
Query by Documents on Top of a Search Interface

Nhat X.T. Le∗, Moloud Shahbazi, Abdulaziz Almaslukh, Vagelis Hristidis

Department of Computer Science & Engineering, University of California, Riverside
900 University Ave., Riverside, CA, 92521 United States

Abstract

Document repositories often provide a keyword-based query interfaces to al-
low users to search for documents. These interfaces typically have rate limits
or monetary cost per access operation. Constrained search interfaces include
legal or medical data sources, social networks and the Web. We study the
problem where a user has a set of input documents, and wants to discover
other similar documents using a constrained search interface. Specifically,
given a set of input documents and an access budget, we present principled
techniques to generate a list of queries to submit. Our technique’s key in-
tuition is to compute the best set of queries to return the input documents,
which, as we show experimentally, also return other relevant documents. We
show that our techniques are superior to the state-of-the-art work, according
to several intuitive document relevance metrics, on several real benchmark
datasets. We show results for two problem variants: finding queries to return
in the highest positions the input documents (Docs2Queries-Self problem)
and other relevant documents (Docs2Queries-Sim problem).

Keywords: Query by documents, similarity search, document search,
competitor keyword, keyword discovery

1. Introduction

A common problem in Information Retrieval is that a user wants to re-
trieve documents similar to a given set of relevant documents. For example,

∗Corresponding author
Email addresses: nle020@ucr.edu (Nhat X.T. Le), mshah008@cs.ucr.edu (Moloud

Shahbazi), aalma021@ucr.edu (Abdulaziz Almaslukh), vagelis@cs.ucr.edu (Vagelis
Hristidis)

Preprint submitted to Journal of Information Systems May 2, 2021

a patent attorney may have a few documents provided by a client describ-
ing an invention and would like to search for patents similar to these input
documents. Similarly, a scientist may search for related work in an area and
may have access to a few documents related to this area. A Web user may
have found a set of documents related to a topic, e.g., related to the topic of
academic scandals, and may be looking for more similar documents on the
Web.

Although there are powerful keyword search interfaces on top of various
collections – LexisNexis for patent search [1], Pubmed [2], Google Custom
Search API for the Web [3], etc. – a common limitation they have is that
they do not allow the user to input a set of documents (one or thousands),
but expect a relatively small number of terms as a query. Further, these
constrained search interfaces typically charge a fee for every page of query
results. For example, the LexisNexis Statistical Gateway charges $0.30-$0.40
per query, and Google Custom Search charges $5 for 1,000 queries, up to 10k
queries per day. Note that a common property in all these collections is that
the user may not have access to the underlying collection through any way
other than through the provided search APIs. Hence, to use these interfaces,
one has to extract sets of important terms from the input documents, to for-
mulate queries. These queries should ideally return other similar documents
in high-rank positions of the results.

Given a set of input documents, this paper proposes effective techniques
to generate queries that return other similar documents in high positions.
We refer to this problem as Docs2Queries, shown in Figure 1.

The Docs2Queries problem has received limited attention by the com-
munity [4, 5]. The state-of-art works focus on extracting good terms from
the input documents, given a basic understanding of the ranking formula,
which is generally tf-idf (term frequency and inverse document frequency)
based. Specifically, they select terms with high tf-idf score. This is a reason-
able heuristic, but its drawback is that it ignores the language model of the
collection and limits the heuristics to use only information from the input
documents.

We propose a principled approach to select the best queries, which also
considers the language model of the collection. Note that we assume no
knowledge of the statistics of the collection. Instead, we build on existing
sampling techniques to extract estimated statistics. This sampling, which
only retrieves a few thousand documents, occurs only once, before any query
arrives, and hence its amortized cost is negligible. Our key hypothesis is that

2

the best queries to return the input documents in high-rank positions will
also return other similar documents in high-rank positions. That is, we focus
on how to compute queries that will return our given input documents in
high positions. Our experimental results confirm the validity of our hypoth-
esis, and also the superiority of our method compared to the state-of-the-art
methods. Specifically, our approach outperforms the state-of-the-art by up
to 60% in Normalized Discounted Cumulative Gain (NDCG) of relevant doc-
uments and up to 9.8% in the number of returned similar documents.

More specifically, we follow a probabilistic approach, where for each can-
didate query, we compute the probabilistic distribution of positions of the
input documents and pick the queries where the expected average position
of the input documents is minimized. Our approach assumes that tf-idf is
a key factor in the ranking formula, as does previous work [5]. Note that
most popular IR ranking formulas – vector space cosine similarity, language
model, probabilistic model – include a significant tf-idf factor [6].

A key challenge is the huge search space of candidate queries. Another
challenge is that we have to estimate the positions’ probability distributions
based on the collection’s estimated statistics, which are computed based on
query-independent sampling as mentioned above. Another challenge is to
account for the overlap between selected queries, so they do not return many
common documents, given that each page of results has an access cost.

We study the performance of our techniques for two variants of the
Docs2Queries problem: The Docs2Queries-Self variant finds queries to re-
turn the input documents in high positions. A natural application of this
problem on the Web is the Competitor’s Keywords problem, where we try
to find queries for which a competitor’s Web pages are ranked high. The
Docs2Queries-Sim variant finds queries to return other relevant documents
to the input documents. We show that the same techniques work well for
both problems, which confirms our key hypothesis.

This paper makes the following contributions:

• It proposes a principled solution to the Docs2Queries-Self problem,
which accounts for the statistical properties of the document collection.

• It shows how these techniques are also effective for the Docs2Queries-
Sim problem.

• The proposed solutions are experimentally compared against state-of-
the-art baseline techniques on several real datasets. Various sampling

3

Figure 1: Docs2Queries problem overview. Our techniques power the Query Finder box.
The colored returned documents are the ones that are similar to the input documents (or
the input documents themselves in the Docs2Queries-Self problem variant).

techniques are used to estimate the collection statistics.

The rest of the paper is organized as follows. Related work is presented
in Section 2. We define the problem variants in Section 2. The proposed
algorithms are presented in Section 2. Section 5 presents the experimental
evaluation, and we conclude in Section 6.

2. Related Work

In this project, the goal is to detect queries that are effective in finding
similar documents to an input set of example documents using a keyword-
based search interface. Here, we describe the related work on query refine-
ment and finding similar documents.
Relevance feedback (RF): RF is a commonly used feature in information
retrieval systems that uses user’s interaction with the system to refine the
query for improving the search results [7]. RF methods are mostly based
on Rocchio’s algorithm [7, 8]. In Rocchio’s approach, documents and query
are represented in a vector space. Every time user feedback is available, the
query is refined by adding the relevant documents with a positive weight and
the non-relevant documents with a negative weight.

RF is the closest line of work to our problem; however, the assumption of
having the iterative improvement does not apply here because, in our case,

4

there is only a predefined set of documents as relevant examples and users
are not generating further feedback on returned results.
Key-phrase extraction: Extracting key phrases from a document is a well-
studied problem. These key-phrases could be suited to tasks like relevance
filtering or browsing in retrieval [9]. Supervised approaches find key-phrases
by training machine learning models for identifying key-phrases, using train-
ing documents where the key-phrases are known [10, 11, 12]. In [13], au-
thors use dynamic query modeling to find related content based on a textual
stream.

On the other hand, unsupervised methods rely on statistical information
to select key-phrases [14]. A basic approach that comes to mind is to rank
terms or n-grams in the input document by frequency or tf-idf score [15,
9]. Another unsupervised approach suggested in [16] involves clustering the
candidate key-phrases in a document into topics, such that each topic is
composed of all and only those candidate key-phrases that are related to
that topic. In [5], authors select key-phrases by identifying noun-phrases
using part of speech tagging. Most of the key-phrase generation methods,
order the key-phrases based on a form of tf-idf score.
Search by document: Search for similar documents given an input docu-
ment is a directly relevant research area to our work [4, 5]. Yang et al. [5] pro-
posed Query by Document (QBD) addressing the problem of cross-referencing
on-line information in the context of blogs. They select noun phrases from
an input document to use as keyword queries to search for pages similar to
that document. In [17], Dasdan et al. propose an approach to the cover-
ing test problem where the goal is to find out if there is a near-duplicate
of a certain document in a corpus of documents that is accessible using a
rate-limited keyword query interface. In both cases, the generated queries
are merely based on the input document and not taking into account much
of the collection statistics that matter in ranking function while computing
the score of the candidate queries. Further, they rely on query generation
methods to select the candidate queries.

Vidhya et al. proposed a personalized query formulation method based
on identifying key phrases from an input document [18]. The key-phrases
are used to query a search engine and the results are evaluated for simi-
larity to the original document. They find the key-phrases by taking the
co-occurrences within the input document. They use Jaccard similarity to
measure the similarity of the retrieved document to the input document.
Lee et al. [19] studied the problem of generating a search query from an

5

user-selected text to find similar documents. Their method relies on a su-
pervised learning algorithm to select, rank the text’s representative chunks
(noun phrases, named entities), while our approach assumes no training data.

Other works on querying by documents assume full access to the whole
collection, while our problem accesses the documents through a search in-
terface. For example, Weng et al. [20] propose such indexing and ranking
techniques for the collection.
Text document classification: Binary text classifiers typically input a
training set of positive and negative documents and learn how to classify new
documents to these two classes. Examples of those approaches are Support
Vector Machine [21], Maximum Entropy [22] and recent neural network based
methods such as CNN [23]. In theory, once could build such a text classifier
for the input documents in our problem, and examine which keywords are
used by the classifier to make a decision. That is, we can examine a trained
word-based classifier to detect words that most influence the classifying of a
document to be positive, and treat them as query keywords in our problem.
However, a key challenge of this approach is the scarcity of the positive
class, which may have only a few examples, i.e. small input document set.
Moreover, it is not clear how to best combine keywords into a set of queries,
for example, avoid similar words in the same query.
Document similarity functions: Document similarity is usually calcu-
lated by cosine similarity between document vectors. In recent years, neu-
ral network based embeddings such as word2vec [24] and doc2vec [25] have
been shown to efficiently learn a document’s distributed representation that
embeds rich document semantics, especially document similarity. The re-
quirement for these approaches to be effective is a very large collection of
documents. We utilize the doc2vec technique to learn document vector from
the entire collection to facilitate our evaluation on document similarity.

3. Definitions

We begin by defining the key data types in our problem definition and
proposed algorithms. Let C be the collection of documents that are indexed
by a search engine. We consider search engines that provide a keyword-
based query interface to the users for accessing the documents in the indexed
collection. The keyword-based query interface is the user interface to the
Web collection that inputs a set of keywords and outputs a ranked list of
documents.

6

A keyword query Q = {q1, . . . , qn} is a set of n uni-grams. As we men-
tioned earlier, we study the problem of finding keyword queries from a set
of input documents provided by the users. Let define I = {d1, . . . , dk} as
a set of k example input documents to extract keyword queries that will
result in retrieving input documents at high-ranked position and/or similar
documents.

Search engine providers do not reveal the exact ranking function of their
system as it is an asset of the business; however, it is fair to assume that
the text-based relevance ranking is a function of commonly used “term fre-
quency inverse document frequency” (tf-idf) score. As a result, we explain
our proposed solution by assuming the score of document d given keyword
query Q is computed as follows:

Sd,Q =
∑

q∈Q
tf(d, q)× idf(q) (1)

where tf(d, q) is the term frequency of keyword q in document d and idf(q)
is the inverse document frequency of q.

We present two problem variants: the ones where the goal is to return
the input documents in high positions – useful for the competitor keywords
problem – and the ones where we search for other relevant documents –
useful for the document discovery problem. For both variants, the budget is
the number of queries that we can submit to the search interface.
Docs2Queries-Self/Sim problem: Given a set of input documents I, a
search interface, a number T of returned results per query, and maximum
query length n, find a set Q of m queries Q = {Q1, Q2, · · · , Qm} that return
as many documents R in high-ranked positions as possible. That is:

Q = arg min
Q′

1

|R|
∑
d∈R

min
Q∈Q′

(pos(d,Q)) (2)

• R is I for Doc2Queries-Self problem, and is the set of documents in C
returned by query Q and similar to I for Doc2Queries-Sim problem.

• To make the problem realistic, we consider a number T as the maxi-
mum number of documents returned by a query. Documents not re-
turned in the top-T are assigned position T + 1, that is, if rank(d,Q)
is the unconstrained position, then pos(d,Q) is its constrained version:
pos(d,Q) = min(T + 1, rank(d,Q)). When a document is returned by
multiple queries, its best position across all queries is considered.

7

There are different ways to define similarity between a document and a set of
documents. We consider several similarity measures in our experiments. We
also consider the simplified Docs2Query-Self/Sim problem, where the goal is
to find a single query Q, i.e. Q = {Q}. Note that the combination of T and
m represents the budget of our problem. For example, one needs to pay $5
per 1000 queries in Google Custom Search [3].

Solving Docs2Queries-Sim directly in a principled way is hard because R
is unknown. For that, we hypothesize that queries that will return the input
documents I in high-ranked positions (Docs2Queries-Self problem), will also
return other similar documents. As we see in Section 5, our experiments
support our hypothesis.

Note that our techniques, as well as the baselines methods we compare
against, assume a tf-idf ranking formula. We understand that some search in-
terfaces –especially Web search engines– use many more features for ranking,
but tf-idf is still a significant factor.

4. Algorithms

In this section, we explain our approach to solve the Docs2Queries-Self
problem. As mentioned before, this approach is also effective for the related
Docs2Queries-Sim problem. In order to make the presentation simple, we
start by showing how to solve the problem for a single query with a single
keyword, then extend our solution to a single query with multiple keywords.
Finally, we explain our approach for the case of multiple queries including
multiple keywords, according to Equation 2. As mentioned earlier, we assume
that the search interface’s score function for document d with respect to a
query Q is computed using Equation 1.

The rank position of document d within the collection given query Q is
defined as follows:

rank(d,Q) = P (Sd′,Q > Sd,Q)× |C| = (1− LowPd,Q)× |C| (3)

where P is a shorthand for probability, |C| is the collection size, Sd′,Q is the
score of a random document d′ in collection with respect to Q, and LowPd,Q

is the probability that a random document d′ has score less than or equal
to the score of the input document d regarding to query Q: LowPd,Q =
P (Sd′,Q ≤ Sd,Q) (4). In practice, only up to top T documents are returned
per query, where T is specified by the search interface or by the access budget,

8

thus pos(d,Q) = min (T + 1, (1− LowPd,Q)× |C|) (5). That is, we treat all
the documents that are ranked lower than top T equally, and place them in
(T + 1)th position in the ranking.
4.1. Single-keyword query

We start by describing our solution for the simplest case where the goal is
to find the best query Q = {q} with a single keyword. Given this condition,
LowPd,Q = P (Sd′,Q ≤ Sd,Q) =

∑
k≤tf(d,q) P (tf(d′, q) = k) , where tf(d′, q) is

the term frequency of keyword q for a random document d′ in collection.
From Docs2Query-Self problem’s Equation 2 and Equation 5, we can now

define the objective function to find a single-keyword query based on term
frequency distribution as follows:

q = arg min
q′

∑
d∈I

pos(d, q′) = arg maxq′

∑
d∈I

max (1− T + 1

|C|
, LowPd,q′) (6)

= arg maxq′

∑
d∈I

max (1− T + 1

|C|
,
∑

k≤tf(d,q′)

P (tf(d′, q′) = k)) (7)

In Equation 6, we try to maximize the probability of random documents being
being ranked below the input documents d (LowPd,Q). 1− T+1

|C| is the proba-
bility that a random document has the rank out of top T . When document
d is in top T documents returned by query q′: max (1− T+1

|C| , LowPd,q′) =
LowPd,q′ . In Equation 7, the only unknown terms are the collection size
(|C|) and P (tf(d′, q) = k), i.e., the term frequency distribution, which we
both estimate using a sampling technique over the search interface, which
occurs once before any query arrives. This sampling strategy is discussed in
detail in the Section 5.

In practice, to avoid having to evaluate Equation 7 for all terms q′ ex-
tracted from the input documents I, we only consider the l terms with the
highest tf-idf score, where tf is computed on I by viewing all documents in
I as a single concatenated document, and idf on the whole collection C. In
the experiments we set l=20, which in practice we found that it is equivalent
to not setting a l value (i.e., the same query is returned for both l = 20 and
no l setting).

4.2. Multi-Keyword Query

In order to compute the position of a document given a query with n key-
words, we assume that term occurrences are independent within a document,

9

which is a common assumption in Information Retrieval ranking functions.
Hence, we define the objective function to find the best query as follows:

Q = arg min
Q′

∑
d∈I

pos(d,Q′) = arg maxQ′

∑
d∈I

max (1− T + 1

|C|
, LowPd,Q′) (8)

We expand Equation 4 for a multi-keyword query as follows:

LowPd,Q = P (Sd′,Q ≤ Sd,Q) ≈
∑

ki|
∑n

i=1 ki×idf(qi)≤S(d,Q),ki<z

∏n

j=1
P (tf(d′, qj) = ki) (9)

Note that, we assume that query terms have a maximum term frequency z in
any document of the collection to make Equation 9’s computation practical.
Without this, a naive approach to solve Equation 8 given Equation 9 is to
consider all keyword combinations of size n for the keywords within vocabu-
lary of input documents. Our assumption is reasonable for large values of z
(we use z = 20 in the experiments), as a query term is not a stop word.

Similar to Equation 7, the only unknown terms in Equation 8 and 9 are
collection size |C| and term frequency distribution P (tf(d′, qj) = ki). We
approximate the document score Sd,Q by Equation 1, which translates our
assumption that tf-idf is a key factor in the search engine’s ranking formula.

We also prune the vocabulary terms to maximum l query term candidates
as before. There are

(
l
n

)
possible queries. Each query requires O(zn) to com-

pute its probability score according to above equation, so that is O(
(
l
n

)
× zn)

in total. To scale up the computation, we can take the exponential of both
sides to turn the right-hand side into multiplication operation, for which
we can utilize a vectorized implementation with off-the-shelve numerical li-
braries. These exact parameters used in our experiments can be found in
Table 4 in Section 5. Note that, so far we explained how to find a query
with exactly n keywords. We repeat the computation for queries with one
keyword up to n, and select the best query among them.

4.3. Best Position (BP) Algorithm: Multiple Multi-Keyword Queries

Finally, we are ready to present our full algorithm, which we refer as Best
Position (BP) algorithm, which finds m queries with up to n keywords. A
key challenge is that there is an exponential number of combinations of m
queries. For this reason, we propose heuristics to finds m queries as follows.

BP-Cluster : this heuristic first partitions the input documents into m
clusters using K-Nearest-Neighbor (KNN) algorithm. Then it finds the best

10

query per cluster. Note that as the similarity measure in KNN algorithm,
we use the cosine similarity of the document vectors with tf-idf weights.
Algorithm 1 shows the procedure to produce m queries.

Algorithm 1 Best Position with Cluster heuristic.

1: procedure BP-Cluster(I,m, n)
2: I: Set of input documents
3: m: Number of queries
4: n: Maximum number of keywords per query
5: for (i = 1; i <= m; i+ +) do
6: Ci = ∅ . document cluster i
7: Randomly select a document from I, and add to Ci

8: add (|I|/m)− 1 closest documents to Ci.
9: Find a new, best query Q, |Q| ≤ n using Eq. 8 and 9

10: Remove Ci from I

BP-Greedy : this variant maintains the best positions of each input doc-
ument, given the current query set. Then, a query is greedily selected based
if it improves the sum of best positions by a maximum amount. The details
are given in Algorithm 2.

Note that even though these algorithms do not target Docs2Queries-Sim
problem directly, our aforementioned hypothesis implies that these algo-
rithms will also achieve good performance in Docs2Queries-Sim problem.
We show empirical evidence supporting this in Section 5.

Algorithm 2 Best Position with Greedy heuristic

1: procedure BP-Cluster(I,m, n)
2: I: Set of input documents,
3: m: Number of queries,
4: n: Maximum number of keywords per query
5: doc ranks = ∅ . dictionary: input doc → current rank
6: for (i = 1; i <= m; i+ +) do
7: Use Eq. 9 to find a query Q, |Q| ≤ n that improves∑

doc ranks.values() the most.
8: update doc ranks with Q

11

5. Evaluation Results

5.1. Experimental Settings

We use Lucene search engine with our tf-idf based scoring function given
by Equation 1 as the search interface in our experiments. In this section,
we describe the experimental results comparing our BP algorithm to the
state-of-the-art Query-by-Document (QBD) method, and one more baseline
method.
Datasets: In our experiments, we use the “TREC-9 Filtering Track” test
collection [26], which contains 348,566 abstracts of references from MED-
LINE, which is an online medical information database, consisting of titles
and/or abstracts from 270 medical journals over a five-year period (1987-
1991). The available fields include title, abstract and a few other fields [27].
As the set of input documents, we use filtering topics that have at least 8 doc-
uments to get stable experimental results. These filtering topics are from the
original query set developed by Hersh et al. [27] for their IR experiments. As
a second dataset, we use “TREC-8 Ad hoc Test Collections” [28]. This cor-
pus contains about 1.6 million English articles from news media such as The
Wall Street Journal and Financial Times Limited and 50 natural language
topics. We remove documents with less than 10 words. Table 1 describes the
details of our datasets.

Table 1: Dataset characteristics.

TREC-9 TREC-8

#Documents 233,444 1,634,243
Average Document Length 84 200
Vocabulary Size 38,849 254,102
#Query Sets 63 50
Average Size of Query Sets 30 237
Average Document Frequency 505 1,287

Evaluation measures: To evaluate the proposed methods for the Docs2Queries-
Self problem, we use all topic documents as input to generate the queries,
and then use the positions of the same set of documents to evaluate the
various measures. In contrast, for Docs2Queries-Sim, we divide the topic
documents into two halves: a source set and a target set. The source set is
used to compute the queries, and the target set to evaluate the effectiveness

12

Table 2: Evaluation Measures and applicable problems

Measure Description Docs2Queries-
Self

Docs2Queries-
Sim

NDCG Normalized discount cumulative gain x x
MAP Mean average precision at rank T x x
Average Position Average position of the relevant documents x x
Recall Ratio of relevant documents that are success-

fully retrieved
x x

Average Sim. -
pairwise

Average similarity of returned documents with
the closest input one

x

Average Sim. -
centroid

Average similarity of returned documents with
input set’s centroid

x

Sim. Doc Count -
pairwise

similar documents returned using pairwise
similarity

x

Sim. Doc Count -
centroid

similar documents returned using centroid-
wise similarity

x

in discovering other relevant documents. The intuition is that target docu-
ments can be considered golden standard for similar documents of source set,
thus we expect them to be ranked in high positions. When we are finding
multiple queries per input set (m > 1), a document may be returned by some
of those queries. In that case, we consider the best rank across all queries
for that document.

Our first set of evaluation measures includes measures applicable for both
Docs2Queries-Self/Sim problems:

• Normalized Discount Cumulative Gain (NDCG) with 1-0 relevance val-
ues.

• Mean Average Precision (MAP) of relevant document up to top T ,
which is set upfront (Table 4).

• Average Position of the relevant documents. If a relevant document is
returned in multiple queries, we only record its best rank.

• Recall representing the ratio of relevant documents that are successfully
retrieved using the found queries. Recall is in the range from 0 to 1.

Our second set of measures aims to estimate the similarity of all retrieved
documents compared to the source documents, thus these measures are suit-
able for the Docs2Queries-Sim problem. In our evaluation, we model docu-
ments by their distributed representations using doc2vec technique which is

13

proposed by Quoc Le et al. [25] and is has been shown to effectively main-
tain document semantics, especially document similarity. To compute docu-
ment vectors, we utilize Gensim library [29] with document vector of size 50,
trained after 50 epochs. Cosine similarity is utilized to calculated similarity
of two documents. We extend this to estimate similarity between a docu-
ment and a document set in two flavors: 1) pairwise: similarity between the
document and its most similar one in the document set; and 2) centroid-wise:
similarity between the document and the document set’s centroid. Based on
that we employ four intuitive measures as follows:

• Average Similarity with pairwise similarity flavor.

• Average Similarity with centroid-wise similarity flavor.

• Similar Doc Count - pairwise: the number of similar documents in
retrieved ones, where a document is considered similar if its pairwise
similarity with the source set is higher than a threshold. We use the
average pairwise similarity in the source set as the threshold.

• Similar Doc Count - centroid-wise: similar to the previous one except
that we use the similarity between source set’s centroid and the least
similar source document as the similarity threshold.

We summarize our evaluation measures in Table 2.
Baseline techniques: We compare our methods to two baselines described
below.

State of the art – Query by Document (QBD): QBD was proposed by
Yang et al. to automate the process of cross referencing on-line information
content [5]. Given a single document, they first extract noun-phrases (i.e.
sequences of nouns and adjectives) as candidate queries using part of speech
tagging tools. Then, they sort those candidates based on the following scoring
function that accepts a phrase candidate P and an input document d:

score(P, d) =
∑
t∈P

tf(d, t)× idf(t) + α× coherence(P) (10)

Where coherence(P) is defined as follows:

coherence(P) =
tf(d, P)× (1 + log tf(d, P))

1
|P | ×

∑
t∈P tf(d, t)

(11)

14

The authors also propose another scoring function based on co-occurrence
information of the terms in a phrase; but we omit that method because it
results in worse performance than the one in Equation 10. We naturally
extends QBD to consider all noun phrases in the input set of multiple doc-
uments in our context. We carry out an experiment to find the optimal
coherence weight α that turns out to be 1 in most cases. We include this
experiment’s details in the Appendix.

Tf-Idf based method: In addition to QBD, we define the following baseline
(called TF-IDF) to compare against our proposed solutions for finding m
queries with up to n keywords each:

1. Select top n × m keywords with the highest sum of tf-idf in the con-
catenated input documents.

2. Then the first n keywords are assigned to the first query, the next n
keywords to the second query, and so on.

Randomized Fingerprint method: Dasdan et al. [17] propose an approach
to check if there is a near-duplicate of a certain document in a corpus of
documents hidden behind a query interface. The essence of this approach
is to select random, long n-grams as search queries. Targeting the near-
duplicate problem, this method is efficient when the query is very long and
the ranking model highly consider keyword proximity. Note that, we do
not implement the phase of fixing one fingerprint per document since its
repeatability goal is orthogonal to the retrieval performance.
Estimating corpus statistics: All proposed algorithms and baselines re-
quire some statistics from the collection, in addition to the statistics of the
input documents I. Table 3 shows different collection statistics required by
each algorithm. Interestingly, our methods use collection statistics on both
tf and idf, whereas the baselines only on idf. We clarify that all methods
use the tfs in the input documents I, but our methods are the only ones that
compare the tf of each term to the distribution of tfs of this term in the whole
collection. We argue that this is a key reason that explains why our methods
perform better. We estimate the collection term frequency distribution based
on the distribution driven from a sample set.

Random Sampling: The first approach is to assume that a representa-
tive subset of the underlying collection is available. In our experiments, we
generate this subset, by randomly selecting a set of sample documents from
datasets that are used in our experiments.

15

Table 3: Collection statistics requirements. Inverse Document Frequency - idf, Term
Frequency - tf.

idf tf distribution - probability(Xq)

TF-IDF x
QBD x
BP-Cluster x x
BP-Greedy x x

10000
20000

30000
40000

60000
80000

100000

Sample Size

1000

1500

2000

2500

3000

3500

Av
er

ag
e

E
rr

or
 o

f
D

oc
um

en
t F

re
qu

en
cy

Query-based Sampling
Random Sampling

(a) Average error of estimated vs. actual
document frequency.

10000
20000

30000
40000

60000
80000

100000

Sample Size

0.000

0.002

0.004

0.006

0.008

Av
er

ag
e

K
L

D
iv

er
ge

nc
e

of

Te
rm

 F
re

qu
en

cy
 D

is
tr

ib
ut

io
n

Query-based Sampling
Random Sampling

(b) Average KL divergence of estimated and
actual term frequency distribution.

Figure 2: Error rate of sampling strategies in TREC-8 dataset.

Query-based Sampling: We follow an approach proposed by Ipeirotis et
al. [30] to compute document frequency statistics. The sampling for collecting
a set of documents is an iterative process with the following steps:

Start by choosing a seed query keyword. While the number of sampled
documents is less than required (sample size is a parameter), do:

1. Select a random keyword from sampled documents vocabulary.

2. Issue a query using selected keyword to search interface and add the
top 3 (system parameter) documents to the sample set.

Note that both sampling methods incur a fixed, one-time cost, which is in-
dependent from the later search phase. Sampling is needed for both our
methods and the baselines, as they all require some collection statistics (Ta-
ble 3). The query-based sampling is generally more practical, because it does
not require access to the underlying collection.

16

Table 4: Parameters

Parameter Value

Number of queries (m) 1, 2, 3, 4
Maximum number of keywords per query (n) 4
Number of top retrieved document threshold (T) 1,000
Maximum term frequency threshold (z) 20
Number of pruned vocabulary terms (l) 20

We ran both strategies 30 times. Figure 2 shows the results for TREC-
8 (the results for TREC-9 were similar and were omitted to save space).
Figure 2(a) shows the average absolute error of the estimated document fre-
quencies comparing to actual document frequencies. As the size of sample set
increases, we cover more words from the vocabulary of the collection, thus
the absolute document frequency error drops. We further extend Query-
based sampling to estimate term frequency (tf) distributions by considering
sample tf distribution. We assume that the corpus size is equal to the largest
estimated document frequency. Figure 2(b) indicate that our tf distribution
estimation’s error decreases when the sample size increases. In general query-
based sampling is more accurate than random sampling in estimating term
frequency distribution, but is less accurate than random sampling in estimat-
ing document frequency. Our experiments show similar, good performance
results using both sampling strategies.
Finding optimal coherence weight in QBD baseline: We evaluate
different values of parameter α in Equation 10 to obtain the best value to use
as the coherence factor in QBD method. We demonstrate the representative
results on TREC-9 dataset using two sampling techniques in Figure 3. This
figure reveals that the best result is achieved by setting α to less than or
equal 1. Based on this observation, for the rest of upcoming experiments, we
use α = 1 for QBD method.
Our proposed methods’ parameters: Lastly, we present all system pa-
rameters we use throughout the experiments in the next sections in Table 4.

5.2. Doc2Queries-Self Evaluation

In this section, we consider all topic documents as the input to find
queries, which are then evaluated on the same document set. We vary the
number of finding queries from 1 to 4 with maximum 4 keywords per query.

17

11111 22222 33333 44444
Number of Queries

0.15

0.20

0.25

0.30

N
D

C
G

11111 22222 33333 44444
Number of Queries

0.02

0.03

0.04

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

11111 22222 33333 44444
Number of Queries

400

500

600

700

Av
er

ag
e

Po
si

tio
n

11111 22222 33333 44444
Number of Queries

0.4

0.5

0.6

0.7

R
ec

al
l

0.1 1.0 10.0 100.0 1000.0

(a) Corpus statistics estimation using Query-based sampling

11111 22222 33333 44444
Number of Queries

0.15

0.20

0.25

0.30

N
D

C
G

11111 22222 33333 44444
Number of Queries

0.02

0.03

0.04

0.05

Av
er

ag
e

Pr
ec

is
io

n

11111 22222 33333 44444
Number of Queries

400

500

600

700

Av
er

ag
e

Po
si

tio
n

11111 22222 33333 44444
Number of Queries

0.4

0.5

0.6

0.7

R
ec

al
l

0.1 1.0 10.0 100.0 1000.0

(b) Corpus statistics estimation using Random sampling

Figure 3: QBD coherence weight α on TREC-9 dataset. Higher is better for all metrics
except Average Position.

1 2 3 4
Number of Queries

0.1

0.2

0.3

0.4

0.5

0.6

N
D

C
G

1 2 3 4
Number of Queries

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

1 2 3 4
Number of Queries

200

400

600

800

Av
er

ag
e

Po
si

tio
n

1 2 3 4
Number of Queries

0.2

0.4

0.6

0.8

1.0
R

ec
al

l
TF-IDF QBD BP-Cluster BP-Greedy Randomized Fingerprint

(a) TREC-9 dataset. Higher is better for all metrics except Average Position.

1 2 3 4
Number of Queries

0.0

0.1

0.2

0.3

0.4

0.5

N
D

C
G

1 2 3 4
Number of Queries

0.00

0.05

0.10

0.15

0.20

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

1 2 3 4
Number of Queries

600

700

800

900

1000

Av
er

ag
e

Po
si

tio
n

1 2 3 4
Number of Queries

0.0

0.2

0.4

0.6

R
ec

al
l

TF-IDF QBD BP-Cluster BP-Greedy Randomized Fingerprint

(b) TREC-8 dataset. Higher is better for all metrics except Average Position.

Figure 4: Performance in Doc2Queries-Self problem, using Query-based Sampling.

18

1 2 3 4
Number of Queries

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
D

C
G

1 2 3 4
Number of Queries

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

1 2 3 4
Number of Queries

200

400

600

800

Av
er

ag
e

Po
si

tio
n

1 2 3 4
Number of Queries

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

TF-IDF QBD BP-Cluster BP-Greedy Randomized Fingerprint

(a) TREC-9 dataset. Higher is better for all metrics except Average Position.

1 2 3 4
Number of Queries

0.0

0.1

0.2

0.3

0.4

0.5

N
D

C
G

1 2 3 4
Number of Queries

0.00

0.05

0.10

0.15

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

1 2 3 4
Number of Queries

600

700

800

900

1000

Av
er

ag
e

Po
si

tio
n

1 2 3 4
Number of Queries

0.0

0.2

0.4

0.6

R
ec

al
l

TF-IDF QBD BP-Cluster BP-Greedy Randomized Fingerprint

(b) TREC-8 dataset. Higher is better for all metrics except Average Position.

Figure 5: Performance in Doc2Queries-Self problem, using Random Sampling.

Figure 4 shows results on both datasets using query-based sampling strat-
egy. In TREC-9 dataset (Figure 4(a)), our BP-Cluster method is the clear
winner, followed by our BP-Greedy. We observe that BP-Cluster has Nor-
malized Discounted Cumulative Gain (NDCG) value about 18% higher than
TF-IDF baseline and about 50% higher than QBD on average. Similar or
more favorable trends can be observed in other measures. Using four queries,
our methods are able to return source documents at around position 150 on
average, which is about 2 and 3 times better than TF-IDF and QBD respec-
tively. Furthermore, our methods return most of source documents using
four queries (recall ≈ 1) while the recall of TF-IDF and QBD is roughly
0.85 and 0.75 only.

In TREC-8 dataset (Figure 4(b)), our BP-Greedy and BP-Cluster meth-
ods again outperform the baselines with large margins. We notice that TF-
IDF is now worsen than QBD method. Overall, all methods’ performance
in TREC-8 is worse than their performance in TREC-9 dataset. We believe
that it is due to the fact that TREC-8 includes articles in a variety of domains
and it is much larger than TREC-9. Therefore, there are fewer prominent
keywords that characterize a topic set. This also explains why the TF-IDF

19

method is severely affected in TREC-8. In both datasets, Randomized Fin-
gerprint method performs poorly since it picks many trivial keywords and
tf-idf ranking based system does not take into account the query term order.

Note that the average position is the average rank of all source documents
of a topic, thus it is expected to be higher than the average number of source
documents. A topic in Trec 8 and Trec 9 dataset respectively has 236.5 and
31 documents on average, thus the average positions in these topics (Figure 4,
5) are relative to these numbers.

In Figure 5, we repeat the same experiments when the random sampling
technique is used to estimate the collection statistics. The experiment’s out-
come for all methods does not show a noticeable change, thus we will only
present experimental results using Query-based sampling in the next sections
due to space limitation.

In summary, our two methods BP-Cluster/Greedy demonstrate best per-
formances on all four measures for the Doc2Queries-Self problem. In the case
of finding a single query, BP-Cluster and BP-Greedy are exactly the same.
Other than that, BP-Cluster is the best algorithm.

5.3. Doc2Queries-Sim Evaluation

We report experimental results of both datasets using query-based sam-
pling strategy in Figure 6.

Measuring target document’s rank in returned set: under the first four
measures in Table 2, we notice similar trends as the evaluation of Doc2Queries-
Self problem (Section 5.2). Specifically, our method BP-Greedy/Cluster out-
perform both baselines by a large margin in all rank-based measures. This
result indicates that our methods are not only able to retrieve source docu-
ments but also target documents at high positions.

The performance of all methods on target sets is lower than on source
sets in rank-based measures. This is expected since all methods optimize
for the source documents instead of target documents. We also notice that
document positions in TREC-8 dataset are worse than in TREC-9 dataset.
A reasonable explanation for this may be that the target set size in TREC-8
is larger than in TREC-9, thus target documents are retrieved in a wider
range.

Measuring returned document’s similarity comparing to input document
set: the results using the last four measures in Table 2 are more diverse and
interesting to interpret. In TREC-9 dataset (Figure 6(a)), the average simi-
larities between retrieved documents and source documents are pretty close

20

for all methods except the Randomized Fingerprint. The common trend of
all methods is a decline in the average similarity when there are more queries.
This is attributed to the increase of non-relevant documents at low positions
when methods were asked to pick more queries. In terms of the number
of similar documents (defined as having similarity larger than a threshold),
TF-IDF and our BP-Cluster are the best ones. The small size and quite fo-
cusing topic nature of this dataset may have contributed to TF-IDF’s success
since there are common, standout words in the input documents. We will
see that when these properties do not exist in a larger, more diverse dataset
as TREC-8, TF-IDF based method’s performance drops. Figure 6(b) reveals
that our method BP-Greedy is the best one in all measures using TREC-8
dataset, followed closely by BP-Cluster. In particular, BP-Greedy has av-
erage similarity higher than QBD at most 10%, and higher than TF-IDF
method at most 18.6%. In terms of retrieved document’s similarity com-
paring to source set’s centroid, BP-Greedy can achieve an average similarity
13.6% higher than QBD and 29.4% higher than TF-IDF method. Similar to
previous measures, Randomized Fingerprint performs worst in most of cases.
A common trend of all methods is a decline in the average similarity for more
queries. This is due to the increase of non-relevant documents, given that
the higher accuracy queries are generated first.

We also observe that BP-Greedy continues to improve its performance
over two baselines in the measures counting for the number of relevant doc-
uments when more queries are needed. Specifically, when methods were
asked for four queries, BP-Greedy is able to return about 38.9% more rel-
evant documents than TF-IDF method, and about 19.04% more relevant
documents than QBD. This result strengthen our methods’ (BP-Greedy and
BP-Cluster) advantage in offering not only high precision (average similarity)
but also high recall (number of retrieved documents that are relevant).

Interestingly, these results confirm our hypothesis that algorithms solving
Docs2Queries-Self problem well will also achieve good performance in solving
Docs2Queries-Sim problem.

6. Conclusion

We studied two variants of the Docs2Queries problem, and proposed a
principled way to extract the best queries given a set of input documents.
Our proposed solution exploits the collection’s statistics in a deeper way
than previous work. To estimate the collection’s language model in our

21

1 2 3 4
Number of Queries

0.1

0.2

0.3

0.4

N
D

C
G

1 2 3 4
Number of Queries

0.00

0.02

0.04

0.06

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

1 2 3 4
Number of Queries

400

600

800

Av
er

ag
e

Po
si

tio
n

1 2 3 4
Number of Queries

0.2

0.4

0.6

0.8

R
ec

al
l

1 2 3 4
Number of Queries

0.30

0.32

0.34

0.36

0.38

Av
er

ag
e

Si
m

. -
 P

ai
rw

is
e

1 2 3 4
Number of Queries

500

1000

1500

Si
m

. D
oc

 C
ou

nt
 -

Pa
ir

w
is

e

1 2 3 4
Number of Queries

0.250

0.275

0.300

0.325

0.350

0.375

Av
er

ag
e

Si
m

. -
 C

en
tr

oi
d-

w
is

e

1 2 3 4
Number of Queries

100

200

300

400

500

Si
m

. D
oc

 C
ou

nt
 -

C
en

tr
oi

d-
w

is
e

TF-IDF QBD BP-Cluster BP-Greedy Randomized Fingerprint

(a) TREC-9 dataset. Higher is better for all metrics except Average Position.

1 2 3 4
Number of Queries

0.00

0.05

0.10

0.15

0.20

N
D

C
G

1 2 3 4
Number of Queries

0.00

0.01

0.02

0.03

0.04

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

1 2 3 4
Number of Queries

800

850

900

950

1000

Av
er

ag
e

Po
si

tio
n

1 2 3 4
Number of Queries

0.0

0.1

0.2

0.3

R
ec

al
l

1 2 3 4
Number of Queries

0.35

0.40

0.45

0.50

0.55

Av
er

ag
e

Si
m

. -
 P

ai
rw

is
e

1 2 3 4
Number of Queries

500

1000

1500

2000

2500

Si
m

. D
oc

 C
ou

nt
 -

Pa
ir

w
is

e

1 2 3 4
Number of Queries

0.2

0.3

0.4

0.5

Av
er

ag
e

Si
m

. -
 C

en
tr

oi
d-

w
is

e

1 2 3 4
Number of Queries

500

1000

1500

2000

2500

Si
m

. D
oc

 C
ou

nt
 -

C
en

tr
oi

d-
w

is
e

TF-IDF QBD BP-Cluster BP-Greedy Randomized Fingerprint

(b) TREC-8 dataset. Higher is better for all metrics except Average Position.

Figure 6: Doc2Queries-Sim problem performance, using Query-based Sampling.

22

experiments, we considered two different ways of sampling the collection over
a search interface. Our experimental results based on TREC-9 and TREC-8
datasets show that our BP-Greedy/Cluster algorithms outperform the state
of the art baselines in both problem variants using eight different measures
for both problem variants.

References

[1] R. E. Inc., Lexixnexis, https://www.lexisnexis.com/totalpatent/

(2018).

[2] U. N. L. of Medicine, Pubmed, https://www.ncbi.nlm.nih.gov/

pubmed/ (2018).

[3] G. LLC, Google custom search, https://developers.google.com/

custom-search/ (2018).

[4] M. D. Smucker, J. Allan, Find-similar: similarity browsing as a search
tool, in: Proceedings of the 29th annual international ACM SIGIR con-
ference on Research and development in information retrieval, ACM,
2006, pp. 461–468.

[5] Y. Yang, N. Bansal, W. Dakka, P. Ipeirotis, N. Koudas, D. Papadias,
Query by document, in: Proceedings of the Second ACM International
Conference on Web Search and Data Mining, ACM, 2009, pp. 34–43.

[6] B. Croft, J. Lafferty, Language modeling for information retrieval,
Vol. 13, Springer Science & Business Media, 2013.

[7] J. J. Rocchio, Relevance feedback in information retrieval, The Smart
Retrieval System-Experiments in Automatic Document Processing
(1971) 313–323.

[8] H. Chen, G. Shankaranarayanan, L. She, A. Lyer, A machine learning
approach to inductive query by examples: an experiment using relevance
feedback, id3, genetic algorithms, and simulated annealing, Tech. rep.,
DTIC Document (1998).

[9] J.-W. Lee, D.-K. Baik, A model for extracting keywords of document
using term frequency and distribution, in: International Conference on

23

Intelligent Text Processing and Computational Linguistics, Springer,
2004, pp. 437–440.

[10] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin, C. G. Nevill-
Manning, Kea: Practical automatic keyphrase extraction, in: Proceed-
ings of the fourth ACM conference on Digital libraries, ACM, 1999, pp.
254–255.

[11] P. D. Turney, Learning algorithms for keyphrase extraction, Information
retrieval 2 (4) (2000) 303–336.

[12] R. Jin, A. G. Hauptmann, Learning to select good title words: An new
approach based on reverse information retrieval., in: ICML, Vol. 1, 2001,
pp. 242–249.

[13] J. Foley, M. Bendersky, V. Josifovski, Learning to extract local events
from the web, in: Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
ACM, 2015, pp. 423–432.

[14] A. K. Mondal, D. K. Maji, Improved algorithms for keyword extraction
and headline generation from unstructured text, First Journal publica-
tion from SIMPLE groups, CLEAR Journal.

[15] Z. Zhang, H. Cheng, Keywords extracting as text chance discovery, in:
Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth
International Conference on, Vol. 2, IEEE, 2007, pp. 12–16.

[16] Z. Liu, P. Li, Y. Zheng, M. Sun, Clustering to find exemplar terms
for keyphrase extraction, in: Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing: Volume 1-Volume
1, Association for Computational Linguistics, 2009, pp. 257–266.

[17] A. Dasdan, P. D’Alberto, S. Kolay, C. Drome, Automatic retrieval of
similar content using search engine query interface, in: Proceedings of
the 18th ACM conference on Information and knowledge management,
ACM, 2009, pp. 701–710.

[18] V. Govindaraju, K. Ramanathan, Similar document search and recom-
mendation, Journal of Emerging Technologies in Web Intelligence 4 (1)
(2012) 84–93.

24

[19] C.-J. Lee, W. B. Croft, Generating queries from user-selected text, in:
Proceedings of the 4th Information Interaction in Context Symposium,
ACM, 2012, pp. 100–109.

[20] L. Weng, Z. Li, R. Cai, Y. Zhang, Y. Zhou, L. T. Yang, L. Zhang, Query
by document via a decomposition-based two-level retrieval approach,
in: Proceedings of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval, ACM, 2011, pp.
505–514.

[21] T. Joachims, Text categorization with support vector machines: Learn-
ing with many relevant features, in: European conference on machine
learning, Springer, 1998, pp. 137–142.

[22] K. Nigam, J. Lafferty, A. McCallum, Using maximum entropy for text
classification, in: IJCAI-99 workshop on machine learning for informa-
tion filtering, Vol. 1, Stockholom, Sweden, 1999, pp. 61–67.

[23] Y. Kim, Convolutional neural networks for sentence classification, arXiv
preprint arXiv:1408.5882.

[24] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed
representations of words and phrases and their compositionality, in: Ad-
vances in neural information processing systems, 2013, pp. 3111–3119.

[25] Q. Le, T. Mikolov, Distributed representations of sentences and doc-
uments, in: International Conference on Machine Learning, 2014, pp.
1188–1196.

[26] S. E. Robertson, D. A. Hull, The trec-9 filtering track final report., in:
TREC, 2000, pp. 25–40.

[27] W. Hersh, C. Buckley, T. Leone, D. Hickam, Ohsumed: An interactive
retrieval evaluation and new large test collection for research, in: SIGIR,
Springer, 1994, pp. 192–201.

[28] E. M. Voorhees, D. Harman, Overview of the eighth text retrieval con-
ference (trec-8)., in: TREC, 1999, pp. 1–24.

[29] R. Řeh̊uřek, P. Sojka, Software Framework for Topic Modelling with
Large Corpora, in: Proceedings of the LREC 2010 Workshop on New

25

Challenges for NLP Frameworks, ELRA, Valletta, Malta, 2010, pp. 45–
50, http://is.muni.cz/publication/884893/en.

[30] P. G. Ipeirotis, L. Gravano, Distributed search over the hidden web: Hi-
erarchical database sampling and selection, in: Proceedings of the 28th
international conference on Very Large Data Bases, VLDB Endowment,
2002, pp. 394–405.

26

