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Abstract—Most existing commercial goal-oriented chatbots are
diagram-based; i.e., they follow a rigid dialog flow to fill the
slot values needed to achieve a user’s goal. Diagram-based
chatbots are predictable, thus their adoption in commercial
settings; however, their lack of flexibility may cause many users
to leave the conversation before achieving their goal. On the
other hand, state-of-the-art research chatbots use Reinforcement
Learning (RL) to generate flexible dialog policies. However, such
chatbots can be unpredictable, may violate the intended business
constraints, and require large training datasets to produce a
mature policy. We propose a framework that achieves a middle
ground between the diagram-based and RL-based chatbots:
we constrain the space of possible chatbot responses using a
novel structure, the chatbot dependency graph, and use RL to
dynamically select the best valid responses. Dependency graphs
are directed graphs that conveniently express a chatbot’s logic
by defining the dependencies among slots: all valid dialog flows
are encapsulated in one dependency graph. Our experiments in
several domains show that our framework quickly adapts to user
characteristics and achieves up to 23.77% improved success rate
compared to a state-of-the-art RL model.

I. INTRODUCTION

Dialog systems (a.k.a. chatbots) offer an intuitive way for
humans to interact with machines. Building intelligent dialog
systems has been one of the main goals of AI research since
the inception of the field [1], [2]. Dialog systems can be
categorized into two main groups: chit-chat and goal-oriented.
Chit-chat (or social) bots such as Microsoft’s Xiaoice [3] are
designed to mimic open-ended human-to-human conversations
for entertainment purposes, rather than to complete a particular
task. Goal-oriented chatbots, which are the focus of this paper,
facilitate automating repetitive tasks such as booking a flight
ticket or ordering a pizza. The ultimate objective of a goal-
oriented chatbot is to keep a user engaged until her task is
achieved; a conversation is successful if the user reaches the
end of the conversation, which typically results in concluding
a business transaction.

A typical goal-oriented chatbot system has a modular
architecture consisting of several components [4]: a natural
language understanding (NLU) module [5], a dialog state
tracker (DST) [6], a dialog policy (DP) unit [7], and a natural
language generation (NLG) module [8]. NLU, DST, and NLG
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Fig. 1: Overview of our framework: A domain expert designs a
chatbot dependency graph, and our framework uses this graph
to restrict the actions of an RL model in the policy generation
module. We train and evaluate adaptive RL models using
simulated chat logs generated using our novel user simulator
that considers user-specific characteristics, allowing the policy
generation module to capture latent user profiles.

modules handle the bi-directional conversion between bot/user
utterances and structured semantic representations. The dialog
policy module is a key component that generates a chatbot’s
response at the semantic representation level, given a user
utterance and a conversation context. The focus of this paper
is a new framework for building flexible dialog policies for
goal-oriented chatbots.

Despite the impressive advances in deep learning, commer-
cial goal-oriented chatbots mainly rely on diagram-based dialog
policies, where the conversation flow between the chatbot
and the user is modeled as a simple finite state machine.
The key reasons for the diagram-based model’s popularity
in state-of-the-art commercial chatbot platforms like Google’s
DialogFlow [9] and Amazon Lex [10] are their interpretability
and predictability; i.e., the bot designer knows exactly what
decision the bot will take. However, their rigid diagram-
driven dialog policy does not take into account that different
conversation flows may be better for different users. This lack
of flexibility may cause users to leave the conversation before
achieving their goal, resulting in lost revenue in commercially
deployed chatbots. State-of-the-art research on goal-oriented
chatbots, on the other hand, uses Reinforcement Learning (RL)
to build flexible dialog policies [11], [7], [12]. However, such
policies are difficult to interpret and tune, and they may violate
the intended business logic, unless a large amount of high
quality training data is available.



We propose a framework for building predictable and flexible
dialog policies by coupling chatbot dependency graphs with
RL – Figure 1 shows an overview of our framework. We
propose chatbot dependency graphs to mitigate the rigidity of
traditional chatbot diagrams, and provide chatbot designers with
an intuitive way of integrating their domain-specific constraints
into a flexible chatbot. A chatbot dependency graph is a directed
graph, where nodes are slots or groups of slots, and edges are
dependencies among slots; i.e., the strict order with which slots
should be filled. Chatbot dependency graphs (i) are easier to
design than traditional diagrams as the bot designer needs to
only describe dependencies among slots rather than specifying
exact dialog flows; (ii) encapsulate all valid conversation flows,
which allows for dynamically optimizing dialog flows based
on user characteristics; and (iii) provide an elegant way to
restrict the action space of an RL model, resulting in faster
convergence (i.e., less reliance on training data).

Our framework limits the action space of an RL model
by assigning negative rewards to actions that violate the
constraints imposed in the respective dependency graph. Cou-
pling dependency graphs with RL achieves two desired goals:
First, it enables an RL model to dynamically choose the best
valid conversation flow based on the user behaviour and the
conversation context. Second, it reduces the amount of training
data required for the RL model to adapt to user characteristics
and converge to a mature dialog policy. This is possible because
the domain-specific constraints imposed by the dependency
graph limit the action space of the RL model, and implicitly
teach it what actions are illegal; hence, the RL model needs
little to no training data with illegal actions.

We pre-train our framework using agenda-based user sim-
ulation [13], where each conversation simulates a user with
a specific goal and an agenda of user actions. We train and
evaluate our framework using our novel adaptive user simulator
which, compared to existing simulators [13], is more realistic
as it allows users to drop out of a conversation under certain
circumstances based on their characteristics. In our simulator, a
user is characterized with factors inspired by studies on online
customer behaviour [14]. Each user profile determines the
degree to which a user cares about a certain factor; e.g., a highly
privacy-conscious user is likely to drop out of conversations
when asked about her phone number without explaining why
and how her number will be used. In summary:
(i) We propose chatbot dependency graphs to facilitate and
simplify the design of flexible chatbot dialog flows (Section II).
(ii) We integrate dependency graphs with RL, which leads to
faster convergence compared to existing RL policy generation
models (Section III).
(iii) We train and evaluate our framework using our adaptive
user simulator (Section IV); our extensive simulations show
that our framework quickly adapts to user characteristics
(Section V).

II. CHATBOT DEPENDENCY GRAPHS

Diagram-based goal-oriented chatbots (or rule-based chat-
bots) acquire slot values from a user with the help of a diagram

What kind of pizza do you want?

What size?

Please choose crust type?

Any toppings (can be multiple)?

Do you want to read reviews? Here’re 5 top reviews

Do you have coupon? Please enter coupon?

Please confirm your order of “. . .”

Thank for your order! Goodbye!

E.g., Cheese & Pepperoni/Chef’s Chicken Choice

Small/Medium/Large

E.g., wheat thin crust/Italian crust

E.g., onion, mushroom

No

Yes

No

Yes

NEWYEAR19

Yes No

Fig. 2: Example chatbot diagram: pizza ordering.

(or a set of rules). The diagram guides a conversation by
specifying which slots need to be filled and in what order.
Consider the example of pizza ordering chatbot diagram in
Figure 2. In this example, the diagram instructs the chatbot to
ask for the slot values required to confirm a pizza order: pizza
type, size, crust type, and toppings. Also, the diagram specifies
that the bot has to offer reviews to the user only if he responds
with yes to the question: “Do you want to read reviews?”. The
choice of presenting valid orderings or presenting/eliminating
certain slots can be challenging for bot designers, because such
choices should be driven by user characteristics, and can only
be decided dynamically when the chatbot is interacting with
the user. Our chatbot dependency graphs eliminate this burden
from the bot designers, and assigns the choice to an RL model.

A dependency graph G(V,E) is comprised of a set of
supernodes V and a set of edges E ⊂ V × V . A supernode
v ∈ V groups semantically related slots, similarly to frames
in the frame-based paradigm [15]. The slots in a supernode
should all be filled before filling slots from another supernode.
A supernode may impose restrictions on the order of filling its
slots by means of a traditional diagram (within a supernode),
and supernodes can be optional, which we introduce to
enable selectively providing and soliciting slot values that
are not essential to the success of a conversation, but rather
supplementary. Consider, for example, a price-conscious user
trying to order a pizza. Offering the chance to enter a coupon
code may encourage the user to finish her conversation. At the
same time, presenting such coupon option may throw off an
impatient user who does not care about discounts. Supernodes
may contain information blocks, which are text messages or
images that are used to facilitate providing the user with extra
information, if necessary, such as product reviews. An edge



v1: What pizza do you want?

type size crust toppings

v2: Do you want to read reviews?

read-review information
yes

v3: Do you have coupon?

have-coupon coupon
yes

v4 Please confirm your order of “. . .”

place-order Thank!

Goodbye!

yes

no

Fig. 3: Dependency graph for pizza ordering. A directed edge from vj to vi means that vj has a dependency on vi; i.e., vj
should only be presented to the user after vi. Dotted borders denote optional supernodes.

(vi, vj) ∈ E implies that supernode vi depends on supernode
vj ; that is, the slots in vi should be presented/solicited before
those in vj . Figure 3 shows an example chatbot dependency
graph. This dependency graph not only captures the dialog
flow in Figure 2, but it also encapsulates all other valid dialog
flows based on the specified business constraints presented in
the form of dependencies among supernodes.

III. DIALOG POLICY GENERATION

In the state-space of our RL model, a state is a vector
that captures the conversation history. A state contains the
following information: (i) the current value for each slot, e.g.,
pickup-location=“2894 Massachusetts Avenue”; (ii) a boolean
variable for each slot specifying whether the slot has been
filled or shown to the user; and (iii) three boolean variables
for each supernode specifying whether it is optional, activated,
or presented.

Our RL model’s action space consists of all possible actions
the chatbot can take. A bot action <act, slot> is a pair of dialog
act and a slot, where a dialog act is a semantic description of
the chatbot’s intention at a dialog turn. For example, when a
pizza ordering chatbot asks for the crust type, the action is the
pair <request, crust-type>. We consider the following set of
dialog acts: request, inform, show. Our framework can also be
extended to support other domain-specific dialog acts, however,
the dialog acts we currently use are essential to all domains.

The reward function in our RL model assigns a positive
reward to the conversation success state (e.g., pizza order
confirmation), and a negative reward otherwise. Dependency
graphs restrict the possible actions at certain states by causing
the reward function to return a negative reward when the
RL agent takes an action that violates the dependency graph
constraints. This way, the RL model learns to avoid violating
actions. We describe next how violating actions are identified
according to the constraints of a dependency graph.

First, actions involving slots from one supernode should
be invoked together. For example, consider the case when
a pizza ordering chatbot is at state s where the slots type
and size have been filled, and the slots crust, toppings,
and read-reviews have not been filled (supernode v1 in
Figure 3). In such a case, all the slots in supernode v1 should be
filled before moving to any other supernode. The dependency
graph will cause the reward function to return a negative reward
if the RL agent generates a response involving a slot from a

supernode other than the active one (v1 in our example). Second,
the dependencies across supernodes restrict the next slots to
present. If supernode vi depends on supernode vj , the slots in
vj should be presented before making any action involving slots
from vi. Thus, actions violating this constraint will result in a
negative reward. For instance, when the chatbot is at the state
s described above, the bot has not presented all the slots of
supernode v1, thus the RL agent would receive a negative
reward if it takes action <request, place-order> or
<show, goodbye> of supernode v4. Finally, inside each
supernode, actions involving a slot are valid only if the slot’s
dependencies have been satisfied (as in chatbot diagrams).

IV. USER SIMULATION

Ideally, an RL agent learns from real-world feedback. In the
context of goal-oriented chatbots, this means that the RL agent
would have to perform a possibly large number of dialogues
with real users before its dialogue policy becomes mature.
Although crowd-sourcing services, such as Amazon MTurk,
seemingly offer the possibility of training a chatbot by talking
to MTurk workers, the time and financial cost can be prohibitive.
Consequently, we rely on agenda-based user simulation [13],
similarly to the state-of-the-art RL chatbot engines [16], [7],
[17]. We use an agenda-based user simulator to pre-train our
model, which teaches our RL agent a basic dialog policy that
does not necessarily take user characteristics into account. We
train and evaluate our RL agent using a more realistic user
simulator which takes into account that users may drop out
of conversation. Our adaptive simulation mechanism enables
studying the adaptivity aspect of a chatbot.

In agenda-based user simulation, a conversation is described
by a user goal and a user agenda. A user goal consists of
inform act and slot-value pairs that serve as user constraints,
and request slots whose values the user wishes to know. For
example, a pizza ordering user goal has type=pepperoni,
size=medium, and crust=thin as constraints, and slots
toppings and wait-time as requests. A user agenda is
a stack of user actions built and updated from the user goal
and the bot utterances to determine the next simulated user
utterance.

A user simulator should resemble the real user behaviour:
Users may get irritated by the chatbot utterances and choose
to drop out, i.e., leave the conversation; they may provide
irrelevant or uninterpretable utterances; or, ideally, they may



provide the requested information, e.g., slot values. Existing
agenda-based user simulators fail to account for the non-
ideal scenarios and assume that users continue to converse
with a chatbot until their goals are achieved. We extend
the agenda-based user simulation paradigm by modeling
the non-ideal scenarios. The probability of a certain user
responding according to the three scenarios is a function
of her characteristics; estimating these probabilities is non-
trivial due to their reliance on user characteristics. We denote
the probability of user dropout, providing uninterpretable
utterances, and providing relevant utterances by pd, pe, and ps,
respectively.

Our simulator determines the probability of each user
response using a user profile, which is a set of factors that
describe a user. Inspired by the research in online customer
behavior [14] and the work in [16], we choose the following fac-
tors to define a user profile: security, privacy, uncertainty,
guarantee, price, and promotion. Each factor is a numeric
value between 0 and 1. Security and privacy quantify the
level to which a user is concerned with her transaction security
and data privacy, respectively. For users with high values,
the chance of dropping out if the chatbot does not explicitly
provide security and privacy guarantees is high. Uncertainty
quantifies a user’s need for additional information, such as
customer reviews, to clear her confusion. Guarantee, price,
and promotion quantify a user’s interest in product guarantees,
price, and promotional coupons, respectively. A user uj is
described with a vector of her parameter values:

uj = [security(uj), privacy(uj), uncertainty(uj),

guarantee(uj), price(uj), promotion(uj)]
ᵀ.

We explain next the process of computing pd, pe, and ps.
These probabilities are functions of the interaction between a
supernode in a dependency graph (which results in a chatbot
utterance or a group of utterances) and a specific user profile.
We define pkd(uj) as the drop out rate of user uj after k turns.
The user uj is first initiated based on a global user drop out
rate and her profile is as follows:

p0d(uj) = global_dropout+ 1
2 ×

∑6
f=1 uj [f ]. (1)

The dropout increase penalizes the event that the chatbot fails
to address a user concern specified by the user profile. Let

li = [security(li), privacy(li), uncertainty(li),

guarantee(li), price(li), promotion(li)]
ᵀ

be a vector of relevance parameters associated with a slot li.
Each parameter is a numeric value ∈ [−1, 1] that indicates the
relevance of utterances generated by node li to a certain user
parameter; negative values indicate an adversary effect, and
positive values indicate an engaging effect. Let the effect of slot
li to user uj be the inner product of li and uj : effect(li, uj) =
lᵀi · uj .

The user dropout rate after having received k chatbot
utterances is updated to reflect slot li’s effect as follows:

pkd(uj) = max(0,min(1, pk−1
d (uj)− δ × effect(li, uj))) (2)

where δ is a constant factor specifying the maximum dropout
change per conversation turn. We further penalize chatbot
dependency graph violations, which typically confuse users,
using parameter β:

pkd(uj) = max(0,min(1, pk−1
d (uj) + β)) (3)

For simplicity, we assume that the probability of a user
generating an uninterpretable utterance pe is a constant ε
bounded by the complement of the drop out probability:
pe = min(ε, 1 − pd). Finally, the probability of a user
generating a valid utterance is: ps = 1− pd − pe.

V. EVALUATION

Domains. We evaluated our framework in two domains: movie
ticket booking and pizza ordering. Each domain dataset consists
of a database of items (movie tickets, pizza configurations), a
random set of user goals, and a list of domain slots. For the
movie ticket booking domain, we used the dataset created by
Li et al. [7], which contains 280 goal-oriented dialogues. In
each of these dialogues, a user attempts to book a ticket for one
of 991 movies. We used the 133 goals sampled in [7] to initiate
the user simulations. A goal in this context is a combination of
slot values describing the user’s desired movie booking, and a
list of slots whose values are queried by the user (Section IV).
For the pizza ordering domain, we built a database of pizza
orders where we based our pizza specifications and slot list
on the options Dominos offers. For example, a “small” pizza
can have two crust types: “hand tossed” and “gluten free”. We
randomly sampled 10,000 pizza configurations as user goals
and used them to initiate our simulations.

Implementation details. For the pizza ordering domain, we
used an extended version of the dependency graph in Figure 3,
where we added optional supernodes to address user concerns
related to privacy, security, and final price details. For the
movie booking domain, we created a dependency graph similar
to that of the pizza ordering, but with supernodes containing
movie related slots. We built our RL model as described in
Section III, and used Deep Q-Network [18](DQN) to train
our RL agent. We used Adam optimizer with a learning rate
10−3, binary cross entropy as a loss function, and a batch
size of 16 in our training. Our DQN has two layers with relu
and softmax activations, and hidden size of 80. The reward
value for successful and failed conversations are +30 and −30,
respectively.

Competing methods. We compare our framework against the
following methods:
GO-Bot-DRL [7]: State-of-the-art RL dialog policy generation

model that learns dependency violations from negative user
reactions, which are manifested through an increase in user
dropout rate.

Sequence Rule: A diagram-based dialog policy that selects
the next action according to a predefined dialog flow and
includes all optional slots. We also compare against a variant
of this baseline that does not present optional node.



Parameter Value Description

Global initial drop out 3% The base drop out rate (Equation 1). Consider a conversation that lasts for 20 turns: 3% global drop
out rate results in a probability of (1− 0.03)20 ≈ 0.543, or 54.3% that a user had not dropped out by
the end of turn 20 (without considering other factors such as slot error rate pe).

Drop out delta (δ) 1%, 0.5% The maximum drop out change per conversation turn in Equation 2.
Drop out increase due to
violation (β)

3%, 4% Increase in user drop out when she is presented with a dependency violating utterance. (Equation 3).

Slot error rate (pe) 5% The rate of uninterpretable user utterances and NLU errors; we set the value of this parameter similarly
to other studies [7], [17].

TABLE I: User simulator parameters. We chose the values of the parameters in a way that maintains a reasonable dropout
probability of around 50% within 20 dialog turns. Higher values would result in unrealistically high dropout probabilities; thus,
not enabling the RL models to make progress, and lower values would result in unrealistically easy dialog tasks (user rarely
drops out) that do not challenge the RL models enough.
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Fig. 4: Success rates of all competing methods.

Random Rule: A diagram-based dialog policy where the next
action is picked at random to fill the next empty slot and
includes all optional slots. We also compare against a variant
of this baseline that does not present optional slots.

Evaluation metrics. Similarly to other works in goal-oriented
dialog systems [7], [17], we use the success rate as the main
quantitative measure of success for a dialog policy, and we
use simulated conversations in our evaluation. The success
rate of a dialog policy is the ratio of conversations where
the user reaches the end of the conversation, e.g., confirms
a pizza order. For the RL based models, we report success
rates during the training (i.e., adaptation) and testing phases;
we used different user goals in the training and the testing
phases. For the training phase, we show how the success rates
evolve as an RL agent does more conversations to highlight
the difference in the amount of training conversations needed
for each model. For the testing phase, we simulated 2,500
conversations from unseen user goals for all the competing
methods. Although it is desirable to evaluate dialog systems
by having them chat with real users, (i) the large number of
conversations; (ii) the need for diverse user profiles; and (iii)
the nature of our dialogs, the semantic level, make it unrealistic
to perform evaluation using real user studies.

Experimental setup. We did our experiments on a set of
different user profiles (explained in Section IV). Specifically,
there are six user parameters, each can take a value between 0

and 1. In our experiments, we set the value of each parameter
to either 0 or 1; therefore, we consider 26 = 64 different user
profiles. Note that the user profiles are not visible to any of the
models, however, RL models adapt to different user profiles
based on user behaviour during the training phase. We report
the average results across all user profiles. Since we have a
fixed number of user goals to initiate simulated conversations,
we randomly partition these goals into train/test sets with a
ratio of 9 to 1 (i.e., we do a 10-fold cross validation). We
pre-trained our framework and GO-Bot-DRL using a traditional
agenda-based user simulator to teach them a basic dialog policy.
We trained and evaluated both models using our user simulator
(Section IV) to study their adaptivity. The values of the user
simulator parameters are described in Table I.

A. Success rate comparison

Figure 4 shows the success rates for all competing methods
averaged over 2,500 conversations. Our framework and GO-
Bot-DRL were trained using 12,000 simulated conversations.
This experiment shows that our framework outperforms other
methods in the more realistic setting where users may drop
out of a conversation based on their characteristics. Compared
to GO-Bot-DRL, our framework’s success rate is 22.69% and
23.77% higher on average for the movie and pizza domains,
respectively. Diagram-based methods’ performances are lower
than both our method and the GO-Bot-DRL, especially in
the movie ticket booking domain. Since the pizza ordering
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Fig. 5: Evolution of success rate for our framework and GO-Bot-DRL. The average success rates over intervals of 100
conversations are shown for both methods.

task is shorter and simpler than the movie booking one, all
methods perform reasonably well. Diagram-based methods
achieve lower success rates because they fail to recover when
they receive an erroneous utterance; they get stuck and cause
users to drop out, unlike RL models that ultimately learn to
avoid conversational patterns that lead to dropouts.

B. Adaptation comparison

Figure 5 shows how the success rate evolves with the number
of simulated conversation during the training (i.e., adapting
to latent user profiles) phase for our framework and GO-Bot-
DRL. Note that both models were pre-trained using the same
simulated conversations (generated using a traditional agenda
based simulator) before staring this experiment. In the training
phase, our framework starts with a higher success rate because
it learned to avoid violating conversations during pre-training
more effectively, thanks to the dependency graph restrictions.
For both domains, our framework adapts to user characteristics
faster than GO-Bot-DRL. Specifically, our framework achieves
a success rate of 30% after tens of conversations in the
movie domain, while GO-Bot-DRL reaches the same success
rate after thousands of conversations. This highlights the
advantage of coupling dependency graphs with RL: dependency
graphs restrict RL’s reliance on conversations to learn violating
conversational patterns. For the movie domain, our framework
reaches a success rate of around 65% after 8,000 conversations.
while GO-Bot-DRL reaches a success rate of around 55% after
12,000 conversations. Similar patterns can be observed in the
pizza domain as well.

C. Analysis

In this section, we study some aspects of the performance
of the competing dialog policy generation methods to provide
some insight into why our model achieves a higher success
rate than other methods. Specifically, we study the effect of
dependency graphs on conversation length and ratio of violating
conversations.

Violation rate comparison. In this experiment, we validate the
benefit of coupling dependency graphs with RL by showing
that our framework is able to learn avoiding conversations
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Fig. 6: Rate of violating conversations in the movie domain
(lower is better)

that violate dependency graph constraints earlier than the GO-
Bot-DRL. Note that both models eventually learn avoiding
violating conversations. In our framework, the reward function
gives the RL agent a negative reward as soon as it generates a
violating utterance based on the respective dependency graph
constraints, which results in the model learning to avoid
violating actions as early as possible. In GO-Bot-DRL, the agent
learns to avoid violating actions eventually due the dropout rate
increase (parameter β in Equation 3). Figure 6 shows that our
method quickly achieves a significantly lower rate of violating
conversations than GO-Bot-DRL.

Conversation length comparison. Figure 7 shows the average
conversation length for all methods in the pizza domain.
Note that in goal-oriented chatbots, it is desirable to keep
conversation length to a minimum, while achieving high success
rate, to avoid losing user interest. The variants of rule-based
methods that never present optional slots achieve a small
average conversation length, and their counterparts that always
show optional slots have high conversation length; however,
these methods have a low success rate due to their rigid
dialog flow. Both our framework and GO-Bot-DRL provide
dynamic conversation flows and their average conversation
length is very similar. This indicates that both methods are not
always presenting or skipping optional slots, but they rather
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Fig. 7: Average conversation length for all competing methods
in the pizza domain.

learn whether to present optional slots or not based on the
specific user characteristics. Yet our framework achieves higher
success rate compared to GO-Bot-DRL. This confirms that our
framework learns which optional slots to present, based on
user characteristics, more effectively.

VI. RELATED WORK

Chit-chat dialog system. Many dialog systems are designed
to engage in open-ended dialog with users, referred to in the
literature as chit-chat systems [1]. Early chit-chat systems used
rule-based techniques. A prominent example of an early chit-
chat system is ELIZA [2], which uses pattern matching and
transformation rules to generate system utterances. Modern
chit-chat systems are either retrieval-based or generative [19].
The authors in [20] propose a retrieval-based dialog system
that combines recurrent neural networks (RNNs) with latent
topic models to learn representations of user utterances and
responses, and retrieves relevant responses using the learned
representations. These systems are generally meant to entertain
users without necessarily having any goal, and are outside the
scope of this paper.

Goal-oriented dialog systems. We focus in this paper on goal-
oriented dialog systems, where the system is meant is to help
a user achieve a specific task. The authors in [15] proposed
the frame-based dialog management paradigm, which is the
basis for most work in goal-oriented dialog systems [1]. In this
framework, the main elements of a conversation are frames
and dialog acts. Each frame is a group of semantically related
slots, which collectively constitute the information the system
needs to know. Dialog acts are the actions that the system can
make to interact with a user and fill slots. Most recent works
on goal-oriented dialog systems use either an end-to-end or a
modular pipeline consisting of: natural language understanding
(NLU) module, dialog state tracking (DST) module, dialog
policy (DP) module, and natural language generation (NLG)
module [21]. End-to-end goal-oriented dialogue systems such
as the ones described in [22] and [23] are trained using the
user-system utterances in an end-to-end fashion, and they try
to capitalize on the success of the seq2seq-based open-domain

chit-chat systems. Despite all such encouraging results, the
scarcity of domain specific dialogue data [24] makes it difficult
to train robust end-to-end dialog systems. Thus, the modular
pipeline remains more practical. While progress in any of the
mentioned modules is likely to improve the overall quality of
goal-oriented dialog systems, we concentrate on dialog policy
design and management.

Dialog policy management. An intuitive way to manage
dialog policies is using diagrams [25] (or rules), where each
slot corresponds to a node, and the transitions between slots
are decided based on the slot value provided by the user. While
such dialog policy is rigid, it is predictable and fairly easy
to design. Thus, commercial dialog system platforms such
as Google’s DialogFlow [9] and Amazon Lex [10] embrace
it. Many research systems model dialog policy generation as
a Markov decision process (MDP) [26], [27] or a partially
observed MDP (POMDP) [28], [29], [30], [31] and utilize
reinforcement learning to optimize for better dialog policies.
The authors in [32] propose a comprehensive framework for
dialog management. In this framework, the authors propose a
construct similar in spirit to our chatbot dependency graphs;
however, dependency graphs are more flexible in the sense
that they encabsulate richer sets of dialog flows. ConvLab [33],
which is a suite of tools for training and evaluating goal-oriented
dialog systems offers implementations of state-of-the-art RL-
based dialog policy generation methods. Unlike diagrams, our
framework offers a convenient way to design flexible dialog
policies, and unlike pure RL methods, our framework does not
heavily rely on training data to adapt to user characteristics.

VII. CONCLUSIONS

We have presented a flexible dialog policy generation
framework for goal-oriented chatbots. First, we proposed
chatbot dependency graphs as an intuitive structure that
captures conversation constraints imposed by the respective
domain. Dependency graphs are easy to design and they
mitigate the rigidity of chatbot diagrams by encapsulating
all valid conversation flows. Then, we proposed coupling
dependency graphs with RL models, and we proposed training
and evaluating these models using a user simulator that takes
into account different user characteristics. Our RL agent is able
to dynamically select the best valid conversation flow based on
the dependency graph constraints and the user characteristics.
We evaluated our framework using an agenda-based user
simulator augmented with the notion of user profiles and user
dropouts for more realistic user modeling. Our experimental
evaluation in the movie ticket booking and pizza ordering
domains show that our method achieves success rates up to
23.77% higher than a state-of-the-art RL-based method.
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