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Abstract—Many online or local data sources provide powerful querying mechanisms but limited ranking capabilities. For instance,
PubMed allows users to submit highly expressive Boolean keyword queries, but ranks the query results by date only. However, a user
would typically prefer a ranking by relevance, measured by an information retrieval (IR) ranking function. A naive approach would be to
submit a disjunctive query with all query keywords, retrieve all the returned matching documents, and then re-rank them. Unfortunately,
such an operation would be very expensive due to the large number of results returned by disjunctive queries. In this paper we present
algorithms that return the top results for a query, ranked according to an IR-style ranking function, while operating on top of a source with
a Boolean query interface with no ranking capabilities (or a ranking capability of no interest to the end user). The algorithms generate
a series of conjunctive queries that return only documents that are candidates for being highly ranked according to a relevance metric.
Our approach can also be applied to other settings where the ranking is monotonic on a set of factors (query keywords in IR) and the
source query interface is a Boolean expression of these factors. Our comprehensive experimental evaluation on the PubMed database
and a TREC dataset show that we achieve order of magnitude improvement compared to the current baseline approaches.
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1 INTRODUCTION

Many online or local data sources provide power-
ful querying mechanisms but limited ranking capabil-
ities. For instance, PubMed1 allows users to submit
Boolean keyword queries on the biomedical publications
database, but ranks the query results by publication
date only. Similarly, the US Patent and Trademark Office
(USPTO)2 allows Boolean keyword queries or searching
patents but only ranks by patent date. Furthermore, job
search databases, such as the job search of LinkedIn,3

allow users to sort job listings by date or title (alpha-
betically), but not by IR relevance of the job posting
to the submitted query. As a more recent example, the
micro-blogging service Twitter4 offers a highly expres-
sive Boolean search interface but ranks the results by
date only. In most cases, these sources do not allow
downloading and indexing of data or the size of the
underlying database makes any comprehensive down-
load [1], [2] an expensive operation.

Often, the user prefers a ranking other than the de-
fault sorting (e.g., by date) provided by the source. For
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instance, a user of the PubMed or USPTO Web sites
may prefer a ranking by relevance [3], [4], measured
by an Information Retrieval (IR) ranking function, as
opposed to a date-based retrieval. Given that traditional
IR ranking functions [5] like Okapi [6] and BM25 [7]
implicitly assume disjunctive (OR) semantics, the naive
approach would be to submit to the database a dis-
junctive query with all query keywords, retrieve all the
returned documents, and then rank them according to
the relevance metric of choice. However, this would be
very expensive due to the large number of results re-
turned by disjunctive queries. For example, consider the
query “immunodeficiency virus structure,” an example
query used to teach information specialists how to search
the PubMed database [8]. Executing the correspond-
ing disjunctive query “immunodeficiency OR virus OR
structure” on PubMed returns 1,451,446 publication re-
sults. Downloading and ranking them is infeasible for
an interactive query system, even if the source is on the
local network. The problem becomes even more critical
if we use the public web services provided by PubMed
for programmatic (API) access over the web. Given the
large overhead incurred when retrieving publications,
PubMed imposes quotas on the amount of data an
application can retrieve per minute, rendering infeasible
any attempt to download large number of documents.

To overcome such problems, in this paper, we present
algorithms to compute the top results for an IR ranked
query, over a source with a Boolean query interface
but without any ranking capabilities (or with a ranking
function that is generally uncorrelated to the user’s
ranking: e.g., by date). A key idea behind our tech-
nique is to use a probabilistic modeling approach, and
estimate the distribution of document scores that are
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expected to be returned by the database. Hence, we
can estimate what are the minimum cutoff scores for
including a document in the list of highly ranked docu-
ments. To achieve this result over a database that allows
only query-based access of documents, we generate a
querying strategy that submits a minimal sequence of
conjunctive queries to the source. (Note that conjunctive
queries are cheaper since they return significantly fewer
results than disjunctive ones.) After every submitted
conjunctive query we update the estimated probability
distributions of the query keywords in the database and
decide whether the algorithm should terminate given
the user’s results confidence requirement or whether
further querying is necessary; in the latter case, our
algorithm also decides which is the best query to submit
next. For instance, for the above query “immunodefi-
ciency virus structure”, the algorithm may first execute
“immunodeficiency AND virus AND structure”, then
“immunodeficiency AND structure” and then terminate,
after estimating that the returned documents contain all
the documents that would be highly ranked under an
IR-style ranking mechanism. As we will see, our work
fits into the “exploration vs. exploitation” paradigm [9],
[10], [11], since we iteratively explore the source by
submitting conjunctive queries to learn the probability
distributions of the keywords, and at the same time
we exploit the returned “document samples” to retrieve
results for the user query.

Our approach can also be extended and applied to
other settings where the ranking is monotonic on a set
of factors (query keywords in IR) and the source query
interface is a Boolean expression of these factors. For
instance, consider a database of products with Boolean
attributes, like cars for sale that have attributes such
as “used,” “new,” “two-doors,” “four-doors,” “convert-
ible,” and so on. Suppose that the query interface only
allows specifying attribute values (e.g., “used AND con-
vertible AND two-doors”). Suppose the source ranks
cars always by price. If the user wants to rank by a
weighted sum of the attribute values (e.g., 0.2 · used +
0.4 · convertible + 0.4 · two − doors), then we can apply
an adaptation of our approach.

Our work has the following contributions:
1) We define the novel problem of applying ranking

on top of sources with no ranking capabilities by
exploiting their query interface.

2) We describe sampling strategies for estimating the
relevance of the documents retrieved by different
keyword queries. We present a static sampling
approach and a dynamic sampling approach that
simultaneously executes the query, estimates the
parameters required for efficient query execution,
and compensates for the biases in the sampling
process.

3) We present algorithms that, given a user confi-
dence input, retrieve a minimal number of re-
sults from the source through submitting high-
selectivity (conjunctive) queries, so that the user’s

confidence requirement is satisfied.
4) We experimentally evaluate our algorithms using

the PubMed database and examine two settings:
(i) the remote setting, where we use web services to
query the database, and (ii) the local setting where
we query a locally installed subset of PubMed. Our
results show an order of magnitude improvement
compared to the naive query evaluation approach.

The rest of the paper is organized as follows. In
Section 2 we describe related work and place our work
in the context of the existing literature. In Section 3 we
give the framework, problem definition, and notation,
while in Section 4 we outline the basic ideas of our
approach. Then, in Section 5 we describe in detail our
algorithms, and in Section 6 we present the results of
our experiments. Finally, Section 7 concludes the paper.

2 RELATED WORK

A preliminary version of this work has been published
as a short paper in [12].

Top-k queries: A significant amount of work has been
devoted to the evaluation of top-k queries in databases.
Ilyas et al. [13] provide a survey of the research on
top-k queries on relational databases. This line of work
typically handles the aggregation of attribute values of
objects in the case where the attribute values lie in
different sources [14], [15] or in a single source [16].
Theobald et al. [17] describe a framework for generating
an approximate top-k answer, with some probabilistic
guarantees. In our work, we use the same idea; the main
and crucial difference is that we only have “random
access” to the underlying database (i.e., through query-
ing), and no “sorted access.” Theobald et al. assumed
that at least one source provides “sorted access” to the
underlying content.

Exploration vs. exploitation: The idea of the ex-
ploitation/exploration tradeoff [9], [10], [11] (also called
the “multi-armed bandit problem”) is to determine a
strategy of sequential execution of actions, each of which
has a stochastic payoff. While executing an action we
get back some (uncertain) payoff, and at the same time
we get some information that allows us to decrease the
uncertainty of the payoff of future actions. In our work,
we are trying to maximize the payoff/exploitation of
each query (which is the number of new, relevant top-
k documents that the query retrieves) while minimizing
the expense/exploration (number of queries sent, and
documents retrieved).

Deep Web: Our work bears some similarities to the
problem of searching and extracting data from the Deep
Web [18] databases. Meng et al. [19], [20] examine the
problem of estimating the number of useful documents
in the database, assuming that the statistics about the
frequency and the tf.idf weights of each word in the
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database is given. In our work, we estimate such statis-
tics on-the-fly, as part of the explorative sampling pro-
cess. Ntoulas et al. [2] attempt to download the contents
of a Deep Web database by issuing queries through a
web form interface. The goal of Ntoulas et al. is to down-
load and index the contents of databases with limited
query capabilities, whereas in our case the focus is on
achieving on-the-fly ranking of query results, on top
of sources with no (or non-useful) ranking capabilities.
An alternative approach is to characterize databases by
extracting a small sample of documents that is then used
to describe the contents of the database. For example,
it is possible to use query-based sampling [21], [22]
to extract such a document sample, generate estimates
for the distribution of each term, and then use the
estimates to guide the choice of queries that should be
submitted to the database. In the experimental section,
we compare against this “static sampling” alternative
and demonstrate the superiority of the dynamic sam-
pling technique, which dynamically generates estimates
tailored to the query at hand.

3 PROBLEM DEFINITION

Query Model Consider a text database D with doc-
uments d, . . . , dm. The user submits a keyword query
Q = {t1...tn} containing the terms t1...tn. The answer to
the query is a list of the top k documents; the documents
are ranked according to a relevance score score(Q, d),
which estimates the relevance of a document d to the
query Q.

The score of a document can be computed using any
of the the well studied tf.idf scoring functions like BM25
and Okapi [5], [6], [7]. The key arguments of a tf.idf func-
tion are the term frequency (tf), the document frequency
(df) and the document length (dl). The term frequency
tf (t, d) is the number of times that the word t appears
in document d. The document frequency df (t,D) is
the number of documents in D that contain t. Hence,
score(Q, d) = F (tf, df, dl). At its basic form, the tf.idf
ranking function is:

score(Q, d) =
∑
t∈Q,d

tf (t, d) · ln |D|+ 1
df (t,D)

(1)

where |D| = m is the size of the database D. In our ex-
periments, we use the Okapi scoring function, although
any other tf.idf function could be used. For simplicity
though we use the basic tf.idf scoring function as the
running example.

Data Source Model We assume that database D is
only accessible through a Boolean query interface and we
do not have direct access to the underlying documents.
The query interface evaluates the Boolean query Q and
returns the documents ranked using a non-desirable
ranking function, e.g., by date (as is the case for PubMed
and USPTO).

For instance, if the user query is Q=[anemia, diabetes,
sclerosis], then we can submit to the data source queries
q1 = [anemia AND diabetes AND sclerosis], q2 = [anemia
AND diabetes AND NOT sclerosis], q3 = [diabetes OR
sclerosis], and so on. The returned results are guaranteed
to match the Boolean conditions but the documents are
not expected to be ranked in any useful manner.

Objective We want to devise a scheme for retriev-
ing from D the top-k documents, ranked according to
F (tf, df, dl). The trivial solution is to send an extremely
broad disjunctive query, returning all documents that
have a non-zero F (tf, df, dl) score. Then, we can re-
trieve the documents, examine their contents, and rerank
them locally before presenting the results to the user.
Unfortunately, this is a very time-consuming solution.
Therefore, our objective is to construct a query sequence
q1, q2, · · · , qv of Boolean queries, that can be submitted
to the database, retrieve as few documents as possible,
and still contain all the documents that would be in the
top-k results.

4 OVERVIEW OF APPROACH

As mentioned above, our approach is based on choosing
the best sequence q1, q2, · · · , qv of Boolean queries to
submit to the data source, such that we retrieve the top-
k ranked documents for Q. Of course, to select the best
sequence of queries, we need to know some statistics
about the type of documents retrieved by each query qi.
To get these statistics we need to sample the database
through query-based sampling. So, through querying we
are both retrieving documents to generate the necessary
statistics and at the same time aim to retrieve documents
that are in the top-k relevant documents. So, we can
consider our approach as a case of “exploration vs.
exploitation.”

Even though we can use any Boolean query in our
strategy, we only consider conjunctive Boolean queries
as candidates, given that a disjunctive query can be
split to a set of conjunctive queries. Conjunctive queries
provide a good query granularity and simplify the
analysis below. Note that in practice we add negation
conditions to the issued conjunctive queries in order
to avoid retrieving the same results multiple times. For
instance, if Q = {a, b}, after submitting q1 = a AND b,
we submit q2 = a AND NOT b instead of q2 = a.

So, what are the goals of our querying strategy? Fol-
lowing Equation 1, we need to know the tf and df values
for the terms in the database, to estimate the similarity
score of a query to a document. Using these values, we
can then estimate the overall similarity score distribution
for all the documents in the database. Given the score
distribution, we can compute how many documents in
the database have score higher than the documents that
we have seen so far.

The relatively easy part is the estimation of the df
values. We can estimate these values in two ways: (a) We
can send n queries to the database, one for each query
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term ti, and compute the df value for each term. Note
that the PubMed eUtils, which we use in our experi-
ments, have a method to directly return the number of
results (df ) for a query. (b) We can use estimates of the idf
(inverse df ) values by using some other database with
similar content (for example, using the Google Web 1T
5-gram collection5).

The more challenging part is the estimation of the tf
values. We need to estimate the value of tf for each
query term and for each document, that is, a total of
n× |D| values. This is rather unrealistic without having
direct access to the underlying database. So, we adopt
a query-based probabilistic approach and we use the
fact that term frequencies (tf ) tend to follow a Poisson
distribution within the documents of a database [17].
The more accurately we know the parameters of the
distribution, the better we can estimate the document
score distribution, and the better we can estimate how
many documents should be in the top-k results but are
still not retrieved.

One strategy for estimating the distribution parameter
values is to generate a static document sample from the
database and use this sample for our estimations. As we
will see, this strategy suffers from some shortcomings.
So, we present an alternative strategy as well, which
relies on the exploitation-exploration framework, and
combines sampling with actual query execution. We pro-
vide further details on our sampling strategy in Section 5
and compare the performance of the two approaches in
Section 6.

Now, assuming that we know the score distribution
for Q of the documents, we can estimate the benefit
that each issued query will generate: we can estimate
the distribution of document scores (with respect to
Q) for the documents retrieved by a conjunctive query
q. Therefore, we can estimate the benefit of a query
q, defined as the probability that a randomly selected
document from the answer of q will have score higher
than the k-th ranked score for Q among the documents
retrieved so far.

To achieve that, we create a priority queue with all
candidate queries q, ordered by expected benefit. We
select the query at the top of the priority queue, retrieve
documents, and based on the results we update the
expected benefits of the other queries. Then, we pick the
query with the next-highest expected benefit and so on.
The algorithm terminates when the benefit (i.e., probabil-
ity of retrieving a top-k document) drops below a user-
specified probability constant P . That is, the algorithm
terminates when every unseen result has probability
less than P to be in the top-k answer. Note that P is
provided by a domain expert to balance response time
and accuracy, and hence users do not have to worry
about it in practice. In the next sections we describe in
detail our approach.

5. http://www.ldc.upenn.edu/Catalog/docs/LDC2006T13/
readme.txt

TABLE 1: Key Notation

Notation Description

λt tf parameter of Poisson for word t
λsq score (tf.idf) parameter of Poisson for query q
d document
t term in query Q
q conjunctive query, subset of Q
P user-specified benefit threshold
PQ priority queue
Zq set of fetched results by query q
Sq size of Zq
S Total number of documents retrieved so far
pr(q) benefit of query q

5 EXPLORATION AND EXPLOITATION OF THE
DATABASE CONTENTS THROUGH QUERYING

In this section, we describe the core of our approach. We
show how we can use selective querying to:

(a) Explore the database: get the necessary statistics to
estimate the parameters that our algorithms need;
and

(b) Exploit the database: retrieve documents that are
candidates for the top-k results of user query Q.

We will see how our scheme achieves both (a) and (b)
in parallel.

5.1 Initial Probabilistic Modeling of the Source

Our overall goal is to figure out during our querying
process, how many of the top-k relevant documents we
have retrieved and how many are still unretrieved in the
database. Unfortunately, we cannot be absolutely certain
about these numbers unless we retrieve and score all
documents: an expensive operation. Alternatively, we
can build a probabilistic model of score distributions and
examine, probabilistically, how many good documents
are still not retrieved. We describe our approach here.

It is generally accepted that the term frequencies of the
terms in a database tend to follow a Poisson distribution.
In other words, for a word t, the probability that a
randomly chosen document d from database D has term
frequency r is:

Pr{tf (t, d) = r} =
exp(λt)
r!

· (λt)r (2)

where λt is a word-specific parameter. Now, instead of
knowing the n × |D| tf values in the database, we only
need to estimate n values: the λt values for each of the
n words in the query Q.

Following this, the estimation of the score distribution
is reduced to the problem of estimating the distribution
of a sum (see Equation 1) of Poisson distributed vari-
ables. We know that if X and Y are two independent
random variables following a Poisson distribution with
parameters λx and λy respectively, then the sum X + Y
follows a Poisson distribution with parameter λx + λy .
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Therefore, in our case, the score distribution will also be,
approximately,6 a Poisson distribution with parameter:

λsQ =
∑
t∈Q

(λt · idf (t)) (3)

where we note that idf(t) = ln |D|+1
df (t,D) according to

Equation 1. We use the s superscript to denote the tf .idf
parameter as opposed to just the tf parameter.

This model implicitly assumes independence across
terms. The assumption of independence across terms is
admittedly not realistic, but used by many algorithms
that deal with text, including many IR relevance models
e.g., tf/idf and LM models, and many text classification
algorithms. The independence assumption also tends to
work in practice (see the work of Domingos and Paz-
zani [23] for a theoretical justification) and contributes
to the tractability of our algorithms.

Now, given that we have a functional form for the
score distribution, we can estimate the number of doc-
uments in the database that are expected to have scores
higher than the currently retrieved documents. Suppose
that our currently retrieved top-k documents have a
cutoff score τ . (We can estimate the exact similarity
value for these documents since we have retrieved them
locally.) We are trying to estimate how many documents
in the database have score higher than τ :

|Docs(score > τ)| = |D| · Pr{score > τ}) (4)
= |D| · Pr{Poi(λsQ) > τ} (5)

= |D| ·
(

1−
Γ(bτ + 1c, λsQ)

bτc!

)
(6)

where Γ(a, x) = (a − 1)!e−x
∑a−1
r=0

xr

r! is the incomplete
Gamma function.

We now have an estimate for the number of docu-
ments that have similarity above a given threshold τ . Of
course, before proceeding further, we need to estimate
the λt parameters required to compute the λsQ param-
eter for the score distribution. Next, in Section 5.2, we
describe an approach that relies on “static” query-based
sampling [21]. Then, in Sections 5.3 and 5.4, we describe
our approach that simultaneously explores the database
and retrieves as many good documents as possible at the
same time.

5.2 Summary-based Estimation of Poisson Parame-
ters

One strategy for generating estimates for the λ values is
to generate a static document sample from the database,
and then use the retrieved documents to generate the
estimates. For example, Callan et al. [21] generate a

6. Strictly speaking, the weighted sum of two Poisson random vari-
ables is a quasi-discrete distribution, which technically cannot be called
Poisson. However, in practice, it behaves like a continuous version of
the discrete Poisson distribution.

summary from the database by sending random key-
word queries and retrieving 300 documents. (By random,
we mean queries with any word, not only queries with
words from the issued user query Q.)

Given such a document sample, we can measure the
tf(t, d) values for each term t and document d, and
use the maximum likelihood estimate (MLE) to compute
estimates for the λt values. To avoid zero estimates for
terms that do not appear in the sample, we use Laplace
smoothing:7

λ̂MLE
t =

1 +
∑S
i=1 tf (t, di)
S + 1

(7)

This strategy tends to have a few shortcomings.
First, the estimates assume that query-based sampling
is equivalent to random sampling, an assumption that
does not necessarily hold [24]: there is a bias to retrieve
more often longer documents, or documents with higher
priority in the underlying ranking function (e.g., more
recent documents in date-based ranking). Second, the
estimates for the terms that were sent to the database
as query probes are significant overestimates of the real
values as by definition the retrieved documents contain
only documents with the submitted terms. Third, and
more importantly, there is a very significant data sparse-
ness issue: many terms do not appear in the retrieved
document sample and their estimates are simply the
Laplacean-corrected values.

Next, we describe an alternative approach that com-
pensates for the data sparseness by retrieving document
samples through a sampling process customized to the
issued query Q (Section 5.3). Then, we show how to
compensate for the overestimates introduced by the very
nature of the query-based sampling (Section 5.4). As
we will see, this exploitation-biased strategy tends to
be slightly more expensive than the summary-based
strategy (as it generates customized document samples
on the fly, instead of having a static summary shared by
all queries) but generates results of superior quality.

5.3 Exploitation-biased Query-based Estimation of
Poisson Parameters
In the previous section, we have described a query
strategy in which we were sending random queries for
sampling. Now, we describe an approach in which the
sampling queries involve only the actual query words,
biasing the retrieval of documents towards beneficial doc-
uments. In parallel, this query strategy avoids the issue
of data sparseness by generating estimates specifically
for the query at hand. (We describe later the exact query
formulation strategies.) However, such a query strategy
generates biases in the sampling, which affect the basic
MLE estimation. So, we show now how to compensate
for these biases.

7. We can also use the Bayesian estimator instead of the MLE one;
for brevity, we do not present this variant here, since the differences
are small and restricted at the very first stages of the estimation.
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Suppose that we submit as query the word t that
appears in the user query Q. We need to estimate prop-
erly the parameter λt. In this case, the results that we
received back are not a random sample, so we cannot
use directly the method described above. Instead, now
all the returned documents are guaranteed to contain
the word t. That is, the returned document results are
a “conditional” random sample, with the condition that
tf (t, d) > 0. So, our retrieved sample misses all the doc-
uments that do not contain t. Therefore, our calculations
need to account for this fact. Hence, we estimate, given
the retrieved documents for query t, how many empty
documents we would have seen if we were performing
random sampling.

Suppose that after submitting the query t, we retrieve
and process a set of S documents. For the word t we
also know its document frequency df (t) in D. So there
are df (t) documents in the database that contain t and
|D| − df (t) that do not contain t. Therefore, for every
document with t that we retrieve from D, we expect to
have |D|−df (t)

df (t) documents without t (i.e., with tf (t, d) =
0). So, we modify the estimator from the previous section
to account for the unseen documents that do not contain
t and the sample size from S becomes S′ = S+ |D|−df (t)

df (t) ·
S = |D|

df(t) ·S. So, by changing the normalizing factor 1/S
to 1/S′ in Equation 7, we have:

λ̂MLE
t =

1
S

S∑
i=1

df (t)
|D|

· tf (t, d) (8)

The key observation in Equation 8 is that when we up-
date the MLE estimates for the term t using results from
a query that contains t, we should scale the estimates
using the df (t)

|D| factor.
Below, in Procedure updateLambdaByMLE, we present

the algorithm to update the current λt estimations after
a conjunctive query q is submitted, which produces a
set of Sq results. S is the number of results retrieved so
far by all submitted conjunctive queries. Note that for
simplicity we use the notation λt instead of λMLE

t in the
rest of the analysis.

Procedure updateLambdaByMLE(q)

Let Zq be the results set for q. It is Sq = |Zq|.1
foreach t ∈ Q do2

if t ∈ q then3

λprevt ← λprevt + df (t)
|D| · tf(t, Zq)4

// λprevt is an extra variable we need to keep5
for each t, given that λt stores the
averaged value.

//tf(t, Zq) =
∑
d∈Zq

tf(t, d)6
end7
else if t ∈ Q \ q then8

λprevt ← λprevt + tf(t, Zq)9
end10
λt ← λprevt /S //S is the total number of results11
retrieved so far by all queries

end12

5.4 Query-based Document Score Distribution

In the previous section, we described how to adjust
the λt estimates to compensate for the bias introduced
through query-based sampling. Given these estimates,
we can generate the distribution of similarity scores for
the user-submitted query Q in the database. However, we
are not going to retrieve documents randomly from the
database. Instead, we submit a sequence of conjunctive
queries trying to retrieve the most highly similar doc-
uments. So, to identify which queries will retrieve the
most similar documents, we need to estimate the score
distribution for the query results for a given query q,
which is not necessarily the same as the original user
query Q. We now describe how to compute the score
distribution of the query results for any conjunctive query
q.

In Section 5.1, we gave a functional form for the
score distribution, assuming that we get a randomized
sample from the database. However, when the docu-
ments that we examine are retrieved by using a query
q that contains some of the terms in the original user-
issued query Q, then the retrieved document sample is
biased: a conjunctive query guarantees that the returned
documents have tf(t, d) > 0 when t ∈ q. In this case we
have:

Pr{tf (t, d) = r|tf (t, d) > 0} =
Pr{tf (t, d) = r, r > 0}

Pr{tf (t, d) > 0}

=
exp(λt)
r! · (λt)r

1− Pr{tf (t, d) = 0}

=
exp(λt)
r! · (λt)r

1− exp(λt)
(9)

In other words, the new tf distribution is a Poisson
distribution with a normalizing factor 1

1−exp(λt)
. There-

fore, when we send a query q to the database, the
document score distribution (the score is always defined
with respect to the user query Q) follows the Poisson
distribution with a configuring parameter λsq :

λsq =
∑
t∈q

(
λt

1− exp(λt)
· idf (t)

)
+
∑
t∈Q\q

(λt · idf (t)) (10)

which is different that the functional form depicted in
Equation 3. Following the analysis from Section 5.1, the
number of documents in the results of a conjunctive
query q, with score above a threshold τ are:

|Docs(score > τ)| = Sq · Pr{score > τ})
= Sq · Pr{Poi(λsq) > τ}

= Sq ·
(

1−
Γ(bτ + 1c, λsq)

bτc!

)
(11)

This analysis gives us the basis for formulating our
querying strategy, which we describe next.
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5.5 Top-k Querying Algorithm
Above we presented the estimation for a general query-
based approach, without specifying how to select queries
to send. However, we know now the expected score
distribution for each conjunctive query, and how these
estimates are updated every time that we retrieve a new
document (Procedure updateLambdaByMLE above).

Our querying strategy is as follows. We start by
sending all the terms of the query as a conjunctive
query to the database. This query is expected to retrieve
the documents with the highest scores. Obviously, if
the query matches less than k documents, we need to
submit relaxed versions of the query (e.g., remove one
keyword – we describe below how to select which query
to submit). If we have more than k results, we still need
to compute the confidence that the retrieved documents
contain the correct top-k results. (Note that a document
with fewer query keywords may achieve higher ranking
according to an IR function.)

Since we do not have access to the complete database,
we cannot be absolutely certain that we retrieved all the
“real” top-k documents. Instead, we adopt a probabilistic
approach, and we use an input parameter P which is the
probability that any unseen document belongs on the
top-k results is less than P . That is for all the (unseen)
documents d with relevance score(d ,Q), we have:

Pr{score(d ,Q) > τ} < P (12)

where as τ we set the relevance score of the k-th
highest scoring document retrieved so far. (See Equa-
tions 11 and 10 to see how to compute the value
Pr{score(d ,Q) > τ}. Notice that we are trying to es-
timate the distribution of scores for the user-submitted
query Q, and we retrieve the documents by sending a
set of conjunctive queries qi that contain only a subset
of the terms from Q.)

Hence, at every step we compute the benefit of every
candidate query, which is Pr{score > τ}, and is com-
puted as shown in Section 5.4. If for all candidate queries
the benefit is less than P , the algorithm terminates. Else,
the query q with the maximum benefit is submitted.
Then the λt parameters estimations are updated and the
process repeats.

We maintain a priority queue with the expected benefit
of each query so we can select which query to issue next.
The main algorithm is shown in Procedure QueryExecu-
tion.

As mentioned in Section 4, a practical issue that we
face is that we may retrieve the same documents many
times as we issue the queries. From an estimation point
of view, we should always include such documents in
the updating of the estimates. Practically though we
do not want to retrieve the same documents multiple
times so that we can save the retrieval and processing
cost. We can achieve this by either adding negations of
the previously issued queries in the submitted query or
by simply not retrieving documents with document ids

Procedure QueryExecution(k, Q, P)
Initialize:1
- Add to priority queue PQ all combinations q of terms2
of Q, that is, PQ has all candidate conjunctive
queries; PQ is ordered by the benefit pr(q) of q
- Default λt parameters are assigned to each t ∈ Q,3
and accordingly initial benefits pr(q) for each q ∈ PQ
are computed;
- Create results array R with size k, where results are4
ordered by score;
while PQ 6= ∅ do5

q ← PQ.pop()6
if pr(q) < P and R contains k results then7

break8
end9
else10

Zq ← Fetch(q)11
S ← S + Sq // S is the number of12

documents retrieved so far.
Sq = |Zq|

Insert Zq into R // Zq and R are13
merged into R

UpdateLambdaByMLE(q)14
UpdatePQ (q)15

end16
end17
return R18

Fig. 1: Lattice of candidate conjunctive queries.

identical to previously retrieved ones. In our querying
technique we use the negation trick: The process is as
follows. We save the set of documents Zq for each past
query q, and then for a new query qnew, we do the
following:
• Let L = q1, ..., ql be the set of past queries for which
qnew ⊂ qi.

• Submit q′new = qnew − q1, ..., ql, i.e., qnew augmented
by the negation of all previously submitted queries
(to avoid retrieving documents retrieved in the
past).

• The result of qnew for our probabilistic analysis
purposes is Zqnew

= Zq′new
∪ Zq1 ∪ ... ∪ Zql

Candidate Queries Lattice The sequence q1, q2, · · · , qv
of queries that the algorithm submits can be viewed as
a prefix of the queries lattice, shown in Figure 1. Except
for the most selective, vanilla conjunctive query that
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Procedure UpdatePQ(q)

foreach (pr, q) in PQ do1

λsq =
∑
t∈q F

(
λt

1−exp(λt)
, df (t), avdl

)
+2 ∑

t∈Q\q F (λt, df (t), avdl)

// according to Equation 10
pr(q)← 1− IGF(τ, λsq) // IGF stands for3

incomplete gamma function
end4

returns the AND of all terms (the top of the lattice),
it is not clear which query is going to be the “next
most beneficial” (See Figure 1). Identifying which are the
“most beneficial” (or “most selective”) queries is part of
our algorithm, as described above. Our algorithm always
executes a prefix of the lattice (the upper queries of a cut
are executed) because the parent always has higher bene-
fit pr(q) than a child: the benefit increases monotonically
with the number of keywords. Two possible executions
of a user query are shown in Figure 1. The execution
of the algorithm can be viewed as a cut going down the
lattice. Hence, in the priority queue we only need to keep
the candidate queries that are just below the current cut.

Total vs. Block Variants of the Algorithm In the
above description, the algorithm submits a query q at a
time and retrieves all its results. That is, the granularity
is a whole query. We refer to this variant as Total.
Alternatively, we could refine the granularity by only
retrieving B results at a time from the results of a query q
if B < |Zq| (like line 11 in Procedure QueryExecution).
Then, the probabilities are updated as usual and the rest
of the query is placed back to the priority queue. We
refer to this variant as Block. These variants are compared
experimentally in Section 6 for various block sizes B.

6 EXPERIMENTS

We experimentally evaluate the performance and quality
of the retrieval algorithms. We compare the Query-based
probability estimation strategy described in Section 5.4
to the Summary-based estimation strategy of Section 5.2,
and also consider the Total vs. Block variants of the top-k
querying algorithm of Section 5.5. For that, we compare
the following algorithm variants:
• Baseline: This algorithm submits the disjunction of

all query keywords to the database and retrieves
all matching results. Documents that do not match
this disjunctive query, and hence are not returned,
are guaranteed to have zero tf.idf score. Then this
algorithm computes the IR score for each document,
and returns the true top-k to the user. Therefore,
this algorithm is guaranteed to generate a perfect
ranking, at the expense of a significant cost of
downloading all documents before ranking them.

• Blind: This algorithm is a simplified version of the
Query-based algorithm. The Blind algorithm does
not use the accumulated statistics about the tf fre-
quency of the terms in the database. Insteadm Blind

submits a “static” sequence of conjunctive queries,
based only on the global document frequencies of
the terms. Blind initially submits the conjunction
of all n terms. Next, the queries with n − 1 terms
are submitted, sending first the queries that do
not include the term with the highest document
frequency (i.e., do not include the term with the low
idf), and so on.

• Summary-based: Our “Total” algorithm with
summary-based probability estimation of the
λ’s.

• Query-based: Our “Total” algorithm with query-
based probability estimation of the λ’s.

• Block-based: Our “Block” algorithm with query-
based probability estimation of the λ’s.

Note that we do not show results for a Block variant
with summary-based estimation, because our experi-
ments show that the Block variant is worse than the
Total variant, and also that Summary-based is worse
than Query-based estimation.

6.1 Experimental Setup

Configuration: All experiments were run on a PC with
a 2.5G Intel quad-core processor with 4G RAM running
Windows XP SP2. The algorithms were implemented in
Java.

Datasets: We ran our algorithm on three real datasets
shown in Table 2, two “Local” and one “Remote.”

The first Local dataset is the “PMC Open Access Sub-
set” (LocalPubMed)8 dataset, which is a subset of PubMed
which comprises of 117,860 open-access articles, with the
full text available for download. All of the documents
are XML files. The second Local dataset is the TREC
Disk 1-5 dataset (LocalTREC)9, which comprises of over
three million articles from newspapers and government
agencies. We used Lucene10 to index every article in the
two Local datasets. Note that Lucene allows IR ranking
of the documents, but we assumed this feature is not
available in this experiment. Instead, we set Lucene to
return the documents ordered by date.

The Remote dataset, which is more appropriate for
this paper’s motivation, is the whole PubMed, which can
only be remotely accessed through PubMed Web access
utility services (RemotePubMed).11 We only retrieve the
abstracts of the articles since the body of many articles
is missing from PubMed. Note that PubMed does not
offer any form of relevance-based ranking. All results
are ranked by date.

For LocalPubMed, we picked 60 queries that have
been used as exercises to train bioinformatics informa-
tion specialists [8]. Then, we separated the queries into
two sets of 30 queries each: “frequent” and “infrequent”

8. http://www.pubmedcentral.nih.gov/about/openftlist.html
9. http://trec.nist.gov/data/test coll.html
10. http://lucene.apache.org/
11. http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils help.html
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TABLE 2: Dataset detail

Dataset Type Total # of doc.

PMC Open Access Local 117,860
TREC text collections Local 3,000,000

PubMed Portal Remote 17,000,000

TABLE 3: Sample queries from the LocalPubMed dataset

#Query df

cancer promoter 6280
cystic fibrosis 5285
immunodeficiency virus structure 8341
flanking SNPs gene 13276
alveolar carcinoma cell TDs 10051
PCR DMD BMD exon 2546
climate Control Prevention change impacts 7001
DNA mRNA overlapping isolated cDNA 19787

based on the number of results that they generated
when evaluated on the web interface of PubMed. Due to
restrictions imposed by the web interface of PubMed, we
could only use the “infrequent” queries with the Remote
dataset. This is the result of the restrictions imposed by
PubMed, which does not allow massive downloads of
documents over the web service interface. Therefore, we
could not fully evaluate and retrieve all the returned
documents for the “frequent” queries and, hence, we
could not generate the baseline against which to evaluate
the quality of the results. (We could use our algorithms
that retrieve significantly less documents, but we would
not be able to evaluate the results in terms of quality.)
For our LocalPubmed dataset we use both frequent and
infrequent queries. For LocalTREC, we used 60 english
test questions from the TREC website12 as our queries.
For these queries our baseline is the relevance ranking
provided by the TREC relevance judgments. Tables 3
and 4 show a sample of the queries submitted to the
Local and Remote datasets, respectively.

Quality Measure: We measure the quality of the algo-
rithms as follows: we first execute the Baseline algorithm
to compute the optimal top-k results. Then, we measure
the quality of Query-based and Block-based algorithms
by comparing their top-k search results to this optimal
list generated by the Baseline algorithm. We compare
two top-k lists using the normalized top-k Spearman’s
Footrule metric [25].

Table 5 summarizes the parameters varied in our
experiments, along with their ranges.

6.2 Experiments on Local Datasets

Varying P : First, we examine the effect of P in the perfor-
mance of our algorithms. P is the parameter that defines
the confidence that the returned results are close to the
optimal. Smaller values of P mean that the algorithms
tries harder to approximate the optimal list, while large

12. http://trec.nist.gov/data/testq eng.html

TABLE 4: Sample queries from the Remote dataset

#Query df

Herniotomies orchidopexy 645
NTBC Fah 363
NTBC fumarylacetoacetate Fah 435
tetrahydropyridines thiazolidinones carboxaldehydes 242
FAH NTBC tyrosinemia FAA 2032
MAAI DCA dichloroacetate NTBC 2364
MPI MAAI polyaromatic Ralstonia gentisate 5447
pEGFP SSBs CCCs fuma Sakashita 1953

TABLE 5: System parameters
Parameter Range

Probability threshold (P) 0.01, 0.1, 0.2, · · · , 0.5
Result cardinality (k) 1, 10, 50, 100
Keyword cardinality (#keywords) 2, 3, 4, 5
Block-based size (infinity for Query-based) 100, 500, 1000, 2000

values of P mean that the algorithm can stop earlier,
returning more rough approximations of the optimal list.

In Figures 2 and 3 we set the number of keywords
to 3 and fix k = 50. For Block-based algorithm, we
set the Block size to 2000. We vary P from 0.01 to
0.5. Figures 2(a) and 3(a) show that Summary-based,
Query-based and Block-based fetch fewer documents
as P grows. We observe that Block-based retrieves
slightly fewer documents but submits more conjunctive
queries compared with Query-based (called fetches in
Figures 2(b) and 3(b)). As expected, Summary-based re-
trieves the least documents in most cases. (As discussed
in Section 5.2, the summary-based algorithm retrieves
300 documents for the initial document summary to
generate the estimates but we do not include this one-
time cost in the reported results.) Moveover, in Fig 2(b)
we see that for P ≥ 0.2, Query-based and Block-based
coincide, because the number of the documents Block-
based fetches is less than Block size B. The same phe-
nomenon also happens in Fig 3(b) for P ≥ 0.25.

Although the Summary-based algorithm is the most
efficient, we observed that the speed comes at the ex-
pense of the quality of the results. In terms of quality,
Figures 4(a) and 4(b) show that both Query-based and
Block-based achieve excellent Footrule values for P up
to 0.3 (for LocalPubMed) or 0.2 (for LocalTREC) while
Summary-based is the worst in all cases as expected: this
is the result of the rough probability estimates.

In the rest of this section, due to space constraints, we
only report the results for LocalPubMed, given that the
results of LocalTREC follow similar trends.

Varying k: Next, we set the number of keywords to
3, P = 0.1, and vary k from 1 to 100, as shown in
Figure 5. As displayed in Figure 5(a), the number of
fetched documents increases with k for Summary-based,
Block-based and Query-based, as expected: with small k
we can easily retrieve “a few good documents” but when
k increases the task of locating all similar documents
becomes increasingly harder. Furthermore, observe that
the number of documents grows slowly from k = 10
to k = 100 but fast from k = 1 to k = 10. The reason
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0.01 0.1 0.2 0.25 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

P(probability threshold)

fo
o

tr
u

le

 

 

Query-based

Summary-based

Block-based

(a) LocalPubMed

0.01 0.1 0.2 0.25 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

P(probability threshold)

fo
o

tr
u

le

 

 

Query-based

Summary-based

Block-based

(b) LocalTREC

0.01 0.1 0.2 0.25 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

P(probability threshold)

fo
o

tr
u

le

 

 

Query-based

Summary-based

(c) Remote

Fig. 4: Footrule vs. P

1 10 50 100
0

2000

4000

6000

8000

10000

k

#
d

o
cu

m
e

n
t

 

 

Query-based

Summary-based
Block-based

Baseline

(a) number of doc. vs. k

1 10 50 100
0

2

4

6

8

k

#
fe

tc
h

 

 

Query-based

Summary-based
Block-based

Baseline

(b) number of fetch vs. k

1 10 50 100
0

200

400

600

800

1000

k

T
im

e
(m

s)

 

 

Query-based

Summary-based
Block-based

Baseline

(c) time vs. k

Fig. 5: LocalPubMed: Varying k

is that very few documents have very high relevance
score, as expected from the Poisson distribution of the
similarity scores, but after that the similarity threshold
does not change as drastically with k. The observations
for the number of documents naturally carry for number
of fetches in Figure 5(b). As shown in Figure 5(c), the
execution time of the four algorithms increases with
k. For Baseline, this is because it has to compute the
top-k results from all retrieved results. Query-based is
slightly faster than Block-based when k = 10, because
both algorithms fetch the same number of documents
when k = 10 (Figure 5(a)) but Query-based needs fewer

fetches. Summary-based is faster than other three algo-
rithms, because it performs fewer fetches and retrieves
fewer documents, as we explained above in the “varying
P” paragraph. The quality results are also similar: As
shown in Figure 6(a), Query-based has perfect accuracy
(coincides with the X-axis), whereas Block-based’s accu-
racy decreases slightly as k increases. Summary-based is
the most efficient but again has the worst accuracy as
measured by the footrule distance.

Varying the number of keywords: Figure 7 depicts
the results for different number of keywords for two
local datasets. In this experiment we fix k = 50 and
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Fig. 7: LocaLPubMed: Varying number of keywords.
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Fig. 8: Estimation of tf vs. #fetch (LocalPubMed)
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Fig. 9: Blind Algorithm on LocalPubMed Dataset: Varying P

P = 0.1. As shown in Figure 7(a), Query-based fetches
slightly more documents in most cases. An exception
is #keywords = 5 where both Query-based and Block-
based retrieve about the same number of documents
because each executed conjunctive query has fewer re-
sults than the Block-based size. (Note that conjunctive
queries with more keywords return fewer results.) As
shown in Figure 7(b), the number of fetches for all
methods increases fast because the number of keyword
combinations grows exponentially with the number of
keywords.

In terms of quality, interestingly, as we see in Fig-

ure 6(c), the performance of Summary-based degrades
as the number of keywords increases. The reason is that
for more keywords, the number of candidate conjunctive
queries explodes and hence the inaccurate parameter
estimation of Summary-based leads often to bad query
choices. In contrast, we see that the performance of
the Block-based algorithm increases with number of
keywords, because the submitted conjunctive queries
become more selective and the correct top results of-
ten appear in these very focused queries. Also note in
the same figure that Query-based algorithm has perfect
quality (coincides with the X-axis).
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Fig. 10: Blind Algorithm on LocalPubMed Dataset: Varying k
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Fig. 11: Quality Evaluation of Blind Algorithm: Footrule vs. P and k
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Fig. 12: Remote Dataset: Varying P
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Fig. 13: Remote Dataset: Varying k

Varying Block Size: In Table 6, we set the number
of keywords to 3, k = 50, P = 0.1, and we measure
the performance of Block-based algorithm by varying
Block size B = 100 to B = 2000. Note that Query-based
algorithm is equivalent to Block-based when Block size
is infinity. The number of fetched documents increases
with Block size, since Block-based algorithm can stop
earlier if Block-based size is smaller. As expected, the
number of fetches decreases as Block size increases. The
time of Block-based algorithm decreases with increasing
Block size, even though the number of retrieved doc-
uments slightly increases. This is because of the over-

head incurred by each fetch, which includes the query
overhead and the additional tasks for each fetch, like
updating the estimated frequencies. In terms of quality,
as Block-based size increases the Footrule of Block-based
drops, because more results are retrieved, as expected.

Compare tf estimations of Summary-based vs.
Query-based: In the above experiments we showed that
the quality of the Summary-based variant is consistently
worse than the Query-based variants. The main reason
is that Summary-based does not estimates as accurately
the λ parameters, which intuitively means that it does
not estimates as accurately the expected tf s of the query
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Fig. 14: Remote Dataset: Varying #keywords

TABLE 6: Varying Block size

Block size

100 500 1000 2000 ∞

#doc 8340 8440 8500 8870 9540
#fetch 89 20 18 15 12
time(ms) 4352 1512 1351 899 878
Footrule 0.034 0.031 0.029 0.026 0.00

words. Given the fact that LocalPubMed dataset shares
many aspects with LocalTREC dataset, here we just use
LocalPubMed as our testbed to verify this fact.

Figure 8 shows a qualitative depiction for k = 50 and
P = 0.1, for the 3-keyword queries: genetic, disease
and treatment on the local dataset. We compare the
tf estimations of the two methods to the correct values,
which are calculated off-line by scanning the complete
dataset and using the Maximum Likehood Estimation
(MLE) formula (Eq. 7). We see that Query-based is
consistently better than Summary-based for the reasons
explained in Section 5.2.

Evaluate Blind algorithm: We compare the perfor-
mance of Blind and Query-based algorithms on Lo-
calPubmed dataset by varying P and k. The results are
shown in Figures 9, 10 and 11. We note that for P=0.5,
the times of Blind and Query-based are very close (See
Figure 9(c) ), but Query-based has about 4 times better
quality, according to the Footrule (Figure 11(a)). This
shows that Blind is clearly inferior to Query-based; this
is why it was not included in the previous graphs. Also
note in Figure 11(b), the Query-based has perfect quality
(coincides with the X-axis).

6.3 Remote Dataset

Given the graphs of Section 6.2, we conclude that the
Query-based algorithm is generally better than Block-
based because for a slightly higher execution time, it
leads to considerable quality improvement. Hence, we
only consider Query-based and Summary-based in this
section.

In Figures 12, 13 and 14 we repeat the above exper-
iments on the Remote database for varying P , k and
number of keywords, respectively. Due to the character-
istics of the remote dataset, which are the much larger
size and the slow query response times, we observe the
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Fig. 15: Query cost vs. Quality

following key differences from the results on the Local
dataset.

As shown in Figure 4(c), the Footrule has much less
variation than in Figure 4(a) because the number of
retrieved documents has much smaller variation with P .
The reason for the latter is that the queries we used in
the Remote dataset have more infrequent keywords as
we explain in Section 6.1.

Also, in Figure 6(b) we see that the Footrule decreases
with k, in contrast to Figure 6(a) where it was 0 for
Query-based and increasing for Block-based. The reason
is that, as we see in Figure 13(a), the number of retrieved
documents increases dramatically with k, which was not
the case for the Local dataset (Figure 5(a)). The reason
for the latter fact is that the Remote dataset has much
more documents. When increasing the #keywords, in
Figures 6(d) and 6(c), we observe that all algorithms
are stable or degrade, since the search space increases.
The only exception is the Block-based for LocalPubMed,
which improves because it reads a too small number of
documents for small #keywords (Figure 7(a)).

6.4 Discussion

Generally, as we have seen in previously reported ex-
periments, the Summary-based variant is slightly faster
than the Query-based variant. On the other hand, Query-
based is more accurate since its estimation strategy is
better. In this section, we combine previous results to
give a general picture of two methods and show the time
vs. quality tradeoffs. We use the results of 3-keyword
queries for this analysis.
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Figure 15 illustrates the time and quality improvement
of the Query-based and Summary-based algorithms for
the LocalPubMed and Remote datasets. We see that
Summary-based has a very slight advantage in terms of
execution time at the expense of a considerable disad-
vantage in terms of quality.

7 CONCLUSIONS

We presented a framework and efficient algorithms to
build a ranking wrapper on top of a documents data
source that only serves Boolean keyword queries. Our
algorithm submits a minimal sequence of conjunctive
queries instead of a very expensive disjunctive one. Our
comprehensive experimental evaluation on the PubMed
database shows that we achieve order of magnitude
improvement compared to the baseline approach.
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