
Scalable Link-based Personalization for Ranking in
Entity-Relationship Graphs

Vagelis Hristidis
Florida International University

Miami, FL
vagelis@cis.fiu.edu

Yao Wu
University of Maryland,

College Park
College Park, MD

yaowu@cs.umd.edu

Louiqa Raschid
University of Maryland,

College Park
College Park, MD

louiqa@umiacs.umd.edu

ABSTRACT
Authority flow techniques like PageRank and ObjectRank can pro-
vide personalized ranking of typed entity-relationship graphs. There
are two main ways to personalize authority flow ranking: Node-
based personalization, where authority originates from a set of user-
specific nodes; Edge-based personalization, where the importance
of different edge types is user-specific. We propose for the first time
an approach to achieve efficient edge-based personization using a
combination of precomputation and runtime algorithms.

In particular, we apply our method to the personalized author-
ity flow bounds of ObjectRank, i.e., a weight assignment vector
(WAV) assigns different weights to each edge type or relationship
type. Our approach includes a repository of rankings for vari-
ous WAVs. We consider the following two classes of approxima-
tion: (a) SchemaApprox is formulated as a distance minimization
problem at the schema level; (b) DataApprox is a distance mini-
mization problem at the data graph level. SchemaApprox is not
robust since it does not distinguish between important and trivial
edge types based on the edge distribution in the data graph. Both
SchemaApprox and DataApprox are expensive so we develop ef-
ficient heuristic implementations. ScaleRank is an efficient linear
programming solution to DataApprox. PickOne is a greedy heuris-
tic for SchemaApprox. Extensive experiments on the DBLP data
graph show that ScaleRank provides a fast and accurate personal-
ized authority flow ranking.

Keywords
object search, personalization, PageRank, approximation algorithms

1. INTRODUCTION
The success of PageRank [1] in ranking Web pages resulted in

many flavors of authority flow-based ranking techniques for data
in entity-relationship graphs [2, 3, 4, 5]. A key feature of ranking
in entity-relationship graphs is that they provide intuitive person-
alization opportunities by adjusting the authority flow parameters
associated with each edge type or relationship type. Authority orig-
inates from a query- or user-specific set of objects, and spreads via

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner. Fourteenth International Workshop
on the Web and Databases (WebDB 2011), June 12, 2011 - Athens, Greece.

edges whose authority flow weights is determined by their edge (re-
lationship) type. For instance, a paper-to-paper citation edge may
have a higher authority flow weight than the paper-to-author edge
in a bibliographic data graph.

Two fundamental approaches have been proposed to personal-
ize authority flow ranking: (a) Node-based personalization: a per-
sonalized base set, i.e., the authority originates from a query- or
user-specific set of objects; (b) Edge-based personalization: per-
sonalized weight assignment vector (WAV) which assigns a weight
to each edge (relationship) type. We use ObjectRank [4, 6] as an
exemplar of this latter class.

Both approaches are computationally expensive and do not sup-
port interactive response times for on-the-fly and scalable person-
alization. Authority flow techniques typically require dozens of
iteration across the data graph. Previous work [2, 7, 8, 9, 10]
has addressed the performance of the node-based personalization
approach. There is no work to facilitate efficient computation of
edge-based personalization. Our specific challenge is on-the-fly
execution of authority flow fixpoint computation for a user-specific
or query-specific weight assignment vector (WAV). While we use
ObjectRank as an exemplar, our approach is applicable to other au-
thority flow ranking techniques like [11, 12].

Figure 1 [6] shows the authority transfer schema graph for DBLP,
a bibliographic database for computer science publications [13].
There are 8 edge types and each edge type is associated with a nu-
meric value representing the personalized authority weight in WAV
Θ; e.g., a weight of 0.2 for the edge type from Paper to Author. De-
tails of ObjectRank are in Section 2. Consider another example of
the biological Web. A biologist user may assign more importance
(higher edge weight) to a protein-to-protein edge type, whereas an-
other user may assign a higher importance to a paper-to-paper cita-
tion edge type.

Figure 1: The DBLP authority transfer schema graph in Ob-
jectRank ([6]).

Since users submit their queries and personalized WAV Θ on-
the-fly, a key challenge is to compute personalized rankings on-
line and to quickly provide answers to the user. Clearly, comput-
ing each personalized ranking at query time will not support online
ranking. The other extreme of computing all possible personalized
rankings a priori and storing them is infeasible. Our solution is a

pragmatic hybrid solution. We will maintain a repository of pre-
computed rankings. At query time, an approximate personalized
ranking may be computed using some chosen set of pre-computed
candidate rankings from the repository.

Figure 2: Incorporate personalized authority flow in user
queries.

Figure 2 illustrates how a user interacts with the ranking sys-
tem at precomputation and query times. During precomputation,
the user-specific personalized WAV can be computed in two ways:
(a) It can be set for each user by domain experts according to the
user’s profile [5, 6]. (b) WAV Θ is learned automatically by in-
teracting with the user and exploiting user relevance feedback as
explained in [14]. At query time, the system selects m candidate
rankings from the repository, which are used to estimate the rank-
ing for the requested Θ. This personalized ranking is input to the
Query Execution module, which combines this ranking with other
query-specific or query-independent factors and returns the query
results.

Note that the authority flow ranking of the entities is just one of
the factors used for ranking. In the same spirit, PageRank [1] was
presented as a query-independent ranking of the pages, which is
then combined with query-specific factors. We assume the same
setting here. That is, our precomputation techniques facilitate the
effective computation of Global (query-independent) ObjectRank
[6] at runtime. Alternatively, we could use our approach to sup-
port a relatively small set of topic-sensitive ObjectRank rankings;
Haveliwala [8] proposes building a set of topic-sensitive PageRank
rankings for the Web. Supporting query-specific personalized Ob-
jectRank for every keyword would be infeasible since a separate
precomputation repository would be required for each keyword.

Example: For the schema graph of Figure 1, a user who believes
that citations are the only important authority vote in a bibiographic
database, may have WAV Θ = (0.3, 0.3, 0.3, 0.1, 0.7, 0, 0.2, 0.2),
which corresponds to the edge weights shown on the figure. Note
that the paper citation edge has weight 0.7. Another user who be-
lieves that a good author almost always authors good papers, could
have Θ = (0.3, 0.3, 0.3, 0.1, 0.3, 0, 0.4, 0.8), where the last coor-
dinate corresponds to the Author-to-Paper edge. These WAVs are
computed either automatically using [14] or by a domain expert.

The goal of this paper is to facilitate efficient ObjectRank exe-

cution for varying WAVs. Suppose that the repository of rankings
contains rankings for WAVs: Θ1 = (0.7, 0.3, 0.3, 0.1, 0.2, 0, 0.2, 0.2),
Θ2 = (0.3, 0.3, 0.3, 0.1, 0.7, 0.2, 0.2, 0.2), Θ3 =
(0.1, 0.3, 0.1, 0.1, 0.1, 0, 0.2, 0.3). Our algorithms select a subset
with m of these rankings and appropriately combine them to effi-
ciently compute the ranking for the user WAV Θq , without having
to execute the expensive iterative ObjectRank algorithm. 2

We consider the following challenges for our repository based
approximation approach: (1) The best m candidate rankings must
be selected at query time. (2) The m rankings must be appropri-
ately combined in order to estimate the ranking for the given per-
sonalized WAV. (3) The approximate personalized ranking should
be close to the ideal ranking so as to guarantee high quality. (4)
The approximate ranking should be computed efficiently.

This paper makes the following contributions:

• Consider a user WAV Θq , its transition matrix Aq for Objec-
tRank computation, and the ideal ranking Rq . We consider
the following two classes of approximation algorithms: (a)
SchemaApprox is defined at the schema level and employs a
least squares formulation to choose the m-best candidates so
that the combined Euclidean distance of these m candidates
Θcomb, to Θq , is minimized. (b) DataApprox is defined at the
data level. DataApprox computes a weighted combination
of m candidate rankings; to do so it solves an optimization
problem so that the maximum norm (δ), over all elements
of the aggregate transition matrix of DataApprox and Aq , is
minimized.

• We propose two heuristics, ScaleRank and PickOne, as DataAp-
prox and SchemaApprox respectively are too expensive to
facilitate interactive query response. ScaleRank chooses m
candidates from the repository based on their Euclidean dis-
tance to Θq of the user; this is inspired by SchemaApprox
and hence ScaleRank can also be viewed as a hybrid algo-
rithm combining SchemaApprox and DataApprox, as dis-
cussed in Section 4. It applies linear programming to solve
the DataApprox optimization problem. PickOne is a greedy
solution to SchemaApprox.

• We conduct extensive experiments to evaluate the execution
time and the quality for ScaleRank and PickOne, i.e., how
close the approximate ranking is to the ideal rankingRq . The
experiments are conducted on the complete DBLP dataset.
We use the well known Spearman’s Footrule distance [15]
as a proxy for the quality of the solution. ScaleRank out-
performs PickOne in quality while achieving fast response
times.

The paper is organized as follows. Section 2 reviews background
and related work. Section 3 defines approximate algorithms SchemaAp-
prox and DataApprox. Section 4 describes the repository architec-
ture and Section 5 presents ScaleRank. Experimental results are
described in Section 6.

2. AUTHORITY FLOW RANKING: THE OB-
JECTRANK ALGORITHM

Given a keyword query, ObjectRank [6, 4] first computes the
base set of nodes in the data graph that contain the query keywords.
Then, authority flows from the base set to the whole data graph,
until the authority scores on the nodes converge (Equation 3). The
nodes with the top score are returned. As mentioned in Section 1,
we focus on the WAV personalization and hence we assume the
base set is the whole graph (referred as Global ObjectRank in [6]).

That is, when we say ObjectRank, we usually mean Global Objec-
tRank.

ObjectRank personalizes ranking in Entity-Relationship graphs;
it models nodes as entity types and groups edges by their edge type
or semantic type. Authority flow is personalized by a weight as-
signment vector (WAV) Θ for the semantic edge types. In Figure 1,
there are 8 edge types.

The transition matrix AOR of ObjectRank depends on the au-
thority transfer Θ specified on the schema graph; however, AOR is
defined at the level of the data graph. To demonstrate the relation-
ship of the ObjectRank transition matrix and the PageRank transi-
tion matrix, without loss of generality we assume that the objects
of the same type are grouped together. Consider an authority trans-
fer schema graph with t entity types. The weight assignment vector
(WAV) Θ = {α1,1, α1,2, ..., α1,t, α2,1, α2,2, ..., α2,t, ...,
αt,1, αt,2, ..., αt,t} represents the authority transfer weights. AOR
contains t × t submatrices. Each submatrix entry of the transition
matrix AOR is multiplied by the authority transfer weight for the
corresponding semantic edge type. AOR can be expressed as fol-
lows:

AOR =

α1,1A1,1 α1,2A1,2 · · · α1,tA1,t

α2,1A2,1 α2,2A2,2 · · · α2,tA2,t

...
...

...
αt,1At,1 αt,2At,2 · · · αt,tAt,t

 (1)

The submatrixAp,q contains authority transfer probabilities from
objects of type p to objects of type q. Let eT (vi, vj) be the seman-
tic type of edge (vi, vj) in the data graph. Let α(eT (vi, vj)) denote
the weight assignment for eT (vi, vj). OutDeg(vi, e

T (vi, vj)) is
the number of outgoing edges from page vi, of type eT (vi, vj).
The submatrix Ap,q is defined as follows:

Ap,q[i, j] =

{ 1
OutDeg(vi,eT (vi,vj))

if (vi,vj) exists
0 otherwise.

(2)

Let ATOR denote the transpose of AOR. The ObjectRank vector
ROR is recursively defined as follows in Equation 3:

ROR = εATOR ·ROR + (1− ε)P (3)

where P is a vector that specifies the nodes of the graph that are
the authority sources. In ObjectRank, P specifies the nodes that
contain the query keywords (all nodes for Global ObjectRank).

3. APPROXIMATION USING A REPOSITORY

3.1 The Problem Definition
Consider user WAV Θq , the ObjectRank transition matrix Aq ,

and ranking Rq . Our problem can be described informally as fol-
lows: Given a set of M candidate rankings in a repository, choose
the m best candidates using some metric and appropriately com-
bine their rankings, so that it provides an approximate ranking of
the highest quality, compared to Rq . The objective for the con-
crete problem needs to satisfy the following requirements: 1) We
should choose an appropriate distance metric to choose the candi-
date rankings. 2) The distance should be easy to compute. 3) The
distance metric should be correlated to the approximation quality
(e.g., Spearman’s Footrule). We expect that a stronger correlation
will improve the choice of candidate rankings and the approxima-
tion quality. We formalize the problem as follows:

Problem statement: Let S = {(Θ1, R1), (Θ2, R2), · · · , (ΘM , RM)}
be the ranking repository of M precomputed ranking vectors and
their corresponding weight assignment vectors. Let Θq be the user
weight assignment vector. The goal is to approximate the author-
ity flow ranking for Θq efficiently, with the maximal quality, by
utilizing the precomputed ranking vectors in the repository.

3.2 Solution Approaches
SchemaApprox: Approximation at the schema level

Let Θcomb be a linear combination ofm weight assignment vec-
tors (WAVs) selected from the repository S. The goal is to find β
values used to combine the m WAVs, such that the Euclidean dis-
tance π between the linear combination Θcomb and the user WAV
Θq is minimized. Let π = ||Θcomb − Θq||2. SchemaApprox is
defined as follows:

minimize π = ||Θcomb −Θq||2
subject to:

Θcomb =
∑m
l=1 βlΘl∑m

l=1 βl = 1
0 ≤ βl for all 1 ≤ l ≤ m

(4)
SchemaApprox can be solved using an approach to solve the

Least Squares Problem [16].

DataApprox: Approximation at the data graph level
Before presenting DataApprox, we present a necessary theorem

without proof due to space constraints:

THEOREM 1. (Authority Transfer Weights Linearity Theo-
rem) Let R1, . . . , Rm be m ranking vectors for weight assign-
ment vectors Θ1, . . . ,Θm, with transition matrices A1, . . . , Am.
Let β1, . . . , βm be non-negative constants such that β1 + · · · +
βm = 1. For a random walk with transition matrix Aagg(S),
where Aagg(S)[i, j] =

∑m
l=1 Al[i,j]Rl[i]βl∑m

l=1
Rl[i]βl

, the ranking vector R =∑
i=1...m βi ·Ri.

From the linearity theorem we infer that if we select m rankings
and compute appropriate β’s to combine them such thatAagg(S)[i, j] =∑m

l=1 Al[i,j]Rl[i]βl∑m
l=1

Rl[i]βl
is close to Aq , then

∑
i=1...m βi · Ri is a good

approximation of Rq .
We define the DataApprox optimization problem as follows:

minimize δ
subject to:

|Aagg(S)[i, j]−Aq[i, j]| ≤ δ, for all entry (i, j)∑m
l=1 βl = 1
0 ≤ βl for all 1 ≤ l ≤ m

(5)

Note that m = M if we do not perform any selection of m
candidates before defining the above optimization

4. SCALERANK ARCHITECTURE
In this section we discuss the architecture of the ScaleRank sys-

tem which is an approximation of DataApprox; the algorithm is in
Section 5. Figure 3 shows the architecture of ScaleRank. The input
is a personalized WAV Θq; the output are the top K objects based
on the personalized authority score. ScaleRank maintains a reposi-
tory ofM candidate rankings. For each candidate ranking, its WAV

Θcand, and its ranking vector Rcand, are stored. Given Θq , the
Candidate Ranking Selector selects m candidate rankings from the
M in the repository. We place a bound on m candidates since m
can impact the running time as will be seen. ScaleRank then finds
an efficient solution to DataApprox and determines β1, . . . , βm,
the best way to combine these m rankings to compute the approxi-
mation

∑
i=1...m βi · Ri of Rq . Finally a top K algorithm is used

to produce the top K objects.

Figure 3: The system architecture.

Materializing candidate rankings in the repository: The set of
rankings in the repository affects the quality of our approximation.
Ideally, we would pre-compute rankings for each user’s WAV. This
is not feasible since the number of users may be huge and users
may keep changing their WAVs.

A natural way to materialize candidate rankings is to generate a
grid to represent all possible weight assignments for a given gran-
ularity, e.g., for each edge type in the semantic graph, we can se-
lect W distinct values that are uniformly spread over some desired
range. One drawback is that we would have to generate a very
large number of candidate rankings in order to provide a uniform
coverage of all the points in the grid. A small value of W may
not provide uniform coverage of the grid of values of Θ and may
produce poor candidate rankings.

To overcome this limitation, we generate M (e.g. 1000) candi-
date rankings by randomly generating the values of Θ; each candi-
date can be considered to correspond to a randomly selected point
of the grid. We found that this random method provides good uni-
form coverage of the grid.

For each candidate ranking i in the repository, its weight assign-
ment vector Θi and its ranking vector Ri are materialized. The
repository can be represented by a set
{(Θ1, R1), (Θ2, R2), · · · , (ΘM , RM)}.
The candidate ranking selector: Among the M candidate rank-
ings in the repository, we choose the m best candidate rankings.
The intuition is that the best candidate should be chosen using the
Euclidean distance ||Θq,Θi||2 between Θq and each candidate Θi.
Using the above distance gives ScaleRank some of the benefits of
SchemaApprox, which is evaluated on the Θ.
The ScaleRank algorithm: Given the m best candidates, ScaleR-
ank finds an efficient solution to DataApprox. Note that the m best
candidates are selected using their WAV only (which is very fast),
that is, using SchemaApprox semantics. Hence, ScaleRank can be

also viewed as a hybrid algorithm that uses SchemaApprox (π) dis-
tance as a first filter and then solves DataApprox in the next stage.
We emphasize however, that ScaleRank approximates DataApprox
in the second stage and it is not an approximation for SchemaAp-
prox. ScaleRank is discussed in detail in the next section.
Creating a Merged Top K Ranking:
We use the TA algorithm [17] to combine multiple ranking vectors
and produce the Top K objects.

5. THE SCALERANK ALGORITHM
The DataApprox problem is to solve Equation 5 where

Aagg(S)[i, j] =
∑m

l=1 Al[i,j]Rl[i]βl∑m
l=1

Rl[i]βl
. The first constraint of Equa-

tion 5 sets an upper bound for the difference between two matrices.
The intuition behind ScaleRank is that the optimization problem of
Equation 5 can be solved by solving a series of feasibility problems
without addressing the objective function, that is, one can choose a
δ and check if the constraints hold. Since δ is the absolute value of
the difference between two entries of the two transition matrices, it
is in the range [0, 1]. Therefore, we can use binary search to find the
minimum δ with upper bound u = 1 and lower bound l = 0. The
search continues until |u−l| < τ , where τ is the user defined accu-
racy requirement. Given the candidate rankings S, the data graph
G, the query weight assignment Θq , and accuracy requirement τ
for δ, we describe the ScaleRank algorithm as follows:

Algorithm ScaleRank(S, G, Θq , τ)
1. u = 1, l = 0
2. min_δ = u
3. while (u− l ≥ τ) do
4. δ = (u+ l)/2
5. if (Feasibility(S, G, Θq , δ))
6. min_δ = δ
7. u = δ
8. else
9. l = δ
10. return min_δ

Figure 4: The outline of the ScaleRank algorithm.

The algorithm ScaleRank finds the minimum δ such that the
optimization problem in Equation 5 is feasible, and stores the β
vector which producesmin_δ inFeasibility algorithm. The while
loop is usually executed for around 10 times if we choose accu-
racy requirement τ = 0.1. The Feasibility procedure in Line 5 of
algorithm solves the Linear Programming problem of Equation 5
without the objective function, that is, for a given δ.

6. EXPERIMENTAL EVALUATION

6.1 Experiment Description

6.1.1 The dataset
Bibliographic databases (DBLP or CiteSeer) are frequently used

to evaluate authority flow ranking [6, 2, 14]. We use the DBLP
dataset (June 2008) to build a data graph that conforms to the schema
graph of Figure 1. We crawled CiteSeerX [18] to get additional ci-
tation links. This dataset contains 8 edge types, 1707898 objects
and 7704633 links.

We performed experiments on synthetic graphs but do not re-
port on the results due to lack of space. We expect our results on
DBLP should hold over a wide range of datasets since the DBLP
graph possesses the typical power law edge distribution of many
real-world graphs [19]. While our experiments used a WAV vector

with at most 8 values, we think that this too is reasonable. While
some graphs, e.g., the semantic Web, may have many edge types, it
is unlikely that users would provide a personalization vector cover-
ing more than a few edge types.

6.1.2 Evaluation metrics
For a given authority flow weight assignment Θq , we compute

the exact Global ObjectRank ranking vector and the ScaleRank ap-
proximate vector. While theL1 distance was used to obtain an error
bound for ScaleRank, users are less interested in the actual scores
for results and are more interested in the rank order. In the informa-
tion retrieval (IR) literature, metrics such as precision, precision at
R (PR), mean average precision (MAP), recall and the F-measure
are typically applied to user evaluation of ranked lists [20]; they
work well when there is manually annotated ground truth. An al-
ternate metric that has been widely used to evaluate ranking algo-
rithms including PageRank and personalized PageRank is the nor-
malized Spearman’s Footrule Distance [21] between two vectors.
This metric is appropriate in cases such as ours where there is no
manually annotated ground truth and the ranked lists produced by
two algorithms are being compared. Since there are a many tied
pages with the same score, we use an extension for ranking with
ties [22]. We report on the Spearman’s Distance averaged over up
to 20 user WAVs and the complete result (or Top K results).

Note that there are no other works that tackle the problem of
efficient personalization for varying WAVs and hence we do not
compare to previous approaches, except the original ObjectRank
execution [6].

6.1.3 Baseline algorithm PickOne
We compare ScaleRank against a baseline algorithm: PickOne.

The PickOne algorithm mimics SchemaApprox. PickOne calcu-
lates the Euclidean distance ||Θq,Θcand||2 and chooses the candi-
date with the minimum Euclidean distance.

We implemented ScaleRank, PickOne and ObjectRank in Java.
Our experiments were run on a Solaris machine with two 2.8 GHz
dual-core processors and 12 GB RAM.

6.1.4 Ranking repository
Recall that we discussed strategies to generate candidate rank-

ings in Section 4. We generate 1000 candidate rankings by ran-
domly generating the values of Θ; each candidate can be consid-
ered to correspond to a randomly selected point of the grid. The
randomized method provides good uniform coverage of the grid.

We measured the storage requirement for the Top 1000 (K =
1000) objects for 1000 (M = 1000) rankings to be 30 MB. If we
want to reduce the space, the ScaleRank heuristic can use a smaller
K. We experiment with K = 50 and above.

6.2 The Accuracy of the Top K Ranking Re-
sults

Algorithm Number of user WAVs Average Distance
ScaleRank 5 0.049
ScaleRank 10 0.079
ScaleRank 15 0.120
PickOne 5 0.084
PickOne 10 0.179
PickOne 15 0.303

Table 1: The Spearman’s Footrule Distance for the Top 100
Ranking Results for ScaleRank and PickOne.

Table 1 reports on the Spearman’s Footrule distance for the Top

Figure 5: The average Spearman’s Footrule distance when the
value of K is varied.

100 results of ScaleRank and PickOne. We report on the average
distance over 5, 10, and 15 user WAVs for ScaleRank and for Pick-
One; we sort the user WAVs by the result accuracy to observe any
trends.

What is of note is that ScaleRank provides an accurate ranking
of the Top 100 results for a majority of the user WAVs; the average
distance is as low as 0.049 for the 5 best user WAVs and increases
to 0.079 for 10 user WAVs. The average is 0.120 over all 15 user
WAVs. PickOne is a greedy heuristic and this is reflected in its
rapidly degrading performance. The average distance is 0.084 for
the 5 best user WAVs (compared to 0.049 for ScaleRank). The
distance increases rapidly to 0.179 averaged over 10 user WAVs
and to 0.303 over all 15 user WAVs.

Figure 5 shows the Spearman’s Footrule for the whole list of
results, if we execute ScaleRank for various values of K. PickOne
is constant since it does not consider K.

These results confirm that a greedy heuristic like PickOne may
provide an inaccurate ranking of the results and justifies the need
for a complex hybrid solution such as ScaleRank.

6.3 The impact of M on ScaleRank
Figure 6 reports on the behavior of ScaleRank and PickOne when

we increase the number M of rankings in the repository. We con-
sider 10 different ranking repositories, whose size varies fromM =
100 to 1000. The δ values for ScaleRank are the triangles, the
ScaleRank distance values are the blue crosses, and the distance
for PickOne are the red squares. When the size of the repository
increases, the value of δ for ScaleRank decreases. To explain, the
algorithm has more candidates to select m, and this leads to the
smaller feasible δ.

We observe that ScaleRank consistently outperforms PickOne.
As M increases, the ScaleRank distance shows a decreasing trend.
PickOne however does not show a decreasing trend.

6.4 ScaleRank runtime
We report on the runtime of ScaleRank and compare it to the ex-

act ObjectRank algorithm. The ObjectRank algorithm is computed
through iterations until convergence. In practice, it takes around
25 iterations on our data graph. In each iteration, the ObjectRank
examines all the edges in the graph.

Our analysis shows that ScaleRank is an efficient algorithm, since
we typically choose top K less than 500 which leads to good ap-
proximation. For ObjectRank, however, there can be millions of
links.

ScaleRank calls an LP solver during the binary search to find the
smallest value of δ. We used an open source LP solver glpk [23]

Figure 6: The average Spearman’s Footrule distance for vary-
ing M .

and its Java interface [24].
The average runtime for ObjectRank on 20 user WAVs is 338

seconds; this is not shown in Figure 7 due to its different scale.
Note that this runtime does not include the preprocessing time re-
quired for the graph to be loaded into memory.

Figure 7 reports on the initialization time, i.e., the time to pick
the m best rankings from the repository; this is the white bar. The
blue bar is the execution time, i.e., the time to call the LP solver
multiple times. ScaleRank typically calls the solver 9− 10 times.

Figure 7: Average runtime of ScaleRank for varying values of
Top K.

We conducted further experiments to determine the behavior of
ScaleRank as we vary other parameters in the repository. We do
not provide detailed figures due to lack of space. As we vary the
number M of candidate rankings in the repository, for Top K =
500, the initialization time varied from 0.10 seconds to 0.35 sec-
onds, while the execution time varied from 0.50 to 0.80 seconds.
The total time was always below 1.0 seconds. Note that as M in-
creases, the runtime for ScaleRank does not always increase. As
M increases, Scalerank has more choices and can choose a better
set of m best candidates. This usually reduces the execution time.

To summarize, despite the use of a comparatively slow LP solver
glpk, ScaleRank execution performance is very fast and makes it an
option for runtime personalization.

7. CONCLUSIONS
We addressed the challenge of approximating personalized au-

thority flow ranking. We defined two problems SchemaApprox
and DataApprox that use a repository of rankings. We developed
a heuristic solution ScaleRank for the DataApprox problem. Ex-
tensive experiments show that ScaleRank is efficient and has good
quality.

8. ACKNOWLEDGMENTS
This research was partially supported by NSF Awards IIS-0960963,

IIS-0811922, IIS-0952347, HRD-0833093, and a Google Research
Award.

9. REFERENCES
[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank

citation ranking: Bringing order to the web,” Stanford Digital Library
Technologies Project, Tech. Rep., 1998.

[2] S. Chakrabarti, “Dynamic personalized pagerank in entity-relation
graphs,” in WWW, 2007, pp. 571–580.

[3] F. Geerts, H. Mannila, and E. Terzi, “Relational link-based ranking,”
in VLDB, 2004, pp. 552–563.

[4] V. Hristidis, H. Hwang, and Y. Papakonstantinou, “Authority-based
keyword search in databases,” ACM Trans. Database Syst., vol. 33,
no. 1, pp. 1–40, 2008.

[5] R. Varadarajan, V. Hristidis, L. Raschid, M.-E. Vidal, L. Ibá nez, and
H. Rodríguez-Drumond, “Flexible and efficient querying and ranking
on hyperlinked data sources,” in EDBT ’09, 2009, pp. 553–564.

[6] A. Balmin, V. Hristidis, and Y. Papakonstantinou, “Objectrank:
Authority-based keyword search in databases.” in VLDB, 2004, pp.
564–575.

[7] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós, “Towards scaling
fully personalized pagerank: Algorithms, lower bounds, and
experiments,” Internet Mathematics, vol. 2, no. 3, 2005.

[8] T. H. Haveliwala, “Topic-sensitive pagerank,” in WWW ’02.
[9] H. Hwang, A. Balmin, B. Reinwald, and E. Nijkamp, “Binrank:

Scaling dynamic authority-based search using materialized
subgraphs,” in ICDE ’09, 2009, pp. 66–77.

[10] G. Jeh and J. Widom, “Scaling personalized web search,” in WWW
’03. New York, NY, USA: ACM, 2003, pp. 271–279.

[11] Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma, “Object-level ranking:
bringing order to web objects,” in WWW ’05.

[12] S. Chakrabarti and A. Agarwal, “Learning parameters in entity
relationship graphs from ranking preferences,” in PKDD, 2006, pp.
91–102.

[13] http://www.informatik.uni-trier.de/~ley/db/ .
[14] R. Varadarajan, V. Hristidis, and L. Raschid, “Explaining and

reformulating authority flow queries,” in ICDE ’08.
[15] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” in

SODA ’03, 2003, pp. 28–36.
[16] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems.

Society for Industrial Mathematics, 1995.
[17] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms

for middleware,” in PODS ’01.
[18] http://citeseerx.ist.psu.edu/ .
[19] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman,

“Search in power-law networks,” Phys. Rev. E, vol. 64, no. 4, p.
046135, Sep 2001.

[20] C. Manning, P. Raghavan, and H. Schutze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[21] M. Kendall, “Rank correlation methods,” Griffin, 1962.
[22] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee,

“Comparing and aggregating rankings with ties,” in PODS ’04.
[23] http://www.gnu.org/software/glpk/ .
[24] http://bjoern.dapnet.de/glpk/ index.htm.

