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Abstract above. Web search is out of the scope of this wesirice

we focus on typed domain-specific data graphs.

Authority flow is an effective ranking mechanisnt fo ObjectRank: We build our work on ObjectRank, since it is
answering queries on a broad class of data. Systeamse the most general of the available authority flownkiag
been developed to apply this principle on the Web approaches. We use a modification of ObjectRankghvh
(PageRank and topic sensitive PageRank), bibliogiap we refer to as ObjectRank2, where the nodes ibdse set
databases (ObjectRank), and biological databases@-bf are weighted according to Information Retrieval )(IR
Knowledge project). However, these systems have theechniques. Consider the example of Figure 1, which
following drawbacks: (a) There is no way to explairthe illustrates a small subset of the DBLP databas®enform
user why a particular result received its curreobee; (b) of a labeled graph (some author, conference andngsies
The authority flow rates, which have been shown to are omitted to simplify the figure). Schema graghs;h as
dramatically affect the results’ quality in Objeetik, have the one of Figure 2, describe the structure of lueta
to be set manually by a domain expert; (c) Ther@ds  graphs. Given a keyword query, e.g. the single-kegw
query reformulation methodology to refine the query query “OLAP”, ObjectRank sorts the database objégts
results according to the user’s preferences. Is thork, we their relevance with respect to the user-provideyords.
address these shortcomings by introducing a framiewo Given the subgraph of Figure 1, the “Data Cube’gpdp
and algorithms to explain query results and refolae ranked on the top, even though it does not contiaén
authority flow queries based on the user’s feedbdtie keyword “OLAP”. This is a key advantage of ObjeatRa
query reformulation process can be used to leaenuter’s compared to traditional IR approaches.

preferences and automatically adjust the authoflow
rates to facilitate personalized authority flow sgldng.
We experimentally evaluate our algorithms in terofs
performance and quality.

Conceptually, the ranking is produced in the folloywvay:
Myriads of random surfers are initially found ag thbjects
containing the keyword “OLAP”, which we call the dea
set, and then they traverse the database grajplarticular,
at any time step, a random surfer is found at aenat
either (i) makes a move to an adjacent node byetsivwg
an edge, or (ii) jumps randomly to an “OLAP” nodihwmut
following any of the links. The probability thatparticular
traversal happens depends on multiple factorsydet) the
type of the edge. These factors are depicted iaudmority
transfer schema graph. Figure 3 illustrates théncaity
transfer schema graph used by the ObjectRank projec
[BHPO4]. Assuming the probability that the surfeowas
back to an “OLAP” node is 15% (damping fact@ndom
jump probability [BP98]), the collective probabjlitto
move to a referenced paper is up to 8580% (70% is the
authority transfer rate of the citation edge as axplain
below), and so on. As is the case with the PageRank
algorithm as well, as time goes on, the expectedemtage
of surfers at each node converges to a limitr(v).
Intuitively, this limit is the ObjectRank of the de.

1. Introduction

Authority flow is an effective ranking mechanismr fo
answering queries on a broad class of data. lodh&ext of

the Web, PageRank [BP98] is used to compute a globa
ranking of the pages based on the hyperlink stractu
ObjectRank [BHPO04] applies the idea of authoritwflon

a data graph, where nodes represent entitiesujdes, and
edges represent associations like primary-to-fordigys.

In contrast to PageRank, ObjectRank provides query-
specific ranking by using the query-specific nodssthe
authority source (callethase st Another key feature of
ObjectRank, as explained below, is that differefgestypes
carry different amounts of authority. Another apgpiate
domain for authority flow ranking is that of bioliegl data.
The Hubs of Knowledge project [SIY06] applies the
PageRank algorithm on a query-dependent subgragteof
original biological graph. Raschid et al. [RWL+0&pply
PageRank and ObjectRank to answer navigationalieguer Limitations of ObjectRank: Ranking the objects of a data
on biological data. We note that not all databases graph using ObjectRank has the following limitaton
appropriate for authority flow query answering. Gwork is
applicable to the ones that do have the notionutficity
flow along their associated edges as the ones idedcr

(a) There is no way texplainto the user why a particular
result received its current score; e.g., the usey want to



see proof to believe that the “Data Cube” papénfsortant
for “OLAP”. This is even more critical in complex
biological databases where objects (e.g., proteirtt) no
obvious connection to the query (e.g., gene “TN&g
returned. Figure 4 shows a subgraph of the bio#bgic
schema graph we are using in our experiments.

(b) The authority flow rates, which have been shadwn
dramatically affect the results’ quality of Objeatfk
[BHP04,HVPO06], have to be set manually by a domain
expert. For instance, what is the ratio of autlydilibwing
from a gene to a PubMed publication over that flagio a
protein at Entrez Protein?

(c) There is nayuery reformulatiormethodology to refine
the query results according to the user’'s prefeagenQuery
reformulation based on user relevance feedbackriatare
and well-studied process in traditional documen{3R90,
RLO3, Har88]. However, there is no work on handlirsgr
feedback for authority flow ranking systems. As discuss
below, our reformulation strategy exploits the useedback
in terms of content (in the spirit of traditionaluery
expansion [BSA+95, MSB98, SVR83, Efth93]) as weall a
link structure.
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Figure 3: The DBLP authority transfer schema
graph.
Contributions: This paper has the following contributions:

1. We present a methodology to explain a result of an
authority flow query. For that we generate and ldigp

anexplaining subgraph

A process is presented to automatically reformutate
query based on a selection of good results by see. u

We reformulate the query based both on the conitent,
the spirit of traditional IR query expansion, adlves

the link-structure, by adjusting the authority floates.
The explaining subgraphs of the selected results ar
used to capture the user’s preference and build the
reformulated query.

Entrez _ Entrez
Nucleotide Gene

PubMed

Entrez
Protein

Figure 4: Subgraph of biological schema graph.

3. Efficient algorithms are presented and evaluated to
explain a result, and create and evaluate the
reformulated query.

4. An ObjectRank2 query and reformulation system has
been built and deployed on bibliographic and
biological datasets, available on the Web at
http://dbir.cis.fiu.edu/ObjectRankReformulation/

5. User surveys were conducted, which prove the witilit

of the system in explaining and reformulating gesyi
as well as in automatically training the authofitw
rates, which was done manually before [BHPO04]. .

The rest of the paper is organized as follows. iSec2
presents the framework. Section 3 defines a qued a
presents ObjectRank2. Section 4 presents the result
explanation technique while Section 5 presentschery
reformulation techniques. Section 6 present thditguand
performance experiments. Section 7 describes tlede
work. Finally Section 8 discusses our conclusions.

2. Framework

In this section we present the framework and eigdent
definitions, which are later used to describe oesult
explanation and query reformulation techniques.eNibiat
we follow the terminology of [BHPO04].

We view a database as a labeled graph, which i®deim
that captures both relational and XML databases.dEta
graph D(Vp,Ep) is a labeled directed graph where every
nodev has a label(v) and a set of keywords. For example,
the node “ICDE 1997” of Figure 1 has label “Yearndahe
set of keywords {“ICDE”, “1997”, “Birmingham”}.
Each node represents abject of the database and may
have a sub-structure. Without loss of generality,
ObjectRank assumes that each node has a tupléibtieg
name/attribute value pairs. For example, the “Yemties

of Figure 1 have name, year and location attributedice
that the keywords appearing in the attribute vatgsprise



the set of keywords associated with the node. Oag m labels are omitted). The motivation for definingotedges
assume richer semantics by including the metadata o for each edge of the schema graph is that authority
node in the set of keywords. For example, the na¢tad potentially flows in both directions and not only the
“Forum”, “Year”, “Location” could be included in & direction that appears in the schema. For exanapfsper
keywords of a node. passes its authority to its authors and vice velksaice
Each nodev has a rolei(v). For instance, the ICDE however, that the authority flow in each directiatefined
conference node in Figure 1 has role “conferenggich Py the authority transfer rate) may not be the safue
edgee fromu tov is labeled with its rolé(e) (we overload ~ €xample, a paper that is cited by important pajsectearly

)) and represents a relationship betwaerand v. For ~ important but citing important papers does not make
example, every “paper” to “paper” edge of Figureak the ~ Paper important.

label “cites”. When the role is evident and uniguei¢fined PR A= Gy Baper o1 G &
from the labels ofu andv, we omit the edge label. For Uannarayan, A faaranan. | =07 Tule="Daia Cube: A Relational
simplicity we will assume that there are no patatidges for OLAP.” Yw'i‘)"ﬁf’%"’l"f“ é?fiﬁf%?‘f'éggi.‘i%fﬁﬂfs'ﬁlﬁf‘“g
and we will often denote an edgéromu tov as ‘U—V". 03 | yarnmeepe | 03/ o TGRS

. Name=1CDE" [¥g37| Year=1997. 0.15
The data graph can represent relational [ACD02, PO LocatorBimingham ¢/~ o7
and XML [HPB03, GSB03] databases, as well as the Web T Uil VA PR B e Sty
[BP98], although we repeat that the Web is ouhefgcope s Qe o 190" 1003 1o Db fee D o
of this work. Theschema grapltt(Vg,Eg) (Figures 2, 4) is 01 N0

‘ Author Name="R. Agrawal” ‘

a directed graph that describes the structur®.oEvery
node has an associated label. Each edge is labdech
role, which may be omitted, as discussed aboved&ta
graph edge labels. For instance, the “Entrez Geoe”  Authority Transfer Data Graph. Given a data graph
“PubMed” edge in  Figure 4 has role D(Vp,Ep) that conforms to an authority transfer schema
“genePubMedAssociates”. We say that a data graphgraphG*(Vs,E"), we can derive an authority transfer data
D(yD,ED) co_nformsto a schema grapB(Vg,Eg) if there is a graphDA(Vp, E2) as follows. For every edge= (U—v) [
unique assignment of data-graph nodes to schema-graph D

nodes and a consistent assignment of edges such tha EL; the - authority :ransfer data graph t‘as tV\I’)O edges
1. for every node [ Vp there is a node(v) Vg such that € - U™V) and e® = (v—u). The edges ande” are
AV) = Mu(V)); annotated with authority transfer ratege) and a(é).

2. for every edge O Ep from nodeu to nodev there is an ~ Assuming thatef is of typeeé , then
edgeu(e) O Eg that goes fromu(u) to u(v) and A(e) =

)"(ﬂ(e)) g(eé)
Authority Transfer Schema Graph. From the schema a(e')=| outbeg (u.ef)
graph G(Vg,Eg), we create the authority transfer schema
graph G"(Vg,E) to reflect the authority flow through the
edges of the graph. In particular, for each egge (u—v)

of Eg, two authority transfer edge%(f3 = (u—v) and eé’ =

Figure 5: The DBLP Authority transfer data graph.

JifoutDeg (u,el) >0 1)

0,ifOutDeg (u,el) =0

where OutDeg{u,eé) is the number of outgoing edges

(v—u) are created. The two edges carry the label of thefrom u, of type ecf;' The authority transfer rata(¢’) is
schema graph edge and, in addition, each one stated defined similarly. Figure 5 illustrates the auttytiransfer
with a (potentially different) authority transferate - data graph that corresponds to the data graphgofréil

f b ; and the authority transfer schema graph of FigurEeh
a(eg) anda(eg) respectively. We say that a data graph edge is annotated with its authority transfer rhitice that
the sum of authority transfer rates of the outgadges of
a nodeu of type u(u) in the authority transfer data graph
may be less than the sum of authority transfersrafethe
outgoing edges ofi(u) in the authority transfer schema
graph, ifu does not have all types of outgoing edges.

conforms to an authority transfer schema graph if it
conforms to the corresponding schema graph. (Nakiae
the authority transfer schema graph has all therimétion
of the original schema graph.) In Balmin at el. B3] the
authority transfer rates for each edge type wagyresd
manually by a domain expert on a trial and erragihan

contrast, our techniques allow this task to be done o .
automatically based on the user’s feedback as wkiexin 3. Query Definition and ObjectRank2

Section 5. In this section we define a query and describeightyy

original definition is that the nodes of the bast are



weighted. The weights are computed using IR tealasq
for the original query and using query expansiammbéques
for subsequent queries as we describe in Section 5.

Keyword Query. A keyword quenyQ is defined as a tuple
of keywordsQ=[ty,... tx]-
To incorporate weighing in the base set, we defime
query vector as follows:

Query Vector. For each quen®@=[t,,....t,] we define a
query vectorQ=[w,.. , W] wherew; is the weight of the
query keywordt;. The initial query vector for a query is
[1,...,1], since we assume that the query term weiginé
all 1. These weights change during the query expans
stage described in Section 5. The answe@tis a list of
objects with descending ObjectRank2 scores withaetsto
Q.

ObjectRank2 is computed as follows. L&tK) be a graph,
with a set of node¥ = {vy, . . . ,v,} and a set of edges. A
surfer starts from a node (database objeatf the base set

We normalize the IR scores of the nodes in the bat¢o
sum to one, since they represent probabilities. The
ObjectRank2 scores vectoR = [r9(vy),...,r%v.)]" given
query vectoiQ, wheren=|Vp|, is defined as follows:

@ =dare+ L7 ¢ (4)
|S(Q)|

whereA is an x n matrix with A; = a(€) if there is an edge
ev; — v)in ES and 0 otherwiseg] is the damping factor
which controls the base set importance, amd[s,, . 5 . ,
s]" is the base set vector, wheyes IRScorgv;,Q) if v; O
Q) ands= 0 otherwise. Note that the only difference to
ObjectRank is the definition of thggs which were 0 or 1 in
[BHPOA4].

4. Explaining Query Results
In this section we tackle the problem of explainmnquery
result. For instance, as discussed in Section €, Efata

of V and at each step, he/she follows an edge with Cube” paper in Figure 1 (see Figure 5 for corredpun
probabilityd or gets bored and jumps to a node in the base@uthority transfer data graph) is ranked high fag guery

set with probability 1 -d. The ObjectRank2 value of is
the probability that at a given point in time, thafer is at
v,. Given a quen@, we first find the query base s&(Q),

“OLAP”. What is the best way to explain to the usdry
this paper, referred to as therget object received a high
rank? This problem is even more critical in complex

(from now on referred to simply as base set whem th biological databases as the one of Figure 4.

keyword is implied) which is the set of nodes/obgethat
contain at least one keyword@ In contrast to the original
ObjectRank [BHPO04], the random surfer jumps toedéht
nodes of the base set with different probabiliti#his
probability for a nodev is proportional to the IR score

IRScorg¢v,Q) of the node (a node is also viewed as a

documentwe overload symbol in this case) given the
guery vectoQ.

IRScorgv,Q) =v-Q (2)
where " denotes the dot product
v=[W(V,ty),.... W(v,t,)] is the document vector fov, and
W(v,t) is the IR weight of ternt for documentv. W(v,t) is
defined using a traditional IR weighing formuldeeliBM25
[RW94] or Okapi [Sin01]. The latter is defined belo

Zln n-df + 05 (ky +Dtf (kg +Dqtf

avdl
where, for a term, tf is the frequency of in the document
v, df is the number of documents in the database camggin
termt, dl is the size o¥ in charactersavdl is the average

operator,

vi v7
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Figure 6: The DBLP Authority transfer data graph
annotated with authority flows for query “OLAP”.

Intuitively, we want to show to the user the paithghe
authority transfer data grapgh* that authority traversed to
reach the target objegt starting from the nodes in the base
set§Q). For that, we create axplaining subgraptG?® of

D" that contains all edges that transfer authority tiven
Q, and every edge g2 is annotated with the amount of

authority that flows on this edge and eventualbcreesy.

document sizen is the total number of documents in the We createG? in two stages:

database, and k1 (between 1.0-2.0), b (usually),0aftl
k3 (between 0—1000) are constants.

! We use a tuple and not a set as in [BHP04], bectnesorder of
the keywords becomes important when we introdueentition
of the weighted base set.

() Construction stageG? contains all nodes and edges of

D* that are part of a directed path going from thesbas
set§Q) to v. That is, G? contains all edges that can

potentially carry authority flow te.



(i) Flow adjustment stageWe compute theexplaining node u, with the exception of the target node we
authority flowson the edges oG?. The explaining iteratively reduce its incoming flows proportionatio the

authority flow Flow(e) of an edgee is the amount of flow going fromu towards nodes outside ¢f°. We do not

authority flow that is transferred througk and adjust the incoming flows of the target nodge as the
eventually reaches onD”for Q. purpose of the explaining subgraph is to explaitheouser
the total authority thav receives from other nodes Bf'.

We assume all edges are bidirectional (arbitrasityall

flow rates can be assigned to direction of smatiantance)
to guarantee convergence as proved by Theorem 1.

For instance, for the explaining subgraph in Figoireith
target nodev, where we assumé=1 (i.e., nodes pass all

Figure 7: Intuition behind flow adjustment. their authority to their neighbors) and all edges af the

The construction stage is straightforward and ea®d as same type, we adjust the original edge_ flows.6¢v, and
follows: We first construct the temporary subgraph V3 -V, as follows: Half of the flow going through. these
starting from the target nodeand traversing edges & edges goes through, v and half throughv, —v,. Since
following the edges in the opposite direction ibraadth V2 —Va is outsides?, we cut the flows o, —v; andvs - v,
first manner (depth first would also work) until maore to half, i.e., to 0.15 and 0.05 respectively. Thiscess is
edges can be traversed. Then, we start from theodiyt repeated iteratively for all edges iGe until the
sources (base set nodes)yfand traverse the edgesf

in the forward direction until no more edges can be
traversed. All nodes and edges traversed in theafar

stage are added to the explaining sub gGhh Details of adjustment stage:The details of the adjusting
’ algorithm are as follows: For each nogén G2, let O(w)

be the summation of all outgoing flows af in G® and

computation converges. Note that the flow on edgew,
i.e., edges that endatare not adjusted.

The flow adjustment stage is more challenging beeave
have to adjust the “original” edge authority flofes Q to
subtract the authority flow not reachingwoFor instance, (V) be the summation of all incoming flows\gfin G2 (we
in Figure 7 we must subtract from the edge flows th consider all incoming edges ig2and not D* since

H b i1l Q ) )
amount that will eventually “leak” out ofg? through Observation 1 below shows that both are equaB. It

V, -V, By “original” flows we refer to the authority fies

at convergence state " for ObjectRank2 execution for 1) = Z EIOW(VJ' - Vi) (6a)
queryQ. The original flow for edge v, is: (v M)PGy
Flowg(v, - v,) =d (v, - v,) %)) (5) O(vy) = Z Flow (v, — V) (6b)

. . X Q
where a(v-v) is the authority transfer ratef edge (vicov;)OGy

e = (v ~v) in D" according to Equation 1. Observation 1: There is no incoming edge-w; with non-
Figure 6 illustrates the original authority flonsr = 0.85 zero authority flow, where is in G2 but vis outsideG?.
and queryQ=["'OLAP’], on the authority transfer data |t such en edge existed, it would have been indudesg
graph of Figure 5. The computed ObjectRank2 scores & . ) Y
vector r% = [0.076, 0.002, 0.009, 0.076, 0.017, 0.025, during the construction stage.

0.083T, after 5 iterations. As mentioned before, our goal is to compute theofdt(v)
by which the incoming flow(v,) of each node, must be
reduced to be consistent with the reduced outgfimg
O(w) of vcin G?. Itis:

It is more intuitive to view the problem as adjogtithe
edge flows instead of adjusting the node scorekpadh
the adjusted node scores can be easily computet ghe
edge flows in the end.

One could think of simply reducing the flow on an
incoming edgev; —v; of G2 proportionally to the ratio of

Flow(v;,v,) = h(v,) CFlow, (v;,v,.) )

Intuitively, this factorh(v) is computed by the ratio of
_ _ o _ rv) andr®(v) which are the ObjectRank score\gfin
the outgoing flow ofy; going outside?. However, this GQ (the “original” score) and” respectively. Hence, for a

approach will fail if there are cycles@®, since adjusting nodev:

the flow of an edge can have a ripple effect. Herare 0 ow,) )
iterative method is used, in the spirit of the r (Vk):T

PageRank/ObjectRank computation. In particular gfgary



Expl ai n- Obj ect Rank( Target Object v, G aph
D% Base Set S(Q)={S 1,....sn}, Threshold T) {

/*Construction Stage */

l)Create a tenporary subgraph D, by executing
breadth-first search on D with v as the root
node, traversing edges in opposite direction;

2) Create expl ai ni ng subgraph, G\? by executing
breadth-first search on D, with the nodes in
base set S(Q as root nodes, traversing edges
inright direction;

/ *Fl ow Adj ustnent Stage */

3) For each edge vi->vj in G\?,conpute
Fl owo(Vvi->vj) using Equation 5;
4)For each node vk in G? set h(vi)=1;
5) Wi |l e not converged do
For each node vi in G\? except v do
Conmput e h(vg) using Equation 10;
6) Updat e the Fl ow of each edge in G\? usi ng
Equation 7;

Q
7)ReturnGV;

Figure 8: Algorithm to Compute Flows in
Explaining Subgraph.

i) =" (9)

Combining Equations 6b, 7, 8 and 9, we get theo¥alig

fixpoint equation for the computation bfv,).

> (htv,) Flowg (v, v)))

Q
h(Vk) - (Vi v} )EGy

d ()
We rewrite this equation using Equation 5:

3 (h(v) @ @y, - v,)rew))

Q
h(Vk) - (Vie,vj )OGy

d*re(v,)
which then becomes
d@°(v)0 Y (hw) @, - v,))

_ (Vi v))OG?
h(v,) = dE°W,)
and finally,
h(vo)= Y (), - v)) @0

(Vi V)OGS

Observation 2: The “original” ObjectRank2 scores are

not used in computing the reduction factor(v

Implementation note While executing the iterative
algorithm defined by Equation 10, we need to stibre
currenth(v,) factor for each node. The current values of
the incoming flows do not need to be stored sihey tan
be on-the-fly computed from the original valuesngsi

Equation 7.

Theorem 1: lteratively computing Equation 10 on the
explaining subgraph converges.

Proof: The fixpoint computation of Equation 10 is
equivalent to the PageRank computation, if we pla
incoming by outgoing edges and remove the damping
factor. The PageRank computation has been shown to
converge if the graph is aperiodic and irreduc[b&95].

The former is generally satisfied, whereas theetais
satisfied for connected graphs. The explaining sty is
connected due to its construction method — all soale
connected to the target node. To guarantee conveggeve
always consider a non-zero reverse direction egge for
every edge type. Furthermore, there are no flovkssin
[BP98] since there is a path from every node toténget
node.’

When it converges, we update all edge flows using
Equation 7. Figure 8 shows the steps of the algorito
create the explaining subgraph.

vl
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Figure 9: Explaining Subgraph for “Range Queries

in OLAP” paper in Figure 6.
Example 1 Figure 9 shows the explaining subgraph for
Q=["OLAP”] and target object v4 after 5 iterationof
Equation 10. Note that the “Data Cube” paper (seégufe
6) is not inG?, since there is no path from that paper to v4.

Notice that the incoming flows of the target objedtare
the same as the original ones of Figure 6. The edetp
reduction factors after 5 iterations are as follows
h(v1)=1.59e-4, h(v2)=4.77e-4, h(v3)=0.0011, h(v4)e:1
h(v5)=0.1006 and h(v6)=0.0067. Note that h(v4) iaslv4
is the target object which implies that its incoqifiow
from v5 is not adjusted as shown in Figure 9. Alstice
that the incoming flow reduction factor of vl isall
because its incoming flow needs to be reduced
proportionally to eliminate the large flow from \d v7
(see Figure 6), which is going outside @f. This in turn

creates a ripple effect reducing the incoming fl@iraodes
v3 and v2, according to their reduction factars.

The explaining subgraplG? can be very large which

would make its generation slow and its displayhte tiser,
impossible. Hence, in practice we limit the radifisG2to

L (longer paths are generally unintuitive [CQ69] aadlry



less authority) and only keep the paths with higtharity
flow. We apply these techniques in our online dekive
have found that a relatively smadll (e.g.,L=3) value is
adequate to effectively explain a result and preduseful
reformulations (see Section 5).

5. Query Reformulation
Query reformulation using relevance feedback hasnbe
well studied in traditional IR [SB90, RLO3, Efth93,

BSA+95, Har88], where query expansion has been thewhere 0 <C, <

dominant strategy. That is, keywords are addedht t
original query according to the user's feedbackchSu
techniques are not adequate for ObjectRank2, dineg
ignore the link-structure of the graph which playkey role
in the ranking.

In this section we tackle for the first time theolplem of
reformulating authority flow queries. We propose an
automatic query reformulation technique given thsuits
selected by the user. For instance, if the usexctelthe
“Range Queries in OLAP” paper in Figure 5 as aveahé
object, what is the best way to reformulate thergusing
this paper (referred afeedback objef? The explaining
subgraph described in Section 4 is a key strudarrguery
reformulation since “vote” of the user for feedback object
v can be viewed as “vote” of the user for the ekplyg
subgraphG? of v.

Overview of process:First, the system computes the top-
objects with the highest ObjectRank2 values. Ther us
marks a result objeat (or multiple objects) as relevant
user’s click-through could be used to implicitlyride such
markings. Then the explaining subgraph® of v is

computed. Based on the content and link-structtirg®

we reformulate the initial query. In particularet@Gontent-
based component (Section 5.1) of the reformulation is
inspired by traditional query expansion ideas aatl$ to a
guery expansion; whereas tBgructure-baseccomponent
(Section 5.2) adjusts the authority transfer radésthe
authority transfer schema graph based on the gghgs in
GZ . The two reformulation components can be combined.

5.1 Content-based Reformulation

According to traditional reformulation techniquése terms

in the feedback objeast (viewed as a document) should be
added, appropriately weighted, to the original guer
However, due to the nature of authority flow ramkinve
extend this idea to also include terms in the dbj¢bat
transfer high authority t9. These objects are the nodes of
the explaining graps?. The weight of an expansion tetm

is proportional to the flow that the nodes thatteomt pass
to v, that is, the outgoing flow of these nodesGfi. We

consider a single feedback object we extend to multiple
feedback objects in Section 5.3.

A termt is weighted according to its distance franand
the amount of authority it transfers t9 as shown in
Equation 11. The authority flow a node transfers ts its
outgoing flow in the explaining grapt? as explained in

Section 4.

w(t) = (€)™ 0 Y Flow(v, - v,)| 1)

(Vv )OGY

2

Vv OGQ OtOv,

1 is the decay factor(in the spirit of

XRANK [GSB*03]) which is typically set to 0.5, and

D(vV) is the distance (length in humber of edgesyof

from v. Note that if v is v, then we use

dO > Flowmy, - v,) instead of > Flow(v, - Vv;).
(vj, VKOG (Vi,v))OGR

since the outgoing flow of is not specified iIrG?.

We select the top-termsZ with highest weight (ignoring
stop words) and add them, after normalizing them as
explained below, to the original query vect@, The
reformulated query vectd; at iterationi is defined as
_JQarc. D wimm i1
- 0z

Qy, =0

wheret is the vector of term(as in the vector space model
[Sin01]), and &C.<1 is the expansion factqrtypically
0.5, used to scale the weights of new terms (akasehew

weights of old terms) with respect to the termssprg in
current query vector.

Qi (12)

Normalization of term weights The computed term
weights using Equation 11 must be normalized wégpect

to the weights in the current query vector. Thinel@as

follows:

1) Compute the average, of the term weights of the
current query vecto®;,

2) Let x=maxw'(t) be the maximum weight of any

term inZ. Letts be the term that has this weight.
3) We normalize the term weight of terms4nsuch that
W(t) becomesa,. That is, we multiply all term weights &

_a
with =%,
X

Example 2 Consider the authority transfer data graph of
Figure 5, query Q=["OLAP”], and feedback object, ig
the “Range Queries in OLAP” paper. The explaining
subgraph G2 (Figure 9) is created. Using Equation 10,
and assuming £and C, are 0.5, the top-5 new terms are
olap(1.0), cubes(0.99), range(0.99), multidimenal{h05)
and modeling(0.05). Note that the terms in the haekl
object (target object o6G?) generally get a higher weight

due to the decay factoryCThe reformulated query vector
Q computed by Equation 11 is [olap, cubes, range,



multidimensional, modeling] = [2.0, 0.99, 0.99, B,0
0.05].0

5.2 Structure-based Reformulation
The structure-based reformulation adjusts the aifyho
transfer rates based on the explaining subgrggh We

consider a single feedback objact we later extend to
multiple feedback objects in Section 5.3. Intuityeif
edges of an edge typeg carry large authority inG? then

the user probably believes is an important edge type for
the query. We boost the authority transfer rateaufh edge
type present irG? according to the authority it transfers (to

the feedback objeat). The reformulated authority transfer
ratea’(eg) of edge types is computed by

a'(eg) =|1+C. 0O > Flowy, - v,) |r(es)

(Vie.V)OGR (v, vj)has type e

(13)

where &C; <1 is the authority transfer rate adjustment

factor, typically set to 0.5, used to scale the authority
transfer rates with respect to their previous v&lug(e;)

is the previous authority flow rate of edge type The

factor  F(ey) = z Flow(v, - vj) in
(Vi,V))OGR O(vy vj)has  type &g

Equation 13 is normalized before used, as explairbolv.

Normalization: In order to have a controlled modification
of authority transfer rates we do the normalizatias
follows:

1) For each edge typ®; we normalize the factdf(eg) by
setting its maximum valu# for an edge type to 1. Then
divide others by.

2) Computea’(eg) for each edge types using Equation 13
and the normalized values from Step 1.

3) Normalize a'(eg) as in Step 1, such that< a'(e;) <1.

4) Finally we once again adjuat(e;) of each edge type
such that the sum of authority transfer rates efahtgoing
edges of every schema node in the authority transfe
schema graph is less than or equal to 1, whicledsired

for the convergence of ObjectRank?2.

Example 2 (cont'd) The authority transfer rates of the
original query are [PP,PBPAAP,CY,YC,YP,PY]
[0.7,0.0,0.2,0.2,0.3,0.3,0.3,0.1]. Using Equatidhand the
normalization process, the reformulated authorignsfer
rates are [0.67,0.0,0.24,0.16,0.24,0.24,0.24,0.08htice
that the transfer rates of PA and AP edge types are
increased and decreased respectively as they caaster
and lesser authority to the feedback object respelgt [

5.3 Multiple Feedback Objects

When the user selects multiple feedback objedtswe
combine the expansion term weights (in Contentdbase
reformulation) and the flow weights (in Structuraskd
reformulation) across the explaining subgraphsitiérnt

feedback objects using a monotone aggregation iumct
Typical choices are sum, min, max and average. ¥é& u
summation in our user surveys and experiments. iEhé&ir
content-based reformulation we add the expansiom te
weights.

w' () =D w'(t)

v,oJ

(14)

where W' (t) is the weight for ternt for feedback object
v;, computed by Equation 11.

For Structure-based reformulation, similarly we afthe
F(es) factors for each edge types.

F(es) = z Fi(es)

v,[U

(15)

where Fi(eg) is the sum of flows for edges of typeg for
feedback object;, computed by Equation 13.

We follow the same normalization process after egating
the weights to yield the necessary query refornanat

6. Experiments

We experimentally evaluate our algorithms in terofs
quality and performance. We conducted user surieys
evaluate the quality of our query reformulationhieiques.
We also evaluate the performance of our algoritiamg
show that explaining query results and reformutatin
authority flow queries are feasible over large gsap This
section is organized as follows: First we briefgsdribe the
datasets used for evaluation and then Sectionand17.2
present the user surveys and the performance expets
respectively.

Datasets: We wuse four real datasets (Table 1).
DBLPcomplete and DBLPtop are the complete DBLP
dataset and a databases-related subset respectiviely
shredded the downloaded DBLP file into the relalon
schema of Figure 2. DS7, whose schema is showigurd-

4, is a collection of biological sources downloadeaim
PubMed. DS7cancer is a subset of DS7 consisting of
PubMed publications related to “cancer” and allldgical
entities related to these publications.

Name #nodes #edges SikAB)
DBLPcomplete| 876,110 416,662|6 3950
DBLPtop 22,653 166,960 136

DS7 699,199| 353,375,6 2189
DS7cancer 37,796 138,146 111

Table 1: Real and Synthetic Datasets.

6.1 User Surveys

We used DBLPtop for our user surveys and not
DBLPcomplete since on-the-fly ObjectRank2 execigion
the latter are slow and survey subjects would baied.



The first phase (Section 6.1.1) was conducted atidd
International University (FIU) involving five progésors and
PhD students from the database lab, who were notied
with the project. The goal of this survey was tonpare
content-based, structure-based, and content & tateic
based reformulations. The result was that strudtaseed
reformulation is superior. The second phase (Se@&i.2)
focused on structure-based reformulation and irelt0
FIU and outside (including IBM TJ Watson and Almajle
database researchers, not involved in the projachoth
phases we also measure the capability of our system
discover the authority transfer rates set by a domepert.

6.1.1. Internal Survey

First we measure the precision/recall of our reheea
feedback algorithms using the standard relevaneabfzck
evaluation method ofesidual collection [RLO3, SB90].
Then we show how our structure-based reformulation
component can be used to automatically train thioaily
transfer rates of the DBLP authority transfer scaegraph
(Figure 3). We measure the quality of this trainitgguming
the ground truth rates for this dataset are thes doend at
[BHPO4].

The residual collection method [RLO3, SB90] can be
summarized as follows: All objects seen by the user
marked as relevant are removed from the collectind
both the initial and all reformulated queries awaleated
using the residual collection. We use the averageigion
as the evaluation measure. Note that the recalieissame
as the precision in our case since we limit thepoutesults
to k. We report the survey results for 4 relevancellieek
iterations and for the following 3 settings: i) Gemnt-Only
reformulation C=0&C.=0.2), ii) Content & Structure-
based reformulationG¢ =0.5& C, =0.2) and iii) Structure-
Only reformulation C; =0.5& C, =0). (We have found that
these values of; and C, are appropriate for this dataset.)
The decay facto€, is set to 0.5.We usk=3 to limit the
size of the explaining subgraph as explained irtiGed!,
We initialize the authority transfer rates of eatye type
to 0.3. Figure 10 shows the survey results. Wetlsaethe
structure-only reformulation performs the best. @at
based reformulation is not effective in our settberause
the users are domain experts and hence know ttn rig
keywords, i.e., traditional query expansion is affective.
Note that in a different domain the results cowddyv

Next we evaluate the effectiveness of structurethas
reformulation to automatically train the authoritansfer
rates of the DBLP authority transfer schema grapd a
compare the learned weights to the ones of [BHROHich
we view as ground truth. The rates there were aedig
manually by domain experts in a trial and error nanWe
start by setting the transfer rates of all edgesyip 0.3. We
again limit the length of paths of the explaininggh with
L=3. Let UserVector[PP,PFPA,AP,CY,YC,YP,PY] be the

authority rates vector. It is initialized to
[0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3]. The ground truth
ObjVector is [0.7,0.0,0.2,0.2,0.3,0.3,0.3,0.1]. Aach
iteration we compute the current UserVector produbg
the reformulation and compute the cosine similarity

cos(ObjVector,UserVector).
/\-‘
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Figure 10: Average Precision for different
calibration parameters.

Figure 11 shows the cosine similarity trainingvas for 4
users averaged over 5 queries each for a differ@ne of

C: (Ce is always 0). We see that the cosine similarity
initially increases with the number of iterationsdathen
decreases due to overfitting. Lardg&rvalues lead to faster
peak, since the adjustment of the rates is lesotmsee
Equation 13).
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Figure 11: Training of the Authority Transfer
Rates.

ObjectRank2 vs. ObjectRank: Finally, we also conducted
a survey comparing the quality of ObjectRank2 with
ObjectRank [BHPO04]. Users were presented with #igae
(single as well as multi-keyword queries) with Tbp-
results obtained using ObjectRank2 and a modifexgdian

of ObjectRank as explained below.

Table 2 shows the precision of Top-10 results using
ObjectRank2 and ObjectRank techniques. ObjectRank2
slightly better than ObjectRank for the DBLP dataeit

we expect that it will be considerably better fatabkets
with longer text descriptions (DBLP titles are tsoort for

IR functions to show a great benefit). We usedighsy
modified version of ObjectRank in order to make the



Precision for each query
DBLP keyword Queries | ObjectRank2| ObjectRank
[olap], [query, optimization] 10 9
[xml], [mining], [proximity, 10 10
search]

[xml, indexing] 9 8

[ranked, search] 9 10
Average precision 7.7 7.5

Table 2: ObjectRank?2 vs. ObjectRank.

comparison fair, with our weighted base set apgro#c
drawback of ObjectRank [BHPO04] is that it favors thore
popular keywords in a query. The ObjectRank valoks
objects tend to be skewed towards popular keywords
guery. The modified formula is given below:

pluete (V) = “ (rti (V))g(ti) (16)
i=L...m

where g(t,) is anormalizing exponenset tog(t,) =
1/log(l S(t;) ) -
6.1.2. External Survey.

We conducted an external survey operating on DBjPto
using only structure-based reformulation as it feasd to
be the best, in the internal survey. Figure 12 sholve
average precision curve for 5 iterations averagesr @0
qgueries by 10 users (2 queries per user). Figurehblvs
the authority transfer rate training curves for thaernal
survey which are similar to those in the internabsy.

40.00%
Zg 35.00% / /\.—.\\
E’ 30.00% g
25.00% . : :
1 2 3 4 5
Initial .
Query Reformulated Queries
‘ —o— Structure-Only ‘

Figure 12: Average Precision using structure-only
reformulation with  C;=0.5.

6.2 Performance Experiments

To evaluate the performance of our algorithms, we

conducted experiments on all the four datasets.ugéel a
linux machine with Power 4+ 1.7GHz processor anGR0
of RAM. The total execution time is measured forimas

stages: (a) computing the tépebjects for the initial or
reformulated query, (b) creating the explaining gsaph,

(c) executing the explaining ObjectRank2 on thela@rmg

subgraph, and (d) creating the reformulated query.

1
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Figure 13: Training of the Authority Transfer
Rates.

Manipulating Initial ObjectRank values: As in [BHP04],

for the initial user query, we initialize every reoth D* with
their global ObjectRank values, to achieve faster
convergence. Then, for the first reformulated queeyuse
the ObjectRank values of the initial query and so Dhe
intuition is that the ObjectRank values of the newl
reformulated query are expected to be close toothes
obtained by the previous query.

Figures 14(a) and 15(a) show the query and refatioul
times over DBLPcomplete and DBLPtop respectivelyeyr
show the execution times for the various componehthe
process: execute the query (first bar), and crehte
reformulated query (last three bars) at each usedifack
and reformulation iteration. We uke3 as the radius of the
explaining subgraph, and convergence threshold 02.00
Figures 14(b) and 15(b) show the number of ObjeakRa
iterations for the initial and the reformulated gfes over
the whole graph. Clearly, using the previous scasemiitial
values accelerates the convergence of ObjectRank2.
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F o015+
0.1 1 |
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o LT ‘ ‘ ‘
1 2 3 4 5
Initial Query Reformulated Queries
@ ObjectRank2 Execution B Explaining Subgraph Creation
@ Explaining ObjectRank2 Execution O Query Reformulation

(a): Query and Reformulation Times.

The query reformulation step, where the reformaateery

is generated given the converged Explaining Objackz
values, is fast, as the complexity of that ste@{§V|) (in
case of content-only reformulation) and O(|E|) (for
structure-only reformulation) and O(|V|+|E|) for tibo
content and structure-based reformulations, whesn/ E
are the vertex and edge sets of the explaining raphg
respectively.
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Figure 14: DBLPcomplete Execution.

The ObjectRank2 execution times for DBLPcompletd an
DS7 are clearly too long for exploratory searchiflgis can
be addressed in one of the following ways: useefast
hardware, precompute ObjectRank2 values as in [BHPO
or define focused subsets like DBLPtop and DS7aance
The ObjectRank2 execution times for these datemet?
seconds for the initial query and less than 1 secttie
subsequent reformulated queries [VHRO7].

Table 3 shows the number of Explaining ObjectRafmd
to be confused with ObjectRank?2) iterations overiows
datasets and for various iterations.

Dataset Iterations
1 2 3 4 5
DBLPcomplete| 7.2\ 8.4 7.4 11 8.4
DBLPtop 74| 82| 74| 84 8.6
DS7 50| 48| 4.6 5.2 5.6
DS7cancer 44| 3.8 5.? 5.6 5.0
Table 3: Average Explaining ObjectRank2
Iterations.

A similar set of results are obtained for the obgtal
datasets, DS7 and DS7Cancer as shown in Figuremd6
17.

7. Related Work
We first present how state-of-the-art works rand tasults
of a keyword query, using traditional IR techniquesd
exploiting the link structure of the data graph.efhwe
discuss about related work on the relevance feddbad
query reformulation.

Traditional IR ranking . For an overview of modern IR
techniques we refer to [Sin01]. Any state-of-the-HR
ranking function is based on thgidf principle [Sin01].
The shortcoming of these semantics is that theys mis
objects that are much related to the keywordspatih they
do not contain them. The most popular specificigtn in

Information Retrieval is the document length (di)he
relevance information is hidden in the link struetof the
data graph which is largely ignored by the tradigibIR
techniques.

Link-based semantics Savoy [Sav92] was the first to use
the link-structure of the Web to discover relevaapes.
This idea became more popular with PageRank [BP98],
where a global score is assigned to each Web pdd&
[Kle99] employ mutually dependant computation ofotw
values for each web page: hub value and auth@®#ymin

et al. [BHPO4] introduce the ObjectRank metriccbmtrast

to PageRank, it is able to find relevant pages timanot
contain the keyword, if they are directly pointeg fages
that do.

Haveliwala [Hav02] proposes a topic-sensitive PageRR
where the topic-specific PageRanks for each page ar
precomputed and the PageRank value of the mostargle
topic is used for each query. Both works applyh® ¥eb
and do not address the unique characteristicsroétated
databases, as we discuss in Section 1. Furtherrtoeg,
offer no adjusting parameters to calibrate the esgst
according to the specifics of an application.

Recently, the idea of PageRank has been applied to
structured databases [GEB, HXY03]. XRANK
[GSB'03] proposes a way to rank XML elements using the
link structure of the database. Furthermore, thépduce a
notion similar to ObjectRank transfer edge bounts,
distinguish between containment and IDREF edgesingu
et al. [HXYO03] propose a way to rank the tuples aof
relational database using PageRank, where connsctie
determined dynamically by the 33 query workload aond
statically by the schema. However, none of theseksvo
exploits the link structure to provide keyword-sifiec
ranking. Furthermore, they ignore the schema sdoant
when computing the scores.

Relevance Feedback & Query ExpansianSalton and
Buckley [SB90] introduced the idea of using relesan
feedback for improving search performance. Relesanc
feedback covers a range of techniques intendeghpoove

a user's query and facilitate retrieval of inforioat
relevant to a user’s information need. In [BSABSA95],
they showed that query expansion and query term
reweighting are essential to Relevance Feedback.aFo
detailed survey of relevance feedback methods fex te
[RLO3, Har92]. The basic approach of term selectierm
reweighing and query expansion [Efth93, Har88, M&B9
SVR83, SB95, KF06, XC96, LJ01, HC93] using terms
drawn from the relevant documents works well for
traditional IR which is content-based. For link-bds
metrics like ObjectRank [BHPO04] this yields poosullts as
shown in Section 6.1.1. Hence, we need link-based
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(structure-based) relevance feedback methods asiiess ~ feedback algorithms that help to choose documeots f

in Section 5. A recent work [VB06] on relevancedkack relevance feedback so that the system can learh froos
is based on web-graph distance metrics. The basia,i the feedback.
which is similar to our content-based reformulation 8. CONCLUSIONS

i(l::\?;ﬂgg’ pIZgg?satV\/rr?illivﬁ?etzlg\?fnetsp;egli ?repglc?it.;ttg In this work we presented a technique to explainrésults
other irrelevant r;ages. Another recent study oaveeice Of authority flow gueries and also reformulate thevie
propagation over the web [QL@5] propose site-based discussed r_eformulatlons based on content andtls_ztmof
propagation models that out-perform hyperlink-based the_ underlying graph. We also showed how to autiwaiy
models. Another recent work [SZ05] describes active train the authority transfer rates of the s_chemfpk;rba_sed
' on user preferences. We presented efficient algostto



explain and reformulate authority flow queries. \&lso
conducted user surveys to measure the effectiveofetse
proposed algorithms. Furthermore, we showed
feasibility of our approach by conducting performan
experiments over large graphs.
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