
A Comparative Study of Secondary Indexing Techniques in
LSM-based NoSQL Databases

Mohiuddin Abdul Qader, Shiwen Cheng, Vagelis Hristidis

{mabdu002,schen064,vagelis}@cs.ucr.edu

Department of Computer Science & Engineering, University of California Riverside

ABSTRACT
NoSQL databases are increasingly used in big data applications,

because they achieve fast write throughput and fast lookups on the

primary key. Many of these applications also require queries on

non-primary attributes. For that reason, several NoSQL databases

have added support for secondary indexes. However, these works

are fragmented, as each system generally supports one type of

secondary index, and may be using different names or no name

at all to refer to such indexes. As there is no single system that

supports all types of secondary indexes, no experimental head-to-

head comparison or performance analysis of the various secondary

indexing techniques in terms of throughput and space exists. In

this paper, we present a taxonomy of NoSQL secondary indexes,

broadly split into two classes: Embedded Indexes (i.e. lightweight
filters embedded inside the primary table) and Stand-Alone Indexes
(i.e. separate data structures). To ensure the fairness of our compara-

tive study, we built a system, LevelDB++, on top of Google’s popular

open-source LevelDB key-value store. There, we implemented two

Embedded Indexes and three state-of-the-art Stand-Alone indexes,

which cover most of the popular NoSQL databases. Our compre-

hensive experimental study and theoretical evaluation show that

none of these indexing techniques dominate the others: the embed-

ded indexes offer superior write throughput and are more space

efficient, whereas the stand-alone secondary indexes achieve faster

query response times. Thus, the optimal choice of secondary in-

dex depends on the application workload. This paper provides an

empirical guideline for choosing secondary indexes.

ACM Reference Format:
Mohiuddin Abdul Qader, Shiwen Cheng, Vagelis Hristidis. 2018. A Com-

parative Study of Secondary Indexing Techniques in LSM-based NoSQL

Databases. In SIGMOD’18: 2018 International Conference on Management
of Data, June 10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3183713.3196900

1 INTRODUCTION
In the age of big data, more and more services are required to ingest

high volume, velocity and variety data, such as social networking

data, smartphone apps usage data and click through data. NoSQL

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00

https://doi.org/10.1145/3183713.3196900

databases were developed as a more scalable and flexible alterna-

tive to relational databases. NoSQL databases, such as HBase [13],

Cassandra [31], Voldemort [12], MongoDB [26], AsterixDB [2] and

LevelDB [23] to name a few, have attracted huge attention from in-

dustry and research communities, and are widely used in products.

Through the use of Log-Structured Merge-Tree (LSM) [34], NoSQL

systems are particularly good at supporting two capabilities: (a) fast

write throughput, and (b) fast lookups on the primary key of a data

entry (See Appendix A.1 for details on LSM storage framework).

However, many applications also require queries on non-key at-

tributes which is a functionality commonly supported in RDBMSs.

For instance, if a tweet has attributes such as tweet id, user id and

text, then it would be useful to be able to return all (or the most

recent) tweets of a user. However, supporting secondary indexes

in NoSQL databases is challenging, because secondary indexing

structures must be maintained during writes, while also managing

the consistency between secondary indexes and data tables. This

significantly slows down writes, and thus hurts the system’s capa-

bility to handle high write throughput which is one of the most

important reasons why NoSQL databases are used.

Table 1 shows the operations that we want to support. The first

three operations (GET, PUT and DEL) are already supported by ex-

istingNoSQL stores like LevelDB. Note that the secondary attributes

and their values are stored inside the value of an entry, which may

be in JSON format: v = {A1 : val (A1) , · · · ,Al : val (Al)}, where
val(Ai) is the value for the secondary attribute Ai . For example,

the key of a tweet entry could be k = tweet id , A1 = user id and

A2 = body text . Key k should not be confused with limit K (top-K),
which means K most recent records in terms of insertion time in

the database.

Table 1: Set of operations in a NoSQL database.
Operation Description
GET (k) Retrieve value identified by primary key k .
PUT (k , v) Write a new entry ⟨k, v ⟩ (or overwrite if k already

exists), where k is the primary key.

DEL (k) Delete the entry identified by primary key k if any.

LOOKUP (A, a, K) Retrieve theK most recent entries withval (A) = a.
RANGELOOKUP (A,
a, b , K)

Retrieve the K most recent entries with a ≤
val (A) ≤ b .

Stand-Alone Secondary Indexes. Current NoSQL systems have

adopted different strategies to support secondary indexes (e.g., on

the user id of a tweet). Most of them maintain a separate Stand-

Alone Index table. For instance, MongoDB [26] uses B+-tree for

secondary index, which follows the same way of maintaining sec-

ondary indexes as traditional RDBMSs. They perform in-place up-

dates (which we refer as “Eager” updates, and we refer to such

indexes as Eager Indexes) of the B+ tree secondary index, that is,

for each write in the data table the index (e.g., B+ tree) is updated.

In the case of some LSM-based NoSQL systems (e.g., BigTable [5]),

https://doi.org/10.1145/3183713.3196900
https://doi.org/10.1145/3183713.3196900

(a) Comparison between Eager and Lazy updates, and <secondary+primary> Composite keys in Stand-Alone Indexes

(b) Zone maps and bloom filters in Embedded Index

Figure 1: Comparison between various secondary indexes after operations in Example 1. We use the notation key → value.

which store a secondary index as an LSM table (column family),

an Eager update is technically not in-place, but a new posting list

is written that invalidates the older ones. In contrast to in-place

updates, other LSM-based systems (e.g., Cassandra [31]) perform

append-only updates on the LSM index table, which we refer as

“Lazy” updates, and Lazy Indexes.

Example 1. Consider the current state of a database right after
the following sequence of operations PUT(t1, {u1, text1}),PUT(t2, {u1,
text2}),PUT(t3, {u1, text3},· · ·), where ti is a tweet id, ui is a user
id, and texti is the text of a tweet. Then, as shown in Figure 1(a),
to execute PUT(t4, {u1, text4}) on an Eager Index, we must retrieve
the list for u1, add t4 and save it back, whereas for a Lazy Index,
we simply issue a PUT(u1, {t4}) on the user id index table without
retrieving the existing posting list for u1. The old postings list of u1 is
merged with (u1, {t4}) later, during the periodic compaction phase.

A drawback of the lazy update strategy is that reads on index

tables become slower, because they have to merge the posting lists

at query time. Earlier versions of Cassandra handled this by first

accessing the index table to retrieve the existing posting list of u1,

then writing back a merged posting list to the index table. Then

the old posting list becomes obsolete. However, this Eager Index

degrades the write performance.

In addition to these Stand-Alone indexes which maintain posting

lists, several systems (e.g. AsterixDB [2], Spanner [7]) adopt a dif-

ferent approach to maintain the secondary indexes, which we refer

as Composite Index. Here, each entry in the secondary indexes is a

composite key consisting of (secondary key + primary key). The

secondary lookup is a prefix search on secondary key, which can be

implemented using regular range search on the index table. Here,

writes and compactions are faster than “Lazy,” but secondary at-

tribute lookup may be slower as it needs to perform a range scan on

the index table. We have implemented Eager, Lazy and Composite

Stand-Alone Indexes. All these indexes can naturally support both

lookup and range queries.

Embedded Secondary Indexes. We also built Embedded indexes,
which differ in that there is no separate secondary index structure,

but secondary attribute information is stored inside the original

(primary) data blocks. We built two Embedded Indexes. The first is

based on bloom filters [4], which are a popular hashing technique

for set membership check (See Appendix A.3 for details on bloom

filters). Bloom filters are already being used for primary indexing in

many systems such as BigTable[5], LevelDB[23] and AsterxiDB[2].

But surprisingly, to our best knowledge, it has not been used for

secondary attribute lookup in any of the existing NoSQL system. A

drawback of bloom filter index is that it can only support lookup

queries.

In addition to bloom filters, we also implement another Em-

bedded Index, zone maps, which typically store the minimum and

maximum values of a column (attribute) in a table per disk block.

Zone maps are used in Oracle [27], Netezza [25], and AsterixDB [2].

Zone maps can be used for both lookup and range queries. How-

ever, in practice, zone maps are only useful when the incoming

data is time-correlated, otherwise most of the data blocks have to

be examined [2]. An attribute is called time-correlated if its value

for a record is highly correlated with the record’s insertion times-

tamp. For example, tweet-id is time-correlated because the tweet-id

value increases with time. Note that the higher the correlation the

stronger pruning we achieve in zone maps. No index’s or algo-

rithm’s correctness requires that an attribute is time-correlated.

Note that these Embedded Indexes do not create any specialized

index structure, but instead attach a memory-resident bloom fil-

ter signature and a zone map to each data block for each indexed

secondary attribute. As LSM files on disks (called SSTables, see Ap-

pendix A.2) are immutable, these filters do not need to be updated;

they are naturally computed when an SSTable is created. In our
experiments, we consider both bloom filters and zone maps together
as one index, which we refer as Embedded Index.
Example 1 (cont’d) Figure 1 shows the differences between the five
indexing strategies. As in LSM-style storage structures, data are or-
ganized as levels, three levels shown in Figure 1, where the top row
is in-memory and the bottom two on disk. Lower levels are generally
larger and store older data. In some systems like LevelDB, lower levels

have more SSTables of the same size, and in some like AsterixDB,
lower levels have just one but larger SSTable. Each orange rectangle
in Figure 1 represents a data file (SSTable).

Table 2 shows the various secondary indexing techniques used

by existing NoSQL systems, and by our LevelDB++. As we see, each

system only implements one or two of these approaches, which

does not allow a fair comparison among them, which is a key

contribution of this paper. More details on how different systems

adopt these techniques are described in Section 2.

Summary of Methodology. To compare different indexing tech-

niques, we implemented all of them on top of LevelDB [23] frame-

work, which to date does not offer secondary indexing support.

We chose LevelDB over other candidates, such as RocksDB [20],

because it is a single-threaded pure single-node key value store, so

we can easily isolate and explain the performance differences of

the various indexing methods. We compare these algorithms using

multiple metrics including size, throughput, number of random disk

accesses and scalability. We ran experiments using several static

workloads (i.e. build the index first and perform reads later) and

dynamic (mix of reads, writes, updates) workloads, using real and

synthetic datasets. We measured the response time for queries on

non-primary key attributes, for varying top-K and selectivity.

Figure 2: Proposed secondary index selection strategy.

Summary of Results. As shown in Figure 2, the Embedded Index

has lower maintenance cost in terms of time and space compared

to Stand-Alone Indexes, but Stand-Alone Indexes have faster query

(LOOKUP and RANGELOOKUP) times. Embedded Index is a better

choice in the cases when index attribute is time-correlated (zone

maps perform well) or when space is a concern, (e.g., to create a

local key-value store on a mobile device) or if the query workload

contains relatively small (< 5%) ratio of LOOKUP/RANGELOOKUP

queries over GETs and is heavy on writes (> 50% of all opera-

tions). An example of such an application is wireless sensor net-

works where a sensor generates data of the form (measurement id,

temperature, humidity) and needs support for secondary attribute

queries [8, 15]. In terms of implementation, the Embedded Index is

also easier to be adopted, as the original basic operations (GET, PUT

and DEL) on the primary key remain unchanged. The Embedded In-

dex also simplifies the consistency management during secondary

lookups, as we do not have to synchronize separate data structures.

Among the Stand-Alone Indexes, Lazy Index achieves overall better

performance for smaller top-K LOOKUPs and RANGELOOKUPs.

For instances, it is reported that there are much more reads than

writes in Facebook and Twitter [11, 16], and hence an ideal index to

store user posts which is sensitive to top-K , will be Lazy Index. Ea-

ger Index shows exponential write costs and is not suitable for any

workloads. Composite Index outperforms Lazy Index when there is

no limit on top-K . For example, Composite Index is a good solution

for general analytics platforms (e.g. IBM [24], TeraData [28]) where

one may group by year or department and so on.

Summary of Contributions. Wemake the following contributions:

• We perform an extensive study on the state-of-the-art sec-

ondary indexing techniques for NoSQL databases and present

a taxonomy of NoSQL secondary.

• We implement two Embedded Indexes (Bloom filters and

Zonemaps) on LSM-based stores to support secondary lookups

and range queries, and theoretically analyze their cost.

• We implement Lazy, Eager and Composite Stand-Alone In-

dexes on LSM-based stores and optimize each index for a

fair comparison. We also theoretically analyze their cost.

• We conduct extensive experiments on LevelDB++ to study

the trade-offs between different indexing techniques on var-

ious workloads (Section 5).

• Wepublished the LevelDB++ code base as open-source, which

includes our secondary indexes implementation on top of

LevelDB, along with a Twitter-based data generator [30].

The rest of the paper is organized as follows. Section 2 reviews

the related work. Sections 3 and 4 describe the indexing techniques

and their theoretical cost models. Section 5 presents the experimen-

tal evaluation and we conclude in Section 6.

2 RELATEDWORK
The idea of having the secondary index organized as a table has

been studied in the past (e.g. Yahoo PNUTS [1]). Cassandra [31]

supports secondary indexes by populating a separate table (col-

umn family in Cassandra’s terminology) to store the secondary

index for each indexed attribute. Their index update closely follows

our Lazy Index approach. AsterixDB [2] introduces a framework

to convert an in-place update index like B+ tree and R-tree to an

LSM-style index, in order to efficiently handle high throughput

workloads. Their secondary indexes closely follow our Compos-

ite Index strategy. This can be viewed as complementary to our

work as we work directly on LSM-friendly indexes (set of keys

with flat postings lists). AsterixDB also adopts zone maps to prune

disk components (i.e. SSTables) for secondary lookups. But their

zone maps are limited as they are only min-max range filters of

whole SSTable files whereas our zone maps also maintain filters

for all blocks inside an SSTable. Secondary indexes on HBase are

discussed in [36], although that paper’s focus is on consistency

levels. Document-oriented NoSQL databases like CouchDB [19]

and MongoDB [26], similarly to RDBMs, employ B+-trees to sup-

port secondary indexes. They mostly perform in-place update on

the secondary index similarly to our Eager Index. A variation of

Lazy Index is implemented in DualDB [35], although it is used as

primary index and customized for pub/sub features only. Hyper-

Dex [10] proposes a distributed key-value store supporting search

on secondary attributes. They partition the data across the cluster

Table 2: Different Secondary Indexing techniques supported in different NoSQL databases

NoSQL Storage Systems Embedded Index Stand Alone Index
Zone Map Index Bloom Filter Index Lazy Index Eager Index Composite Index

LevelDB++ ✓ ✓ ✓ ✓ ✓
LevelDB [23], RocksDB [20]

Cassandra [31] ✓
AsterixDB [2], Spanner [7] ✓ ✓
MongoDB [26], CouchDB [19], DynamoDB [18], Riak [3], Aerospike [17] ✓
Oracle [27], Netezza [25] ✓

by taking the secondary attribute values into consideration. Each

attribute is viewed as a dimension (e.g., a tweet may have two di-

mension tweet id and user id), and each server takes charge of a

“subspace” of entries (e.g., any tweet with tweet id in [tid1, tid2]

and user id in [uid1, uid2]). Innesto [33] applies a similar idea of

partitioning and adds ACID properties in a distributed key-value

store. DynamoDB [18], a distributed NoSQL database service, sup-

ports both global and local secondary indexes with a separate index

table similar to Stand-Alone Indexing. Riak [3], similarly supports

secondary indexing by means of Stand-Alone Index table for each

partition, and performs an Eager update after each write operation.

In this paper, our focus is on a single-machine storage engine for

NoSQL databases. The distribution techniques of HyperDex, Dy-

namoDB, Riak and Innesto can be viewed as complementary if we

want to move to a distributed setting.

3 EMBEDDED INDEX
Overview. As shown in Figure 1(b), in each SSTable file we con-

structed a block with a set of bloom filters on the secondary at-

tributes and appended the bloom filter block to the end of the

SSTable. Specifically, a bloom filter bit-string was stored for each

secondary attribute for each block inside the SSTable file (recall

that an SSTable file is partitioned into blocks, see Appendix A.1 and

A.2 for a detailed overview of the LSM storage model and LevelDB

storage architecture). In addition, we added zone map indexes for

accelerating range lookup on secondary keys. These zone maps

store the minimum and maximum range of secondary keys for each

data block. We used these zone maps to further accelerate point

lookup queries. We generally compute these bloom filters and zone

maps for each block when a new SSTable is created (i.e. an LSM

memory component MemTable is flushed to disk or a compaction

creates new SSTables). Note that these bloom filters and zone maps

are loaded in memory (the same approach is used currently with

the bloom filters of the primary key in systems like Cassandra and

LevelDB). Hence, the scan over the disk files is converted to a scan

over in-memory bloom filters/zone maps. We only access the disk

blocks, which the bloom filter returns as positive. We refer to these

indexes as Embedded Index, as no separate data files are created.

Instead, the bloom filters and zone maps are embedded inside the

main data files.

LevelDB, as other NoSQL databases like Cassandra, already em-

ploys bloom filters and zone maps to accelerate reads on primary

keys. Several types of meta blocks are already supported in LevelDB

(see Appendix A.2). We modify the filter meta block and the data

index block to add secondary attribute bloom filters and zone maps,

as shown in Figure 3. For lookup in the MemTable, we maintain an

in-memory B-tree on the secondary attribute(s). We also store one

zone map for each SSTable file, in a global metadata file, allowing

us to access the min-max range of secondary keys in the whole file,

to avoid searching in block-level zone maps.

(a) Bloom filters

(b) Zone maps

Figure 3: Modified LevelDB SSTable for Embedded Index.

LOOKUP(Ai , a, K). We scan one level at a time until K results

have been found. A key challenge is that within the same level

there may be several entries with the queried secondary attribute

value val(Ai) = a, and these entries are not stored as ordered by

time (but by primary key). Fortunately, LevelDB, as other NoSQL

systems, assigns an auto-increment sequence number to each en-

try at insertion, which we use to perform time ordering within a

level. Hence, we must always scan until the end of a level before

termination. During this scan, we use the bloom filter and zone

map indexes to check each data block in the SSTables. If both index

checks return true, we read a block from disk.

To efficiently compute the top-K entries, wemaintain a min-heap

ordered by the sequence number. If we find a match (i.e. we find a

record that has secondary attribute value val(Ai) = a), then if the

heap size is equal to K , we first check whether it is an older record

than the root of the min-heap. If it is a newer match or the heap size

is less thanK , thenwe checkwhether it is a valid record (i.e. whether
it is invalidated by a new record in the data table). We check this

by issuing a special function GetLite(k , currentlevel) (Algorithm
5 in Appendix), which is a variation of the GET operation. Note

that here we know the currentlevel (i.e. the level where the key
is placed) of the actual record. GETLite checks the in-memory

metadata, index block and bloom filters for primary keys to check

which level contains the key. If the key appears in the upper levels

(0 to currentlevel − 1), that means there is an updated version of

the key that is present in the database and this record is considered

invalid. Here, we do not need to perform disk I/O, which a regular

GET operation would do. This simple optimization in Embedded

Index significantly reduces disk I/O.

RANGELOOKUP(Ai , a,b, K). We support RANGELOOKUP in

Embedded Index via zone maps. Similar to LOOKUPs, here we

check SSTables level by level. First, we check the global zone map

of an SSTable to check if we can avoid scanning this file. Then we

check the zone maps of each block of the SSTable to find overlaps

with the query range [a,b] and find out which blocks may contain

recordswith the secondary attribute valuea. Amin-heap is similarly

used here to maintain top-K and we stop scanning after reaching

to the end of one level if K matches are found. The pseudocode

of LOOKUP (Algorithm 5) and RANGELOOKUP (Algorithm 8) on

Embedded Index is presented in Appendix B.

GET, PUT and DEL. A key advantage of the Embedded Index is

that only small changes are required for all three interfaces: GET(k),
PUT(k,v), and DEL(k). Obviously, GET(k) needs no change as it

is a read operation and we have only added bloom filter and zone

map index to the data files. As SSTables are immutable, PUT and

DEL just updates the in-memory B-tree for the MemTable data.

3.1 Cost Analysis
Cost of GET/PUT/DEL queries. The Embedded Index does not

incur much overhead on these operations. MemTable does not have

bloom filters or zone maps, so there is no extra cost in maintaining

them for each operation. It only adds small in-memory overhead

on the compaction process to build bloom filters and zone maps for

each indexed attribute per block and small overhead for updating

the B-tree for MemTable.

Cost of LOOKUP and RANGELOOKUP queries. Let the number

of blocks in level-0 be b (and thus level-i has approximately b · 10i
blocks). According to Equation 1, the expected minimal false posi-

tive rate of the bloom filter is 2
−mS ln2, denoted as f p (for more de-

tails on bloomfilters, see Appendix A.3). Thus the approximate num-

ber of block accesses on level-i for LOOKUP due to false positives

is f p ·b · 10i . Hence, if a LOOKUP query needs to search on L levels,

the expected block accesses are

∑L
i=0

(
f p · b · 10i

)
=

f p ·b ·(10L+1−1)
9

.

Let us assume that matched entries are found in K + ϵ blocks, then

the total number of block accesses is K + ϵ +
f p ·b ·(10L+1−1)

9
. Here ϵ

represents the extra cost of searching to the end of a level to find

top-K from matched entries. Note that, the CPU cost of computing

membership check using in-memory bloom filters cannot be ne-

glected here. For example, if the database size is 100GB and block

size is 4KB, that means there exist 25 million bloom filters for one

secondary indexes and a LOOKUP query may need to check all of

them in the worst case. The CPU cost is generally much smaller

for an index on a time-correlated attribute, because file-level zone

maps are very effective and prune most files.

For RANGELOOKUP operation, the false positive rate depends

on the distribution of the secondary key ranges in different blocks.

In the worst case for non time-correlated index, RANGELOOKUP

may have to traverse all blocks in the database, same as if there is

no index. For time-correlated index, the worst case cost is K + ϵ
block accesses.

The worst-case number of disk accesses for different operations

in Embedded Index is presented in Table 3. The Embedded Index

will achieve better LOOKUP query performance on low cardinality

data (i.e., an attribute has small number of unique attribute values),

because fewer levels must be accessed to retrieve K matches.

Table 3: Disk accesses for operations in Embedded Index. (**
means that CPU cost may not be ignored)

Operation Read I/O Write I/O
GET(k) 1 0

DEL(k), PUT(k, v) 0 1

LOOKUP (K + ϵ) +
f p ·b ·

(
10
L+1−1

)
9

** 0

RANGELOOKUP (K + ϵ) (Time-correlated index at-

tribute), Same as no index (non

time-correlated)

0

4 STAND-ALONE INDEX
4.1 Stand-Alone Index with Posting Lists
A Stand-Alone secondary index in a NoSQL store can be logically

created as follows. For each indexed attribute Ai , we build an index

table Ti , which stores the mapping from each attribute value to a

list of primary keys, similarly to an inverted index in Information

Retrieval. That is, for each key-value pair ⟨k,v⟩ in the data table

with val(Ai) not null, k is added to the postings list of val(Ai) in
Ti . Posting lists can be serialized as a single JSON array. Example 2

presents an illustration for this.

Example 2. Assume the current state of a database right after
the following sequence of operations PUT(t1, {u1, text1}),...,PUT(t2,
{u1, text2}),...,PUT(t3, {u2, text3}), PUT(t4, {u2, text4}). Tables 4a
and 4b show the logic presentation of the state of primary data ta-
ble(UserIndex) and secondary Stand-Alone Index(TweetData) in a
key-value store after these four operations.

Table 4: Stand-Alone UserIndex with Posting lists of tweets
(a) TweetsData - Primary table

Key Value
t1 {“UserID”: u1, “text”: “t1 text”}

t2 {“UserID”: u1, “text”: “t2 text”}

t3 {“UserID”: u2, “text”: “t3 text”}

t4 {“UserID”: u2, “text”: “t4 text”}

(b) UserIndex

Key Value
u1 [t2, t1]

u2 [t4, t3]

Compared to the Embedded Index, Stand-Alone Index has over-

all better LOOKUP performance, because it can get all candidate

primary keys with one read in the index table in Eager Index (or

up to L reads when there are L levels in the case of Lazy Index

as we discuss below). However, Stand-Alone Index is more costly

due to the maintenance of index table upon writes (PUT(k,v) and
DEL(k)) in the data table in order to keep the consistency between

them. We present two options to maintain the consistency between

data and index tables, Eager updates and Lazy updates, discussed

in Sections 4.1.1 and 4.1.2 respectively. We have implemented both

options on LevelDB.

4.1.1 Eager Index. PUT(k, {Ai : ai })/DEL(k): Upon a PUT, a

Stand-Alone Index with Eager updates (i.e. Eager Index) first reads

the current postings list of ai from the index table, adds k to the

list and writes back the updated list. This means that, in contrast to
the Lazy Index, only the highest-level posting list of ai needs to be
retrieved, as all the lower ones are obsolete.

Example 3. Suppose PUT(t3, {”UserID": u1, “Text”: “t1 text”}) is is-
sued after operations in example 2, which updates the UserID attribute
of t3 from u2 to u1.

Figure 4 depicts a possible initial and final instance of the LSM

tree for Eager Index after PUT operation in Example 3. The DEL(k)
operation in Eager Index follows the same read-update-write pro-

cess to update the list. Note that the compaction on the index tables

Figure 4: Stand-Alone Eager Index and its compaction.

works the same as the compaction on the data tables.

LOOKUP(Ai , a, K): A key advantage of Eager Index is that

LOOKUP only needs to read the postings list of a in the highest

level in Ti . To support top-K LOOKUPs, we maintain the postings

lists ordered by time (sequence number) and then only read a K
prefix of them. For each entry k in the list of primary keys, we

issue a GET(k) on data table to retrieve the data record. We make

sure val(Ai) = a for each entry to check the validity as there could

be invalid keys in the postings list of a caused by updates on the

data table (i.e. Insertion of an existing key with a different sec-

ondary key). Pseudocode of LOOKUP (Algorithm 2) on Eager Index

is presented in Appendix B.

RANGELOOKUP(Ai , a, b, K): To support range query

(RANGELOOKUP) on secondary attribute in Eager Index, we use

range query API in LevelDB on primary key. We issue this range

query on our index table for given range [a,b]. For each match x ,
we retrieve K number of most recent primary keys from the post-

ing list which is already sorted by time. To return a top-K among

different secondary keys in range [a,b], we need to add associated

posting lists’ primary keys to the min-heap to get the top-K . To sort
mean-heap by timestamps, we attach a sequence number to each

entry in the postings list on every write. This sequence number

represents entry time for each entry in the posting lists.

4.1.2 Lazy Index. PUT(k, {Ai : ai })/DEL(k): The Eager Index
still requires a read operation to update the index table for each

PUT, which significantly slows down PUTs. In contrast, the Lazy

Index works as follows. Upon PUT (on the data table), it just issues

a PUT(ai , [k]) to the index table Ti but nothing else. Thus, the

postings list for ai will be scattered in different levels. During

merge compaction, we merge these fragmented lists. DEL operation

similarly issues a PUT(ai
del , [k]), but maintains a deletion marker

which is used during merge in compaction to remove the deleted

entry. Figure 5 depicts the update of index table by the Lazy update

strategy upon the PUT in Example 3.

LOOKUP(Ai , a,K): Since the postings list for a could be scattered
in different levels, a query LOOKUP needs to merge them to get

Figure 5: Stand-Alone Lazy Index and its compaction.

a complete list. For this, it checks the MemTable and then the

SSTables, and moves down in the storage hierarchy one level at a

time. Note that at most one postings list exists per level. Similar

to Eager Index, we need to retrieve the data and check validity of

a matching record by issuing a GET operation on primary table.

Note that, as levels are sorted based on time in the LSM tree, if we

already find top-K during a scan in one level, LOOKUP can stop

there, and it does not require to go to next level.

RANGELOOKUP(Ai , a, b, K): To support range query in Lazy

Index, we modified the primary key range query API in LevelDB.

The original range iterator iterates through a range and does not

scan a key within the range in lower levels if it already exists in

an upper level. We force the iterator to scan level by level (same

as LOOKUP). For each level it will look for all the secondary keys

for a given range [a,b]. As each key in that range can be frag-

mented into different levels, a range query needs to traverse each

level separately. Similarly to Eager Index, for each secondary key,

it adds the associated posting lists’ primary keys to a min-heap,

which is sorted based on the sequence number (which we include

in each entry in the list). Pseudocodes of LOOKUP (Algorithm 3)

and RANGELOOKUP (Algorithm 6) on Lazy Index are presented in

Appendix B.

4.2 Stand-Alone Index with Composite Keys
PUT(k, {Ai : ai })/DEL(k): Here, the composite key is the concatena-

tion of the secondary and the primary keys, and the value is set to

null. Figure 6 depicts the update of index table for Composite Index

upon PUT in Example 3. Similarly to Lazy Index, a DEL operation

Figure 6: Stand-Alone Composite Index and its compaction.

inserts the composite key with a deletion marker in index table.

During compaction, this marked entry is used to detect and remove

the deleted entry.

LOOKUP(Ai , a, K): LOOKUP on secondary key performs a prefix

range scan on Stand-Alone Index. This scan returns all primary

keys where the secondary key is a prefix of the primary key in

the Stand-Alone Index. At each iteration, the iterator breaks the

composite key to perform the prefix check. Note that, unlike in Lazy

Index, LOOKUP needs to traverse all levels to find top-K entries. In

LevelDB, a compaction in a level takes place as round-robin basis,

based on SSTable’s primary key range in that level. We use compos-

ite keys as the primary key of index table. These composite keys

associated with a secondary key in a level may span into multiple

SSTable files where any one of them can participate in compaction

and merges with next level. Hence, given a secondary LOOKUP

key, we cannot conclude that these composite keys associated with

that secondary key in different levels are sorted based on insertion

time in primary table.

RANGELOOKUP(Ai , a, b, K): The RANGELOOKUP operation

also uses that prefix based range lookup. Here instead of one pre-

fix, it will traverse for all keys in where it’s a prefix of an entry

within the range [a,b]. Note that for each match in LOOKUP and

RANGELOOKUP, Composite Index also performs a GET operation

on the data table similarly to Lazy and Eager Index to retrieve

the data record, and then checks its validity. The pseudocodes of

LOOKUP (Algorithm 4) and RANGELOOKUP (Algorithm 7) on

Composite Index are presented in Appendix B.

4.3 Cost Analysis
Cost of GET/PUT/DEL queries. Stand-Alone Indexes do not in-

cur any overhead on GET queries. However, for a PUT/DEL query

on the data table, a Read-Update-Write process is issued on the

index table by the Eager Index variant, in contrast to only one

write on the index table in the Lazy and Composite Index variant.

PUT/DEL overhead is linear to the number of secondary indexes in

Stand-Alone Indexes. However, as Stand-Alone Indexes maintain

separate tables compared to Embedded Index, they incur additional

compaction cost for each index table which heavily affects write

performance. Compaction cost depends on write amplification fac-

torWAMF (i.e. the number of times the same record is written to

the disk). Lazy and Composite compaction suffer same write am-

plification as a leveldb primary table, because they write a simple

key value pair on every write to the index table. The cost of WAMF

has been shown to be 2 · (N + 1)(L − 1), where N is the ratio of the

sizes of two consecutive levels [9, 21]. N is set as 10. Compared to

Composite, Lazy Index has some extra CPU overheads (e.g. parsing

and merging each json posting list during compaction, handling

large lists which do not fit inside a block etc.) during compaction.

Eager Index suffers huge write amplification on index table as it

updates the posting list for every write. Let us assume, average size

of the posting list in Eager Index is PLS . That means a record in

the list has already been re-written PLS times by the eager update

strategy. NowWAMF for Eager Index becomes PLS · 22 · (L − 1),
where 22 = 2 · (10 + 1). Note thatWAMF for primary table is the

same for all indexing techniques and therefore omitted from the

analysis.

Cost of LOOKUP and RANGELOOKUP queries. For Eager Index,
only one read on the index table is needed to retrieve the postings

list
1
, as all lower level lists are invalid. In contrast, in Lazy Index, a

read on the index table may involves up to L (number of levels) disk

1
assuming there is no false positive by bloom filters on primary key in the index table

accesses (because in the worst case the postings list is scattered

across all levels). Then, for each matched key in the top-K list, it

issues a GET query on the data table to retrieve the actual record.

Hence, if there exists K ′ matched entries for LOOKUP(Ai , a, K), it
takes a total of K ′ + 1 and K ′ + L disk accesses for Eager and Lazy

Index respectively. Note that we find our top-K entries from K ′

matched entries (i.e. K ′ ≥ K). For the Composite Index, a read on

the index table may involve up to L block accesses. Here we assume

that result secondary keys fit in one block for Lazy/Composite

Index. However, as discussed in Section 4.1.2 and 4.2, Lazy can stop

after scanning just one level, if the top-K results are found, whereas

Composite Index needs to traverse down to the lowest level to

compute the top-K results. This is why Lazy Index performs better

for smaller top-K LOOKUP queries than Composite Index. When

there is no limit on top-K , both Lazy and Composite have same I/O

cost of L, but Lazy has non-negligible CPU cost for maintaining

posting lists as discussed earlier. For RANGELOOKUP query, if

there exist M blocks in index table that contain a secondary key

within the range, in the worst case all the variants need to access all

M blocks. Here again for K ′ matched entries, Stand-Alone Indexes

issue K ′ GET queries on data table. Table 5 shows the worst-case

number of disk accesses for different operations in Stand-Alone

Indexes.

Table 5: Disk accesses for operations in Stand-Alone Indexes.
Assume l attributes are indexed on the primary table. (**
means that CPU cost cannot be neglected, * means that av-
erage case is much better)

Operation Index Type Data Table I/O Index Table I/O
Read Write Read Write WAMF

GET All 1 0 0 0 0

PUT, DEL

Eager 0 1 l l l · PLS · 22 · (L − 1)
Lazy 0 1 0 l l · 22 · (L − 1) **

Composite 0 1 0 l l · 22 · (L − 1)

LOOKUP

Eager K ′ 0 1 0 0

Lazy K ′ 0 L∗ 0 0

Composite K ′ 0 L 0 0

RANGE

LOOKUP

All K ′ 0 M 0 0

We summarize the notations used in the algorithms and cost

analysis in Table 6.

Table 6: Notation

top-K orK Most recent K entries based on database insertion time.

(k, v) key(k)-value(v) pair.

L Number of levels in the store.

PLS Average length of secondary index posting lists.

K ′ Number of matched entries for LOOKUP/RANGELOOKUP.

l Number of secondary indexed attributes.

M Number of blocks in Index Table with secondary key within given

range of RANGELOOKUP query.

f p Bloom filter false positive rate.

5 EXPERIMENTS
All experiments are conducted on a machine powered by an eight-

core Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz CPUs, 16GB

memory, 3TB WDC (model WD3000F9YZ-0) hard drive, with Cen-

tOS release 6.9. All the algorithms are implemented in C++ and

compiled by g++ 4.8. In our experiments, we set the size of the

bloom filter to 100 (See Appendix A.3), which we found to be a

suitable number for our datasets, as discussed in Appendix C.1.

We use the default compression strategy of LevelDB, Snappy [22],

which compresses each block of an SSTable (see Appendix C.2 for

experiments with uncompressed blocks). No block cache was used

and themax .open. f iles is set to large number (30000) so that most

of the bloom filters and other metadata can reside in memory.

5.1 Workload
There are several public workloads for key-value store databases

available online such as YCSB [6]. However, as far as we know

there is no workload generator which allows fine-grained control

of the ratio of queries on primary to secondary attributes. Thus, to

evaluate our secondary indexing performance, we created a realistic

Twitter-based operations (GET, PUT, LOOKUP, RANGELOOKUP)

workload generator [30], which is a able to generate two types

of workloads: Static and Mixed. The Static one first does all the

insertions, builds the indexes and then performs queries on the

static data. Static workloads can isolate GET, PUT, LOOKUP and

RANGELOOKUP performance. In contrast, Mixed has continuous

data arrivals, interleaved with queries on primary and secondary

attributes simulating real workloads. Next, we show how to build a

large synthetic tweets dataset based on a seed one. Then, we show

how we generate Static and Mixed operation workloads, given a

dataset of tweets.

Synthetic dataset generator. Our dataset generator inputs a “seed”
set of tweets, a set of secondary (to be indexed) attributes (e.g.,

UserID, time, place), and a scale parameter, and generates a syn-

thetic dataset, which maintains the attribute value distributions

in the seed set. In particular, for each generated tweet, we pick a

UserID (or any other attribute, except time which has a special treat-

ment as we discuss below) based on the distribution of UserID’s in

the seed set, that is, users with more tweets in the seed set will be as-

signed to more synthetic tweets. Figure 7 shows the rank-frequency

distribution of UserID attribute (i.e. number of tweets posted by

a user) in our seed dataset. The number of tweets per second is

selected based on a uniform distribution with minimum set to 0

and maximum equal to two times the average number of tweets per

second in the seed set. We also generate a body (text) attribute with

length picked randomly from the seed set, and random characters.

The reason we create a body attribute, although it is not used as a

secondary key, is to make the experiments more realistic, in terms

of number of records that can fit in a primary table block.

Seed dataset. We collected 18 million tweets with overall size

10 GB (in JSON format) through Twitter Streaming API, which

have been posted and geotagged within New York State. This took

about 3 weeks, which motivates why we build a synthetic tweet

generator. The average number of tweets per user is 30 and the

average number of tweets per second is 35. The average size of a

tweet is 550 Bytes, each containing 22 attributes.

Operations workload generator. The Static workload generator in-
puts (a) a set of tweets, (b) a number n of GETs (or LOOKUPs or

RANGELOOKUPs), and (c) the selectivity (for

RANGELOOKUPs only), and generates n query operations of the

desired type. All input tweets are first inserted (PUT) and then

the query operations are executed. The Mixed workload generator
inputs (a) a set of tweets, (b) a total number n of operations (PUTs,

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

Fr
e
q
u
e
n
cy

User Rank

Figure 7: Distribution of UserID attribute in Seed Dataset.

GETs, or LOOKUPs), (c) the frequency ratios between these three

operations, and (d) the ratio of PUTs that insert an existing pri-

mary key (TweetID). We refer to the latter as “Updates” below. In

both generators, the conditions of the query operations are selected

based on the distribution of values in the input tweets dataset.

Workloads used in experiments. In our experiments, we set the

scale parameter in the dataset generator to 10 and generate a 100GB

dataset with 180 million tweets using the workload generator. Using

larger datasets would be challenging, given that the experiments

took more than one month to run for the 100GB dataset, mainly

due to the slow execution of the Eager Index. In the operations

workload generator we selected UserID and CreationTime as two

secondary attributes; CreationTime is time-correlated (expected to

have a good performance for Zone Maps), but UserID is not. Table 7

summarizes different parameters and their values used to generate

Static and Mixed workloads for our experiments.

Table 7: Parameters and values for different workloads.
(a) Static Workload

Number of Op n Selectivity Top-KPUT GET LOOKUP RANGE
LOOKUP

UserID (in
no of users)

CreationTime
(in minutes)

180 mil-

lion

100K 15K (each

index)

50K (each

index)

10, 100 1, 100 10, 100,

No Limit

(b)Mixed Workloads

Workload Type Operation Frequency Ratios n Top-KPUT GET LOOKUP Update
Write heavy 80% 15% 5% 0%

50 million 10Read heavy 20% 70% 10% 0%

Update heavy 40% 15% 5% 40%

5.2 Experimental Evaluation
In this section we evaluate our secondary indexing techniques on

LevelDB++.

5.2.1 Results on Static workload.

Overhead on Basic LevelDB Operations. Figure 8 shows how the

performance of basic leveldb operations is affected by the various

secondary index implementations, in terms of size and mean opera-

tion execution time for our Static workload. Figure 8a shows that as

Embedded Index does not maintain separate index table, it is more

space efficient than Stand-Alone Indexes and close to having no

index. Eager and Lazy Indexes have JSON overhead to maintain the

posting lists, which makes them less space efficient than Composite

Index. Lazy has fragmented posting list throughout different levels,

whereas Eager Index has more compact list, hence Eager consumes

less space than Lazy. Figure 8c shows that all the index variants

have identical GET performance with negligible difference.

 85

 90

 95

 100

 105

 110

NoIndex Embedded Composite Eager Lazy

S
iz

e
 (

G
B

)

CreationTime Index
UserID Index

Primary Table

(a) Database size

 0.01

 0.1

 1

 10

 100

 1000

Primary Table CreationTime Index UserID Index

In
d

e
x
 B

u
ild

 T
im

e
 (

H
o
u
rs

)

NoIndex
Embedded
Composite

Eager
Lazy

(b) PUT Performance

 0

 2

 4

 6

 8

 10

M
e
a
n
 T

im
e
 p

e
r

G
E
T
 o

p
.

(M
ill

is
e
co

n
d

s) NoIndex
Embedded
Composite

Eager
Lazy

(c) GET Performance

Figure 8: Performance of different index variants for basic leveldb operations.

 10

 100

 1000

 10000

 100000

 35 70 105 140 175

T
im

e
 p

e
r

P
U

T
 O

p
 (

µ
s)

Number of PUT Op (million)

NoIndex

Embedded

Composite

Eager

Lazy

(a) Mean PUT latency (UserID)

 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80

 35 70 105 140 175

T
im

e
 p

e
r

P
U

T
 O

p
 (

µ
s)

Number of PUT Op (million)

NoIndex

Embedded

Composite

Eager

Lazy

(b) Mean PUT latency (CreationTime)

 1e+06

 1e+07

 1e+08

 1e+09

 35 70 105 140 175

T
o
ta

l
N

o
 o

f
D

is
k

I/
O

 R
e
a
d

Number of PUT Op (million)

Composite (UserID)

Eager (UserID)

Lazy (UserID)

Eager (CreationTime)

Lazy (CreationTime)

(c) Cumulative I/O cost for index compaction

Figure 9: PUT performance for different index variants over time.

Figure 8b shows the PUT performance for different index vari-

ants. We isolate the creation time of primary index and two sec-

ondary indexes (CreationTime and UserID). That is, the Creation-

Time Index time shows the difference between the time of PUT

when we only have one secondary index (on CreationTime) minus

the PUT time when there is no secondary index. If we add the three

times, we get the total PUT time for each index. We see that for

both secondary indexes, Embedded Index outperforms the Stand-

Alone indexes. Composite shows best PUT performance among

Stand-Alone Indexes. Eager performs extremely bad for UserID

index because of high write amplification and expensive merge

compactions. Figure 9 shows how PUT performance varies over

time as the database grows. We took reading after each million

insertions. PUT performance remains almost identical for both the

attribute index as the database grows (Shown in Figure 9a and 9b)

except the Eager Index. Figure 9c shows that merge compaction

for Eager Index is exponentially costly for UserID index as the

database grows. Eager Index shows good performance for the time-

correlated CreationTime index, because the posting list is created

sequentially and there is no random list update, hence there are

fewer compactions.

Relationship to theoretical analysis. Figures 8b and 9 support the

analysis in Sections 3.1 and 4.3, which show that Embedded In-

dex incurs negligible overhead on writes (I/O cost is 1), whereas

the Stand Alone Indexes need to perform additional disk accesses.

Specifically, for Eager Index it is 1+l+l = 5 (l=2), for Lazy and

Composite it is 1+l=3. In addition, each Stand-Alone Indexes suf-

fers high Write Amplification (WAMF) contributing to extra com-

paction cost. PLS = 30 for UserID and PLS = 35 for Creation-

Time index. We compute theWAMF for each indexing techniques

WAMFEaдer = 30 · 22(4 − 1) + 35 · 22(4 − 1) = 4290 (L = 4 in the

index tables).WAMFComposite =WAMFLazy = 2 ·22(4−1) = 132.

These numbers are supported by Figure 9c. Section 4.3 explains

and Figure 8b confirms that Lazy has higher CPU cost (** in Table

5) than Composite Index. Table 3 and 5 also supports Figure 8c,

which shows that there is no overhead on GET (reads on primary

index). The negligible difference (less than 1milliseconds) between
the GET of different approaches may be attributed to OS buffer

cache or background compactions, due to the additional storage

space required by the secondary indexes.

Query (LOOKUP, RANGELOOKUP) Response Time: Figure 10

shows the latency of LOOKUP (10a) and RANGELOOKUP (10b,

10c) with different selectivity and top-K of different index variants

on non time-correlated index attribute UserID. Eager Index is ex-

cluded from these experiments because we already found out it is

unusable for high write amplification and costly merge compaction.

Here, latency for different queries are presented in box-and-whisker

plots where quartile boundaries are determined such that 1/4 of the

points have a value equal or less than the first quartile boundary,

1/2 of the points have a value equal or less than the second quartile

(median) value, etc. A box is drawn around the region between the

first and third quartiles, with a horizontal line at the median value.

Whiskers extend from the ends of the box to the most distant point

whose y value lies within 1.5 times the interquartile range. These

figures show that Lazy Index performs best when top-K is small

for LOOKUP queries. Composite Index performs best when top-K
is bigger or there is no restriction of top-K (i.e. return all results).

But when K is small Embedded Index also outperforms Compos-

ite Index. Stand-Alone Indexes outperform Embedded Index for

RANGELOOKUP queries, as zone maps are not useful for non time-

correlated attribute. Similar to LOOKUPs, Lazy performs best for

RANGELOOKUP queries when top-K is smaller, otherwise Compos-

ite outperforms Lazy. Embedded Index performs better for higher

selectivity and outperforms Composite Index if top-K is smaller as

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=10

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=100

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=No Limit

(a) LOOKUP Response Time

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=10

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=100

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=No Limit

(b) RANGELOOKUP Response Time (Selectivity: 10)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=10

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=100

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex
T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=No Limit

(c) RANGELOOKUP Response Time (Selectivity: 1000)

Figure 10: UserID Index performance for different variants varying Selectivity and TopK.

Embedded can find top-K results in top levels for higher selectivity

queries. Figure 11 shows query response performance for time-

correlated CreationTime index attribute. Similar to UserID index,

Lazy outperforms all index for LOOKUP queries (Figure 11a). For

RANGELOOKUP queries, Embedded Index outperforms Stand-

Alone Indexes for all selectivity factors because its zone maps

are very most effective on time-correlated index attributes (Fig-

ure 11b, 11c). As the selectivity increases, Composite outperforms

Lazy and Eager Index.

Relationship to theoretical analysis. The cost analysis in Tables

3 and 5 supports our experimental results in Figures 10a and 11a.

These figures show that Lazy Index is sensitive to top-K for LOOKUP

queries and performs better than Composite Index for smaller

top-K queries on average, whereas Composite Index outperforms

Lazy when there is no limit on top-K . Our experimental results

show that the CPU cost (** in Table 3) dominates the Embedded

Index LOOKUP performance and it performs worse than Stand-

Alone Indexes for non-time-correlated UserID Index. However, for

time-correlated index attribute CreationTime, Figure 11a supports

our analysis that zone maps have strong pruning power for time-

correlated indexes and Embedded Index performance is comparable

to Stand-Alone Indexes. For RANGELOOKUP queries, the cost anal-

ysis in Table 3 supports the experimental results in Figures 10b and

10c, which show that Embedded Index (i.e. Zone Maps) does not

perform well for non time-correlated Index and almost perform

same as no index. However, Figures 11b and 11c show that zone

maps are powerful for RANGELOOKUP queries on time-correlated

index and their better pruning power makes the disk access cost

close to K .

5.2.2 Results onMixed workloads. Figures 12a, 12b and 12c show
the overall performance of index variants in terms of mean time

per operation for different Mixed workloads (write, read and up-

date heavy respectively). Only the UserID attribute is indexed and

queried. We record the performance once per 1 million operations.

We did not consider Eager Index as it is shown to be unusable in

previous discussions. It is difficult to isolate the performance of

individual operations as one operation might incur overhead on

the system and ultimately interfere with another operation. Also,

the mean time per operation is not a good metric for performance

measurement as we have seen in Figure 10. To properly measure

the performance of individual operations, we record the cumulative

number of disk I/O as the database grows along with the mean

time per operation. Figures 13, 14, and 15 represent the individual

GET, PUT and LOOKUP performance of index variants in terms

cumulative number of disk I/O for write, read and update heavy

workloads respectively. We see that for different Mixed workloads,

Lazy always perform better than the other indexes in terms of

overall mean operation latency. Embedded Index does not perform

well for read heavy workloads, as expected for non-time correlated

index attribute UserID (Figure 12b). There is an unusual jump for

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07

Embedded Lazy Composite NoIndex Eager

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=5

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex Eager

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=10

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex Eager

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=No Limit

(a) LOOKUP Response Time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex Eager

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=10

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex Eager

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=100

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex Eager

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=No Limit

(b) RANGELOOKUP Response Time (Selectivity: 1 min)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex Eager

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=10

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex Eager

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=100

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded Lazy Composite NoIndex Eager

T
im

e
 p

e
r

O
p

 (
m

ill
is

e
co

n
d

s)

Topk=No Limit

(c) RANGELOOKUP Response Time (Selectivity: 100 min)

Figure 11: CreationTime Index Performance for different variants varying TopK and selectivity.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10 20 30 40 50

T
im

e
 p

e
r

O
p

 (
µ

s)

Number of Op (million)

Embedded

Composite

Lazy

(a) Write Heavy Workload

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 10 20 30 40 50

T
im

e
 p

e
r

O
p

 (
µ

s)

Number of Op (million)

Embedded

Composite

Lazy

(b) Read Heavy Workload

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 20 30 40 50

T
im

e
 p

e
r

O
p

 (
µ

s)

Number of Op (million)

Embedded

Composite

Lazy

(c) Update Heavy Workload

Figure 12: Overall performance comparison for Write, Read and Update Heavy workloads

Composite Index performance in write heavy workload (Figure

12a). The inflection point occurs at 30-35 million operations, which

equals about 16GB of data which is the RAM size. At that point,

the GET starts being very expensive as OS buffer cache becomes

more ineffective. Beyond that point, the relationship between the

performance of the various indexes stabilizes, which implies that

our observations would likely also hold for bigger datasets. A Com-

posite Index LOOKUP needs to perform many GET operations

even for small top-K ; these GETs dominate the overall performance.

Composite Index shows slightly better performance than Lazy in

the update-heavy workload (Figure 12c) as the database grows. The

updates incur frequent compaction in Index Table, and compaction

is heavier in Lazy than Composite Index because of the Json pars-

ing overhead for maintaining lists. We also see that the Embedded

Index starts to perform bad once the number of updates grows, as

these updates result in extra rounds of compaction. We compare

the compaction I/O costs for different workloads in Figures 13a, 14a

and 15a. Embedded Index has higher cost only when there are

updates on the primary table. Figures 13b, 14b and 15b show the

same cost for GET operations as expected for all index variants.

For LOOKUP (Figures 13c, 14c and 15c), Lazy always outperforms

Composite and Embedded as the index is non-time-correlated and

top-K is smaller. LOOKUPs in Embedded Index perform worse in

the update-heavy workload.

 100000

 1e+06

 1e+07

 10 20 30 40 50

T
o
ta

l
N

o
 o

f
D

is
k

I/
O

 R
e
a
d

Number of Op (million)

Embedded

Composite

Lazy

(a) Cumulative Disk I/O cost in Compaction

 1e+06

 1e+07

 10 20 30 40 50

T
o
ta

l
N

o
 o

f
D

is
k

I/
O

 R
e
a
d

Number of Op (million)

Embedded

Composite

Lazy

(b) Cumulative Disk I/O cost for GET

 1e+06

 1e+07

 1e+08

 1e+09

 10 20 30 40 50

T
o
ta

l
N

o
 o

f
D

is
k

I/
O

 R
e
a
d

Number of Op (million)

Embedded

Composite

Lazy

(c) Cumulative Disk I/O cost for LOOKUP

Figure 13: Performance in Write Heavy workload for different index variants

 100000

 1e+06

 1e+07

 1e+08

 10 20 30 40 50

T
o
ta

l
N

o
 o

f
D

is
k

I/
O

 R
e
a
d

Number of Op (million)

Embedded

Composite

Lazy

(a) Cumulative Disk I/O cost in Compaction

 1e+06

 1e+07

 1e+08

 10 20 30 40 50

T
o
ta

l
N

o
 o

f
D

is
k

I/
O

 R
e
a
d

Number of Op (million)

Embedded

Composite

Lazy

(b) Cumulative Disk I/O cost for GET

 1e+06

 1e+07

 1e+08

 1e+09

 10 20 30 40 50

T
o
ta

l
N

o
 o

f
D

is
k

I/
O

 R
e
a
d

Number of Op (million)

Embedded

Composite

Lazy

(c) Cumulative Disk I/O cost for LOOKUP

Figure 14: Performance in Read Heavy workload for different index variants

 1e+07

 1e+08

 1e+09

 10 20 30 40 50

T
o
ta

l
N

o
 o

f
D

is
k

I/
O

 R
e
a
d

Number of Op (million)

Embedded

Composite

Lazy

(a) Cumulative Disk I/O cost in Compaction

 1e+06

 1e+07

 10 20 30 40 50

T
o
ta

l
N

o
 o

f
D

is
k

I/
O

 R
e
a
d

Number of Op (million)

Embedded

Composite

Lazy

(b) Cumulative Disk I/O cost for GET

 1e+06

 1e+07

 1e+08

 10 20 30 40 50

T
o
ta

l
N

o
 o

f
D

is
k

I/
O

 R
e
a
d

Number of Op (million)

Embedded

Composite

Lazy

(c) Cumulative Disk I/O cost for LOOKUP

Figure 15: Performance in Update Heavy workload for different index variants

The reason behind unusual jumps in performance for both Em-

bedded and Stand-Alone Indexes in Mixed workloads (Figure 12b)

is because of an increase in OS block cache miss after a while.

LSM-tree relies on frequent compaction operations to merge data

into a sorted structure. After a compaction, the original data are

reorganized and written to other locations on the disk. As a result,

the cached data are invalidated, since their referencing addresses

are changed, causing serious performance degradations. Because

LOOKUP and RANGELOOKUP read lots of random disk blocks

resulting bad cache performance eventually for any system. Various

optimizations to overcome this problem are being studied and can

be applied to our LevelDB++ [14] [32].

5.2.3 Summary of novel results. We next summarize the results

that have not been reported or adequately documented in previous

work. First, Eager Index shows poor performance during inges-

tion and does not scale well with large datasets, even though it is

currently widely used in several systems for its ease of implemen-

tation and fast query response time. Second, the combination of

Embedded Indexes (i.e. zone maps and bloom filters) provides a

lightweight indexing option, which is effective even for non time-

correlated index attributes. However, no existing system, to our

knowledge, employs them for secondary indexes. Third, Composite

Index performs worse than Lazy for top-K LOOKUP queries, which

are common in many modern applications (e.g. social networks,

messaging apps etc.). However, due to the ease of implementation,

Composite indexes are more widely used in such applications. Fi-

nally, the effect of buffer cache cannot be neglected during a real

system workload, as shown in Figure 12.

6 CONCLUSIONS
We studied five secondary indexing methods for LSM-based NoSQL

stores, namely Eager, Lazy and Composite (Stand-Alone Indexes),

and Zone maps and Bloom filters (Embedded Indexes). We built a

system, LevelDB++, which implements these indexing methods on

top of LevelDB, and conducted extensive experiments to examine

their performance. The experimental results show the trade-offs be-

tween these indexing techniques. We present guidelines to pick the

right indexing techniques for different workloads and applications.

ACKNOWLEDGMENTS
This project is partially supported by NSF grants IIS-1447826 and

IIS-1619463, and a Samsungs GRO grant. The authors are grateful

to Abhinand Menon for helpful discussions and for building an

earlier version of the Twitter workload generator.

REFERENCES
[1] Parag Agrawal, Adam Silberstein, Brian F Cooper, Utkarsh Srivastava, and Raghu

Ramakrishnan. 2009. Asynchronous view maintenance for VLSD databases. In

Proceedings of the 2009 ACM SIGMOD International Conference on Management of
data. ACM, 179–192.

[2] Sattam Alsubaiee, Alexander Behm, Vinayak Borkar, Zachary Heilbron, Young-

Seok Kim, Michael J Carey, Markus Dreseler, and Chen Li. 2014. Storage Man-

agement in AsterixDB. Proceedings of the VLDB Endowment 7, 10 (2014).
[3] Basho. 2017. Secondary Indexes in Riak. (October 2017). http://basho.com/posts/

technical/secondary-indexes-in-riak.

[4] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.

Bigtable: A distributed storage system for structured data. TOCS 26, 2 (2008), 4.
[6] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[7] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,

Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, et al. 2013. Spanner: GoogleâĂŹs globally distributed database.

ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 8.
[8] Debraj De and Lifeng Sang. 2009. QoS supported efficient clustered query pro-

cessing in large collaboration of heterogeneous sensor networks. In Collaborative
Technologies and Systems, 2009. CTS’09. International Symposium on. IEEE, 242–
249.

[9] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor,

and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.. In CIDR.
[10] Robert Escriva, Bernard Wong, and Emin Gün Sirer. 2012. HyperDex: A dis-

tributed, searchable key-value store. ACM SIGCOMM Computer Communication
Review 42, 4 (2012), 25–36.

[11] Facebook. 2017. Live Commenting: Behind the Scenes. (Oc-

tober 2017). https://code.facebook.com/posts/557771457592035/

live-commenting-behind-the-scenes/.

[12] A Feinberg. 2011. Project Voldemort: Reliable distributed storage. In Proceedings
of the 10th IEEE International Conference on Data Engineering.

[13] Lars George. 2011. HBase: the definitive guide. O’Reilly Media, Inc.

[14] Lei Guo, Dejun Teng, Rubao Lee, Feng Chen, Siyuan Ma, and Xiaodong

Zhang. 2016. Re-enabling high-speed caching for LSM-trees. arXiv preprint
arXiv:1606.02015 (2016).

[15] Yuan He, Mo Li, and Yunhao Liu. 2008. Collaborative Query Processing Among

Heterogeneous Sensor Networks. In Proceedings of the 1st ACM International
Workshop on Heterogeneous Sensor and Actor Networks (HeterSanet ’08). ACM,

New York, NY, USA, 25–30. https://doi.org/10.1145/1374699.1374705

[16] Todd Hoff. 2016. The Architecture Twitter Uses To Deal With 150M

Active Users, 300K QPS, A 22 MB/S Firehose, And Send Tweets In

Under 5 Seconds. (2016). http://highscalability.com/blog/2013/7/8/

the-architecture-twitter-uses-to-deal-with-150m-active-users.html.

[17] Aerospike inc. 2017. Aerospike Secondary Index Architecture. (October 2017).

https://www.aerospike.com/docs/architecture/secondary-index.html.

[18] Amazon Inc. 2017. Global Secondary Indexes - Amazon DynamoDB. (October

2017). http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

SecondaryIndexes.html.

[19] CouchDB Inc. 2017. CouchDB. (October 2017). http://couchdb.apache.org/.

[20] Facebook Inc. 2017. RocksDB. (October 2017). http://rocksdb.org/.

[21] Facebook Inc. 2017. Strategies to reduce write amplification. (October 2017).

https://github.com/facebook/rocksdb/issues/19.

[22] Google Inc. 2017. Google Snappy. (October 2017). http://google.github.io/snappy.

[23] Google Inc. 2017. LevelDB. (October 2017). http://leveldb.org.

[24] IBM Inc. 2017. IBM Big Data Analytics. (October 2017). https://www.ibm.com/

analytics/us/en/big-data/.

[25] IBM inc. 2017. Understanding Netezza Zone Maps. (October 2017).

https://www.ibm.com/developerworks/community/blogs/Wce085e09749a_

4650_a064_bb3f3b738fa3/entry/understanding_netezza_zone_maps?lang=en.

[26] MongoDB Inc. 2017. MongoDB. (October 2017). http://www.mongodb.com.

[27] Oracle Inc. 2017. Oracle: Using Zone Maps. (October 2017). http://docs.oracle.

com/database/121/DWHSG/zone_maps.htm.

[28] Teradata Inc. 2017. Teradata Teradata Analytics for Enterprise Applications.

(October 2017). http://www.teradata.com/analyticssolutions.

[29] Bettina Kemme and Gustavo Alonso. 2010. Database Replication: A Tale of

Research Across Communities. Proc. VLDB Endow. 3, 1-2 (Sept. 2010), 5–12.

https://doi.org/10.14778/1920841.1920847

[30] UCR Database Lab. 2017. Project website for open source code and workload

generator. (October 2017). http://dblab.cs.ucr.edu/projects/KeyValueIndexes/.

[31] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Struc-

tured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (apr 2010), 35–40.
[32] Lucas Lersch, Ismail Oukid,Wolfgang Lehner, and Ivan Schreter. 2017. An analysis

of LSM caching in NVRAM. In Proceedings of the 13th International Workshop on
Data Management on New Hardware. ACM, 9.

[33] Mahdi Tayarani Najaran and Norman C Hutchinson. 2013. Innesto: A searchable

key/value store for highly dimensional data. In CloudCom. IEEE, 411–420.

[34] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The

Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351–385.
[35] Mohiuddin Abdul Qader and Vagelis Hristidis. 2017. Dualdb: An efficient lsm-

based publish/subscribe storage system. In Proceedings of the 29th International
Conference on Scientific and Statistical Database Management. ACM, 24.

[36] Wei Tan, Sandeep Tata, Yuzhe Tang, and Liana Fong. 2014. Diff-Index: Differenti-

ated Index in Distributed Log-Structured Data Stores. In EDBT. 700–711.
[37] Jianjun Zheng, Qian Lin, Jiatao Xu, Cheng Wei, Chuwei Zeng, Pingan Yang, and

Yunfan Zhang. 2017. PaxosStore: high-availability storage made practical in

WeChat. Proceedings of the VLDB Endowment 10, 12 (2017), 1730–1741.

Appendices
The appendix is organized as follows. Appendix A reviews back-

ground on LSM-tree, LevelDB storage architecture and Bloom Fil-

ter. Appendix B provides pseudocode of LOOKUP (Ai , a, K) and
RANGELOOKUP (Ai , a, b,K) operation in LevelDB implementation

for different index variants. Appendix C presents supplementary

experimental results, which analyze the effect of bloom filter, com-

pression and concurrency on different secondary indexes. Appendix

D describes effect of distributed environment on secondary indexes.

A BACKGROUND
A.1 LSM tree

Figure 16: LSM tree components.

An LSM tree generally consists of an in-memory component

(level in LevelDB terminology) and several immutable on-disk com-

ponents (levels). Each component consists of several data files and

each data file consists of several data blocks. As depicted in Fig-

ure 16, all writes go to in-memory component (C0) first and then

flush into the first disk component once the in-memory data is over

the size limit of C0, and so on. The on-disk components normally

increase in size as shown in Figure 16 from C1 to CL. A background

process (compaction) will periodically merge the smaller compo-

nents to larger components as the data grows. Delete on LSM is

achieved by writing a tombstone of the deleted entry to C0, which

will later propagate to the component that stores this entry. LSM

is highly optimized for writes as a write only needs to update the

in-memory component C0. The append-only style updates mean

that an LSM tree could contain different versions of the same entry

(different key-value pairs with the same key) in different compo-

nents. A read (GET) on an LSM tree starts from C0 and then goes to

C1, C2 and so on until the desired entry is found, which makes sure

the newest (valid) version of an entry will be returned. The older

http://basho.com/posts/technical/secondary-indexes-in-riak
http://basho.com/posts/technical/secondary-indexes-in-riak
https://code.facebook.com/posts/557771457592035/live-commenting-behind-the-scenes/
https://code.facebook.com/posts/557771457592035/live-commenting-behind-the-scenes/
https://doi.org/10.1145/1374699.1374705
http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html
http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html
https://www.aerospike.com/docs/architecture/secondary-index.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html
https://github.com/facebook/rocksdb/issues/19
http://google.github.io/snappy
 https://www.ibm.com/analytics/us/en/big-data/
 https://www.ibm.com/analytics/us/en/big-data/
https://www.ibm.com/developerworks/community/blogs/Wce085e09749a_4650_a064_bb3f3b738fa3/entry/understanding_netezza_zone_maps?lang=en
https://www.ibm.com/developerworks/community/blogs/Wce085e09749a_4650_a064_bb3f3b738fa3/entry/understanding_netezza_zone_maps?lang=en
http://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://docs.oracle.com/database/121/DWHSG/zone_maps.htm
 http://www.teradata.com/analyticssolutions
https://doi.org/10.14778/1920841.1920847

versions of an entry (either updated or deleted) are obsolete and

will be discarded during the merge (compaction) process. Conven-

tionally, the in-memory component (C0) is referred asMemTable
and the on-disk components are referred as SSTable.

A.2 SSTable in LevelDB

Figure 17: LevelDB SSTable structure.

Here we present some storage details of LevelDB [23] as back-

ground for ease of understanding of the paper. Level-(i + 1) is 10
times larger than level-i in LevelDB. Each level (component) con-

sists of a set of disk files (SSTables), each having a size around 2

MBs. The SSTables in the same level may not contain the same key

(except level-0
2
). Further, LevelDB partitions its SSTables into data

blocks (normally tens of KB in size). The format of an SSTable file

in LevelDB is shown in Figure 17. The key-value pairs are stored in

the data blocks sorted by their key. Filter Meta blocks store a bloom

filter for each block, computed based on the keys of the entries in

that block, to speedup GET operations. Then, there are data index

blocks, which we call zone maps for primary table.

A.3 Bloom Filter
Bloom filter [4] is a hashing technique to efficiently test if an item is

included in a set of items. Each item in the set is mapped to several

bit positions, which are set to 1, by a set of n hash functions. Then,

the bloom filter of a set is the OR-ing of all these bitstrings. To check

the membership of an item in the set, we compute n bit positions

using the same n hash functions and check if all corresponding

bits of the bloom filter are set to 1. If no, we return false, else we

have to check if this item exists due to possible false positives.

The false positive rate depends on the number of hash functions

n, the number of items in the set S and the length of the bit arrays

m, which can be approximately computed as Equation 1. Given

S andm, the minimal false positive rate is 2
−mS ln2 by setting the

n = m
S ln2. (

1 −
[
1 − 1

m

]nS)n
≈

(
1 − e−nS/m

)n
(1)

B ALGORITHMS
In all algorithms, we assume each tuple(k,v) is associated with

a sequence number (seq). We show how we add the records on

Min-Heap H based on this seq in Algorithm 1. Algorithm 2, 3, 4,

5 present the pseudocodes of LOOKUP(Ai , a, K) in Stand-Alone

Eager, Lazy, and Composite Index and Embedded Index respectively.

2
which is C1 in Figure 16 as LevelDB does not number the memory component

Algorithm 6, 7,8 present the pseudocodes of RANGELOOKUP(Ai ,
a, b, K) in Stand-Alone Lazy, and Composite and Embedded Index

respectively. Stand-Alone Eager Index uses existing range query

API for primary key on the Stand-Alone Index Table in LevelDB.

Algorithm 1 Min-Heap H .Add(K , ⟨k,v⟩) Procedure
1: if H .size () == K ∧ H .top.seq < ⟨k,v⟩.seq then
2: H .pop ();
3: H .put(⟨k,v⟩);
4: else if H .size () < K then
5: H .put(⟨k,v⟩);
6: return

Algorithm 2 LOOKUP Procedure using Eager Index

1: Create Min-Heap H;

2: Primary key list L← return of GET(a) on index table Ti . {Sup-
pose the order is maintained as recent key to older keys}

3: for k in L do
4: ⟨k,v⟩ ← return of GET(k) on data table.

5: if v .val (Ai) == a then
6: H.add(K , ⟨k,v⟩) {Algorithm 1}

7: if H .size () == K then
8: BREAK

9: return List of pairs in H

Algorithm 3 LOOKUP Procedure using Lazy Index

1: Create Min-Heap H;

{starts from MemTable (C0) and then moves to SSTable, C1 is

LevelDB’s level-0 SSTable.}

2: for j from 0 to L do
3: if val (Ai) is not in Cj then
4: NEXT

5: List of primary keys P ← val (Ai) in Cj
6: for k in P do
7: ⟨k,v⟩ ← return of GET(k) on data table.

8: if v .val (Ai) == a then
9: H.add(K , ⟨k,v⟩) {Algorithm 1}

10: if H .size () == K then
11: return H
12: return List of pairs in H

C SUPPLEMENTARY EXPERIMENTS
C.1 Effects of varying bloom filter lengths
The length of each bloom filter used in Embedded Index also has

effect on LOOKUP performance in two folds: (1) with larger bloom

filter, the false positive rate will drop thus the number of blocks to

be loaded into memory is smaller, and (2) the cost of checking each

bloom filter is higher because more hash functions are applied for

each key to check its existence as the bloom filter length increases.

We conducted the experiment by varying the value of bits per key
from 20 to 1000 with our seed twitter dataset to determine the

optimal choice of bloom filter length for this dataset. We write 20

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded vs Embedded-NC Lazy vs Lazy-NC Composite vs Composite-NC

T
im

e
 p

e
r

O
p
 (

m
ill

is
e
co

n
d
s)

Topk=10

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded vs Embedded-NC Lazy vs Lazy-NC Composite vs Composite-NC

T
im

e
 p

e
r

O
p
 (

m
ill

is
e
co

n
d
s)

Topk=No Limit

(a) LOOKUP Response Time

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded vs Embedded-NC Lazy vs Lazy-NC Composite vs Composite-NC

T
im

e
 p

e
r

O
p
 (

m
ill

is
e
co

n
d
s)

Topk=10

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Embedded vs Embedded-NC Lazy vs Lazy-NC Composite vs Composite-NC

T
im

e
 p

e
r

O
p
 (

m
ill

is
e
co

n
d
s)

Topk=No Limit

(b) RANGELOOKUP Response Time (Selectivity: 10)

Figure 18: UserID Index performance for different variants with and without compression. (NC = Not Compressed)

Algorithm 4 LOOKUP Procedure using Composite Index

1: Create Min-Heap H;

{starts from MemTable (C0) and then moves to SSTable, C1 is

LevelDB’s level-0 SSTable.}

2: for j from 0 to L do
3: it ← SSTable :: Iterator j .SEEK (a)
4: while it .valid() do
5: Composite key, ckey ← it .key()
6: skey ← ckey.ExtractSecondarykey()
7: if a == skey then
8: k ← ckey.ExtractPrimaryKey()
9: ⟨k,v⟩ ← return of GET(k) on data table.

10: if v .val (Ai) == a then
11: H.add(K , ⟨k,v⟩) {Algorithm 1}

12: else if skey > a then
13: BREAK

14: it .NEXT ()
15: return List of pairs in H

Table 8: How LOOKUP performance, average false positive
rates and database size vary with bloom filter length

Bits Per Key DB Size (MB) False Positive % Mean LOOKUP Latency
(Milliseconds)

20 10,127 0.64% 52

50 10,256 0.44% 49

100 10,470 0.08% 21

200 10,899 0.08% 20.5

500 12,186 0.08% 22

1000 14,325 0.08% 32

million tweets with Embedded Index on UserID and performed 200K

LOOKUPs. Table 8 shows the average performance of LOOKUPs.

Here we see that the LOOKUP performance starts to increase with

increasing bits per key setting of bloom filter (20 to 200) as the

false positive rate decreases. But then the performance decreases

with larger value of bits per key where the false positive rate is low

enough, but the cost of checking bloom filters increases. We also

show the space trade-offs in Table 8. As the bits per key increases,

the bloom filter takes more space. In our experiments, we set bits

per key as 100, because the LOOKUP performance is very close to

setting it as 200 to 300 but with reasonable space overhead.

C.2 Effect of compression on indexes

 20

 40

 60

 80

 100

 120

Embedded Composite Lazy

T
im

e
 p

e
r

O
p
 (

µ
s)

Compressed
Not Compressed

Figure 19: Mean Time per PUT operation on UserID index

In this section, we report how block compression affects sec-

ondary index’s performance. Keeping same experimental settings

and same dataset from Section 5, we rebuild our secondary indexes

for UserID index without compression and perform top-K LOOKUP

and RANGE LOOKUP queries. Figures 18a and 18b show varying

top-K LOOKUP and RANGELOOKUP query response times of dif-

ferent secondary indexes, for default Snappy compression [22] en-

abled against no compression. We see the same relationship exists

between different indexing variants with or without compression.

But LOOKUP and RANGELOOKUP response times are slightly

higher for all of them if there is no compression enabled. Figure 19

shows that we also get almost identical results for PUT performance

for all secondary indexes with and without compression.

C.3 Effect of multi-threaded environment
In this section, we report our secondary index’s performance in

multi-threaded environment. We repeat LOOKUP and RANGE

LOOKUP queries from Section 5 on UserID index and measure

throughput (i.e. number of operation per hour) varying number

of concurrent threads. Top-K is set as 10. Figure 20 shows that

secondary indexes show same relationship between them for multi-

threaded environment compare to single thread. Stand-Alone In-

dexes has slightly higher throughput for high concurrencies over

Embedded Index because different threads can efficiently access

data and index table in parallel. Although, we see that increasing

Algorithm 5 LOOKUP Procedure using Embedded Index

1: function GetLite (key, level)
2: for l = 0→ L do
3: if l .SEEK(key) == True then
4: if l = level then
5: return True {SEEK operation Checks only in-memory

metadata, index block and bloom filters for primary key

to lookup key}

6: else
7: return False

1: function LOOKUP (Ai , a, K)
2: Create Min-Heap H;

3: for table in MemTable do
4: for ⟨k,v⟩ in table do
5: if val (Ai) == a then
6: H.add(K , ⟨k,v⟩) {Algorithm 1}

7: if H .size () == K then
8: return List of K pairs in H

9: for l = 0→ L do
10: for sstablej in level-l do
11: if sstablej .дlobalzonemap (Ai) .contains (a) == True

then
12: for block bm in sstablej do
13: if bm .bloomf ilter (Ai) .contains (a) == False or

bm .zonemap (Ai) .contains (a) == False then
14: NEXT

15: load bm of sstablej in memory;

16: for ⟨k,v⟩ in bm do
17: if v .val (Ai) .equals(a) ∧ GetLite(k, l) == True

then
18: H.add(K , ⟨k,v⟩) {Algorithm 1}

19: if H .size () == K then
20: return List of K pairs in H
21: return List of pairs in H

 10

 100

 1000

 10000

 100000

Embedded Lazy Composite

T
h
ro

u
g

h
p

u
t:

 N
o
 o

f
O

p
 p

e
r

H
o
u
r

No of Threads: 1
No of Threads: 3

No of Threads: 5

(a) LOOKUP Throughput

 1

 10

 100

 1000

 10000

 100000

Embedded Lazy Composite

T
h
ro

u
g

h
p

u
t:

 N
o
 o

f
O

p
 p

e
r

H
o
u
r

No of Threads: 1
No of Threads: 3

No of Threads: 5

(b) RANGELOOKUP Throughput

Figure 20: UserID Index performance for multi-threads

the number of threads does not necessarily increase throughout

much (even decrease throughput in some cases) as different threads

compete with each other for system resources (e.g. database com-

ponents) and eventually decrease system throughput.

D EFFECT OF DISTRIBUTED ENVIRONMENT
The main overhead of a distributed NoSQL environment is the cost

of maintaining the replication consistency [29]. In this paper, we

focus on the storage engine module, which can be conceptually

Algorithm 6 RANGELOOKUP Procedure using Lazy Index

1: Create Min-Heap H;

{starts from MemTable (C0) and then moves to SSTable, C1 is

LevelDB’s level-0 SSTable.}

2: for j from 0 to L do
3: it ← SSTable :: Iterator j .SEEK (a)
4: while it .valid() do
5: if it .key() in [a,b] then
6: List of primary keys P ← it .value()
7: for k in P do
8: ⟨k,v⟩ ← return of GET(k) on data table.

9: if v .val (Ai) == it .key() then
10: H.add(K , ⟨k,v⟩) {Algorithm 1}

11: else
12: BREAK

13: it .NEXT ()
14: return List of pairs in H

Algorithm 7 RANGELOOKUP Procedure using Composite Index

1: Create Min-Heap H;

{starts from MemTable (C0) and then moves to SSTable, C1 is

LevelDB’s level-0 SSTable.}

2: for j from 0 to L do
3: it ← SSTable :: Iterator j .SEEK (a)
4: while it .valid() do
5: Composite key, ckey ← it .key()
6: skey ← ckey.ExtractSecondarykey()
7: if skey in [a,b] then
8: Repeat← Line 8-12 from Algorithm 4

9: else if skey > b then
10: BREAK

11: it .NEXT ()
12: return List of pairs in H

Algorithm 8 RANGELOOKUP Procedure using Embedded Index

1: Create Min-Heap H;

2: for table in MemTable do
3: for ⟨k,v⟩ in table do
4: if v .val (Ai) in [a,b] then
5: H.add(K , ⟨k,v⟩) {Algorithm 1}

6: if H .size () == K then
7: return List of K pairs in H

{REPEAT LINE 9 to 20 from Algorithm 5 to populate H, but

replace contains(a) function with intersects(a,b) and equals(a)
withwithin(a,b)}

8: return List of pairs in H

viewed as a state machine maintained by any consensus protocol-

based (e.g. Paxos, Raft) replication engine (e.g. PaxosStore [37]). The

overhead of the replication engine generally does not depend on the

choice of the implementation of the state machine (i.e. implementa-

tion of secondary indexes). The other aspects of distributed envi-

ronment (i.e. partitioning module, cluster membership etc.) can also

be designed independent to the storage engine module [31] [2] [3].

	Abstract
	1 Introduction
	2 Related Work
	3 Embedded Index
	3.1 Cost Analysis

	4 Stand-Alone Index
	4.1 Stand-Alone Index with Posting Lists
	4.2 Stand-Alone Index with Composite Keys
	4.3 Cost Analysis

	5 Experiments
	5.1 Workload
	5.2 Experimental Evaluation

	6 Conclusions
	Acknowledgments
	References
	Appendices
	A Background
	A.1 LSM tree
	A.2 SSTable in LevelDB
	A.3 Bloom Filter

	B Algorithms
	C Supplementary Experiments
	C.1 Effects of varying bloom filter lengths
	C.2 Effect of compression on indexes
	C.3 Effect of multi-threaded environment

	D Effect of Distributed environment

