shown in Fig. 8.
To populate Table E, we use the equations of Fig. 5 to calculate
the bounds for each attribute Ai. Thus:

A1(t′) = max(
fv(t′)− 16

0.2
, 5)

A2(t′) = min(
fv(t′)− 3

0.4
, 20)

A3(t′) = max(
fv(t′)− 12

0.4
, 5)

Next we calculate the ei’s that make the terms in min or
max expressions equal.

e1 = 17, e2 = 11, e3 = 14

We are now ready to fill Table E. The table is presented in
Fig. 9. Recall that t1v is the first tuple of Rv . Now we solve
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Eq. 9, with t1v as ttop
v , for each of the four intervals starting with

the last one. In interval I4, solving Eq. 9 results in fv(t′) = 8.8,
which is not in I4 and so is rejected. In I3, we get fv(t′) =
14.26 , which is valid. To output the first tuple for fq, we
scan Rv up to the first tuple with a score greater than or equal
to fv(t′) = 14.26. This is tuple t3v with score 15.4. So the
minimum prefix of Rv that we have to consider in order to get
the first result for query q consists of all tuples t ∈ [t1v, t3v].
We order these three tuples by fq and output t2v and t1v . Now
in order to get further results, we locate the first unprocessed
(not yet output) tuple in Rv , which is t3v , and use it as ttop

v

in Eq. 9. The algorithm continues like this. If we repeat the
above steps, we get the following results. fv(t′) = 13.1, so
the prefix now becomes just t3v , which we output. Next we use
t4v in Eq. 9 and get fv(t′) = 8.26, so the prefix is [t4v, t6v]. We
sort these tuples and output t5v and t4v . Next we use t6v in Eq. 9
and get fv(t′) = 7.66, so our fourth prefix is just t6v , which
we output. Finally we output t7v , which is the last unprocessed
tuple in Rv .

4.4 Using speculation for approximate results

Very often the applications that rank their objects according to
a preference function do not require that the output sequence
be 100% accurate. For example, when a user presents a prefer-
ence query to a database with houses for sale, then the weights
given are inherently speculative for two reasons. First, some
properties of a house are hard to be quantified, like the crime
rate of the region or the quality of the schools near the house.
Second, the user has difficulty precisely quantifying a prefer-
ence. Hence many of the applications that we deal with have
an inherent approximation factor. This fact has motivated us
to devise methods that sacrifice some accuracy of the results
in order to boost the performance. Recall that by performance
we mean the number of tuples needed to retrieve from a view
to output the top-N results of a query.

The speculative version of the PipelineResults algo-
rithm has the following modification over the original algo-
rithm in Fig. 4: We use a higher threshold than the watermark
value to determine the window W that contains the top result
of q. The threshold value T ′top is:

T ′top = (1 + ε) · T top
v,q (18)

where ε ≥ 0 is the speculation factor. Hence W is smaller
and we determine the top result t1q,spec faster. However, there
is a chance that the actual top tuple t1q is not contained in W .
As the value of ε increases, we retrieve the top results faster,
but the accuracy of their ranking decreases. We elaborate more
on the speculative version of PipelineResults in Sect. 6.1,
where we show how speculation can boost the performance of
the MERGE system.

We define the cost of speculation as the average difference
between the indices of the tuples in the speculative results
sequence and in the real results sequence. In Sect. 7, we ex-
perimentally evaluate the impact of speculation.

4.5 Probabilistic analysis

The following probabilistic analysis indicates how the ex-
pected number Q of tuples retrieved from a view V by the

PipelineResults algorithm in order to output the top tuple
t1
q , according to query q, increases as a function of the dis-

tance of fq and fv . We also show how Q is affected by the
distribution of the tuples.

We focus on linear functions, although the same analysis
applies to any functions satisfying Eq. 2. We assume without
loss of generality that mi = 0, Mi = 1 for i = 1, . . . , k.
We also assume that the database has N tuples t1, . . . , tN and
each tuple t has density distribution function fd(t). We use the
letters f and F for density distribution functions (ddf) and cu-
mulative distribution functions (cdf), respectively. Also, bold
small letters (e.g., t) correspond to vector (tuple) variables,
while regular letters (e.g., x) correspond to number variables.

From Eq. 9, the watermark value T 1
v,q of t1

v is:

T 1
v,q = fq(t1

v)−
k∑

i=1

(qi − vi)Ai(t1
v)

≤ fq(t1
v)−

∑
qi>vi

(qi − vi) (19)

The above inequality is an approximation of T 1
v,q and becomes

an equality when vi ≤ T 1
v,q for qi > vi and T 1

v,q ≤ 1− vi for
qi < vi. Then

T 1
v,q = fq(t1

v)−
∑k

i=1(|qi − vi|)
2

(20)

Equation 20 shows clearer how T 1
v,q is affected by the

distance between fq and fv . However, if one of the above
conditions does not hold, we use Eq. 19 instead.

Next, we calculate the ddf of fq(t1
v). First we calculate

the ddf f1
v (t) of t1

v . Consider the probability P1 that a random
tuple ti is the top tuple t1

v in V and ti is in [t, t + dt], which
is the hyperrectangle defined by the points t and t + dt.

P1 = fd(t)dt ·
N∏

j<>i

P (fv(tj) < fv(ti))

= fd(t)dt · (Ffv
(fv(t)))N−1 (21)

where Ffv (x) is the cdf of fv(t). Hence the probability P2
that t1

v is in [t, t + dt] is

P2 = N · fd(t)dt · (Ffv (fv(t)))N−1 (22)

Hence

f1
v (t) = N · fd(t) · (Ffv

(fv(t)))N−1 (23)

The cdf Fv,1
fq

(x) of fq(t1
v) is

Fv,1
fq

(x) =
∫

. . .

fq(t)<x∫
f1
v (t)dt (24)

Let FT be the cdf of T 1
v,q . From Eqs. 20 and 24, it is

FT (x) = Fv,1
fq

(x−
∑k

i=1(|qi − vi|)
2

)

=
∫

. . .

fq(t)<x−
∑k

i=1(|qi−vi|)
2∫

f1
v (t)dt (25)
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xQ

f T

Tv,q
1

f T

Tv,q
1 xQ

a b

Fig. 10. Ddf of T 1
v,q . a fq and fv are not close. b fq and fv are close

Let xQ be the value of T 1
v,q such that the expected number

of tuples retrieved from V to output t1
q is Q. That is,

Q = N ·
1∫

xQ

ffv (x)dx (26)

We show that the probability that T 1
v,q ≥ xQ, i.e., the

number of tuples retrieved is less than Q, increases as fv and
fq get closer. It is:

P (T 1
v,q ≥ xQ)

= 1− FT (xQ)

= 1−
∫

. . .

fq(t)<xQ−
∑k

i=1(|qi−vi|)
2∫

f1
v (t)dt (27)

Using Eq. 23, we get

P (T 1
v,q ≥ xQ) = 1−

∫
. . .

fq(t)<xQ−
∑k

i=1(|qi−vi|)
2∫

fd(t) ·N · (Ffv (fv(t)))N−1dt (28)

Equation 28 shows that when fv(t) and fq(t) are close,
P (T 1

v,q ≥ xQ) is maximized, which happens when the integral
is minimized. This happens for two reasons. First, if we ignore

the term
∑k

i=1(|qi−vi|)
2 , the integral is minimized because it is

calculated over all small values of fq(t). If fv(t) and fq(t)
are close, then fv(t) is also small, hence the integral is mini-
mized. Intuitively, this reason holds because fq(t1v) increases

as fv(t) and fq(t) get closer. Second, the term
∑k

i=1(|qi−vi|)
2

further minimizes the integral as fv(t) and fq(t) get closer.
The variance of the watermark value with respect to the dis-
tance between fv(t) and fq(t) is shown graphically in Fig. 10,
where the selected areas are equal to P (T 1

v,q ≥ xQ).

5 Using the PipelineResults algorithm to efficiently
answer ranked queries: the PREFER system

The PREFER system runs at a single source, which contains
a relation R, and aims at efficiently answering ranked queries

Fig. 11. PREFER’s architecture

on R. It materializes in advance multiple views in order to
provide short response time to client queries. Before any query
arrives, it builds a set of views that rank R according to several
preference functions. This preprocessing process is carried out
by the view selection module (see Fig. 11). When a query
q arrives, PREFER selects the “best” view V available, as
described in Sect. 5.3. Then the PipelineResults algorithm
is executed to answer q using V . In this section, we focus on
linear preference functions. The conclusions that we reach can
easily be extended to logarithmic and cosine functions.

In its simplest version, the view selection module (Fig. 11)
inputs from the user the relation R and the size l of the max-
imum view prefix that the PipelineResults algorithm may
have to retrieve in order to deliver the first result of an arbitrary
preference query on R. The view selection module material-
izes a set of view sequencesV such that for every query q there
is at least one view Rv ∈ V that “covers” q, i.e., when Rv is
used to answer q, at most l tuples of Rv are needed to deliver
the first tuple of q. In Sect. 7, we show experimentally that the
number of views needed to cover the whole space of possible
queries by retrieving at most 1% of the tuples of Rv is in the
order of 10 to 100, when the number of attributes is two to five.
In particular, the number of ranked views grows exponentially
with the number of attributes due to the exponential growth of
the query space. However, if space limitations require that we
build at most n views, a modified view selection algorithm is
used in order to cover the maximum amount of queries with



60 V. Hristidis, Y. Papakonstantinou: Algorithms and applications for answering ranked queries using ranked views

(v1,v2)

q1

q2

quadrant

(q'1,q'2)

covered query

(v1,v2,v3)

q2

q1

q3

a b

Fig. 12. Coverage area of a view. a 2D query space. b 3D query space

n views; since the problem of finding such a maximum cov-
erage, as we will show, is NP-hard, PREFER uses a greedy
algorithm that provides an approximate solution. Furthermore,
in Sect. 5.2.1, we present a novel approach to decreasing the
required space with minor performance degradation by stor-
ing only prefixes of the materialized views. The details and
the properties of the view selection algorithm are described in
Sect. 5.2. Note that, in a similar fashion, PREFER can select
views that guarantee the retrieval of the first m query results
by retrieving at most l tuples. We describe the generalization
to top-m tuples in Sect. 5.1.1.

We present next the definition of “coverage” of a query by
a view. Section 5.1 provides algorithms that decide coverage
and compute (precisely and approximately) the space covered
by a view. Section 5.2 uses the coverage algorithms in a view
selection algorithm that either (i) produces a set of views that
covers the space of all possible queries (referred to as query
space) or (ii) produces the best approximate set of n views
that covers as much query space as possible.

Definition 2 The ranked materialized view Rv covers the
query q for its top m results using l tuples if the
PipelineResults algorithm generates the top-m result tu-
ples of q by using at most the top-l tuples of Rv . We will say
that q is covered by Rv using l tuples to indicate that the first
result tuple of q requires at most l tuples of Rv to be retrieved.

We will often also say that Rv covers q when the number l of
tuples needed is obvious from the context.

Definition 3 The space Sl
Rv
⊆ [0, 1]k covered by the view

sequence Rv using l tuples is the set of all query preference
vectors q such that the first result of q can be derived using
only the top-l tuples of Rv .

5.1 Deciding coverage and computing the space
covered by a view

Next we describe two key algorithms of the view selection
module:

1. The view cover decision algorithm is given a sequence Rv ,
a number l, and a query q and decides in O(1) time (for a
fixed number of attributes k.) whether q is covered by Rv

using l tuples.4 Note that the algorithm uses only the l-th
tuple of Rv .

2. The view cover algorithm inputs a view sequence Rv and
a number l and returns the k-dimensional space Sl

Rv
.

For both algorithms, the key point is the following: since we
want to guarantee that at most l tuples from Rv will be read
whenever a query q uses Rv , we have to place the first wa-
termark at tlv or higher. By the watermark properties and a
mathematical manipulation similar to the one in Sect. 4.2, we
derive the inequality

fv(tlv) +
k∑

i=1

(qi − vi)Ai(tlv) ≤ fq(t1v) (29)

In Eq. 29, the unknowns are the components of the vector
(q1, . . . , qk) for which

∑k
i=1 qi = 1. Hence the view cover

decision algorithm requires that we simply plug the vector
(q1, . . . , qk) into Eq. 29. The view cover problem requires
solving Eq. 29, which is a linear function. Its solution Sl

Rv
is

in general a convex polytope [24] and, in particular, is a convex
diamond-like shape (i.e., a polyhedron) where all corners lie
on the axes centered at (v1, . . . , vk) and there is exactly one
corner on each semiaxis. The coverage areas for two and three
attributes are shown in Fig. 12. We solve Eq. 29 in each specific
k-dimensional “quadrant.” We define as quadrant the space of
q where the relationship between each qi and vi pair is con-
stant, i.e., for any two points q[q1, . . . , qk] and q′[q′

1, . . . , q
′
k] in

a quadrant, it is (qi−vi) · (q′
i−vi) > 0 for i = 1, . . . , k. Thus

in a specific quadrant, we always use the same case from the
cases shown in Fig. 5 for the bounds Ai(tlv). Furthermore, we
can pick the right argument of the min and max terms since
all the terms of their arguments are known values. Hence in a
specific quadrant, Eq. 29 is of the form

∑k
i=1 ci·qi ≤ C, where

ci and C are constants, which describes a halfspace. This half-
space contains the point (v1, . . . , vk) since fv(tlv) ≤ fq(t1v).
The intersection of these halfspaces for all 2k quadrants is
a diamond centered at the point (v1, . . . , vk). Note that the
size and shape of the diamonds for two different views are
different.

Note that if a query point does not satisfy Eq. 29, it may still
be covered by the view Rv if the PipelineResultsOptimal

4 Obviously the PipelineResults algorithm could be used as the
view cover decision algorithm, but its complexity is O(l).
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algorithm is used, that is, on-the-fly watermark calculation
is performed for each retrieved tuple. However, this is not
possible when a watermark is calculated only for t1v as in Fig. 4.
PREFER only uses the view cover decision algorithm to avoid
this complexity.

5.1.1 Guarantees for multiple results

Providing guarantees for multiple results from Rv can take
place in a similar fashion. One can repeat the above process
for the second desired watermark position. The queries falling
inside the intersection of the corresponding convex polytopes
satisfy both guarantees. Let �i, 1 ≤ i ≤ N be the positions
of watermark T i

v,q we wish to guarantee. Repeating the pro-
cedure above for each �i will provide a sequence of coverage
areas S1, . . . , SN . The queries falling within

⋂N
i=1 Si satisfy

all guarantees.

5.2 Selecting views to materialize

The simplest version of the view selection algorithm covers
every possible query with at least one view Rv . That is, the
view selection algorithm generates a set of views V such that
the union of the query spaces covered by the views covers the
whole space [0, 1]k, i.e., ∪Rv∈VSl

Rv
= [0, 1]k. In practice,

the algorithm considers a discretization of the [0, 1]k space by
using a user-provided discretization parameter d. This gener-
ates the set of points {(x1, . . . , xk)|xi = rid, ri ∈ Z, xi ∈
[0, 1],

∑k
i=1 xi = 1}, and the view selection algorithm keeps

introducing views until no point is left uncovered. The O(1)
view cover decision algorithm is used to check whether a given
view Rv covers a query q. Note that if the query workload is
known a priori and the whole query space cannot be covered
due to space limitations, there is an opportunity to cover more
queries by placing the views close to the queries. However,
we assume that no such information is available and that all
queries are equally possible.

There are environments where only a finite number of
views C can be actually materialized. This can be due ei-
ther to space constraints or to maintenance issues related to
updates of the database. Thus the choice of a “good” set of
ranked views to materialize is an important issue. This gives
rise to the following constraint optimization problem.

Problem 5.1. (View Selection Under Space Constraint)
Given a set of views R1

v, . . . , Rs
v that covers the space [0, 1]k

select C views that maximize the number of points in [0, 1]k
covered.

Problem 5.1 is an instance of the maximum coverage prob-
lem [20], as the following reduction shows. The space of all
possible preference vectors [0, 1]k can be considered as the
reference set. Each of the views is a “subset” of [0, 1]k con-
taining a number of preference vectors. We wish to select C
“subsets” to maximize the number of covered elements of the
reference set. The maximum coverage problem is NP-Hard as
the set cover can be easily reduced to it. However, it can be
approximated efficiently as the following theorem shows:

Theorem 7 (Greedy approximation) The Greedy heuristic
is a 1− 1

e approximation for maximum coverage.

Algorithm ViewSelection(){
while (not all preference vectors

in [0, 1]k covered)
{ Randomly pick v ∈ [0, 1]k

and add it to the list
of views, L

}
GREEDY ← 0
for l = 1 to C {
select v ∈ L that covers the maximum

uncovered vectors in [0, 1]k
GREEDY ← GREEDY

⋃
Sv

}
}

Fig. 13. Ranked view selection under space constraint

Proof. See [20].

The Greedy heuristic works iteratively by picking the next
view from the collection R1

v, . . . , Rs
v that covers the maximum

number of uncovered elements of [0, 1]k. Figure 13 summa-
rizes our approach.

5.2.1 Decreasing the depth of the views

In environments with space constraints, updates of the
database and efficient view maintenance considerations, build-
ing a large number of materialized views becomes expensive.
The obvious solution would be to materialize a small number
of views. This would mean that only a portion of the query
space would be covered. Furthermore, when the query space
is adequately covered by views then only the top prefix of the
views is used in answering the queries when the number of re-
quested tuples is relatively small. These observations led us to
experiment with materializing only a prefix of each view. We
add an extra step to the views selection and creation process.
We select the views that will be materialized as described in
Sect. 5.2 and then we materialize only a prefix of them of size
D, which we call depth of the views. Then when a query q is
presented to PREFER, the best view V is selected using the
algorithm in Sect. 5.3 and the PipelineResults algorithm is
executed. If we need to retrieve more than D tuples from V in
order to output the top-N results that the user requested then
this view V may not contain the top-N results according to q.
In this case, we use the original relation R in order to answer
the query. Alternatively, we could also try using other views
“close” to q and if these also fail use R. Fortunately this is very
rarely the case when the number of views and their depth are
adequetely big and the user only cares about the top results.
We further elaborate on the optimal view depth in Sect. 7.

5.3 Selecting a ranked view for a preference query

Query processing, once C views have been materialized, pro-
ceeds as follows. The description of the coverage areas of the
views (Eq. 29) are stored in a main memory data structure.
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Algorithm PipelinedMerge(Rv1 , . . . , Rvn,fq,fv1 , . . . , fvn, N){
for i = 1 to n do {
Retrieve first tuple ttop

vi
from Rvi

and compute fq(ttop
vi

)
}

Let ttop be the tuple ttop
vi

that has the maximum fq(ttop
vi

)
while (less than N tuples in the output) {
for i = 1 to n do {

T top
vi,q = DetermineWatermark(ttop, vi)
Scan Rvi and determine the first tuple tw with fvi(tw) < T top

vi,q

Add all nonprocessed tuples up to tw to temporary relation WINDOW
}
Sort WINDOW by fq and let s be the index of ttop in WINDOW
Output and delete the first s tuples from WINDOW
if WINDOW is empty then

Add to WINDOW the first unprocessed tuple from each source
Sort WINDOW by fq

Let ttop be the first tuple in WINDOW.
}

}
Fig. 14. Algorithm to output the first N tuples according to q

When a query q arrives, we find the view that minimizes the
expression fv(tlv) +

∑k
i=1(qi − vi)Ai(tlv) − fq(t1v). That is,

the inequality of Eq. 29 is more “strongly” satisfied.
When the overall number of views that we materialized is

bounded, it is likely that not all points of [0, 1]k are covered.
Thus it is possible to generate preference vectors that are not
covered by any of the stored views. For such queries, we cannot
provide performance guarantees based on our construction.
The same heuristic is used as for the covered queries. That is,
the inequality of Eq. 29 is not satisfied, but Rv is “closer” to
satisfaction than the other views.

6 Using the PipelineResults algorithm
to efficiently answer ranked queries at a metabroker:
the MERGE system

The PipelinedMerge algorithm presented next efficiently
queries the underlying sources S1, . . . , Sn and merges their
results when a query q is presented to the metabroker, as shown
in Fig. 2. It outputs the results in a pipelined manner, i.e., with-
out retrieving the complete result sequences from the sources.
We assume that each source Si exports exactly one query vi.
The key to the algorithm is the computation of a prefix R1

vi
of

the result sequence Rvi of source Si that is sufficient to assure
that if the first tuple t1q of R = R1 ∪R2 ∪ . . .∪Rn according
to fq is in Ri, then t1q is in R1

vi
. In each step, a watermark value

is calculated for each of the sources.
The algorithm PipelinedMerge is described in Fig. 14.

It inputs: (a) the preference function fv1 , . . . , fvn
for each

source, (b) the result sequences Rv1 , . . . , Rvn that the sources
produce for these functions, (c) the user’s preference function
fq, and (d) the number N of desired results.

Theorem 8 proves the correctness of the PipelinedMerge
algorithm.

Theorem 8 (Correctness) The PipelinedMerge algorithm
outputs the correct ranked results.

Proof. First we prove that the top tuple according to fq of a
single source Si is contained in the window of tuples from
Ri ending at the last tuple that has a smaller or equal fvi

value to the watermark value T top
vi,q . From the definition of the

watermark vector we see that all tuples t below the watermark
value have fq(t) < fq(ttop). That is, none of these tuples could
be the top one according to fq. Hence the top tuple according
to fq is in the retrieved window.

So in each iteration of the PipelinedMerge algorithm
(each iteration of the while loop), the top tuple according to
q from each source is contained in the tuples that are added
to the WINDOW. Hence the top tuple according to fq over
the union of all relations will be in the WINDOW and will be
output. 	


Example Let us present an example of the algorithm’s op-
eration. Assume q is a query with q = (0.1, 0.6, 0.3) and
there are two sources S1 and S2 that produce the result se-
quences Rv1 and Rv2 , respectively. Their preference vectors
are v1 = (0.2, 0.4, 0.4) and v2 = (0, 0.5, 0.5), respectively.
The query and the sources have linear preference functions.
Let m1 = m2 = m3 = 5 and M1 = M2 = M3 = 20. The
sequences Rv1 and Rv2 are shown in Fig. 15.

First we retrieve the first tuple from each sequence and find
the one that has the maximum fq value. It is fq(t2) > fq(t3),
so ttop ≡ t2. We calculate the watermark vector (T top

v1,q =
T top

v2,q) = (14.26, 15.33). The calculation of the watermark is
described in Sect. 4.2. Hence t2 and t1 are added to WINDOW
because fv1(t1) > T top

v1,q . We sort the WINDOW by fq and
output t1 and t2, which have bigger or equal fq values than
ttop. Next we add two fresh tuples t6 and t3 becauseWINDOW
is empty, and t3 becomes ttop. We calculate the watermark
vector (T top

v1,q = T top
v2,q) = (13.1, 13.5). So no tuples are added

to WINDOW, and t3 is output. Now ttop ≡ t6. The algorithm
continues and outputs t4, t5, t6, and t7.
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Tuple A1 A2 A3 fv1(t) fq(t)

t2 10 17 20 16.8 17.2
t1 20 20 11 16.4 17.3
t6 15 10 5 9 9
t7 12 5 5 6.4 5.7

a

Tuple A1 A2 A3 fv2(t) fq(t)

t3 17 18 12 15 16.1
t4 5 10 12 11 10.1
t5 15 10 8 9 9.9

b

Fig. 15. Sources S1 and S2 and scores of each tuple based on fv1 ,
fv2 , and fq . a Rv1 . b Rv2

6.1 Speculative version of MERGE

As we explain in Sect. 4.4, many of the applications that we
deal with have an inherent approximation factor. For these
applications, it makes sense to sacrifice some of the accuracy
of the resulting sequence in order to improve the performance
in terms of the response time. In the case of MERGE, where
multiple sources are queried, there is an additional reason why
speculation is useful. Suppose that a source Sj is considerably
slower than the other sources. Then Sj becomes the bottleneck
in the PipelinedMerge algorithm. To tackle this problem, we
assign to each source Si a speculation factor εi proportional
to its response time. Hence the sources with longer response
times have a higher threshold value T ′top

i , where

T ′top
i = (1 + εi) · T top

vi,q (30)

The speculative PipelinedMerge algorithm differs from
PipelinedMerge in that it uses T ′top

i instead of T top
vi,q . We

evaluate the impact of speculation to MERGE in Sect. 7.

7 Experimental results

To evaluate PREFER’s and MERGE’s algorithms for the ef-
ficient execution of preference queries, we carried a detailed
performance evaluation. First we compare PREFER’s execu-
tion time with the time required by a commercial database
management system to complete the same task. Then we mea-
sure the running time of PREFER’s preprocessing step, where
the materialized view selection is performed. Then we evaluate
PREFER’s query performance as different parameters vary. A
key query performance metric is the fraction of queries that
satisfy the user-provided guarantee on the size of the view
prefix that PREFER has to retrieve from the view in order
to retrieve a user-provided number of top query results. We
present a comparison of PREFER with other proposed state-
of-the-art solutions. We also measure the performance boost
we get when we decrease the depth of the materialized views.
Note that all accesses to the materialized views in PREFER
are sequential, which makes it superior to any index-based
system that performs random accesses.

For the MERGE system, we measured the average prefix
of the source relations that we need to retrieve as the num-
ber of sources and the distance between the sources’ and the
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Fig. 16. Execution times

query’s functions varies. Finally, we evaluated the application
of speculation to MERGE.

The experiments use two synthetic datasets. The relation
attributes of the first dataset are independent, while the at-
tributes in the second dataset are correlated. The database
consists of a relation houses with six attributes: HOUSEID,
PRICE, BEDROOMS, BATHROOMS, SQ FT, and YEAR.
We performed experiments that used three, four, or five of the
attributes (HOUSEID is not a preference attribute). The cardi-
nality of the five preference attributes is 1,000,000, 10, 8, 3500,
and 50, respectively, for the random dataset and 1, 500,000,
5, 5, 1500, and 50, respectively, for the correlated dataset.
PRICE, BEDROOMS, and SQ FT were used for experiments
involving three attributes; BATHROOMS was added as the
fourth attribute andYEAR as the fifth. For the random dataset,
the attribute values are chosen with a uniform distribution over
their domain. In the correlated dataset, we used correlation
patterns that we discovered in real datasets containing house
information [1] (we did not use these datasets because they
were relatively small in size). The correlation coefficient be-
tween BEDROOMS and the rest of the attributes (except for
YEAR) is between 0.35 and 0.73, and the correlation of the
other attribute pairs is at similar levels.

We use a discretization of 0.1 for the domain from which
we draw view and query preference vectors (0 through 1, in
increments of 0.1), except for when the experiment involves
only three attributes, in which case we use a granularity of
0.05 in order to have a significant (> 200) number of possible
preference vectors and stress the view selection algorithm.
Linear functions were used in all experiments.

The computing environment consisted of a dual Pentium
II with 512-MB RAM running Windows NT Workstation 4.0,
where all experiments were executed, and a PII 256-MB RAM
Windows NT Server 4.0, where the datasets were stored in an
Oracle DBMS. Both PREFER and MERGE are implemented
in Java.The two computers were connected through a 10-Mbps
LAN.

PREFER’s query running time comparison to a commer-
cial DBMS. We present results of an experiment that com-
pares the average time that PREFER needs to output the top
results of a query, as the number of results varies, to the time
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Attributes Top-1 tuple

Discretization 0.1 Discretization 0.05

3 39 s | 6 views 40 s | 6 views
4 136.5 s | 21 views 149.5 s | 23 views
5 377 s | 58 views 396.5 s | 61 views

Attributes Top-10 tuples

Discretization 0.1 Discretization 0.05

3 43 s | 6 views 44 s | 6 views
4 141 s | 22 views 155 s | 25 views
5 384 s | 60 views 404 s | 64 views

Fig. 17. View selection algorithm running time

that a commercial DBMS requires for the same task. We use
a 50,000-tuple correlated dataset with four attributes for this
experiment. To measure the time of the DBMS, we issue a
SQL query containing the preference function in the ORDER
BY clause (required to order the result by the score of the
preference function) and measure the time to output the top
results. We use the top-N hint available in Oracle, although we
found that it did not considerably improve the performance.
For example, we measured that an order by query with the
top-100 hint executes just 3% faster than the same query with
no hint. PREFER contains 34 materialized views chosen us-
ing the view selection algorithm for a guarantee of 500 tuples
in a preprocessing step. This set of views covers the whole
preference vector space for that guarantee. The results of the
experiment are shown in Fig. 16.

One can observe that the performance benefits are very
large. Even for 500 results requested, PREFER still requires
half the time of a straightforward SQL-based approach. Note
that the time required by the DBMS is almost the same for all
results, as the entire relation has to be ranked before a single
result is output.Also note that alternative straightforward algo-
rithms could be included in the comparison, which however
are clearly inferior to PREFER, since they have to scan the
whole relation. One such example is to scan the relation and
keep a priority queue with the top-N results thus far obtained.

PREFER’s view selection running time. Our first experi-
ment assesses the running time that the view selection algo-
rithm takes to cover the space of all queries. Figure 17 presents
the running time of the algorithm for various parameters of
interest, namely, the number of attributes in the underlying
dataset, the discretization of the domain of preference vec-
tors, and the number of result tuples (1 or 10) that we require
guarantees for, on a 50K-tuple database. The guarantee pro-
vided is that the size of the view prefix is less than 500 tuples.
The times in the figure include the time to build the selected
materialized views, plus the time to solve the view cover de-
cision problem, as described earlier.5

The running time increases with the number of attributes
in the dataset as the preference vector space increases in size;

5 We store the 500-th tuple of every view that we build and build
the views directly from a native database interface and not through
JDBC. Hence the overall performance is better than [21].

more effort is required to cover the entire space. It also in-
creases with the granularity of the preference vectors as the
space becomes denser in candidate query points that the al-
gorithm has to cover. Finally, the running time increases with
the number of result tuples we wish to provide guarantees for,
as the algorithm has to solve the view cover decision problem
for each result tuple we wish to have a guarantee for.

PREFER’s query performance as a function of the dataset
size. Figure 18 presents the results of an experiment assessing
the query performance of PREFER with respect to the dataset
size. In this experiment, we used datasets with four attributes.
We target a guarantee that the first result of a random query is
identified by retrieving, at most, 500 tuples from the database.
We vary the number of views allowed to be materialized, and
we measure the fraction of the queries that satisfy the guar-
antee we wish to provide. The fraction of the queries is mea-
sured by exhaustively executing all possible queries (whose
vectors’components fall on the 0.1 discretization) on the views
that have been materialized and counting the number of them
that satisfy the guarantee. We observe that PREFER scales
gracefully with the dataset size. For the case of correlated data
(Fig. 18a), increasing the number of tuples in the database by
five times requires only doubling the number of materialized
views to cover 100% of the possible queries. Increasing the
number of tuples 50 times requires almost tripling the number
of materialized views to cover 100% of the queries. Note that
only ten views are enough to cover 90% of the query space for
a dataset with 10,000 correlated tuples (Fig. 18a).

The smaller slopes of the curves for increasing numbers of
tuples is due to the skew. In particular, since the distribution
of tuple values is skewed, the distribution of scores in each
view is skewed as well. For this dataset, as the number of
tuples increases, the sizes of the generated covered spaces
are smaller since the number of tuples greater than a specific
watermark value decreases due to skew. Consequently, for a
fixed number of views, a smaller fraction of the query space is
covered when the number of tuples of the database increases.

Figure 18b presents the results of the same experiment on
the random dataset. In the case of random data (uniformly
distributed attribute values), the number of additional views
required to ensure that all queries provide guarantees appears
to grow very slowly with database size.

The difference in the fraction of space covered with the
same number of views does not vary much as the number of
tuples increases. This happens because we are dealing with
uniform data, which means that the values of a preference
function fq are sparse in the region where fq takes its maxi-
mum values. Hence the fraction of tuples greater than a spe-
cific watermark value essentially remains constant (for a truly
uniform distribution).

Figure 18 shows that, for a fixed number of views, we
often miss the guarantee because a portion of the query space
remains uncovered as a consequence of the imposed constraint
on the number of views.

Varying the number of attributes in PREFER. Figure 19
presents the results of an experiment assessing the scalability
of the view selection algorithm with respect to the number of
attributes in the underlying dataset, which has 500,000 tuples.
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Fig. 18. Varying the dataset size in PREFER. a Correlated dataset. b Random dataset
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Fig. 19. Varying the number of attributes. a Correlated dataset. b Random dataset

Figure 19a presents the results of the experiment for the corre-
lated dataset. The number of tuples in the datasets is the same,
so as the number of attributes increases, the distribution of
distances between the tuples is expected to increase as well.
This explains the different slopes of the curves as the number
of attributes increases. The distribution of score values in each
view becomes increasingly more skewed as the dimensionality
increases for the types of preference functions we consider in
this paper. The number of tuples with scores larger than a spe-
cific watermark value decreases for this dataset as the number
of attributes increases, yielding smaller coverage areas. Con-
trasting with Fig. 19b, which presents the results of the same
experiment for random data, we observe that the overall trends
are the same; the curves, however, for random data, especially
as the number of attributes increase, are steeper (have higher
slope). This is expected since the distribution is not as skewed
and, as a result, a larger fraction of the preference attribute
space is covered for the same number of materialized views.

PREFER’s query performance as a function of required
guarantees. Figure 20 presents the results of an experiment
assessing the query performance of PREFER as a function of

the guarantees requested. We use four-attribute datasets in this
experiment. We vary the guarantees provided by the queries by
increasing the maximum number of view tuples read to report
the first result of queries. Figures 20a,b show the results for
the correlated dataset for two dataset sizes, and Figs. 20c,d
show the results for the random datasets.

In each figure, we report two curves each for different
number of materialized views. We observe that in all cases,
with 20 views, the majority of queries satisfy a guarantee as
small as 500 tuples. A similar phenomenon with the impact of
skew exists in this case. For random data (Fig. 20c,d) for the
same dataset size, the fraction of queries providing a specific
guarantee is higher than in the case of correlated data.

Comparison of PREFER with the Onion technique. Fig-
ure 21 presents an experimental comparison of PREFER
against the Onion technique, which was briefly described in
Sect. 2. The Onion technique retrieves in the worst case (which
is the average case as well in our experiments) z convex hulls
to answer a top-z query. We implemented the Onion technique
and report on the number of tuples retrieved from the database,
for a database with 50K tuples and 3 attributes, increasing the
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Fig. 20. Varying guarantees. a Correlated dataset, 50K tuples. b Correlated dataset, 500K tuples. c Random dataset, 50K tuples. d Random
dataset, 500K tuples

number of query results requested. We vary the number of re-
sults requested and the number of views materialized in our
technique. The Onion technique requires approximately 2.5 h
to construct the index for such a relation(50K tuples and 3 at-
tributes). The time is exponential to the number of attributes.
This was the maximum experiment we could run with the
Onion technique that would require a reasonable amount of
time for preprocessing.

For this experiment, we construct materialized views by
imposing a guarantee of 500 tuples only for the first query
result (the guarantee is not that important in this case since
we do not cover the whole query space.) Thus the views are
constructed in such a way that no guarantees are provided
for additional results with our technique, and thus we level
the query performance playground in order to fairly compare
with Onion, which is focused on the first result. Figure 21a
presents the results for the correlated dataset. The proposed
technique is superior to the Onion technique, even with a sin-
gle view available, for all requested results. We also observe
that the performance of our technique deteriorates slightly as
the number of requested tuples increases. This is not the case
for the Onion technique. The performance deteriorates rapidly,
and when more than 20 results are requested, it must scan the
entire dataset. This is because this dataset is decomposed into
20 convex hulls by the Onion technique. The number of con-

vex hulls decreases when the dataset has attributes with small
cardinalities. It is interesting to note that in this experiment the
views are constructed with a guarantee of 500 tuples only for
the first result. Even in this case, the proposed technique is ca-
pable of outperforming the Onion technique for all requested
results. Figure 21b presents the results for the random dataset.
We observe that when only one view is available, the Onion
technique is better for the first result, but its performance de-
teriorates rapidly for additional results. Moreover, as the num-
ber of views increases, our technique becomes much better for
all results retrieved, even though the views were constructed
without guarantees for additional results. For more than ten
results, the Onion technique essentially performs a scan of the
entire dataset because there are only ten convex hulls in the
Onion index.

Decreasing the depth of the materialized views in PRE-
FER. We performed a series of experiments to evaluate what
impact the decrease of the depth of the views has on the perfor-
mance of PREFER. We used two synthetic datasets of 50,000
tuples each, one with independent and the other with corre-
lated attribute values. Four attributes were used, and the view
and query discretization was 0.05. We assumed that the space
that is available is ten times the size of the relation. That is, if
we construct m views, each of them will have depth 10·50,000

m .
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Fig. 21. Comparison with the Onion technique. a Correlated dataset. b Random dataset
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Fig. 22. Varying the number of views and the depth. a Correlated dataset. b Random dataset

We increased the number of views and measured the average
number of tuples that we need to retrieve from the database to
output the top-1, top-10, and top-100 results. The average was
calculated over all possible queries with discretization 0.05.

The resulting graphs for the two datasets are shown in
Fig. 22. These graphs show the trade-off between having a
big number of views and having deep views. We observe that
for the top-1 result, the average number of tuples retrieved
decreases as the number of views increases and reaches 2,
which is the absolute minimum, at 260 to 270 views. This
happens because the number of tuples that we need to retrieve
to get the first result is generally very small so the depth of the
views does not matter so much, and when the number of views
increases there is always a view very close to the query. The
absolute minimum number of tuples that we need to retrieve
in order to output the top result is two because we always have
to read the top tuple of Rv to calculate the watermark and the
second tuple of Rv to check if its fv score is smaller than the
watermark value.

On the other hand, note that for the top-10 and the top-
100 results the average number of tuples retrieved initially

decreases with the number of views until we reach 85 views,
where the minimum number of tuples are retrieved, and then
it increases again. This happens because when the number of
views increases beyond a certain point (85 for this dataset), the
depth decreases so much that a significant number of queries
need to query the original relation R in order to retrieve the
top-N results. Thus they retrieve all 50,000 tuples and affect
the average significantly.

Evaluation of MERGE. The performance of the MERGE
system depends on the number of sources and on the simi-
larity of the function fq, which is used by the user query, to
the functions fv1 , . . . , fvn supported by the sources. Every
source’s relation has 50,000 tuples and is generated syntheti-
cally as described above. The attribute values are independent
of each other. We use a discretization of 0.05 for the domain
from which we draw source and query preference vectors (0
through 1, in increments of 0.05).
Prefix size for varying distance between metabroker’s
and sources’ queries in MERGE. Our first experiment on
MERGE assesses the average prefix size that we need to re-
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Fig. 24. Speculation in MERGE. a Speculative cost. b Speedup

trieve from each of the underlying sources in order to present
to the user of the metabroker the top 1, 10, and 100 results
as a function of the Manhattan distance MD between the
preference vectors of the user query and the source queries
(MD =

∑k
j=1 |qj − vj |). For simplicity in the report, we as-

sumed the distance of the query from each source was the
same. Note that the Manhattan distance between any two
source queries can be at most two times the distance between
the metabroker and the source queries. Given the discretization
and the fact that we work with four attributes, the maximum
Manhattan distance of the query’s preference vector from each
source’s preference vector is 2. We use four sources for this
experiment, and the resulting graph is shown in Fig. 23a. We
see a slightly superlinear performance deterioration due to the
fact that the preference scores have a concentration toward the
“average” score.

Prefix size for varying the number of sources in MERGE.
This experiment measures the average prefix size that we need
to retrieve from each of the underlying sources in order to
present to the user of the metabroker the top 1, 10, and 100
results as a function of the number of sources that are used.
The Manhattan distance between the metabroker query and the
source queries is fixed at 0.2. The result is shown in Fig. 23b.

The average number of tuples retrieved from each source de-
creases as more sources are used.

Speculative version of MERGE. In this experiment, we apply
a speculation factor ε to one of the four sources and measure
the cost of speculation and the speedup that we get. Recall that
the cost of speculation is the average difference between the
indices of tuples in the speculative results sequence and in the
real results sequence. The speedup is the average ratio of the
decrease in the number of tuples that we need to retrieve from
each source to output the top-N results. In Fig. 24, we show
how the average cost and speedup vary with the speculative
factor to present to the user of the metabroker the top 1, 10,
and 100 results.

8 Implementation of PREFER

The overall system architecture is shown in Fig. 11. Using the
V iewSelection algorithm we select a number of views and
we materialize them. A relational DBMS is used for storing
the views.

We have developed a Java API to allow programmers to
use PREFER’s functionality in applications. We have also im-
plemented PREFER as a standalone application that runs on
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Fig. 25. Screenshots of the application. a Table and attributes selection. b Construction parameters selection. c Query parameters selection.
d Query results

Microsoft Windows and connects to Oracle database servers
via JDBC. PREFER provides end users with an easy-to-use
interface that automates the process of selecting and material-
izing the views and querying the database using these views.
The application can be divided into two parts. The first part
automates the selection and materialization of the views. The
user inputs (Figs. 25a and 25b): (a) the name of a relation R,
(b) the list of attributes of R that will be used in the preference
functions, (c) the maximum number S of views that will be
created, (d) the depth D of the views, (e) a constraint C that
denotes the maximum number of tuples that are retrieved to
output the first result, (f) the granularity gv (discretization) of
the views’ attribute weights, and (g) the granularity gq (dis-
cretization) of the queries’ attribute weights.
The construction part of the application:

• Creates at most S nonoverlapping views whose weights
are multiples of gv . By nonoverlapping we mean that none
of the views should be contained in the query space cov-
ered by the other views. Note that the constraint C is
needed at this point to define the covered space for each
view as described in Sect. 5.1. Only the top-D tuples of
each view are stored. One should give a large S value if
covering the whole space with respect to the constraint C
and the granularity gv is important.

• Stores the name and the weights of each view in a new
table called INFO table.
• Tests all queries whose weights have granularity gq and

find the view that covers each of them. We create a table
called PAIRS and we insert the weights of the query and
the “best” view that we found for each tested query.

The second part of the application uses the views that were
created to efficiently answer user queries. The user inputs
(Fig. 25c) (a) the name of a relation R, (b) the preference vec-
tor q, which contains the requested weights for each attribute,
and (c) the number N of results to be output.
The querying part of the application (Fig. 25d):

• Looks up the PAIRS table to find the “best” view V for
the query. If q is not in the PAIRS table, then we select the
view from the INFO table that is closer to q with respect
to the Manhattan distance.6

• Retrieves the preference vector v for V by looking it up
in the INFO table.

6 Recall that in Sect. 5.3 we proposed a heuristic for the case where
none of the views covers a query. We pick the view that minimizes the
expression fv(tl

v)+
∑k

i=1(qi−vi)Ai(tl
v)−fq(t1v). We approximate

this idea by picking the view with the smallest Manhattan distance
to the query.
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• Uses the PipelineResults algorithm to output the top-N
results according to q.

The specification of the PREFER API and the PREFER
application are available at http://www.db.ucsd.edu/PREFER.
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