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1. INTRODUCTION

PageRank [Brin and Page 1998] is an excellent tool to ranklbigal importance of the
pages of the Web. However, PageRank measures the globaltanpe of the pages, in-
dependently of a keyword query. More recent works [Havdivw002; Richardson and
Domingos 2002] apply PageRank to estimate the relevancagdggto a keyword query.
We appropriately extend and modify PageRank to perform keghgearch in databases
for which there is a natural flow of authority between theijeats (e.g., bibliographic,
biological [Raschid et al. 2006; Shafer et al. 2006] or caaiik databases as we explain
below).

Given a keyword query, we rank the results according to tfaeters: (a) the relevance
to the query, (b) the specificity, and (c) the global impoctanof the result. All factors are
handled using authority-flow techniques that exploit tim&-structure of the data graph,
in contrast to traditional Information Retrieval. The redace is computed using the Ob-
jectRank metric [Balmin et al. 2004] which is a keyword-sfie@daptation of PageRank
to databases. The specificity is computed using Inversec@gek metric, which is, to
the best of our knowledge, the first link-based specificityrineFinally, the global impor-
tance is computed using Global ObjectRank, which is the kegivindependent version of
ObjectRank. We show how these factors are combined to réadimnial results ranking.

ObjectRank Consider the example of Figure 1, which illustrates a smaltisst of
the DBLP database in the form of a labeled graph (author,ezente and year nodes
except for “R. Agrawal”, “ICDE” and “ICDE 1997" respectiwelare omitted to sim-
plify the figure). Schema graphs, such as the one of Figureegcribe the structure of
database graphs. Given a keyword query, e.g. the singleeweyquery “OLAP”, Ob-
jectRank sorts the database objects by their relevanceresthect to the user-provided
keywords. Figure 2 illustrates the top-10 “OLAP” papersdurced by our online demo
available on the Web at two mirror sitég,t p: / / www. db. ucsd. edu/ Qbj ect Rank and
http://dbir.cis.fiu.edu/Bi bObjectRank. Notice that many entries (the “Data
Cube” and the “Modeling Multidimensional Databases” paperFigure 1) of the top-10
list do not contain the keyword “OLAP” (“OLAP” is not even ctined in their abstracts)
but they clearly constitute important papers in the OLAPaasince they may be refer-
enced by other papers of the OLAP area or may have been whiteuthors who have
written other important “OLAP” papers.

Conceptually, the ranking is produced in the following widyriads of random surfers
are initially found at the objects containing the keyword-&P”, which we call the base
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Fig. 2. Top 10 papers on “OLAP” returned by ObjectRank

set, and then they traverse the database graph. In partiatlany time step a random
surfer is found at a node and either (i) makes a move to an efjarode by traversing
an edge, or (ii) jumps randomly to an “OLAP” node without &lling any of the links.
The probability that a particular traversal happens depemdmultiple factors, including
the type of the edge (in contrast to the Web link-based sesystems [Brin and Page
1998; Haveliwala 2002; Richardson and Domingos 2002]). s€hfactors are depicted
in an authority transfer schema graph. Figure 5 illustrtesauthority transfer schema
graph that corresponds to the setting that produced théiseglFigure 2. Assuming that
the probability that the surfer moves back to an “OLAP” nosléi% (damping factor—
random jump probability—[Brin and Page 1998]), the collexiprobability to move to a
referenced paper is up 8% x 70% (70% is the authority transfer rate of the citation
edge as we explain below), the collective probability to mtiyan author of the paper is
up to85% x 20%, the probability to move from the paper to the forum whereghper
appeared is up t85% x 10%, and so on. As is the case with the PageRank algorithm
as well, as time goes on, the expected percentage of sutfemch nodes converges
(Section 2) to a limit:(v). Intuitively, this limit is the ObjectRank of the node.

An alternative way to conceive the intuition behind ObjeartR is to consider that au-
thority/importance flows in the database graph in the sast@da that [Kleinberg 1999]
defined authority-based search in arbitrary graphs. llyitiae “OLAP” authority is found
at the objects that contain the keyword “OLAP”. Then auttydirnportance flows, follow-
ing the rules in the authority transfer schema graph, untdguilibrium is established that
specifies that a paper is authoritative if it is referencechoritative papers, is written
by authority authors and appears in authority conferenvez versa, authors and con-
ferences obtain their authority from their papers. Notiw the amount of authority flow
from, say, paper to cited paper or from paper to author or frathor to paper, is arbitrarily
set by a domain expert and reflects the semantics of the dorRainexample, common
sense says that in the bibliography domain a paper obtamyslittée authority (or even
none) by referring to authoritative papers. On the contitaoptains a lot of authority by
being referred by authoritative papers.

Global ObjectRank is query-independent and is obtaineddwinm all nodes of the data
graph in the base set.

Inverse ObjectRank Ranking solely by ObjectRank can be problematic, since igne
content nodes may be ranked higher than nodes with contenifispto the query. For
example, consider the publications database of Figure &revedges denote citations
(edges start from citing and end at cited paper), and the &eyquery “Sorting”. Then,
using ObjectRank the “Access Path Selection in a RelatiDathbase Management Sys-
tem” paper would be ranked highest, because it is cited bydfapers containing “sorting”
(or “sort”). The “Fundamental Techniques for Order Optiatian” paper would be ranked
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second, since itis cited by only three “sorting” papers.sifiunintuitive since the “Access
Path Selection” paper has general content while the “Fuedteh Techniques for Order
Optimization” paper is more focused (specific). The lattgpgr should be ranked higher
because it is mostly cited by “sorting” papers, whereas theér paper is also cited by
many (the three papers on the top right) papers irrelevdisoiing”. This lack of speci-
ficity can also be viewed as a topic-drift problem.

Google uses (to the best of our knowledge) IR techniquesdbaisehe content of the
Web pages (e.g., document length), which ignore the linkestire of the labeled graph
(i.e., the Web). Clearly, IR specificity metrics (e.g., domnt length) are not adequate
since a longer document may be more specific than a shortefoomeparticular query.
However, IR metrics can be used in conjunction to Inversee€iBjank to measure speci-
ficity.

Inverse ObjectRank is a keyword-specific metric of spetjfibiased on the link-structure
of the data graph. In particular, given a keywardthe Inverse ObjectRank scop® (v)
of nodev shows how specifie is with respect tav. In terms of the random surfer model,
p*(v) is the probability that starting from and following the edges on the opposite di-
rection we are on a node containingat a specific point in time. As is the case for
ObjectRank, the random surfer at any time step may get baréda back ta.

Keyword search in databases has some unique charactenighich make the straightfor-
ward application of the random walk model as described imiptes work [Brin and Page
1998; Haveliwala 2002; Richardson and Domingos 2002] igadee. First, every database
has different semantics, which we can use to improve theatgudlthe keyword search.
In particular, unlike the Web, where all edges are hypesgljtite database schema exhibits
the types of edges, and the attributes of the nodes. Notetheaious works [Richard-
son and Domingos 2002; Chakrabarti et al. 1998] assign wemhthe edges of the data
graph according to the relevance of the incident nodes’ttette keywords. In contrast,
we assign authority transfer rates on the schema graphhvdaigtures the semantics of
the database, since the relevance factor is reflected ireteetion of the base set. Using
the schema we specify the ways in which authority flows adtessiodes of the database
graph. For example, the results of Figure 2 were obtainedbgtating the schema graph
of Figure 4 with the authority flow information that appearg-igure 5.

Furthermore, previous work [Brin and Page 1998; Havelivzfl@2; Richardson and
Domingos 2002] assumes that, when calculating the globabitance (in our framework
we make a clear distinction between the global importancemdde and its relevance to
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a keyword query), the random surfer has the same probatuil#yart from any pagg of
the base set (we call this probabilitase ObjectRan&f p). However, this is not true for
every database. For example, consider a product comptiatabase (Figure 14). In this
case, we represent the business value of a customer by iagstgrhis/her node a base
ObjectRank proportional to his/her total sales amount.

Another novel property of ObjectRank is adjustability, aliniallows for the tuning of
the system according to the domain- and/or user-specifidnemments. For example, for a
bibliographic database, a new graduate student desiresehsg/stem that returns the best
reading list around the specified keywords, whereas a seesaarcher looks for papers
closely related to the keywords, even if they are not of a lgjgality. These preference
scenarios are made possible by adjusting the weight of thigafjimportance versus the
relevance to the keyword query. Changing the damping fattdfers another calibration
opportunity. In particular, larger values @ffavor nodes pointed by high-authority nodes,
while smaller values of favor nodes containing the actual keywords (that is, nodlése
base set). The handling of queries with multiple keywordsrefmore flexibility to the
system as we describe in Section 4. For example, we may wastign a higher weight
to the relevance of a node to an infrequent keyword.

On the performance level, calculating the ObjectRank, ise®bjectRank and Global
ObjectRank values in runtime is a computationally inteesperation, especially given
the fact that multiple users query the system. This is resbhy precomputing inverted
indexes where for each keyword we have a sorted lists of tHeswwith non-trivial scores
for this keyword. During run-time we employ tidreshold AlgorithnjFagin et al. 2001]
to efficiently combine the lists. However, our approach itekithe cost of precomputing
and storing the inverted index. Regarding the space ragein¢s, notice that the number of
keywords of a database is typically less than the numberektis a personalized search
system [Jeh and Widom 2003]. Furthermore, we do not storeedth ObjectRank
below a threshold value (chosen by the system adminisjratbich offers a space versus
precision tradeoff. In Section 8 we show that the index sizmiall relative to the database
size for two bibliographic databases.

Regarding the index computation, we present and experattgmivaluate two classes
of optimizations. First, we exploit the structural propestof the database graph. For
example, if we know that the objects of a subgraph of the setHfemm a Directed Acyclic
Graph (DAG), then given a topological sort of the DAG, tharan efficient straightforward
one-pass ObjectRank evaluation. We extend the DAG case dwdomg an algorithm
that exploits the efficient evaluation for DAGs in the caseemha graph is “almost” a
DAG in the sense that it contains a large DAG subgraph. Inqudatr, given a graplt
with n nodes, which is reduced to a DAG by removing a small subset ofodes, we
present an algorithm which reduces the authority caladdtito a system ofn equations
- as opposed to the usual systemnoéquations. Furthermore, we present optimization
techniques when the data graph has a small vertex coveritaraih be split into a set of
subgraphs and the connections between these subgrapha foAG.

Second, notice that the naive approach would be to calceietie keyword-specific Ob-
jectRank (the same applies for Inverse ObjectRank) segdgratVe have found that it is
substantially more efficient to first calculate the Globaje&atRank, and use these scores as
initial values for the keyword-specific computations. Taizelerates convergence, since
in general, objects with high Global ObjectRank, also hdagé keyword-specific Objec-
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Fig. 5. The DBLP authority transfer schema graph.

tRanks. Furthermore, we show how storing a prefix of the te¢klists allows the faster
calculation of the ObjectRanks of all nodes.

The semantic and performance contributions of this papee@luated using two user
surveys and a detailed experimental evaluation respéctMée have implemented a web
interface, available on the Web, to query the DBLP databasguthe ObjectRank tech-
nigue. A set of calibrating parameters are provided to tlee us

The essential formal background on PageRank and authestgls is presented in Sec-
tion 2. Section 3 presents the problem and the frameworkid®et presents the semantics
of ObjectRank and Inverse ObjectRank, as well as ways to awmrthem. Section 5 de-
scribes the system’s architecture and the online demo. Bweithms used to calculate
ObjectRank are presented in Section 6 and are experimeataluated in Section 8. We
present the results of two user surveys in Section 7. Relabeklis discussed in Section 9.
Finally, we conclude in Section 10.

2. BACKGROUND

We describe next the essentials of PageRank and authasgdlsearch, and the random
surfer intuition. Let(V, E) be a graph, with a set of nod&s= {vy,...,v,} and a set of
edgeskE. A surfer starts from a random node (web pagedf V' and at each step, he/she
follows a hyperlink with probabilityd or gets bored and jumps to a random node with
probabilityl — d. The PageRank value of is the probability-(v;) that at a given point
in time, the surfer is at;. If we denote by the vectorr(v), ..., 7v;),...,7(vs)]" then

we have

(1—-d)
V]

whereA is an x n matrix with 4;; = m if there is an edge; — v; in £ and 0
v 7 J

otherwise, wher®ut Deg(v;) is the outgoing degree of node. Also,e = [1,...,1]7.

The above PageRank equation is typically precomputed &efar queries arrive and
provides a global, keyword-independent ranking of the pagiestead of using the whole
set of noded” as thebase seti.e., the set of nodes where the surfer jumps when bored, one
can use an arbitrary subsgtof nodes, hence increasing the authority associated wéth th
nodes ofS and the ones most closely associated with them. In particuéadefine dase
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vectors = [sq, ..., Si,--.,5,)T wheres; is 1 if v; € S and 0 otherwise. The PageRank

equation is then

1-d

it @
Regardless of whether one uses Equation 1 or Equation 2 geRaak algorithm solves

this fixpoint using a simple iterative method, where the galof the (k+1)-th execution

are calculated as follows:

r = dAr +

D) — gapm L A=) 3)
5]

The algorithm terminates whanconverges, which is guaranteed to happen under very
common conditions [Motwani and Raghavan 1995]. In paréiguhe authority flow graph
needs to be irreducible (i.e(V, F) be strongly connected) and aperiodic. The former is
true due to the damping factdr while the latter happens in practice.

The notion of the base sé& was suggested in [Brin and Page 1998] as a way to do
personalized rankings, by settisgto be the set of bookmarks of a user. In [Haveliwala
2002] it was used to perform topic-specific PageRank on thk. Wge take it one step
further and use the base set to estimate the relevance ofeata@lkeyword query. In
particular, the base set consists of the nodes that com@iketyword as explained next.

3. FRAMEWORK AND PROBLEM DEFINITION

In this section we present the essential definitions, whieHaer used to define our rank-
ing metrics. We also formally define the keyword search proband outline the ranking
factors.

3.1 Database Graph, Schema, and Authority Transfer Graph

We view a database as a labeled graph, which is a model thigtegstures both relational
and XML databases. Thdata graphD(Vp, Ep) is a labeled directed graph where every
nodev has a label(v) and a set of keywords. For example, the node “ICDE 1997” of Fig
ure 1 has label “Year” and the set of keywords
{""ICDE'’", “*1997'', ‘‘Birm ngham’ }. Each node represents ahjectof
the database and may have a sub-structure. Without lossnefajéy, ObjectRank as-
sumes that each node has a tuple of attribute name/attriblute pairs. For example, the
“Year” nodes of Figure 1 haveane, year andl ocat i on attributes. Notice that the
keywords appearing in the attribute values comprise thefsetywords associated with
the node. One may assume richer semantics by including tteedate of a node in the set
of keywords. For example, the metadata “Forum”, “Year”, tation” could be included
in the keywords of a node. The specifics of modeling the dataradde are orthogonal to
ObjectRank and will be neglected in the rest of the discussio

Each edge from v to v is labeled with itsole A(e) (we overload)\) and represents a
relationship between andv. For example, every “paper” to “paper” edge of Figure 1 has
the label “cites”. When the role is evident and uniquely dedifrom the labels of, andv,
we omit the edge label. For simplicity we will assume that¢hare no parallel edges and
we will often denote an edgefromu to v as “u — v”.

A critical issue in constructing the data graph for a databis$o decide the granularity
of the information in the nodes. For example, if we are tonmreupaper, should we also
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Data Graph Nodes Edges

Relational Database Tuples (or attribute values) Primary-to-Foreign Key Relationships
XML Database XML Elements (or XML Nodes) Containment or ID-IDREF Edges
Web Pages Hyperlinks

Table I. Mapping of Common Data Models to a Data Graph.

return the author names and the conference where the pap@uiished? We adopt the
idea of predefined “answer nodes” as described in [Bhaloté. €002; Dar et al. 1998;
Guo et al. 2003; Hristidis et al. 2003]Hence, in the above example, we choose to store
the author and conference information in every paper nodsepkn mind that the data
graph is a conceptual structure, so the actual physicagtamay vary.

The data graph can represent relational [Agrawal et al. 260Btidis and Papakon-
stantinou 2002] and XML [Hristidis et al. 2003; Guo et al. 3D8atabases, as well as the
Web [Brin and Page 1998]. The mappings of these data modalsdes and edges of the
data graph are shown in Table I.

The use of our ranking metrics does not require the existeheeschema. However,
if a schema is present then it can be used to easier define tineriutransfer rates (see
below). Furthermore, the schema may offer optimizationoopmities as discussed in
Section 6. Theschema grapld:(V, E) (Figure 4) is a directed graph that describes the
structure ofD. Every node has an associated label. Each edge is labeled vate, which
may be omitted, as discussed above for data graph edge.lalelsay that a data graph
D(Vp, Ep) conformsto a schema grapfi(V, E¢) if there is a unique assingmemntof
data-graph nodes to schema-graph nodes and a consisigntaest of edges such that:

(1) forevery node € Vp thereis a nodg(v) € Vi such that\(v) = A(u(v));

(2) for every edge € Ep from nodeu to nodev there is an edgg(e) € E¢ that goes
from p(u) to p(v) andA(e) = A(u(e)).

Authority Transfer Schema Graph. From the schema graghi(Vs, E¢), we create the
authority transfer schema grapi“ (Vz, E4) to reflect the authority flow through the
edges of the graph. This may be either a trial and error pspagtil we are satisfied
with the quality of the results, or a domain expert’s task. particular, for each edge
ec = (u — v) of Eg, two authority transfer edge&é = (u — v) andel = (v — u)
are created. The two edges carry the label of the schema gdgd and, in addition,
each one is annotated with a (potentially differesuithority transfer rate- a(eé) and
a(e%,) correspondingly. We say that a data graph conforms to amétyttransfer schema
graph if it conforms to the corresponding schema graph.i@dahat the authority transfer
schema graph has all the information of the original scherapiy)

Figure 5 shows the authority transfer schema graph thagésponds to the schema graph
of Figure 4 (the edge labels are omitted). The motivatiordigfining two edges for each
edge of the schema graph is that authority potentially flewsoith directions and not only
in the direction that appears in the schema. For exampleper passes its authority to its
authors and vice versa. Notice however, that the authodty iih each direction (defined
by the authority transfer rate) may not be the same. For ebgrapaper that is cited by

LIn XKeyword [Hristidis et al. 2003] they are referred to agytt objects.
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Fig. 6. Authority transfer data graph

important papers is clearly important but citing importpapers does not make a paper
important.

Notice that the sum of authority transfer rates of the outg@dges of a schema node
u may be less than?1if the administrator believes that the edges starting frodo not
transfer much authority. For example, in Figure 5, confeesronly transfe$0% of their
authority.

Authority Transfer Data Graph. Given a data grap®(Vp, Fp) that conforms to an
authority transfer schema gragh(V, E4), ObjectRank derives aauthority transfer
data graphD“(Vp, E4) (Figure 6) as follows. For every edge= (u — v) € Ep the
authority transfer data graph has two edgés= (v — v) ande® = (v — u). The edges
e/ ande? are annotated with authority transfer ratgs”) anda(e?). Assuming that/ is
of typeel,, then

a(el,) . f
a(ef) _ Wgu,eé)’ lf OUtDeqU7 €G) >0

f @
0, if OutDedu,e;;) =0

whereOutDedu, eé) is the number of outgoing edges framof typeeé. The authority
transfer ratex(e?) is defined similarly. Figure 6 illustrates the authoritynséer data graph
that corresponds to the data graph of Figure 1 and the atyttsotiema transfer graph of
Figure 5. Notice that the sum of authority transfer ratediefdutgoing edges of a node

of type u(u) may be less than the sum of authority transfer rates of thgoing edges of
w(u) in the authority transfer schema graphy ifloes not have all types of outgoing edges.

3.2 Keyword Search and Ranking Factors

A keyword query; is defined as a set of keywords. The result of a keyword queriiss of
objects of the database (i.e., nodes of the data graph)dadcording to the query. The
ranking is performed according to three desired propepiesented below. We explain
how our system measures each of these properties by erpldite link-structure of the
data graph. Notice that there is other non-link-based fadt.g., IR score of individual
nodes [Hristidis et al. 2003]) that can be incorporated ardmnking as well, but they are
beyond the scope of this paper.

Relevance to Query: ObjectRankWe should rank higher results that either contain the

2In terms of the random walk model, this would be equivalerihtodisappearance of a surfer.
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keywords of the query or are semantically associated to ¢lyavtards of the query. The
latter factor is equivalent to being connected through paththe data graph in our data
model, where edges correspond to semantic associationsurlgystem, the link-based
relevance of a nodeto a queryw (assume a single-keyword query for now) is the Objec-
tRank valuer (v) of v discussed in Section 4.1.

Specificity: Inverse ObjectRank Specific results (nodes) should be ranked higher. That
is, results with content particular to the query are prefwver results with content that
spans across many topics. Previous work has not consideselink-based specificity
metric. In Section 4.2 we present and discuss in detail bev@bjectRank.

Global quality: Global ObjectRank Results of high quality should be ranked higher. The
link-structure of the data graph is used to measure quafitparticular, nodes with high
incoming authority flow are assumed to have higher qualitynBnd Page 1998; Guo
et al. 2003]. For example, a highly referenced paper shoelidhbked higher than a non-
referenced paper if the other ranking properties are edqoalur system, we use Global
ObjectRank (defined in Section 4.1), which is an effectinkdbased metric to measure the
global authority, that is, the quality of a node of the datapyr. The Global ObjectRank
r%(u) of a nodeu is defined as the probability that a random surfer startiogfany node
of the authority transfer graph will be atat a specific time. For the case of the Web,
Global ObjectRank is equivalent to PageRank [Brin and P&§8J1 whose value has been
proven by the success of Googjle

Notice that these three properties correspond to the sgigcikieyword proximity and
hyperlink awareness properties respectively, defined iR [Guo et al. 2003]. The
same three properties (although not explicitly enumejdiade been used in other works
as well (e.g., [Bhalotia et al. 2002]).

4. OBJECTRANK AND INVERSE OBJECTRANK

In this section we present the ranking metrics we use: ORgatt, Global ObjectRank

and Inverse ObjectRank. Furthermore, we explain the pdisatis to Information Theory

(Section 4.3) metrics. Finally, in Section 4.4 we presert address the challenges in
combining these metrics into a ranking function.

4.1 ObjectRank

We first define ObjectRank for a single keyword. In Sectionwetextend to multiple
keywords. Given a single keyword query ObjectRank finds thikeyword base sef(w)
(from now on referred to simply as base set when the keywardpdied) of objects that
contain the keywordv and assigns an ObjectRanK (v;) to every nodey; € Vp by
resolving the equation

(1-d)
r* = dAr" + S (5)
|5 (w)|
whereA;; = af(e) if there is an edge = (v; — v;) in E4 and 0 otherwise] controls the
base set importance, asd= [s1,...,s,|’ is the base set vector fol(w), i.e.,s; = 1 if

v; € S(w) ands; = 0 otherwise.

3http:/ww.google.com
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The damping factod determines the portion of ObjectRank that an object transte
its neighbors as opposed to making a random jump to one ofdbe et pages. It was
first introduced in the original PageRank paper [Brin andePE@08], where it was used
to ensure convergence in the case of PageRank sinks. Howeegldition to that, in our
work it is a calibrating factor, since by decreasifigve favor objects that actually contain
the keywords (i.e., are in base set)as opposed to objedtadhaire ObjectRank through
the incoming edges. The value fdused by PageRank [Brin and Page 1998] is 0.85, which
we also adopt when we want to balance the importance of conggihe actual keywords
as opposed to being pointed by nodes containing the keywords

Global ObjectRank. The definition of global ObjectRank is different for differteappli-
cations or even users of the same application. In this woefogus on cases where the
global ObjectRank is calculated applying the random sumiggel, and including all nodes
in the base set. The same calibrating parameters are deagabin the keyword-specific
ObjectRank. Notice that this way of calculating the globbj&atRank, which is similar to
the PageRank approach [Brin and Page 1998], assumes thatlat (pages in PageRank)
initially have the same value. However, there are many agftins where this is not true,
as we discuss in Section 10.

4.2 Inverse ObjectRank

Before presenting the specifics of Inverse ObjectRank, véagxwhy the traditional IR
specificity metrics are inadequate. In particular, IR nestignore the link-structure which
makes them incomplete. For example, the document lewijtimgtric cannot distinguish
between objects (nodes) of approximately the same lengtls the case in our biblio-
graphic database of paper titles and author names. TraditiR specificity metrics are
complementary to Inverse ObjectRank since they focus ondldes of the authority flow
graph, whereas Inverse ObjectRank exploits the edges. idnnibrk we only evaluate
Inverse ObjectRank and other alternative link-structuasedl specificity metrics in Sec-
tion 7.2.

The intuition behind Inverse ObjectRank is the following.ivé&h a keywordw, the
ObjectRank value of a nodeis the probability that a random surfer starting from a node
containingw will be atv at a specific timew is specificwith respect taw if there is only
few such keywords for which a surfer will end up orstarting from them. That is, if the
random surfer will start ab and follow the edges of the authority transfer graph on the
reverse direction, he/she should land backwonith high probability.

The above intuition is formally defined as follows. We firseddo define thinverse au-
thority transfer graphD! (Vp, EL), given the authority transfer data grapH (Vpp, E4),
as follows: For every edggu — v) € E#, we create an opposite-direction eddév —
u) € EL with authority flow ratea(el) = a(e)%m. Notice thatl /OutDeg(u) is
used in the calculation af(e), so by multiplying byOut Deg(w) this is evened out.

Given a single-keyword query= {w}, the Inverse ObjectRank scop# (u) of a node
u is the probability that a random surfer of the inverse autptransfer graphD! starting
from « will be at a node containing at a specific time.

Inverse ObjectRank is calculated in two steps. First, fehaeodev € D! we compute
its connectivity ¢“(v) to u, i.e., how much authority starting fromwill reachw through

4This could also be called Inverse ObjectRank with respeat telowever, we avoid using this name which we
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DI

q" = dATq" + (1 - d)s, (6)
whereA! is the transition matrix oD’. Thatis,A/; = a(e) if there is an edge = (v; —
v;) in D! and 0 otherwises,, = [s.1,--.,sun]” is the base set vector containing just

i.e.,sy; = 1if v; iIsu ands,; = 0 otherwise. Note that the connectivif¥(v) of a nodev
is equivalent to the inverse P-distance frarnto v as defined by Jeh and Widom [Jeh and
Widom 2003].

Second, the Inverse ObjectRapK (u) is computed by summing the connectivities
q“(v) of all nodes that contain. That is

P =Y ¢“(v) (7)

veES(w)

whereS(w) is the base set af as defined in Equation 5.

Global Inverse ObjectRang, which we do not use in our ranking function but has its
own merit, is calculated by Equation 8. High Global InverdgjgatRank denotes high
connectivity of a node in a way similar to hub nodes in [Kle2nip 1999].

p=dA’ (8)

|V|

wheree = [1,...,1]T.

Notice that Inverse ObjectRank is a keyword-specific metfispecificity, in the same
sense that ObjectRank is a keyword-specific metric of relesa This is the key reason
why it performs superior to keyword-independent specyfibiguristic metrics (including
Global Inverse ObjectRank) as we show in Section 7. Alsacedtiat Inverse ObjectRank
has the same convergence properties as ObjectRank, wiidescribed in Section 2.

4.3 Information Theory Perspective

In this section we discuss Inverse ObjectRank from an Inédimm Theory perspective.
In particular, we show how the link-based factors descripe8ection 3.2 appear in the
context of Information Theory formulas. In general, thekiag functions in Informa-
tion Retrieval can be explained as the increase of infoonatihen specifying a term;
[Aizawa 2000]. In particular, the famoug - idf ranking function can be explained using
this approach [Aizawa 2000]. We apply the same Informatibedry principle to create a
ranking formula for graph databases as follows.

Let V andW be the sets of nodes (documents in IR) and keywords in théasea
The information increase df after the event of observing; can be expressed using
the Kullback-Leibler information metric, which is a measwof the difference between
two probability distributions. Kullback-Leibler inforntian betweenP (V|w;) and P(V),
whereP(.) denotes probability, is calculated by

K(P(Vw:), PV) = 3 log ”J'“’Z ©)

v; eV

reserve for the product of the final (second) step of the caatioun.

ACM Transactions on Database Systems, Vol. V, No. N, Montfi\20



13

Using Bayes rule, this can also be written as

K(P(VIw),P(V)) = Y log w?'”f (10)

v; €V

In Information RetrievalP(v,|w;) is the probability that document; contains key-
word w; and P(v;) is the probability ofv;, which is the same for all documents, that is,
P(v;) = 1/n, wheren is the total number of documents. On the other hand, the equiv
alent quantity in a graph database is the probability thetieg from a node containing
w;, a random surfer will be at nodg at a specific time, that isP(v;|w;) = " (v;).
Similarly P(w;|v;) = p*(v;). Also, P(v;) is the Global ObjectRank value of, that is,
P(vj) = r%(v;). Finally P(w;) is common for all nodes since it is only query dependent
and can hence be ignored.

Depending on whether we adopt Equation 9, Equation 10 or duwtion of the two,
we generate ranking functions that use ObjectRank for agles, and Global ObjectRank
or Inverse ObjectRank for specificity. In Section 7, we gatiliely compare these combi-
nations.

4.4 Combine Ranking Factors and Multiple Keywords

There are two levels of combining scores in our frameworketach a ranking function
for nodewv given a multiple-keyword queryq‘= {w, ..., ws,}". First, we need to find
the scoref™i(v) (f*(v) is the score of node given keywordw;) of v for every single
keywordw;, and then combine these scores (and possibly Global OlgektR (v)) to
compute the final scorg?(v).

First, we define two alternative ways to combine ObjectRaitk imverse ObjectRank
to computef*i (v), shown in Equations 11 and 12. The two equations are usectt bo
downplay the weight of Inverse ObjectRank, that is, of thec#rity factor in a keyword
guery respectively.

fWi (’U) _ TUH (’U) . pUH, (’U) (11)
fwi (’U) — Wi (’U) -/ pWi (v) (12)

Alternatively, if we choose a different specificity metrsege Section 7) we can replace
p¥i(v) in Equation 11 by that metric, where we also show that Eqnatid typically
produces superior results.

Second, we define the semantics of a multiple-keywords quert {ws,...,wn}"
by naturally extending the multiple-keywords random walkdal. In particular, for the
case of ObjectRank we considerindependent random surfers, where itiesurfer starts
from the keyword base sét(w;). For AND semantics, the ObjectRank of an objeetith
respect to then-keywords query is the probability that, at a given pointing, them
random surfers are simultaneouslyvatWe extend this model by substituting’ (v) by
f*i(v). Hence the scorg?(v) of nodev with respect to then keywords is

fwl, wm( ) _ H fwi (’U) (13)
i=1,....m
For OR semantics, the ObjectRank:ofs the probability that, at a given point in time,
at least oneof them random surfers will reach. Hence, for two keywords; andw, the
model can be extended to
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47.31  11.44  An XML Indexing Structure with Relative Region Coordinate. Dao Dinh Kha, ICDE 2001
41.02 3.08 DataGuides: Enabling Query ... Optimization in Semistructured... Roy Goldman, VLDB 1997
7.44 28.43  Access Path Selection in a RDBMS. Patricia G. Selinger, SIGMOD 1979

31.44 324 Querying Object-Oriented Databases. Michael Kifer, SIGMOD 1992

26.73 3.09  AQuery ... Optimization Techniques for Unstructured Data. Peter Buneman, SIGMOD 1996

47.31  11.44  An XML Indexing Structure with Relative Region Coordinate. Dao Dinh Kha, ICDE 2001

7.44 28.43  Access Path Selection in a RDBMS. Patricia G. Selinger, SIGMOD 1979

2.04 102.1  R-Trees: A Dynamic Index Structure for Spatial Searching. Antonin Guttman, SIGMOD 1984
1.73 112.7  The K-D-B-Tree: A Search Structure For Large ... Indexes. John T. Robinson, SIGMOD 1981
41.02 3.08 DataGuides: Enabling Query ... Optimization in Semistructured... Roy Goldman, VLDB 1997

Fig. 7. Top 5 papers on “XML Index”, with and without emphasis“XML”"

fer ) = ) 4+ [ (0) = [ (0) 2 (v) (14)
and for more than two it is defined accordingly, as specifiedhayinclusion-exclusion
principle (also known as the sieve principle). Notice thtéayeliwala 2002] also takes the
sum of the topic-sensitive PageRank values to calculatBdlgeRank of a page.

If Global ObjectRank is included in the computation, it isdted as an additional key-
word w,, 1 With f*m+1(v) = r&(v).

Weigh keywords by frequency.A drawback of thecombining functiorof Equation 13 is
that it favors the more popular keywords in the query. Theaaas that the distribution of
ObjectRank values is more skewed when the §#4ev)| of the base se$(w) increases,
because the top objects tend to receive more referencesx&mple, consider two results
for the query “XML AND Index” shown in Figure 7. Result (b) cesponds to the model
described above. It noticeably favors the “Index” keywovdithe “XML". The first paper
is the only one in the database that contains both keywortfeititle. However, the next
three results are all classic works on indexing and do ndyajectly to XML. Intuitively,
“XML” as a more specific keyword is more important to the uskrdeed, the result of
Figure 7 (a) was overwhelmingly preferred over the resuFigtire 7 (b) by participants
of our relevance feedback survey (Section 7). The lattarlresntains important works
on indexing in semistructured, unstructured, and objeietated databases, which are more
relevant to indexing of XML data. This result is obtained Isyng the modified formula:

peLtm (y) = H (ri (v))9(ws) (15)

whereg(w;) is anormalizing exponenset tog(w;) = 1/log(|S(w;)]). This exponent
plays a role similar to the inverse document frequency (idfjaditional Information Re-
trieval. Using the normalizing exponents
g(“XML") and g(“Index”) in the above example is equivalentto running imglkel g(“XML")
andg(“Index”) random walks for the “XML” and the “Index” keywosdrespectively.

Compare to single base set approactOne can imagine alternative semantics to calculate
the ObjectRank for multiple keywords, other than combinting single-keyword Objec-
tRanks. In particular, consider combining all objects veitheast one of the keywords into

a single base set. Then a single execution of the ObjectRgokitam is used to deter-
mine the scores of the objects. Incidentally, these secwawere used in the HITS system
[Kleinberg 1999]. We show that such “single base set” seiosuwtin be achieved by com-
bining single-keyword ObjectRank values applying appiedprexponents. Furthermore,
we explain how our semantics avoid certain problems of ‘Isibhgse set” semantics.
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Base Set
Timber: A Native XML
Database

D: : Enabling
Updates for Structure ‘ Query Formulation and

s Optimization in

FastMap: A fast Semistructured

Algorithm for Indexing.... Databases

A Unified Approach for The R*-tree: An
Indexed and non- efficient and robust
Indexed Spatial Joins access method for

Blobworld: A System for points and rectangles

Region-based Image
ndexing and Retrieval

Fig. 8. Example where “HITS” approach fails in AND semantics
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module ! 105 of top-k ObjectRank
Database i resuls et
! Database
‘ Access
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AuthoRank ! module
Index i {}
| Results
I
i
Preprocessing stage 1 Query stage

Fig. 9. System Architecture.

In order to compare to the “single base set” approach for ABiantics (Equation 13),
we consider two scenarios and assume without loss of géyeret there are two key-
words. First, assume that we only put in the base&Sshjects that contain both keywords.
These objects will be in both keyword-specific base sets #s seethese objects and ob-
jects pointed by them will receive a top rank in both appreschSecond, IS contains
objects containing any of the two keywords, we may end upirgnighest an object that
is only pointed by objects containing one keyword. This aatappen with the keyword-
specific base sets approach. For example, in Figure 8, thglédbase set” approach would
rank theR* paper higher than the DataGuides paper for the query “XML AR®ex”,
even though th&* paper is irrelevant to XML.

For OR semantics (Equation 14), the baseSet the“single base set” approach is the
union of the keyword-specific base sets. We compare to arowegrversion of the “single
base set” approach, where objects in base set are weigltedlar to the keywords they
contain, such that infrequent keywords are assigned higlegght. In particular, if an
object contains both keywords, for a two keyword query, @ssigned a base ObjectRank
of (1 —d) - (ﬁ + m). Then, using the Linearity Theorem in [Jeh and Widom
2003], we can prove that the ObjectRanks calculated by lphoaches are the same.
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5. ARCHITECTURE

We have implemented a system to answer keyword queries abaks. The user inputs
(a) a set of keywords, (b) a choice for combining semantidd@for OR), (c) the im-
portance of global quality of the results (i.e., Global @ibRank), (d) the importance of
containing the actual query keywords (translated to a daghfsictor valued), and (e) a
specificity metric (as we explain in Section 7). The outputtaf system is a ranked list
of nodes of the database (to be more formal, of the authastster graph) according to
the input parameters based on the ranking function in Equdi8 or 14 (for AND and
OR semantics respectively). The authority transfer gratdred in a relational database
using the schema shown in Figure 4.

The architecture of the system, which is shown in Figure @jvigled into two stages.
The preprocessing stage consists of uthority Flow Execution modulevhich inputs
the authority transfer grap@d to be indexed, the set of all keywords that will be indexed,
and a set of parameters. In particular these parametergipfeset of damping factors
d, that users are expected to choose from. (ii) The conveggeoiastantpsilon which
determines when the ObjectRank and Inverse ObjectRankidigs converge, and (iii)
The threshold value which determines the minimum score that an object tnasgt to
be stored in the authority flow index. Note that other indexnimg techniques are possi-
ble [Carmel et al. 2001]; however, we found that this simpiéarm pruning technique
performs well in our setting.

The Authority Flow Execution module creates #nathority flow indexwhich is an in-
verted index, indexed by the keywords. For each keywgritistores a list ofid(u), f* (u))
pairs for each object that hasf™ (u) > threshold. The pairs are sorted by descending
f*(u) to facilitate an efficient querying method as we describewelhe authority flow
index has been implemented as an index-based table, wieglistthare stored in a CLOB
attribute. A hash-index s built on top of each list to allammdom access, which is required
by the Query module. Note that if we allow multiple combioat of calibration parame-
ters to be selected by the user, then we create multipleted/@rdexes, one for each such
combination.

TheQuery modulénputs a set of keywords-, . . ., w,, and a set of adjusting parame-

ters, and outputs the tapobjects according to the ranking function (Equation 13 9t 14
In particular, these parameters are: (a) a choice for comipgemantics (AND or OR), (b)
the importance of global quality of the results (i.e., GlabbjectRank), (c) the importance
of containing the actual query keywords (translated to aplagifactor valuei), and (d)
a specificity metric (as we explain in Section 7). The keywspécific lists read from the
authority flow index are merged using tihareshold AlgorithnjFagin et al. 2001] which
is guaranteed to read the minimum prefix of each list. Notie¢ the Threshold Algorithm
is applicable since both combining functions (Equationai@ 14) are monotone.

Finally, theDatabase Access moduiguts the resulids and queries the database to get
the corresponding node of the authority transfer graphs iftiormation is stored into an
id-indexed table, that contains a CLOB attribute value fteobject id. For example, a
paper object CLOB would contain the paper title, the authmames, and the conference
name and year.
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5.1 Demo
We have built a demo [Hwang et al. 2006] on bibliographic gatzich is available online
at two mirror sites: http://www.db.ucsd.edu/ObjectRank nda

http://dbir.cis.fiu.edu/BibObjectRank. The data wasextd using the following method.
First, we downloaded all publications and citations frora BDBLP database We no-
ticed that this source is missing too many citations, whiekagly degrades the quality of
link-based analysis. To overcome this shortcoming, we @iteseet as an additional
citations’ source. We built a web crawler to retrieve thetations since we found that the
exported files of Citeseer are in a large degree inaccuratemétched papers from the
two sources using their titles, which of course can leaduoifaccurate matches.

Our demo offers to the user multiple authority flow settingsprder to accommodate
multiple user
profiles/requirements. We believe the ability to custonaizthority flow schemes is impor-
tant, since we should not assume that “one size fits all” whenrnes to opinions about
authority flow. For example, there is one setting for useas$ grimarily care for papers
with high global importance and another for users that prinaare for papers that are
directly or indirectly heavily referenced by papers thatéthe keywords. We expect that
multiple settings make sense in all non-trivial applicatio

6. INDEX CREATION ALGORITHMS

This section presents algorithms to create the ObjectRaahdxi which can be adjusted
to compute Inverse ObjectRank as well. Section 6.1 presenégorithm for the case of
arbitrary authority transfer data graphs*. Sections 6.2 and 6.3 show how we can do
better whenD4 is a directed acyclic graph (DAG) and “almost” a DAG respealii (the
latter property is explained in Section 6.3). Sections Gdi&5 present optimizations when
the authority transfer graph has a small vertex cover, obi&@ of subgraphs respectively.
Finally, Section 6.6 presents optimization opportunibased on manipulating the initial
values of the iterative algorithm.

6.1 General algorithm

Figure 10 shows the algorithm that creates the ObjectRagdxinThe algorithm accesses
the authority transfer data gragh”* many times, which may lead to a too long execution
time if D4 is very large. Notice that this is usually not a problem, sif* only stores
object ids and a set of edges which is small enough to fit into meemory for most
databases. Notice that lines 2-4 correspond to the ori§iagéRank calculation [Brin and
Page 1998] modulo the authority transfer rates information

6.2 DAG algorithm

There are many applications where the authority transfe&a geaph is a DAG. For ex-
ample a database of papers and their citations (ignorirftpa@nd conference objects),
where each paper only cites previously published papesDAG. Figure 11 shows an
improved algorithm, which makes a single pass of the giaghand computes the actual
ObjectRank values. Notice that there is no neeafatilon any more since we derive the

5http://www.informatik. uni-trier.de/ ley/db/
6http://citeseer.ist.psu.edu/
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Createlndex(keywordsListpsilon, threshold, a(.), d){
01. For each keyword in keywordsList do{

02. While not converged do

03. /Fi.e.,Ju, |r*+D (v) — rF) (v)| > epsilon*/

04. MakeOnePasg(a(.), d);

05. StoreObjectRanks();

06.}

}
MakeOnePass(,a(.), d) {
07. Evaluate Equation 5 using thdrom the previous iteration on the right side;

}
StoreObjectRanks(

08. Sort the(id(i), r(v;)) pairs list byr(v;) and store it in inverted index, after removing pairs wit;) < threshold;

Fig. 10. Algorithm to create ObjectRank Index

precise solution of Equation 5, in contrast to the algoritifrrigure 10 which calculates
approximate values. The intuition is that ObjectRank iyardnsferred in the direction of
the topological ordering, so a single pass suffices. Notiaetbpologically sorting a graph
G(V,E) takes time®(V + E) [Cormen et al. 1989] in the general case. In many cases
the semantics of the database can lead to a better algorfomexample, in the papers
database, we can efficiently topologically sort the papgfgst sorting the conferences by
date. This method is applicable for databases where a teinmoother kind of ordering

is implied by the link structure.

CreatelndexDAG (keywordsListhreshold, a(.), d){

01. Topologically sort nodes in gragh4;

02. /*Consecutive accessesfd4 are in topological order.¥
03. For each keywora in keywordsList dof

04. MakeOnePass(a(.), d);

05. StoreObjectRanks();

06. }

}

Fig. 11. Algorithm to create ObjectRank Index for DAGs

In the above example, the DAG property was implied by the sgicea However, in
some cases we can infer this property by the structure of ukie&ty transfer schema
graphG4, as the following theorem shows.

THEOREM 6.1. The authority transfer data grapP“ is a DAG if and only if

—the authority transfer schema graph is a DAG, or

—for every cycle in G4, the subgraptD’4 of D4 consisting of the nodes (and the edges
connecting them), whose type is one of the schema nodes af DAG.
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6.3 Almost-DAG algorithm

The most practically interesting case is when the authtratysfer data grapP# is almost

a DAG, that is, there is a “small” séf of backedgesand if these edges are removén!
becomes a DAG. Notice that the détis not unique, that is, there can be maninimal
(i.e., no edge can be removed frdif) sets of backedges. Instead of working with the
set of backedgel, we work with the sef, of backnodesthat is, nodes from which the
backedges start. This reduces the number of needed variablee show below, since
L] < |U].

In the papers database example (when author and conferbjemtsoare ignored), is
the set of papers citing a paper that was not published prelyjioSimilarly, in the com-
plaints database (Figure 14), most complaints referer@équrs complaints. Identifying
the minimum set of backnodes is NP-complétethe general case. However, the seman-
tics of the database can lead to efficient algorithms. Fomgie, for the databases we
discuss in this paper (i.e, the papers and the complainébdses), a backnode is simply
an object referencing an object with a newer timestamp.

The intuition of the algorithm (Figure 12) is as follows: tdjectRank of each node
can be split to the DAG-ObjectRank which is calculated igmpthe backedges, and the
backedges-ObjectRank which is due to the backedges.

To calculate backedges-ObjectRank we assign a varialie each backnode; (for
brevity, we use the same symbol to denote a backnode and jéstBank), denoting its
ObjectRank. Before doing any keyword-specific calculatie calculate how;'s are
propagated to the rest of the grapt (line 5), and store this information i@. HenceC;;
is the coefficient with which to multiply; when calculating the ObjectRank of node To
calculateC (lines 13-15) we assume that the backedges are the onlyesol@bjectRank,
and make one pass of the DAG in topological order.

Then, for each keyword-specific base set: (a) we calculaeD#G-ObjectRanks’
(line 7) ignoring the backedges (but taking them into actaumen calculating the out-
going degrees), (b) calculatg’'s solving a linear system (line 8), and (c) calculate the
total ObjectRanks (line 10) by adding the backedge-Obj@akRC - ¢) and the DAG-
ObjectRank¢’). Each line of the system of line 8 corresponds to a backnpéeev; (i.e.,
theith backnode is thgth node of the topologically sorted authority transfer dataph
D', whose ObjectRan; is the sum of the backedge-ObjectRafik ( c) and the DAG-
ObjectRank{}). The overline notation on the matrices of this equatioraslthel lines
from each table that correspond to the backnodes. We fuettain the algorithm using
an example.

EXAMPLE 1. The graphD4 is shown in Figure 13 (a). Assumk = 0.5 and all
edges are of the same typewith authority transfer raten(t) = 1. First we identify
the backnodes; = Ps5,co = P, and then we topologically sort the graph ignoring the
backedges corresponding to the backnodes, depicted withddarrows in Figure 13 (a).
Then we create the coefficients tabldline 5), as follows:

r(P1) =0
r(P2) = 05-0.5-¢c2=0.25-c¢
r(P3) = 05-¢c1

“Proven by reducing Vertex Cover to it.
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CreatelndexAlmostDAG (keywordsListhreshold, a(.), d){

01. c: vector of ObjectRanks of backnodes;

02. Identify backnodes, and topologically sort the DAGA without the backedged)’#;
03. /*Consecutive accessesf4 are in topological order.*/

04. [*Backedges are consideredfif for a(.) .*/

05. C=BuildCoefficientsTable();

06. For each keyword in keywordsList do{

07. Calculate ObjectRanks vectdrfor D’4 executing MakeOnePass((.), d);
08. Solvec=C c+r1/;

09. /*D denotes keeping only the lines B corresponding to backnodes.*/
10. r=C-c+r’

11. StoreObjectRanks();

12. }

BuildCoefficientsTablef)

13. For each node; do

14. T(Uj) =d- Zbacknode ¢; points at v; (a(ci - ’Uj) ’ CZ)JF d- Znon—backnode vy points at v; (Ol(Ul - vj) ’ T(’UZ));
15. ReturnC, suchthatr = C - ¢

}

Fig. 12. Algorithm to create ObjectRank Index fimostDAGs
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Fig. 13. Almost DAG.
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=
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&
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= 05-7(P2)+0.5-0.5-7(P3) = 0.125 - ¢; + 0.125 - c2
r(Ps) = 0.5-0.5-7(P3)+0.5-0.5-7(Py) = 0.156 - ¢ + 0.031 - co

0 0

0 0.25

C= 0.5 0
0.125 0.125
0.156 0.031

Assume we build the index for one keywardontained in node#®;, P;. We calculate
(line 7) ObjectRanks fob’4 (taken by removing the backedges (dotted lines) fioh).

r(P1) = 0.5
r(P2) = 05-0.5-r(P1)=0.125
r(Ps) = 0.5

r(Ps) = 0.5-0.5-r(Ps) 4+ 0.5-r(P;) = 0.188
r(Ps) = 0.5-0.5-7(P4) +0.5-0.5-r(P3) +0.5-0.5 - r(P1) = 0.297
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Fig. 14. Authority transfer schema graph for Complaintsidase.
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Fig. 15. Hierarchical-graph.

r' =[0.50.1250.5 0.188 0.297]T

Solving the equation of line 8:
er | _ | 0156 0.031 || ey | | 0.207
c2 |~ | 0125 0.125 || c2 0.188
we get:c = [0.361 0.263]7, where the overline-notation selects from the matrices the

5-th and the 4-th lines, which correspond to the backnegdesidc, respectively. The final
ObjectRanks are (line 10 = [0.5 0.190 0.680 0.266 0.361]7".

This algorithm can be viewed as a way to reducesthe n ObjectRank calculation
system of Equation 5, whene is the size of the graph, to the much small&f x |L]|
equations system of line 8 of Figure 12. Interestingly, the equations systems have
the same format = Ar + b, only with different coefficient tableA , b. The degree of
reduction achieved is inversely proportional to the nundfdracknodes.

The linear, first-degree equations system of line 8 can besdalsing any of the well-
studied arithmetic methods like Jacobi and Gauss-Seid®#ufzand Loan 1996], or even
using the PageRank iterative approach which is simplerusscae do not have to solve
each equation with respect to a variable. The latter is shoyerform better in Section 8.

6.4 Algorithm for graphs with small vertex cover

Similarly to the almost-DAG case, we can reduce the ObjettRalculation to a much
smaller system (than the one of Equation 5) if authoritygfandata grap“ contains a
relatively small vertex covell. For example, consider a subset of the complaints database
(Figure 14) consisting of the products and the complainithfwt the reference edge to
other complaints). TheH is the set of the products (Figure 15YVe call the nodes off
hub-nodes.

8 A complaint can refer to more than one products.
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Fig. 16. Serializable Graph.

The intuition of the algorithm is the following: Lét; be the ObjectRank of hub-node
h;. First, the ObjectRank of every non-hub-nads expressed as a function of the Ob-
jectRanks of the hub-nodes pointingi#o Then the ObjectRank of each hub-nddeis
expressed as a function of the non-hub-nodes pointirig.tdhis expression is equal to
h;, so we getH| such equations for thigf | hub-nodes. Hence we reduce the computation
to a|H| x |H| linear, first-degree system.

6.5 Serializing ObjectRank Calculation

This section shows when and how we csarializethe ObjectRank calculation of the
whole graphD4(Vp, E4) over ObjectRank calculations for disjoint, non-empty ®ibs
Ly,..., L, of Vp, whereL; U... UL, = Vp. The calculation is serializable if we first
calculate the ObjectRanks fér , then use these ObjectRanks to calculate the ObjectRanks
of L, and so on.

For example, consider the subset of the papers databasstoansf the papers, their
citations and the authors, where authority is transferetevéen the papers and from a
paper to its authors (and not vice versa). Figure 16 showsthisvauthority transfer data
graph can be serialized. In particular, we first calculage@jectRanks for the nodes in
L, and then fo the nodes ih,, as we elaborate below.

To define when the calculation is serializable, we first defieegraphD’4 (V' E') with
V' = {Ll U... ULT} andE’ = {(L“ Lj)|§|(’l)i,’l)j) S Eé ANv; € L A v € LJ} That is,
there is an edgéL;, L;) in D' if there is an edge between two nodese L;, v; € Lj; of
DA, The following theorem defines when the ObjectRank calmnéas serializable.

THEOREM 6.2. The ObjectRank calculation fdp“ is serializable iffD’4 is a DAG.

The algorithm works as follows: Lekq, ..., L, be topologically ordered. First, the
ObjectRanks of the nodes iy are computed ignoring the rest 8. Then we do the
same forL,, including in the computation the sétof nodes (and the corresponding con-
necting edges) of; connected to nodes ih,. Notice that the ObjectRanks of the nodes
in I are not changed since there is no incoming edge from any rfofle to any node in
1. Notice that any of the ObjectRank calculations methodsrilesd above can be used in
each subset;.

6.6 Manipulating Initial ObjectRank values

All algorithms so far assume that we do a fresh execution@faigorithm for every key-
word. However, intuitively we expect nodes with high GloljectRank to also have
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high ObjectRank with respect to many keywords. We expldgtdibservation by assigning
the Global ObjectRanks as initial values for each keywortHj calculation.

Furthermore, we investigate a space vs. time tradeoff. ttiqodar, assume we have
limitations on the index size. Then we only store a prefix (tret p nodes) of the nodes’
list (recall that the lists are ordered by ObjectRank) fazrekeyword. During the query
stage, we use these values as initial values fopthedes and a constant (we experimen-
tally found 0.03 to be the most efficient for our datasets) for the %eddoth ideas are
experimentally evaluated in Section 8.1.

7. QUALITATIVE EVALUATION

To evaluate the quality of the results to keyword queries aedacted a set of user sur-
veys and we compared our results to a well-accepted groutid $ource. Section 7.1

presents the results for variations of ObjectRank. Secti@compares ways to express
the specificity in the ranking function.

7.1 ObjectRank Evaluation

To evaluate the quality of the results of ObjectRank, we cated two surveys. The
first was performed on the DBLP database, with eight profsssod Ph.D. students, who
were not involved with the project. The second survey useptiblications database of
the IEEE Communications Society (COMSO€xand involved five senior Ph.D. students
from the Electrical Engineering Department.

Each participant was asked to compare and rank two to fiwsdigbp-10 results for a set
of keyword queries, assigning a score of 1 to 10, accordirigeaelevance of the results
list to the query. Each result list was generated by a diffevariation of the ObjectRank
algorithm. One of the results lists in each set was genetatelde “default” ObjectRank
configuration which used the authority transfer schemalgodp-igure 5 andl = 0.85.
The users knew nothing about the algorithms that produceld essult list. The survey
was designed to investigate the quality of ObjectRank wiuampared to other approaches
or when changing the adjusting parameters.

Effect of keyword-specific ranking. First, we assess the basic principle of ObjectRank,
which is the keyword-specific scores. In particular, we cared the default (that is, with
the parameters set to the values discussed in Section 1§tBhjek with the global ranking
algorithm that sorts objects that contain the keywordsiating to their global ObjectRank
(where the base-set contains all nodes). Notice that tleigussalent to what Google used
to*! do for Web pages, modulo some minor difference on the cadlonlaf the relevance
score by Google. The DBLP survey included results for twonkayl queries: “OLAP”
and “XML". The score was 7:1 and 5:3 in favor of the keywordsific ObjectRank for
the first and second keyword query respectively. The COMS@@y used the keywords
“CDMA’ and “UWB (ultra wideband)” and the scores were 4:1 &@ in favor of the
keyword-specific approach respectively.

Effect of authority transfer rates. We compared results of the default ObjectRank with

9Notice that, as we experimentally found, using the Globge€tRanks instead of a constant for the rest nodes
is less efficient. The reason is that if a nadés not in the topp nodes for keyworde, « probably has a very
small ObjectRank with respect to Howeveru may have a great Global ObjectRank.

10http://www.comsoc.org

1 Google’s current ranking algorithm is not disclosed.
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a simpler version of the algorithm that did not use differaathority transfer rates for
different edge types, i.e., all edge types were treatedligqlrathe DBLP survey, for both
keyword queries, “OLAP” and “XML”", the default ObjectRanlkow with scores 5:3 and
6.5:1.5 (the half point means that a user thought that batkings were equally good)
respectively. In the COMSOC survey, the scores for “CDMAUEWWB” were 3.5:1.5
and 5:0 respectively.

Effect of the damping factor d. We tested three different values of the damping factor
d: 0.1, 0.85, and 0.99, for the keyword queries “XML"” and “XMLND Index” on the
DBLP dataset. Two points were given to the first choice of a asel one point to the
second. The scores were 2.5: 8: 13.5and 10.5: 11.5: 2 (thessBnsince there are

8 users times 3 points per query) respectively for the threglues. We see that highér
values are preferred for the “XML", because “XML" is a veryda area. In contrast, small

d are preferable for “XML AND Index”, because few papers amesely related to both
keywords, and these papers typically contain both of thetre rEsults were also mixed
in the COMSOC survey. In particular, the damping factors 0.85, and 0.99 received
scores of 5:6:4 and 4.5:3.5:7 for the queries “CDMA’ and “UWBspectively.

Note that settingl to a very small value (e.gd = 0.1 or less) is very close to using a
traditional IR function liket fidf, because the majority of the authority stays in the nodes
that contain the keywords. Furthermore the exponentin timua5 plays a role similar to
idf. Thetf metric also tends to be of minor importance in DBLP since wsa@rk rarely
repeated in a title and almost never in an author name.

Effect of changing the weights of the keywordsWe compared the combining functions
for AND semantics of Equations 13 with the weighted comhgnmethod described in
Section 4.4 for the two-keyword queries “XML AND Index” an&kML AND Query”,

in the DBLP survey. The use of the normalizing exponents gsed in Section 4.4 was
preferred over the simple product function with ratios & &nd 6.5:1.5 respectively. In
the COMSOC survey, the same experiment was repeated foeylveokd query “diversity
combining”. The use of normalizing exponents was prefeategratio of 3.5:1.5.

7.2 Inverse ObjectRank Evaluation

The user survey investigates and compares alternativetovaysorporate link-based speci-
ficity to keyword queries. In particular, we propose altéingaspecificity metrics and also
experiment with various ways to incorporate Inverse Olfjaok in the ranking. We per-
formed three qualitative experiments to compare thesenaltiees: a comparison to a
textbook’s bibliography, a user survey, and a quantitatieasurement of the distances be-
tween the result lists. The key conclusion from these studithat combining ObjectRank
with the square root of Inverse ObjectRank produces therbsatts.

We consider the following ranking functions. For each casespecify the single
keyword scoref*i(v) of nodewv as well as the multiple keywords combining function
frr--%m (). Notice that AND semantics is used.

(1) Objranks according to ObjectRank¥:(v) = r%i(v) and f**~*m (v) is defined by
Equation 13.

(2) Objinvranks according to the product of ObjectRank and Inverse@Bank.f " (v)
is defined by Equation 11 anf1»--*= (v) by Equation 13.

(3) ObjOverGlobaluses the inverse of Global ObjectRank as the specificityimethe
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Obj Objlnv ObjOverGlobal  Objd03 ObjSqrtinv
A-S | AANS | A.S | ANS | AAS | AANS | A-S | A-NS | A-S | A-NS
tree index 7 1 6 1 0 0 6 1 7 1
hash index 3 3 1 0 0 0 0 0 2 1
concurrency control| 4 2 7 0 0 0 7 1 7 1
object databases 1 4 3 0 0 0 4 2 4 1
deductive databases 4 2 4 0 0 0 4 0 5 0
spatial databases 3 2 1 0 0 0 2 0 2 0
distributed databases 1 3 5 0 0 0 5 1 6 1
relational model 3 5 3 2 0 0 3 2 3 4
guery optimization 2 3 3 1 0 0 4 2 4 2
data mining 4 1 6 0 0 0 4 0 6 0
relational algebra 3 2 2 0 0 0 3 0 2 0
AVERAGE 3.18 | 2.55 | 3.73| 0.36 0 0 3.82| 0.82 | 4.36 1

Table Il.  Number of Authoritative-Specific and AuthoritaNon-Specific papers according to Textbook .
assumption is that if a node has high ObjectRank, it receivfesm a wide range of

nodes, and hence this node is too general. ftigv) = r¥i(v) and f*1~*m (v) =
izt [ (0) /7% (v)

(4) Objd03is the same a®bj butd = 0.3 (d = 0.85 when not specified). That is, this
ranking attempts to achieve specificity by limiting the awrity flow and emphasizing
the nodes that contain the keywords.

(5) ObjSqrtinvranks according to the product of ObjectRank and the squerteof In-
verse ObjectRankf™: (v) is defined by Equation 12 arfd’*--*= (v) by Equation 13.

(6) ObjOverincuses the inverse of the number of incoming lifkemIncLinks(v) of
node v as specificity metric. It is f“i(v) = r¥i(v) and
fovewm () =Tlisy o £ (v)/NumincLinks(v). NumlIncLinks(v) can be
viewed as an approximation of (v), so this ranking can be viewed as an approxima-
tion of ObjOverGlobal

(7) ObjOverinvGlobalses the inverse of Global Inverse ObjectRaffk(v) as the speci-
ficity metric. Itis f*:(v) = r*i(v) and f*“1-*m(v) = [[,o; ,, f* (v)/7r1C (v).

Note that we do not compare to the document length (dl) whicthé traditional IR
specificity metric since all objects in DBLP have approxiehathe same lengthOb-
jOverincandObjOverinvGlobaivere found to perform much worse than the other ranking
functions and their results are omitted for simplicity.

Compare to Textbook’s Bibliography We assume that the bibliography section of each
chapter in [Ramakrishnan and Gehrke 2003] is a highly ctediburce of references re-
lated to the chapter title. Based on this assumption, we eoatpe recall (precision is the
same as recall in this case) of the ttppapers produced by the five above ranking func-
tions with respect to the papers in the bibliography seabbtine corresponding chapter,
which is viewed as the ground truth.

We evaluated 1 queries that correspond to chapter titles of the textboakri&rishnan
and Gehrke 2003]. For each keyword queryet B(q) denote the set of papers in the
bibliography of the corresponding chapter diiy) denote the set of papers that are in
the bibliography of the book but not of that chapter, thatiligy are not inB(q). We
assume that papers B(q) satisfy all properties of Section 3.2, that is, they are sjgec
to g, relevant tog and of high quality. We refer to such papers as authoritapexific
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Obj | Objinv | ObjOverGlobal | Objd03 | ObjSqrtinv
2.13 | 3.42 213 3.60 3.92

Table Ill.  Average Ratings of the Five Specificity Metricsta¢ User Survey.

for ¢. On the other hand, papersilifi(q) have high quality but are not highly relevant or
specific tog, and are referred to as authoritative-non-specific. Tdldadws the number
of authoritative-specific and authoritative-non-spegqifipers for each query for the five
ranking functions.

Obviously,ObjOverGlobahas the worst performance according to Table Il. In particu-
lar, it produces no authoritative-specific or authoritathon-specific papers in the tap-
results for any query. Hence, we do not consider this matrawir discussion henceforth.
Objd03 which promotes papers that contain the actual keywordafmes well in terms
of authoritative-specific results. The reason is that beedlne queries in Table Il refer to
fundamental areas, it happens that many important papetaiodhe actual keywords.

Now, let’s focus on the relationship betwe®j, Objinv, andObjSqrtiny which have
the common property that they only involve keyword-speafimputations. In terms of
the number of authoritative-non-specific papedfj and Objinv are located at the two
extremes. We introducedbjSqrtinvas a ranking function to combine the desirable prop-
erties of both ends. As expectddbjSqrtinvhas a number of authoritative-non-specific
papers that is between those@ifj andObjlnv. However,ObjSqrtinvis superior than both
Obj and Objlnv in terms of average number of authoritative-specific papetsch is a
highly desirable property.

The intuition behind the selection @bjSqrtinvis the following. UsingObjlnv, a too
specific object may receive a high score even if it has redbtiow quality and relevance.
For example, a very high quality object that happens to evagit to 10 keywords would
be ranked equal to a 10 times lower-quality document thalévant to only one keyword.
Hence, taking the square root of Inverse ObjectRank serpeasose similar to taking the
logarithm oftf in IR to avoid assigning top score to documents that repeatyrtimes
the keywords in an adversary way. We chose square root thstelgarithm because
logarithm is sensitive to the breadth of the range of the swebjectRank values. In
particular, we observed that few nodes have very large sav@bjectRank values which
have orders of magnitude difference to the top ObjectRalkega Square root is more
appropriate since/a - ¢/v/b - ¢ does not depend an(c > 0), whereasog(a - ¢)/ log(b- ¢)
depends om.

On the other hand, taking the square root of ObjectRank islades, since ObjectRank
is the relevance (and quality) measure, which is the primnanking factor, and cannot
be easily tricked (especially in controlled databases likdiographical). Other ways to
decrease the weight of Inverse ObjectRank were testedjili@ing (1-d) by a constant in
Equation 6, but taking the square root was found to perforitebe

A surprising fact is that the average number of authoriéasipecific papers fdDbj is
high. The reason is that the textbook contains multiple gemeferences for each chapter,
to introduce the topic to newcomers or carry very generatepts, which would not be
judged as specific by an experienced researcher. This @iigeris also supported by the
user survey presented below.

User Survey We asked twelve users (not involved in the project), eiglaloiase profes-
sors and four database Ph.D. students in eight differemetsities in the US and abroad,
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Fig. 17. Compare Results’ Distances.

to rank the topt0 result lists for the five ranking functions, for various gesr The survey
consisted of 9 queries, 4 of which were chapter titles of [Rlanshnan and Gehrke 2003].
Each user/subject assigned a score between 1 and 5 to ealthisefor the queries/topics
he/she feels comfortable with. Also, the user can speciyhbr level of expertise for
each topic, which is then used to weight the rating when cdimgaverage numbers. We
explained to the users what is meant by authoritative-fipexs opposed to authoritative-
non-specific by providing the following scenario, and weegkthem to evaluate according
to the former.

Survey ScenarioLet us assume you are a professor and you need to give a geadin
list to a first year graduate student who starts research opig, tsay “XML database
storage”. Being a first year student, he/she likely has n&dracind knowledge on data-
base issues pertaining to XML and semistructured data iergénin this case, you may
want to provide an authoritative papers list where it is Okdéed desirable) to include
a few seminal papers on XML and semistructured databasen,teough they may not
be related to storage in particular. Such seminal papera gmod starting point for the
student. These papers are authoritative-non-specifiapapestead, our survey asks for
authoritative-specific papers. Now assume that you produaading list for someone
(perhaps yourself) who already knows the basics of XML dadab and of conventional
(relational) storage systems. You now care about the spguEfiers in XML storage, in
particular.”

The average ratings are shown in Table Ill. We observe@m8qrtinvhas the high-
est average rating, which is consistent with our expeciatiat ObjSqrtinvoutperforms
other metrics because of its balance between authority pecificity. We also see that
Obj, which lacks a specificity factor, received low ratings imgast to Table I, where it
received a high score due to the reasons mentioned above.

Surprisingly,Objd03received a high average rating, although setting 0.3 greatly
degrades the authority flow factor and promotes resultscbatiain the actual keywords.
The reason of the high average rating is that some subjeattsodihave knowledge of the
best papers for a topic and instead they seem to have judgibe iyles of the papers and
the presence of the keywords in them.

Distance Between Specificity Metrics In this experiment, we perform a quantitative
comparison between the above ranking functions using timel&leTau distances between
the generated result lists. Since the two folists are not permutations of each other, we
use the extended Kendall Tau definition of Fagin et al. [Fagial. 2003]. The average
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Kendall Tau distances between the most interesting pairarding functions over 100
gueries are shown in Figure 17, as a function of the liststtehgNotice that as expected,
there is a large distance betwe®hbj andObjinv but a smaller distance betwe&bj and
ObjSqrtinv We do not include the distance betwe@hj and ObjOverGlobalsince their
results are often disjoint hence resulting in very largéadtises.

8. PERFORMANCE EXPERIMENTS

In this section we experimentally evaluate the system and shat calculating the author-
ity flows is feasible, both in the preprocessing and in thegjagecution stage. We present
the results for ObjectRank which can be extened for Invetgec®Rank as well. For the
evaluation we use three real and a set of synthetic data3@tstSOC is the dataset of the
publications of the IEEE Communications Soci&tywhich consists 055, 000 nodes and
165,000 edges. DBLPreal and DBLPreal2 are a subset and the compRit® Dataset
respectively. DBLPreal consists of the publications inlealatabase conferences. DBL-
Preal containg 3, 700 nodes and 01, 500 edges, whereas DBLPreal2 H#s), 300 nodes
and2, 741,000 edges. In addition, we also created a set of artificial de&tas®own in
Table 1V, using the words of the DBLP dataset. The outgoingesdare distributed uni-
formly among papers, that is, each paper cites on aveidgéher papers. The incoming
edges are assigned by a non-uniform random function, sitoitde one used in the TPC-
C benchmark?, such that the top0% of the most cited papers receiv6% of all the
citations.

name #nodes #edges
DBLP30 3, 000 30, 000
DBLP100 10, 000 100, 000
DBLP300 30, 000 300, 000
DBLP1000 | 100, 000 | 1, 000, 000
DBLP3000 | 300, 000 | 3, 000, 000

Table IV. Synthetic Datasets.

To store the databases in a RDBMS, we decomposed them iatiored according to
the relational schema shown in Figure 28is an instance of a conference in a particular
year. PP is a relation that describes each pap&l2 cited by a papepidl, while PA
lists the authoraid of each papepid. Notice that the two arrows fror? to PP denote
primary-to-foreign-key connections fropid to pidl and frompid to pid2. We ran our
experiments using the Oracle 9i RDBMS on a Xeon 2.2-GHz P8 witB of RAM. We
implemented the preprocessing and query-processingilgm in Java, and connect to
the RDBMS through JDBC.

The experiments are divided into two classes. First, we oredmw fast the ObjectRank
Execution module (Figure 9) calculates the ObjectRankalfdeywords and stores them
into the ObjectRank Index, using tfereatelndexalgorithm of Figure 10. The size of
the ObjectRank Index is also measured. This experimenfpisated for various values
of epsilonandthreshold and various dataset sizes. Furthermore, the General (Blajek
algorithm is compared to the almost-DAG algorithm, and tifiecté of using various initial

12http://www.comsoc.org
13http://www.tpc.org/tpcc/
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C(cid,name)

Y(yid,year,cid)

‘ P(pid,title,yid) PP(pid1,pid2) ‘
‘ A(aid,name) PA(pid,aid) ‘

Fig. 18. Relational schema.

ObjectRank values is evaluated. Second, in Section 8.2 treeyQmodule (Figure 9) is
evaluated.

threshold | time (sec)| nodes/keyword size (MB)
0.3 3702 84 2.20
0.5 3702 67 1.77
1.0 3702 46 1.26

Table V. Index Creation for DBLPreal fefpsilon = 0.1

threshold | time (sec)| nodes/keyword size (MB)
0.01 20036 70831 1854
0.03 20036 45445 1189
0.1 20036 26968 706

Table VI. Index Creation for DBLPreal2 fapsilon = 0.05

8.1 Preprocessing stage

General ObjectRank algorithm. Tables V, VI and VIl show how the storage space for the
ObjectRank index decreases as the ObjectRardsholdof the stored objects increases,
for the real datasets. Notice that DBLPreal and COMSOC hayg41 and40, 577 key-
words respectively. Also notice that much fewer nodes pgwked have ObjectRank
above thethreshold in COMSOC, since this dataset is more sparse and has more key-
words. The time to create the index does not change thigsholdsincethresholdis not
used during the main execution loop of the Createlndex ahgor Tables VIII, IX and
X show how the index build time decreasesasilonincreases. The reason is that fewer
iterations are needed for the algorithm to converge, on ¢isé af lower accuracy of the
calculated ObjectRanks. Notice that the storage space rdmeshange withepsilon as
long asepsilon < threshold.

Table XI shows how the execution times and the storage reapgints for the Objec-
tRank index scale with the database size for the DBLP syigtdatasets foepsilon =
0.05 andthreshold = 0.1. Notice that the average number of nodes having ObjectRank
higher than theahresholdincreases considerably with the dataset size, becausarie s
keywords appear multiple times.

General ObjectRank vs. almost-DAG algorithm.Figure 19 compares the index creation
time of the General ObjectRank algorith@€n-OR and two versions of the almost-DAG
algorithm, on the DBLP1000 dataset, for various number akbades. Thealgebraic
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threshold | time (sec)| nodes/keyword size (MB)
0.05 80829 9.4 1.17
0. 07 80829 8.3 1.08
0.1 80829 7.7 1.03

Table VII. Index Creation for COMSOC fatpsilon = 0.05

epsilon | time (sec)| nodes/keyword size (MB)

0. 05 3875 67 1.77
0.1 3702 67 1.77
0.3 3517 67 1.77

Table VIII. Index Creation for DBLPreal farthreshold = 0.5

epsilon | time (sec)| nodes/keyword size (MB)

0.05 20036 26968 706
0.1 18878 26968 706
0.5 16773 26968 706

Table IX. Index Creation for DBLPreal2 fahreshold = 0.1

version Alg-A-DAG precisely solves the = C - ¢ 4 1/ system using an off the self al-
gebraic solver. ThRageRankersion PR-A-DAQ solves this system using the PageRank
[Brin and Page 1998] iterative method. The measured timesher average processing
time for a single keyword and do not include the time to regithe base-set from the
inverted text index, which is common to all methods. Alse, tiilme to calculat€ is omit-
ted, since itC is calculated once for all keywords, and it requires a sipgles over the
graph. Thdterative partof the execution times corresponds to the one pass we pediorm
the DAG subgraph to calculaié for almost-DAG algorithms, and to the multiple passes
which consist the whole computation for the General Objant&algorithm.

Also, notice thatepsilon = 0.1 for this experiment (theéhresholdvalue is irrelevant
since it does not affect the processing time, but only theag®space). The time to do the
topological sorting is about 20 sec which is negligible cangal to the time to calculate
the ObjectRanks for all keywords.

Initial ObjectRanks. This experiment shows how the convergence of the General Ob-
jectRank algorithm is accelerated when various valuesetrasinitial ObjectRanks. In
particular, we compare the naive approach, where we assigg@al initial ObjectRank
to all nodes, to the global-as-initial approach, where tloba ObjectRanks are used as
initial values for the keyword-specific ObjectRank caltigas. We found that on DBL-
Preal (COMSOC), foepsilon = 0.1, the naive and global-as-initial approaches take
(15.8) and12.8 (13.7) iterations respectively.

Furthermore, we evaluate the space vs. time tradeoff detim Section 6.6. Table XII
shows the average number of iterationsdpsilon = 0.1 on DBLPreal and COMSOC for
various values of the precomputed list length

8.2 Query stage

Figure 20 shows how the average execution time changesifginganumber of requested
resultsk, for two-keyword queries on DBLPreal. The results for DBe&2 and COM-

SOC are similar. We used the index table created wyittilon = 0.1 (0.05) andthreshold =
0.3. The times are averaged over 100 repetitions of the expatinMotice that the time
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epsilon | time (sec)| nodes/keyword size (MB)
0. 05 80829 7.7 1.03
0. 07 77056 7.7 1.03
0.1 74337 7.7 1.03
Table X. Index Creation for COMSOC fehreshold = 0.1

[EI Iterative part @ Calculate c Or = Cc + r' ]

8.27 sec

Number of Backnodes and Used Algorithm

Fig. 19. Evaluate almost-DAG algorithm.

dataset time (sec) | nodes/keyword size (MB)
DBLP30 2933 6 0.3
DBLP100 11513 21 0.7
DBLP300 45764 65 1.7
DBLP1000 | 206034 316 7.9
DBLP3000 | 6398043 1763 43.6
Table XI. Index Creation for Synthetic Datasets.

does not increase considerably withdue to the fact that about the same number of ran-
dom accesses are needed for srhatblues, and the processing time using the Threshold
Algorithm is too small. Figure 21 shows that the executiometincreases almost linearly
with the number of keywords, which again is due to the fadtttiradisk access time to the
ObjectRank lists is the dominant factor, since the prooggaine is too small. Finally, no-
tice that the execution times are shorter for OR semantersause there are more results,
which leads to a smaller prefix of the lists being read, in otdget the topk results.

9. RELATED WORK

We first present how state-of-the-art works rank the resafita keyword query, using
traditional IR techniques and exploiting the link struetwof the data graph. Then we
discuss about related work on the performance of link-batgatithms.

Traditional IR ranking. Currently, all major database vendors offer tools [Ora 2007
2007; 2007] for keyword search in single attributes of theadase. That is, they assign
a score to an attribute value according to its relevanceddkéyword query. The score
is calculated using well known ranking functions from thed&mmunity [Salton 1989],
although their precise formula is not disclosed. Recenka/fBhalotia et al. 2002; Hris-
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List lengthp | iterations Listlengthp | iterations
55000 1
13700 1
54000 2.9
13000 1.2
30000 5.3
8000 1.8
13000 6.5
2500 3
1600 7.8
800 8.7
400 10.7
100 13.3
) 163 25 13
0 15.8
(a) DBLPreal (b) COMSOC

Table XII.  Number of iterations for various lengths of pregauted lists

mANDQgOR

msec

Fig. 20. Varylhgk in DBLPreal.

msec

1 2 3 4 5

# keywords

Fig. 21. Varying # keywords in DBLPreal.

tidis and Papakonstantinou 2002; Hristidis et al. 2003;at@ et al. 2002] on keyword
search on databases, where the result is a tree of objdabes; ese similar IR techniques
[Bhalotia et al. 2002], or use the simpler boolean semalfitigstidis and Papakonstanti-
nou 2002; Hristidis et al. 2003; Agrawal et al. 2002], whdre $core of an attribute is 1
(0) if it contains (does not contain) the keywords.

The first shortcoming of these semantics is that they missctdbihat are very related
to the keywords, although they do not contain them (Sect)o the second shortcoming
is that the traditional IR semantics are unable to meanlhygs$ort the resulting objects
according to their relevance to the keywords. For examplettfe query "XML”", the
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paper [Gu et al. 2002] on Quality of Service that uses an XMkea language, would be
ranked as high as a classic book on XML [Abiteboul et al. 20083ain, the relevance
information is hidden in the link structure of the data graph

The most popular specificity metric in Information Retriedgaghe document length (dI).
As an example, a state-of-the-art IR ranking function isial 2001]:
1+ In(1 4 In(tf)) N+1

In (16)

S iaQ =
core(a;, Q) Z (1—s)+s-4 df

weQNa;

where, for a wordw, tf is the frequency ofv in the documenD, df is the number of
documents in the database containing wardd! is the size ofD in charactersguvdl is
the average document siz¥, is the total number of documents in the database,sdad
constant (usually 0.2). Croft [Croft 2000] and Craswelllef@raswell et al. 2005] present
techniques on combining ranking factors.

Link-based semantics. Balmin et al. [Balmin et al. 2004] introduce the ObjectRank
metric. This work extends and completes [Balmin et al. 2004he following ways. The
specificity factor is handled and evaluated, in contrasB@irhin et al. 2004] where the
specificity factor is ignored. Inverse ObjectRank is introeld and qualitatively evaluated.
Furthermore, in this work we clearly identify the rankingtiars (relevance, specificity
and global importance) and map them to authority flow metrig®reover, we explain
these authority flow metrics from the perspective of infotioratheory. We also elaborate
on the combining ranking function and study techniques tagkvéhe query keywords.
On the performance level, we present algorithms for gragtts small vertex cover and
“serializable” graphs and conducted additional experitherinally, we have built a more
complete and powerful demo available on the Web by addingstidp parameters, and
including the whole DBLP dataset and citations from Citeseecontrast to [Balmin et al.
2004] where a small subset of DBLP was used.

To the best of our knowledge, Savoy [Savoy 1992] was the @irgse the link-structure
of the Web to discover relevant pages. This idea became nupelar with PageRank
[Brin and Page 1998], where a global score is assigned to \@athpage as we explain
in Section 2. However, directly applying the PageRank aagidn our problem is not
suitable as we explain in Section 1. HITS [Kleinberg 1999péoys mutually dependant
computation of two values for each web page: hub value anldoatit. In contrast to
PageRank, it is able to find relevant pages that do not cottaikeyword, if they are
directly pointed by pages that do. However, HITS does nosictian domain-specific link
semantics and does not make use of schema information. [Ewvamee between two nodes
in a data graph can also be viewed as the resistance betwamaniriithe corresponding
electrical network, where a resistor is added on each edge.approach is equivalent to
the random walk model [Doyle and Snell 1984].

Richardson et al. [Richardson and Domingos 2002] propos@provement to PageR-
ank extending the work of Bharat and Henzinger [Bharat anaizitger 1998], where the
random surfer takes into account the relevance of each paye guery when navigating
from one page to the other. However, they require that evesylt contains the keyword,
and ignore the case of multiple keywords. Haveliwala [Havalla 2002] proposes a topic-
sensitive PageRank, where the topic-specific PageRanleafidr page are precomputed
and the PageRank value of the most relevant topic is usedafdr query. Both works
apply to the Web and do not address the unique characteridtatructured databases, as
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we discuss in Section 1. Furthermore, they offer no adjggterameters to calibrate the
system according to the specifics of an application.

Recently, the idea of PageRank has been applied to strdatatabases [Guo et al. 2003;
Huang et al. 2003]. XRANK [Guo et al. 2003] proposes a way ttkrXML elements
using the link structure of the database. Furthermore,ititeyduce a notion similar to our
ObjectRank transfer edge bounds, to distinguish betwestaoonent and IDREF edges.
Huang et al. [Huang et al. 2003] propose a way to rank the sugfl@ relational database
using PageRank, where connections are determined dynfnigahe query workload
and not statically by the schema. However, none of theseswexgloits the link structure
to provide keyword-specific ranking. Furthermore, theyigrthe schema semantics when
computing the scores. Raschid et al. [Raschid et al. 2006 mafer et al. [Shafer et al.
2006] have applied the PageRank ranking to rank objectsotddpical databases.

Geerts et al. [Geerts et al. 2004] use a set of queries to renkalues of a relational
database using authority flow semantics. TrustRank [Gyiogtggl. 2004] uses the idea of
Global Inverse PageRank as a heuristic for a completelgraifft purpose than specificity.
In particular, they use it to find well connected pages to sssegds in their algorithms.
Faloutsos et al. [Faloutsos et al. 2004] find the connectitiysaph between two graph
nodes by maximizing the electric current between the nadbere each edge of the data
graph is represented by an electric resistor. This worktereded at [Tong and Faloutsos
2006] for more than two nodes and is referred to as the cg@ee subgraph problem.

Performance. A set of works [Haveliwala 1999; Chen et al. 2002; Jeh and Wi@®03;
Kamvar et al. 2003] have tackled the problem of improvingiédormance of the original
PageRank algorithm. [Haveliwala 1999; Chen et al. 2002§g@mealgorithms to improve
the calculation of a global PageRank. Jeh and Widom [Jeh addri/2003] present a
method to efficiently calculate the PageRank values foriplalbase sets, by precomput-
ing a set ofpartial vectorswhich are used in runtime to calculate the PageRanks. The
key idea is to precompute in a compact way the PageRank veduasset of hub pages,
through which most of the random walks pass. Then using theés@®ageRanks, calculate
in runtime the PageRanks for any base set consisting of rindes hub set. However, in
our case it is not possible to define a set of hub nodes, sinceade of the database can
be part of a base set.

10. CONCLUSIONS

We presented an adjustable framework to answer keywordeguasing the authority
transfer paradigm, which we believe is applicable to a $iggmt number of domains
(though obviously not meaningful for every database). Weasd that our framework
is efficient and semantically meaningful, with an experitatavaluation and user surveys
respectively.

Furthermore we presented Inverse ObjectRank, which islkabased and keyword-
specific specificity metric. We showed how Inverse ObjeckiRarcombined with other
ranking functions to produce the results list for a keywowéry. Our methods have been
gualitatively evaluated using a user survey and the bibdiplgy sections of a database
textbook. We concluded that combining ObjectRank with ttpgase root of Inverse Ob-
jectRank produces results of highest quality. Furthermae built a prototype of our
methods on a bibliographic database, which we made avaitabthe Web.
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