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ABSTRACT 
Faceted navigation is being increasingly employed as an effective 
technique for exploring large query results on structured 
databases. This technique of mitigating information-overload 
leverages metadata of the query results to provide users with facet 
conditions that can be used to progressively refine the user’s 
query and filter the query results. However, the number of facet 
conditions can be quite large, thereby increasing the burden on the 
user. We present the FACeTOR system that proposes a cost-based 
approach to faceted navigation. At each step of the navigation, the 
user is presented with a subset of all possible facet conditions that 
are selected such that the overall expected navigation cost is 
minimized and every result is guaranteed to be reachable by a 
facet condition. We prove that the problem of selecting the 
optimal facet conditions at each navigation step is NP-Hard, and 
subsequently present two intuitive heuristics employed by 
FACeTOR. Our user study at Amazon Mechanical Turk shows 
that FACeTOR reduces the user navigation time compared to the 
cutting edge commercial and academic faceted search algorithms. 
The user study also confirms the validity of our cost model. We 
also present the results of an extensive experimental evaluation on 
the performance of the proposed approach using two real datasets. 
FACeTOR is available at http://db.cse.buffalo.edu/facetor/. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – selection process and information filtering. 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – user-centered design, graphical user interfaces. 

General Terms 
Algorithms, Experimentation, Human Factors, Performance. 

Keywords 
Information Overload, Query Interfaces, Faceted Navigation. 

1. INTRODUCTION 
In recent years, there has been a tremendous increase in the 
number and size of databases published online, commonly 
referred to as the “deep web” [3], exposing a wide range of 
content including product catalogs (e.g. Amazon, eBay), 
bibliographies (e.g. DBLP, CiteSeer, PubMed), local businesses 
(e.g. Yelp) and many more. These databases are commonly 
queried using forms or keyword-based interfaces. When users are 
not familiar with the content and structure of the database, or are 
unable to use sophisticated search interfaces, they issue queries 

that are exploratory in nature and may return a large number of 
results. In other cases, users often issue broad (underspecified) 
queries in fear of missing potentially useful results. As a 
consequence, users end up spending considerable effort browsing 
long results lists. This phenomenon, known as information 
overload, is a major hurdle in querying large databases. 

Information overload has been tackled from two directions – 
ranking and categorization. There are many recent works on 
ranking database results for both keyword [1,11] and structured 
queries [5]. Ranking is effective when the assumptions used by 
the ranking function are aligned with user preferences. Ranking 
may not perform well for exploratory queries, since it is hard to 
judge which result is better than the other when the query is 
broad. Moreover, no summary (grouping) of the query result is 
provided for the user to refine her query. In categorization, query 
results are grouped based on hierarchies, keywords, tags, or 
attribute values. For instance, consider the MEDLINE database of 
biomedical citations [16], whose articles are tagged with terms 
from the MeSH concept hierarchy [14]. Categorization systems 
propose a method for users to effectively explore the large results 
by navigating the MeSH sub-hierarchy relevant to the particular 
query result [13]. Wider adoption of such hierarchical 
categorization systems is limited, as building these concept 
hierarchies requires an intense manual effort, and automatically 
assigning terms to tuples afterwards is not always successful [9]. 

A popular variant of categorization, which is the focus of this 
paper, is faceted navigation [17]. Here, the tuples in a query result 
are classified into multiple independent categories, or facets, 
instead of a single concept hierarchy. For an example car dataset, 
the result for keyword query "ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜" shown in Figure 1a is 
categorized based on 𝑌𝑌𝑌𝑌𝑜𝑜𝑟𝑟, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑆𝑆𝐶𝐶𝑜𝑜𝐶𝐶𝑌𝑌 facets, among others. 
Each facet is associated with a set of facet conditions, each of 
which appears in the number of tuples shown in parenthesis 
(cardinality). For instance, the 𝑌𝑌𝑌𝑌𝑜𝑜𝑟𝑟 facet in Figure 1a is 
associated with the set {2000, 2001, … } of facet conditions. The 
user can narrow down or refine this result set by selecting a facet 
condition (e.g., 𝑌𝑌𝑌𝑌𝑜𝑜𝑟𝑟 = 2003) and clicking on it. User studies 
have shown that faceted navigation improves the ability of users 
to explore large query results and identify tuples of interest when 
compared to single concept hierarchies [21]. 

Faceted navigation has been studied extensively by the 
Information Retrieval community, where the challenge is to 
dynamically determine the facets for a given set of documents. 
The drawback of these systems is the unpredictability and 
counter-intuitiveness of the resulting facets [9,10]. In contrast, 
faceted navigation is much more intuitive and predictable for 
structured databases, where each attribute is a facet describing a 
particular characteristic of the tuples in the dataset. 

The following are key concerns that need to be addressed to 
achieve effective faceted navigation when the number of facets 
and facet conditions are large: 
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1. Which facets and facet conditions should be suggested 
(displayed) to the user? For example, the query result in 
Figure 1a consists of 789 tuples that can be categorized using 
41 facets and 234 facet conditions. Suggesting “familiar” 
facets and facet conditions would help the user make a 
refinement decision without requesting additional facet 
conditions (by clicking the “More” hyperlinks in Figure 1a). 
For example, if users are more familiar with the 𝑌𝑌𝑌𝑌𝑜𝑜𝑟𝑟 facet 
than the 𝑀𝑀𝐶𝐶𝑀𝑀𝑌𝑌𝑜𝑜𝑀𝑀𝑌𝑌 facet in Figure 1a, it is intuitive to suggest 
conditions from the Year facet.  Most current solutions, try to 
address the facet conditions selection problem in an ad hoc 
manner by ranking the facet conditions using results 
cardinality or other ad-hoc factors. 

2. Which facet conditions will lead to the tuples of interest in 
fewer navigation steps? For example, although the facet 
condition 𝑀𝑀𝑜𝑜𝑀𝑀𝑌𝑌 = 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 has the highest cardinality for the 
query result in Figure 1a (the approach followed by most 
current systems), selecting this facet will not refine the query 
result by a large margin, thereby forcing the user to perform 
additional refinements to narrow down the query result. 

3. The overlap of the query results among the set of suggested 
conditions is another critical concern, since a low overlap can 
reduce the suggestions inspected and shorten the navigation. 
In Figure 1a, if most of the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐷𝐷𝑜𝑜𝑀𝑀𝑀𝑀𝑜𝑜𝐷𝐷 cars were made in 
𝑌𝑌𝑌𝑌𝑜𝑜𝑟𝑟 = 2001, it is not wise to suggest both facet conditions. 
If the user chooses one of them in one navigation step, she 
would have to inspect the other in the next step anyway. 

In this paper, we present the FACeTOR system that takes a cost-
based approach to selecting the set of facet conditions to suggest 
to the user at each navigation step. These facet conditions are 
selected using an intuitive cost model that captures the expected 
cost of navigating a query result. At each navigation step, 
FACeTOR first computes the applicable facet conditions. 
However, instead of showing all of them or ranking them by an ad 
hoc function, FACeTOR suggests a subset of them based on an 
intuitive navigation cost model, which considers factors including 
the user’s familiarity with the suggested conditions, their overlap, 
and the expected number of navigation steps. The suggested facet 
conditions are chosen such that they minimize the expected 

navigation cost until the tuples of interest are reached, although 
these are not known a priori. 

Recent works on faceted navigation of database query results 
[4,17] have limitations that we address in this paper. In both 
works, the navigation algorithm selects one facet (or possibly 
multiple ones [17]) and displays all its facet conditions to the user. 
Instead, we suggest a mix of facet conditions from several facets, 
that is, our algorithm operates at the facet condition level and not 
the facet level. Further, our cost model more closely estimates the 
actual user navigation cost. These improvements introduce novel 
algorithmic challenges, due to the explosion of the search space 
and the interactive time requirement of exploration systems. This 
paper makes the following contributions: 
1. A complete framework for faceted navigation of structured 

query results (Section 2). 
2. Intuitive navigation and cost models that closely resemble 

the actions taken by the user during faceted navigation 
(Section 3). These cost models are necessarily probabilistic, 
given the uncertainty of user actions. We introduce these 
probability measures in the cost model and present methods 
of estimating these probabilities in Section 4. 

3. Two efficient and intuitive heuristics for the above problem 
(Section 5). 

4. An extensive experimental evaluation with two real datasets 
showing that FACeTOR outperforms state of the art systems 
(Section 6). 

5. A large-scale user study showing that FACeTOR decreases 
the user navigation time, which is proportional to the 
estimated cost computed by our model (Section 7). 

Section 8 presents related work, and we conclude in Section 9. 

2. FACeTOR FRAMEWORK 
The starting point of the FACeTOR framework is a result set that 
the user explores. 

Definition 1 (Result Set) A result set is a relation 𝑅𝑅 with schema 
𝑆𝑆𝑅𝑅 = {𝐴𝐴1, … ,𝐴𝐴𝑚𝑚 }. Each attribute 𝐴𝐴𝐶𝐶 ∈ 𝑆𝑆𝑅𝑅  has an associated active 
domain 𝐴𝐴𝐷𝐷𝑜𝑜𝑚𝑚(𝐴𝐴𝐶𝐶 ,𝑅𝑅) of un-interpreted constants.  

Figure 1. The FACeTOR Interface 
 
 

 
 



The initial result set 𝑅𝑅 could be the whole database or more 
realistically, the result of a keyword query. In this work, we 
assume that the user first submits a keyword query (e.g., "ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜" 
in Figure 1a). At each step of a faceted navigation, FACeTOR 
classifies the tuples of a result set 𝑅𝑅 according to their facets. 
Each attribute 𝐴𝐴𝐶𝐶 ∈ 𝑆𝑆𝑅𝑅  of 𝑅𝑅 contributes a facet to the classification 
which in turn, contributes a set of conditions. 

Definition 2 (Facet Condition): Given a result set 𝑅𝑅, a facet 
condition is an equality predicate 𝑐𝑐:𝐴𝐴𝐶𝐶 = 𝑜𝑜𝐶𝐶 , where 𝐴𝐴𝐶𝐶 ∈ 𝑆𝑆𝑅𝑅  and 
𝑜𝑜𝐶𝐶 ∈ 𝐴𝐴𝐷𝐷𝑜𝑜𝑚𝑚(𝐴𝐴𝐶𝐶 ,𝑅𝑅).  

The set of all possible facet conditions for a result set 𝑅𝑅 is 𝐶𝐶(𝑅𝑅). 

Our running example considers a cars result set 𝑅𝑅 whose tuples 
are classified by their 𝑌𝑌𝑌𝑌𝑜𝑜𝑟𝑟, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐸𝐸𝐸𝐸𝐶𝐶𝑌𝑌𝑟𝑟𝐶𝐶𝑜𝑜𝑟𝑟 𝐶𝐶𝑜𝑜𝑀𝑀𝑜𝑜𝑟𝑟 and 37 more 
facets. As shown in Figure 1a, FACeTOR displays the name of 
each facet along with a list of facet conditions as hyperlinks, 
followed in parenthesis by the number of tuples in 𝑅𝑅 satisfying the 
condition (cardinality). 

When the user clicks on a hyperlink corresponding to a facet 
condition 𝑐𝑐𝐶𝐶 , FACeTOR filters the result set 𝑅𝑅 to the tuples that 
satisfy 𝑐𝑐𝐶𝐶 , thus yielding a new result set 𝑅𝑅𝑄𝑄 ⊆ 𝑅𝑅, and the faceted 
navigation proceeds to the next step where 𝑅𝑅𝑄𝑄  is now being 
classified. FACeTOR captures the progression of the faceted 
navigation using a query 𝑄𝑄. When the user clicks on a facet 
condition 𝑐𝑐𝐶𝐶 , then the equality predicate is added conjunctively to 
𝑄𝑄, thus forming a refined query 𝑄𝑄 ∧ 𝑐𝑐𝐶𝐶 . At each navigation step, 
FACeTOR suggests only a subset 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) of all possible facet 
conditions in 𝐶𝐶(𝑅𝑅𝑄𝑄). 

Definition 3 (Suggested Conditions): For a result set 𝑅𝑅𝑄𝑄 , a set of 
facet conditions 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) ⊆ 𝐶𝐶(𝑅𝑅𝑄𝑄), are suggested if 
⋃ (𝑅𝑅𝑄𝑄∧𝑐𝑐)𝑐𝑐∈𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) = 𝑅𝑅𝑄𝑄 , that is, every tuple in 𝑅𝑅𝑄𝑄  satisfies at least 
one suggested condition.  

In this work, we are interested in minimizing the overall expected 
navigation cost incurred by the user, by choosing the best set of 
suggested conditions for a given 𝑅𝑅𝑄𝑄 , without making any 
assumptions about the user’s preference over the tuples in 𝑅𝑅𝑄𝑄 . The 
navigation cost is based on an intuitive model of user navigation. 

3. NAVIGATION AND COST MODELS 
The faceted navigation model of FACeTOR is formally presented 
in Section 3.1 and forms the basis for the navigation cost model 
defined in Section 3.2. We present complexity results in Section 
3.3, showing that selecting the set of facet conditions that 
minimize the expected navigation cost is NP-Hard. 

3.1 Faceted Navigation Model 
At each faceted navigation step, FACeTOR displays to the user 
the set of suggested conditions 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) for the current result set 
𝑅𝑅𝑄𝑄 . The user then explores 𝑅𝑅𝑄𝑄  by examining all conditions in 
𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) and proceeds to the next navigation step by performing 
one of the following actions: 
1. SHOWRESULT(𝑹𝑹𝑸𝑸): The user examines all tuples in the 

result set 𝑅𝑅𝑄𝑄 . If, in Figure 1a, the user chooses to stop 
navigation and read all the results, she would have to read a 
total of 789 result tuples and 21 labels. 

2. REFINE(𝑸𝑸, 𝒄𝒄): The user chooses a suggested condition 
𝑐𝑐 ∈ 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) and refines query 𝑄𝑄, that is, 𝑄𝑄 becomes 𝑄𝑄 ∧ 𝑐𝑐. 
The result of 𝑅𝑅𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸(𝑄𝑄, 𝑐𝑐:𝐶𝐶𝑌𝑌𝑜𝑜𝑟𝑟 = 2003) is shown in 

Figure 1b. As a consequence of this action, the result set has 
now been narrowed down to 200 tuples and the new set of 
suggested conditions is available for this refined result set. 

3. EXPAND(𝑨𝑨𝒊𝒊,𝑹𝑹𝑸𝑸) : The user is dissatisfied with (rejects) all 
suggested conditions in 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄). Instead, she EXPANDs an 
attribute 𝐴𝐴𝐶𝐶 , by clicking on its “More” hyperlink, which 
reveals the remaining facet conditions for 𝐴𝐴𝐶𝐶  in 𝑅𝑅𝑄𝑄 , and 
selects one of them to REFINE the query 𝑄𝑄. This occurs 
when the user is not familiar with any of the suggested 
conditions. The effect of EXPAND is shown in Figure 1c, 
where the remaining facet conditions for 𝑆𝑆𝐶𝐶𝑜𝑜𝐶𝐶𝑌𝑌 are revealed. 

The formal navigation model is presented in Figure 2. It is a 
recursive procedure and is initially called on the entire result set 𝑅𝑅 
and the identity query 𝑄𝑄, and terminates when the user finds all 
the tuples of interest, i.e. when the user executes 
SHOWRESULT(𝑅𝑅𝑄𝑄). The set 𝑅𝑅𝑄𝑄  and the suggested conditions 
𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) is computed at the beginning of each NAVIGATE step. 

NAVIGATE(𝑄𝑄) 
1 Choose one of the following: 
2     SHOWRESULT(𝑅𝑅𝑄𝑄) 
3     Examine all suggested conditions 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) 
4         Choose one of the following: 
5             REFINE(𝑄𝑄, 𝑐𝑐) 
6                 𝑄𝑄 = 𝑄𝑄 ∧ 𝑐𝑐 
7             EXPAND�𝐴𝐴𝐶𝐶 ,𝑅𝑅𝑄𝑄� 
8                 Examine all remaining conditions in 𝐶𝐶(𝐴𝐴𝐶𝐶)\𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) 
9                 Choose a condition 𝑐𝑐′ ∈ �𝐶𝐶(𝐴𝐴𝐶𝐶)\𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄)� 
10                 𝑄𝑄 ← 𝑄𝑄 ∧ 𝑐𝑐′ 
11         NAVIGATE(𝑄𝑄) 

Figure 2. Faceted Navigation Model 

3.2 Cost Model 
The cost model measures the navigation cost incurred by the user 
when exploring a query result set 𝑅𝑅𝑄𝑄 , using the navigation model 
described in Section 3.1. The navigation cost is the sum of costs 
of the actions performed by the user, that is, examining suggested 
conditions, SHOWRESULT, REFINE and EXPAND actions. 

The cost of examining all tuples in a result set 𝑅𝑅𝑄𝑄 , that is, the cost 
of SHOWRESULT(𝑅𝑅𝑄𝑄) is |𝑅𝑅𝑄𝑄|, and the cost of examining all 
suggested conditions is �𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄)�.We assume that the REFINE and 
the EXPAND actions have a cost 𝐵𝐵 associated with them, that is, 
𝐵𝐵 is the cost of “clicking” on a suggested condition or executing 
an EXPAND action on the attribute 𝐴𝐴𝐶𝐶 ∈ 𝑆𝑆𝑅𝑅 . 

If the exact sequence of actions followed by the user in navigating 
𝑅𝑅𝑄𝑄  were known a priori, we could accurately determine the cost 
of navigation. Since this sequence cannot be known in advance, 
we estimate the navigation cost, taking into account the inherent 
uncertainty in the user navigation. To estimate the navigation cost, 
we introduce four probabilities: 
• SHOWRESULT Probability 𝑷𝑷𝑺𝑺𝑹𝑹(𝑹𝑹𝑸𝑸) is the probability 

the user examines all tuples in the result set 𝑅𝑅𝑄𝑄  and thus 
terminates the navigation. If no facet conditions can be 
suggested, then 𝑃𝑃𝑆𝑆𝑅𝑅(𝑅𝑅𝑄𝑄) = 1. 

• REFINE Probability 𝑷𝑷(𝒄𝒄) is the probability the user refines 
the query 𝑄𝑄 by a suggested condition 𝑐𝑐 ∈ 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄). 

• Attribute Preference Probability 𝑷𝑷𝑨𝑨(𝑨𝑨𝒊𝒊) is the probability 
the user prefers suggestions from attribute 𝐴𝐴𝐶𝐶 . 



• EXPAND Probability 𝑷𝑷𝑬𝑬(𝑹𝑹𝑸𝑸) is the probability the user 
does not choose a suggested condition and instead performs 
an EXPAND action is 𝑃𝑃𝐸𝐸(𝑅𝑅𝑄𝑄) = ∏ (1 − 𝑃𝑃(𝑐𝑐))𝑐𝑐∈𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) . 

Since the navigation model is recursive, the expected navigation 
cost can be estimated by the following recursive cost formula: 

𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶(𝑄𝑄) = 𝑃𝑃𝑆𝑆𝑅𝑅�𝑅𝑅𝑄𝑄� ∙ �𝑅𝑅𝑄𝑄� + �1−𝑃𝑃𝑆𝑆𝑅𝑅�𝑅𝑅𝑄𝑄�� ∙ 

�
𝐵𝐵 + �𝐶𝐶𝑆𝑆�𝑅𝑅𝑄𝑄�� + (1 − 𝑃𝑃𝐸𝐸(𝑅𝑅𝑄𝑄)) ∙ 𝑟𝑟𝑌𝑌𝑟𝑟𝐶𝐶𝑜𝑜𝑌𝑌 �𝑄𝑄,𝐶𝐶𝑆𝑆�𝑅𝑅𝑄𝑄�� +

𝑃𝑃𝐸𝐸�𝑅𝑅𝑄𝑄� ∙ � 𝑃𝑃𝐴𝐴(𝐴𝐴𝐶𝐶) ∙ ��𝐶𝐶(𝐴𝐴𝐶𝐶)\𝐶𝐶𝑆𝑆�𝑅𝑅𝑄𝑄�� + 𝑟𝑟𝑌𝑌𝑟𝑟𝐶𝐶𝑜𝑜𝑌𝑌 �𝑄𝑄,𝐶𝐶(𝐴𝐴𝐶𝐶)\𝐶𝐶𝑆𝑆�𝑅𝑅𝑄𝑄���
𝐴𝐴𝐶𝐶∈𝑆𝑆𝑅𝑅

� (1) 

where  

𝑟𝑟𝑌𝑌𝑟𝑟𝐶𝐶𝑜𝑜𝑌𝑌(𝑄𝑄,𝐶𝐶) = ��𝑃𝑃𝑜𝑜𝑜𝑜𝑟𝑟𝑚𝑚 (𝑐𝑐) ∙ 𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶(𝑄𝑄 ∧ 𝑐𝑐)�
𝑐𝑐∈𝐶𝐶

   (2) 

The first line of Equation 1 captures the fact that the user has two 
options, when presented with a set of suggested conditions. One is 
to execute a SHOWRESULT action with probability 𝑃𝑃𝑆𝑆𝑅𝑅(𝑅𝑅𝑄𝑄) and 
cost |𝑅𝑅𝑄𝑄|. The other is to execute a REFINE or EXPAND action 
with probability 1 − 𝑃𝑃𝑆𝑆𝑅𝑅(𝑅𝑅𝑄𝑄). The cost entailed by this last option 
consists of the following parts shown in the square brackets of 
cost formula: 
1. A fixed cost 𝐵𝐵 of a REFINE action. 
2. The user reads the suggested conditions with cost |𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄)|. 
3. With probability 1 − 𝑃𝑃𝐸𝐸�𝑅𝑅𝑄𝑄� the user decides to REFINE. 

The cost of REFINE, shown in Equation 2, is the sum of all 
possible REFINE choices weighted by their probabilities. 
These probabilities are normalized to sum to 1, as follows: 

𝑃𝑃𝑜𝑜𝑜𝑜𝑟𝑟𝑚𝑚 (𝑐𝑐) = 𝑃𝑃(𝑐𝑐) Σ𝑐𝑐∈𝐶𝐶𝑃𝑃(𝑐𝑐)⁄  
4. With probability 𝑃𝑃𝐸𝐸(𝑅𝑅𝑄𝑄), the user does not choose any of the 

suggested conditions and performs an EXPAND action 
instead (third line of Equation 1). With probability 𝑃𝑃𝐴𝐴(𝐴𝐴𝐶𝐶), 
the user prefers attribute 𝐴𝐴𝐶𝐶  over all other attributes and 
EXPANDs it. She examines all the non-suggested conditions 
for 𝐴𝐴𝐶𝐶 , �𝐶𝐶(𝐴𝐴𝐶𝐶)\𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄)� in total, chooses one of them and 
refines query 𝑄𝑄. The estimated cost for the last step is also 
given by the refine formula in Equation 2 above, where 
𝐶𝐶 = 𝐶𝐶(𝐴𝐴𝐶𝐶)\𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄). 

The cost formula (Equation 1) quantizes the effort incurred by the 
user navigating the results 𝑅𝑅𝑄𝑄  of the query 𝑄𝑄. The challenge now 
is to choose the set of conditions 𝐶𝐶𝑆𝑆�𝑅𝑅𝑄𝑄� ⊆ C(RQ ), that 
minimizes the overall navigation cost. 

3.3 Complexity Results 
We prove that the problem of finding the suggested facet 
conditions that minimize the expected navigation cost given by 
Equation 1 is NP-Hard, by showing that a simplified version of 
the problem is also NP-Hard. The Simplified Facet Selection 
(SFS) problem considers a simpler navigation model than the one 
in Section 3.1, called NAVIGATE-SINGLE and defined next. 

NAVIGATE-SINGLE: In this model, the system performs a 
single REFINE action, where the user randomly selects one of the 
suggested conditions, and then performs a SHOWRESULT 
action. The cost of NAVIGATE-SINGLE navigation is the cost to 
examine all suggested conditions displayed (|𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄)|) plus the 
cost �𝑅𝑅𝑄𝑄∧𝑐𝑐� of performing the SHOWRESULT action for the 
randomly-selected suggested condition 𝑐𝑐. 

Suppose that the dominant cost of our cost model is that of 
examining a suggested condition. That is, suppose the cost to 
examine a suggested condition is 1 and the cost of 
SHOWRESULT is 0. Also suppose that all attributes of 𝑅𝑅𝑄𝑄  are 
Boolean (0, 1) and that the suggested conditions in 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) are 
always positive, that is, |𝐶𝐶(𝐴𝐴𝐶𝐶)| = 1. Recall that facet conditions 
only specify a single attribute. 

Theorem 1: The SFS problem is NP-Hard.  

Proof (sketch): SFS is clearly in NP. To prove the NP-Hardness 
we reduce from the HITTING-SET problem. An instance of the 
HITTING-SET problem consists of: 
• a hypergraph 𝐻𝐻 = (𝑋𝑋,𝐸𝐸), where 𝑋𝑋 is a finite set of vertices 

and 𝐸𝐸 = {𝐸𝐸1, … ,𝐸𝐸𝑜𝑜} is a set of hyperedges, that is, subsets of 
𝑋𝑋, and 

• a positive integer 𝑀𝑀 ≤ |𝑋𝑋|. 
The problem is to determine whether there is a hitting set 𝐻𝐻 ⊆ 𝑋𝑋 
of size 𝑀𝑀 such that ∀𝐶𝐶 ∈ {1, …𝑜𝑜}:𝐻𝐻 ∩ 𝐸𝐸𝐶𝐶 ≠ ∅. 

We reduce HITTING-SET to SFS as follows. A node 𝑢𝑢𝐶𝐶  in 𝑋𝑋 
becomes a facet condition 𝐴𝐴𝐶𝐶 = 1. A hyperedge 𝐸𝐸𝐶𝐶 ∈ 𝐸𝐸 becomes a 
tuple 𝐶𝐶𝐶𝐶  in the result set 𝑅𝑅𝑄𝑄 . 𝐸𝐸𝐶𝐶  connects the vertices corresponding 
to the attributes that have value 1 for the result 𝐶𝐶𝐶𝐶 . The solution of 
HITTING-SET translates naturally to a solution to NAVIGATE-
SINGLE and vice versa.  

4. ESTIMATING PROBABILITIES 
Our aim in this paper is to present a framework for effort based 
navigation of faceted query results. The problem of estimating 
probabilities, 𝑃𝑃𝑆𝑆𝑅𝑅�𝑅𝑅𝑄𝑄�,𝑃𝑃(𝑐𝑐),𝑃𝑃𝐴𝐴(𝐴𝐴𝐶𝐶) and 𝑃𝑃𝐸𝐸(𝑅𝑅𝑄𝑄), is orthogonal to 
the solution and can be estimated in various ways viz. information 
theoretic approaches such as entropy, user navigation logs etc. 
However, for the sake of completion and evaluation of the 
framework, we present a method to estimate these probabilities. 

Estimating 𝑷𝑷𝑨𝑨(𝑨𝑨𝒊𝒊): This is the probability the user knows or 
likes attribute 𝐴𝐴𝐶𝐶 . We estimated this probability using a survey of 
10 users (students and faculty in our institutions) who rated each 
attribute 𝐴𝐴𝐶𝐶  in the dataset on a scale from 0 to 1. These values are 
taken to be the user preference 𝑃𝑃𝐴𝐴(𝐴𝐴𝐶𝐶) for attribute 𝐴𝐴𝐶𝐶 . 

Estimating 𝑷𝑷𝑺𝑺𝑹𝑹(𝑹𝑹𝑸𝑸), the probability the user executes 
SHOWRESULT on a given result set 𝑅𝑅𝑄𝑄 . We use the information 
theoretic measure of Entropy to estimate 𝑃𝑃𝑆𝑆𝑅𝑅 . The rationale 
behind this decision is that the user would choose to further refine 
the query 𝑄𝑄 and narrow down the result set 𝑅𝑅𝑄𝑄  if the tuples in 𝑅𝑅𝑄𝑄  
are widely distributed among all possible facet conditions 𝐶𝐶(𝑅𝑅𝑄𝑄). 
The entropy of a result set 𝑅𝑅𝑄𝑄  distributed amongst the facet 
conditions in 𝐶𝐶(𝑅𝑅𝑄𝑄) is given by: 

𝐻𝐻 �𝑅𝑅𝑄𝑄 ,𝐶𝐶�𝑅𝑅𝑄𝑄�� = − � ��𝑅𝑅𝑄𝑄∧𝑐𝑐� 𝑅𝑅⁄ � ln��𝑅𝑅𝑄𝑄∧𝑐𝑐� 𝑅𝑅⁄ �
𝑐𝑐∈𝐶𝐶(𝑅𝑅𝑄𝑄)

 

where 𝑅𝑅 = ∑ |𝑅𝑅𝑄𝑄∧𝑐𝑐 |𝑐𝑐∈𝐶𝐶(𝑅𝑅𝑄𝑄)  is the sum of the number of tuples 
over all facet conditions.Since the value of entropy can be greater 
than 1, we normalize it with the maximum value of entropy for a 
given result set 𝑅𝑅𝑄𝑄  distributed over �𝐶𝐶(𝑅𝑅𝑄𝑄)� facet conditions. 
Entropy is maximal when 𝑅𝑅 tuples are distributed equally 
amongst �𝐶𝐶(𝑅𝑅𝑄𝑄)� facet conditions, that is, each facet condition is 
satisfied by 𝑅𝑅/|𝐶𝐶(𝑅𝑅𝑄𝑄)| tuples. The entropy of such a system is: 



𝐻𝐻𝑚𝑚𝑜𝑜𝐸𝐸 �𝑅𝑅𝑄𝑄 ,𝐶𝐶�𝑅𝑅𝑄𝑄�� = − � �
𝑅𝑅 �𝐶𝐶�𝑅𝑅𝑄𝑄��⁄

𝑅𝑅
ln
𝑅𝑅 �𝐶𝐶�𝑅𝑅𝑄𝑄��⁄
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𝑐𝑐∈𝐶𝐶�𝑅𝑅𝑄𝑄�

= ln�𝐶𝐶�𝑅𝑅𝑄𝑄�� 

∴ 𝑃𝑃𝑆𝑆𝑅𝑅(𝑅𝑅𝑄𝑄) =
−∑ �𝑅𝑅𝑄𝑄∧𝑐𝑐� 𝑅𝑅⁄ ln �𝑅𝑅𝑄𝑄∧𝑐𝑐� 𝑅𝑅⁄𝑐𝑐∈𝐶𝐶(𝑅𝑅𝑄𝑄 )

ln�𝐶𝐶�𝑅𝑅𝑄𝑄��
 

Estimating 𝑷𝑷(𝒄𝒄): 𝑃𝑃(𝑐𝑐) is the probability the user executes a 
REFINE action on suggested condition 𝑐𝑐. A user would REFINE 
by 𝑐𝑐, if she knows or likes the attribute of 𝑐𝑐 and is also familiar 
with the value of the attribute in 𝑐𝑐. Therefore, we used a two-
pronged approach to compute 𝑃𝑃(𝑐𝑐). To estimate the popularity of 
a value of a facet condition, we computed the frequency 
𝑟𝑟𝑟𝑟𝑌𝑌𝑓𝑓(𝐴𝐴𝐶𝐶 .𝑣𝑣𝐶𝐶) of each value for each attribute in 𝑅𝑅. Then, we 
multiply each frequency with the attribute preference to obtain the 
attribute/value preferences 𝑃𝑃(𝑐𝑐:𝐴𝐴𝐶𝐶 = 𝑣𝑣𝐶𝐶) = 𝑟𝑟𝑟𝑟𝑌𝑌𝑓𝑓(𝐴𝐴𝐶𝐶 . 𝑣𝑣𝐶𝐶) ∙ 𝑃𝑃𝐴𝐴(𝐴𝐴𝐶𝐶), 
which we then normalize by dividing by the maximum frequency. 

5. ALGORITHMS 
Given the intractability of the Facet Selection problem, we have 
to rely on heuristics to compute the set of suggested conditions. 
To develop these heuristics, we analyzed the cost model presented 
in Section 3.1 to determine the characteristics of suggestions that 
form good candidates for suggested conditions. This analysis is 
summarized as a brief discussion in Section 5.1. Next, we present 
two heuristics to efficiently compute the best set of suggested 
conditions. The first, ApproximateSetCover (Section 5.2), is 
inspired by an approximation algorithm for the weighted set cover 
problem [6], and attempts to find a relatively small set of 
suggestions that have a high probability of being recognized by 
users (high P(c)). The second heuristic, UniformSuggestions 
(Section 5.3), follows Equation 1 more closely and greedily 
selects facet conditions based on a heuristic assumption that is 
derived from the analysis of the cost model. 

CS(RQ)

RQ C(RQ)Make Year State Color

t1 Honda 2001 NY Red

t2 Honda 2005 NY Green

t3 Honda 2001 NY Gold

t4 Honda 2005 NY Green

t5 Toyota 2005 NY White

t6 Toyota 2005 NY Black

Facet Condition P(c)
Make=Honda 0.8
Make=Toyota 0.7
Color=Red 0.1
Color=Gold 0.1
Color=Green 0.4
Color=White 0.1
Color=Black 0.1
State=NY 0.2
Year=2001 0.5
Year=2005 0.7

Make
• Honda (4)
Year
• 2005 (4)

Color
• Red (1)
• White (1)
• Green (2)
• Gold (1)
• Black (1) 

Make
• Toyota (2)
Year
• 2001 (2)
Color
• Green (2)

(a) (b) (c)  
Figure 3. Result Set 𝑹𝑹𝑸𝑸, All Facet Conditions 𝑪𝑪(𝑹𝑹𝑸𝑸), and 
Three Alternative Sets of Suggested Conditions 𝑪𝑪𝑺𝑺(𝑹𝑹𝑸𝑸) 

5.1 Cost Model Analysis 
Consider a sample result set 𝑅𝑅𝑄𝑄  shown in Figure 3. Also shown, 
are three alternative sets of suggested conditions (Figure 3a, 3b 
and 3c) selected from the set of all facet conditions 𝐶𝐶(𝑅𝑅𝑄𝑄). Which 
one of the alternative set of suggestions shown in Figures 3a, 3b 
and 3c has the lowest cost, and therefore is more likely to be 
selected by the navigation cost model? 

The suggested conditions shown in Figure 3a are highly selective, 
since each one of them appears in a small number of results (low 
cardinality). Therefore, a large number of such conditions are 

required to cover the result set 𝑅𝑅𝑄𝑄  causing the navigation cost to 
increase as the user now has to read all the labels before 
proceeding to the next navigation step. 

A set of suggested conditions where each condition has low 
selectivity (Figure 3b) also leads to a high overall expected 
navigation cost. Such conditions typically have a high overlap and 
do not effectively narrow down the result set and therefore, the 
user has to execute more REFINE actions to narrow down the 
result set. For example, refining by either 𝑀𝑀𝑜𝑜𝑀𝑀𝑌𝑌 = 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 or 
𝑌𝑌𝑌𝑌𝑜𝑜𝑟𝑟 = 2005, in Figure 3b, reduces the number of results from 
the initial six to four, and the resulting result set may need to be 
refined further before reaching the desired result(s). Conditions 
with low selectivity can potentially lead to redundant navigation 
steps. For example, refining by 𝑆𝑆𝐶𝐶𝑜𝑜𝐶𝐶𝑌𝑌 = 𝑅𝑅𝑌𝑌 does not narrow 
down the result but still adds to the navigation cost. 

Based on the above discussion, we observe that the facet 
conditions selected by the cost model as suggested ones should 
neither have high nor low selectivity. The suggested conditions in 
Figure 3c are facet conditions with such desired characteristics. 
The conditions 𝑀𝑀𝑜𝑜𝑀𝑀𝑌𝑌 = 𝑇𝑇𝑜𝑜𝐶𝐶𝑜𝑜𝐶𝐶𝑜𝑜, 𝑌𝑌𝑌𝑌𝑜𝑜𝑟𝑟 = 2001 and 𝐶𝐶𝑜𝑜𝑀𝑀𝑜𝑜𝑟𝑟 =
𝐺𝐺𝑟𝑟𝑌𝑌𝑌𝑌𝑜𝑜 are moderately selective and thus have minimum overlap 
and do not require a large number of conditions to cover 𝑅𝑅𝑄𝑄 . 

Another factor that increases the navigation cost is the EXPAND 
action, since the user can potentially see a large number of 
conditions, thereby increasing the navigation cost. The expected 
cost of EXPAND is multiplied by ∏ (1 −  𝑃𝑃(𝑐𝑐))𝑐𝑐∈𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) , which is 
minimized when all the conditions in 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) have a high 𝑃𝑃(𝑐𝑐). 

5.2 ApproximateSetCover Heuristic 
Given a result set 𝑅𝑅𝑄𝑄  and its facet conditions 𝐶𝐶(𝑅𝑅𝑄𝑄), the objective 
is to compute the set of suggested conditions 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) such that the 
expected navigation cost, based on our cost model, is minimal and 
the set 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) covers 𝑅𝑅𝑄𝑄 , that is, ⋃ 𝑅𝑅𝑄𝑄∧𝑐𝑐 = 𝑅𝑅𝑄𝑄𝑐𝑐∈𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) , where 
each facet condition 𝑐𝑐 covers �𝑅𝑅𝑄𝑄∧𝑐𝑐� results in 𝑅𝑅𝑄𝑄 .This problem 
closely resembles the well-known NP-hard weighted set cover 
problem – given a set system (𝑈𝑈, 𝑆𝑆), such that ⋃ 𝐷𝐷𝐷𝐷∈𝑆𝑆 = 𝑈𝑈, and 
weights 𝑤𝑤: 𝑆𝑆 → ℝ+, find a subfamily ℱ ⊆ 𝑆𝑆 such that ⋃ 𝐷𝐷𝐷𝐷∈ℱ = 𝑈𝑈 
and ∑ 𝑤𝑤(𝐷𝐷)𝐷𝐷∈ℱ  is minimal. The approximation algorithm for 
weighted set cover [6] adds at every step the set 𝐷𝐷 that maximizes 
the number of newly covered items divided by the weight 𝑤𝑤(𝐷𝐷).  
In order to apply the approximation algorithm for weighted set 
cover to our problem, we need to define the weight function 
𝑤𝑤:𝐶𝐶(𝑅𝑅𝑄𝑄) → ℝ+. By observing the cost formula in Equation 1, 
each facet condition in the suggested set 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) should have a 
high probability 𝑃𝑃(𝑐𝑐) of being selected for REFINEment. 
Otherwise, the probability that the user does not select a suggested 
condition and chooses EXPAND would be high, resulting in a 
high overall cost. To achieve this objective, we set the weight 
function to be 𝑤𝑤: 𝑐𝑐 ∈ 𝐶𝐶(𝑅𝑅𝑄𝑄) → 1/𝑃𝑃(𝑐𝑐). Note that the overlap among 
conditions and number of elements covered by a selected 
condition do not need to be part of 𝑤𝑤, since they are considered 
directly in the approximation algorithm. 
Figure 4 presents the ApproximateSetCover heuristic, which is an 
adaptation of the weighted set cover approximation algorithm [6] 
using the above defined weight function, and has a running time 
of 𝑂𝑂(|𝐶𝐶(𝑅𝑅𝑄𝑄)| ∙ |𝑅𝑅𝑄𝑄|) and an approximation ratio of 
𝑂𝑂(log(|𝐶𝐶(𝑅𝑅𝑄𝑄)|)). Note that this approximation ratio assumes that 
the quantity we want to minimize is the sum of the weights 



(1/𝑃𝑃(𝑐𝑐)) of the selected conditions. However, the real objective 
of ApproximateSetCover is to minimize the navigation cost, 
which is much harder to bound, given that ApproximateSetCover 
does not capture all the details of Equation 1. Also note that this 
approximation ratio can be large if the number of conditions in 
𝐶𝐶(𝑅𝑅𝑄𝑄) is large. However, the number of facet conditions is 
generally small and this algorithm performs reasonably well in 
practice, as demonstrated by the experiments in Section 6. 
Algorithm: ApproximateSetCover(𝑄𝑄,𝑅𝑅𝑄𝑄) 
Input: A query 𝑄𝑄, a result set 𝑅𝑅𝑄𝑄  
Output: The suggested conditions 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) ⊆ 𝐶𝐶(𝑅𝑅𝑄𝑄) 

1 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) ← ∅ 
2 𝑉𝑉 ← ∅ // 𝑉𝑉 are results covered so far 
3 while 𝑉𝑉 ≠ 𝑅𝑅𝑄𝑄  // while not all results covered 
4  𝑐𝑐 ← 𝑜𝑜𝑟𝑟𝑀𝑀𝑚𝑚𝑜𝑜𝐸𝐸𝑐𝑐∈𝐶𝐶(𝑅𝑅𝑄𝑄)�𝑃𝑃(𝑐𝑐) ∙ |𝑅𝑅𝑄𝑄∧𝑐𝑐\𝑉𝑉|� 
5  𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) ← 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) ∪ {𝑐𝑐} 
6  𝑉𝑉 ← 𝑉𝑉 ∪ 𝑅𝑅𝑄𝑄∧𝑐𝑐  
7  𝑄𝑄 ← 𝑄𝑄 ∧ 𝑐𝑐 
8 return 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) 

Figure 4. ApproximateSetCover Heuristic 
Example: Figure 3b shows the result of the ApproximateSetCover 
heuristic on the result set 𝑅𝑅𝑄𝑄  in Figure 3. The algorithm requires 
two iterations of the while loop (lines 3-7) before terminating with 
the set of suggested conditions in Figure 3b. In the first iteration, 
the algorithm selects 𝑀𝑀𝑜𝑜𝑀𝑀𝑌𝑌 = 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, since this facet condition 
covers 4 results and has the maximum value of 𝑃𝑃(𝑐𝑐) ∙ |𝑅𝑅𝑄𝑄∧𝑐𝑐 | =
3.2 amongst all the conditions in 𝐶𝐶(𝑅𝑅𝑄𝑄) and 𝑉𝑉 is empty. In the 
next iteration, two results (𝐶𝐶1 & 𝐶𝐶3) remain uncovered and are 
covered by facet condition 𝑌𝑌𝑌𝑌𝑜𝑜𝑟𝑟 = 2005.  

5.3 UniformSuggestions Heuristic 
In this heuristic we follow the cost formula in Equation 1 more 
closely, which leads to a more robust heuristic. Computing the 
optimal suggested conditions involves recursively evaluating 
Equation 1 for each combination of facet conditions in 𝐶𝐶(𝑅𝑅𝑄𝑄). 
This translates to a very large (in both height and width) recursion 
tree. UniformSuggestions replaces this recursion tree with a set of 
very small recursion trees, one for each condition in 𝐶𝐶(𝑅𝑅𝑄𝑄). For 
that, we evaluate the expected cost of each facet condition 
independently, assuming that all future suggested conditions will 
have identical properties, and then select the facet conditions with 
minimal expected cost, until all results in 𝑅𝑅𝑄𝑄  are covered. 

In particular, the uniform-condition heuristic assumption states 
that for a given condition 𝑐𝑐 ∈ 𝐶𝐶(𝑅𝑅𝑄𝑄), evaluate the navigation cost 
using Equation 1, while assuming that every other condition in 
𝐶𝐶(𝑅𝑅𝑄𝑄) has the same characteristics as 𝑐𝑐. The characteristics of 𝑐𝑐 
are (a) its probability 𝑃𝑃(𝑐𝑐), and (b) the ratio 𝑟𝑟(𝑐𝑐) = |𝑅𝑅𝑄𝑄∧𝑐𝑐 |/|𝑅𝑅𝑄𝑄| 
of the uncovered results that 𝑐𝑐 covers. This heuristic assumption 
reduces the search space of suggestions to �𝐶𝐶(𝑅𝑅𝑄𝑄)� as each 
condition is now evaluated independently. It also allows us to 
simplify the cost formula in Equation 1 as follows. 
If each suggested condition in 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) covers a ratio 𝑟𝑟 of the 
results in 𝑅𝑅𝑄𝑄 , we need a total of 𝑜𝑜 = 1/𝑟𝑟 conditions to cover all 
the results in 𝑅𝑅𝑄𝑄 . Also, REFINEment by 𝑐𝑐 narrows down 𝑅𝑅𝑄𝑄  to an 
estimated |𝑅𝑅𝑄𝑄|/𝑜𝑜 number of results. On the other hand, if the user 
does not select a suggested condition and instead EXPANDs an 
attribute 𝐴𝐴𝐶𝐶 , she views an additional |𝐶𝐶(𝐴𝐴𝐶𝐶)\𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄)| ≈ |𝐶𝐶(𝐴𝐴𝐶𝐶)| 
facet conditions. Also, in the absence of any prior knowledge 

about the selectivity of facet conditions in 𝐶𝐶(𝐴𝐴𝐶𝐶), we assume that 
each 𝑐𝑐′ ∈ 𝐶𝐶(𝐴𝐴𝐶𝐶) narrows down 𝑅𝑅𝑄𝑄  to an estimated �𝑅𝑅𝑄𝑄�/|𝐶𝐶(𝐴𝐴𝐶𝐶)|. 
Thus, we can simplify the recursion in Equation 1 as follows: 

𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶�𝑐𝑐, �𝑅𝑅𝑄𝑄�� = 𝑃𝑃𝑆𝑆𝑅𝑅�𝑅𝑅𝑄𝑄� ∙ �𝑅𝑅𝑄𝑄� + �1−𝑃𝑃𝑆𝑆𝑅𝑅�𝑅𝑅𝑄𝑄�� ∙ 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝐵𝐵 + 𝑜𝑜 + �1 − 𝑃𝑃𝐸𝐸(𝑐𝑐)� ∙��𝑃𝑃𝑜𝑜𝑜𝑜𝑟𝑟𝑚𝑚 (𝑐𝑐) ∙ 𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶�𝑐𝑐, �𝑅𝑅𝑄𝑄�/𝑜𝑜��

𝑜𝑜

𝐶𝐶=1

+

𝑃𝑃𝐸𝐸(𝑐𝑐) ∙ � 𝑃𝑃𝐴𝐴(𝐴𝐴𝐶𝐶) ∙ �
|𝐶𝐶(𝐴𝐴𝐶𝐶)| +

� �𝑃𝑃𝑜𝑜𝑜𝑜𝑟𝑟𝑚𝑚 (𝑐𝑐′) ∙ 𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶�𝑐𝑐′, �𝑅𝑅𝑄𝑄�/|𝐶𝐶(𝐴𝐴𝐶𝐶)|��
𝑐𝑐′∈𝐶𝐶(𝐴𝐴𝐶𝐶)

�
𝐴𝐴𝐶𝐶∈𝑆𝑆𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

  (3) 

where 𝑃𝑃𝐸𝐸(𝑐𝑐) = �1 − 𝑃𝑃(𝑐𝑐)�𝑜𝑜  

Algorithm: UniformSuggestions(𝑄𝑄,𝑅𝑅𝑄𝑄) 
Input: A query 𝑄𝑄, a result set 𝑅𝑅𝑄𝑄  
Output: 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) ⊆ 𝐶𝐶(𝑅𝑅𝑄𝑄), the suggested conditions. 

1 𝑄𝑄′ ← 𝑄𝑄;  𝐶𝐶𝑆𝑆�𝑅𝑅𝑄𝑄� ← ∅;  𝑌𝑌 ← 𝑅𝑅𝑄𝑄  // 𝑌𝑌: uncovered results 
2 𝑃𝑃𝑆𝑆𝑅𝑅 ← 𝑃𝑃𝑆𝑆𝑅𝑅 �𝑅𝑅𝑄𝑄 ,𝐶𝐶�𝑅𝑅𝑄𝑄�� 
3 while 𝑌𝑌 ≠ ∅ do 
4      foreach 𝑐𝑐 ∈ 𝐶𝐶(𝑅𝑅𝑄𝑄) 
5           𝑜𝑜 ← |Y| |Y ∩ 𝑅𝑅𝑄𝑄′∧𝑐𝑐 |⁄  
6           𝑃𝑃𝑆𝑆𝑅𝑅 ← 𝑃𝑃𝑆𝑆𝑅𝑅�𝑅𝑅𝑄𝑄� 
7           𝑢𝑢 ← |𝑌𝑌| 
8           compute 𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶(𝑐𝑐,𝑢𝑢) using Equation 4 
9      endFor 
10      Let 𝑐𝑐𝑚𝑚𝐶𝐶𝑜𝑜 be the suggestion with min 𝑌𝑌𝐷𝐷𝐶𝐶𝐶𝐶𝑜𝑜𝐷𝐷𝐶𝐶(𝑐𝑐, |𝑌𝑌|) 
11      𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) ← 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) ∪ 𝑐𝑐𝑚𝑚𝐶𝐶𝑜𝑜 
12      𝑄𝑄′ ← 𝑄𝑄 ∧ 𝑐𝑐𝑚𝑚𝐶𝐶𝑜𝑜 
13      𝑌𝑌 ← 𝑌𝑌\𝑅𝑅𝑄𝑄′∧𝑐𝑐𝑚𝑚𝐶𝐶𝑜𝑜  
14      𝐶𝐶�𝑅𝑅𝑄𝑄� ← 𝐶𝐶�𝑅𝑅𝑄𝑄�\{𝑐𝑐𝑚𝑚𝐶𝐶𝑜𝑜} 
15 endWhile 
16 return 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) 

Figure 5. UniformSuggestions Heuristic 
Observe that instead of 𝑄𝑄, the cost function in Equation 3 above 
uses 𝑐𝑐 and �𝑅𝑅𝑄𝑄� as arguments for this heuristic, since a cost is 
computed for each 𝑐𝑐, and only the number of results |𝑅𝑅𝑄𝑄| is 
important. The parameter 𝑄𝑄 in the original cost formula (Equation 
1) captured the query progression with REFINE actions, which is 
not required in this heuristic. In Equation 3 above, 𝑃𝑃𝑜𝑜𝑜𝑜𝑟𝑟𝑚𝑚 (𝑐𝑐) is the 
normalized probability of following one condition of type 𝑐𝑐. Since 
all 𝑜𝑜 suggested conditions have the same 𝑃𝑃(𝑐𝑐), then 𝑃𝑃𝑜𝑜𝑜𝑜𝑟𝑟𝑚𝑚 (𝑐𝑐) =
1 𝑜𝑜⁄ . Therefore the cost component in Equation 3 for navigating 
all 𝑜𝑜 suggested conditions can be rewritten as: 

�𝑃𝑃𝑜𝑜𝑜𝑜𝑟𝑟𝑚𝑚 (𝑐𝑐) ∙ 𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶�𝑐𝑐, �𝑅𝑅𝑄𝑄� 𝑜𝑜⁄ � =
𝑜𝑜

𝐶𝐶=1

𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶�𝑐𝑐, �𝑅𝑅𝑄𝑄� 𝑜𝑜⁄ � 

By a similar argument, and since every facet condition 𝑐𝑐′ has the 
same characteristics as 𝑐𝑐 in Equation 3, we can simplify the last 
line of Equation 3 as follows, where 𝐴𝐴𝑐𝑐  is the attribute of 𝑐𝑐: 

� 𝑃𝑃𝐴𝐴(𝐴𝐴𝐶𝐶) ∙ �
|𝐶𝐶(𝐴𝐴𝐶𝐶)| +

𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶�𝑐𝑐, �𝑅𝑅𝑄𝑄� 𝑜𝑜⁄ ��
𝐴𝐴𝐶𝐶∈𝑆𝑆𝑅𝑅

= |𝐶𝐶(𝐴𝐴𝑐𝑐)| + 𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶�𝑐𝑐, |𝑅𝑅𝑄𝑄|/|𝐶𝐶(𝐴𝐴𝑐𝑐)|� 

Therefore, the cost equation (3) can now be rewritten as: 
𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶�𝑐𝑐, �𝑅𝑅𝑄𝑄��

=

⎩
⎪
⎨

⎪
⎧�𝑅𝑅𝑄𝑄�                                                                             , �𝑅𝑅𝑄𝑄� < 𝑇𝑇

𝑃𝑃𝑆𝑆𝑅𝑅�𝑅𝑅𝑄𝑄� ∙ �𝑅𝑅𝑄𝑄� + �1 − 𝑃𝑃𝑆𝑆𝑅𝑅�𝑅𝑅𝑄𝑄�� ∙

�
𝐵𝐵 + 𝑜𝑜 + �1 − 𝑃𝑃𝐸𝐸(𝑐𝑐)� ∙ 𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶�𝑐𝑐, �𝑅𝑅𝑄𝑄�/𝑜𝑜� +

𝑃𝑃𝐸𝐸(𝑐𝑐) ∙ �|𝐶𝐶(𝐴𝐴𝐶𝐶)| + 𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶�𝑐𝑐, �𝑅𝑅𝑄𝑄�/|𝐶𝐶(𝐴𝐴𝑐𝑐)|��
�   , �𝑅𝑅𝑄𝑄� > 𝑇𝑇

�  (4) 



The recursion terminates when the size of the result �𝑅𝑅𝑄𝑄� drops 
below a threshold 𝑇𝑇. Since a navigation should be able to narrow 
down the result to a single tuple, we set 𝑇𝑇 to 1. The algorithm, 
based on the uniform-condition heuristic assumption is presented 
in Figure 5. The algorithm computes the estimated 𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶 of each 
facet condition using the simplified cost formula in Equation 4 
(lines 4-9), and selects the condition with the minimum 𝑐𝑐𝑜𝑜𝐷𝐷𝐶𝐶 
(𝑐𝑐𝑚𝑚𝐶𝐶𝑜𝑜) to be added to the set of selected conditions (lines 10-11). 
Next, we remove from the set 𝑉𝑉 of uncovered results the results 
covered by 𝑐𝑐𝑚𝑚𝐶𝐶𝑜𝑜. The algorithm terminates when all the results in 
𝑅𝑅𝑄𝑄  are covered. 

The result of applying the UniformSuggestions heuristic 
algorithm to the result set 𝑅𝑅𝑄𝑄  in Figure 3 is shown in Figure 3c. 
Recall from the discussion in Section 5.1 that the cost model 
selects conditions with moderate selectivity and high 𝑃𝑃(𝑐𝑐). Under 
our heuristic assumption, a facet condition 𝑐𝑐 is evaluated under 
the assumption that all conditions in 𝐶𝐶(𝑅𝑅𝑄𝑄) have the same 
characteristics as 𝑐𝑐. Therefore, a condition with moderate 
selectivity and a high 𝑃𝑃(𝑐𝑐) has a lower cost when evaluated using 
the simplified cost formula in Equation 4 and these are just the 
conditions selected by the algorithm. 

6. EXPERIMENTAL EVALUATION 
In this section, we present a thorough evaluation of the algorithms 
and heuristics described in Section 5 and show that FACeTOR 
achieves a significant decrease in navigation cost compared to 
current approaches. The experiments, presented in Section 6.2, are 
based on a large-scale simulation of user navigations. The metric 
used is the average navigation cost as defined by the cost formula 
in Equation 1. Section 6.3 measures the time requirements of our 
heuristics and shows that they can be used for real-time 
interaction. 

6.1 Experimental Setup 
The primary goal of these experiments is to evaluate the 
effectiveness of the system in decreasing the user navigation cost 
for a set of query results. To this end, we compare the two 
heuristics presented in Section 5 to each other and to the current 
state of the art algorithm, which is the single-facet-based-search 
[17], henceforth called INDG. All experiments were conducted on 
a Dell Optiplex machine with 3GHz CPU and 3GB of RAM. We 
used MySQL as our database and Java for algorithms. 

6.1.1 Datasets 
We evaluate FACeTOR on two datasets, UsedCars and IMDB. 
We assume that numeric attributes have been appropriately 
discretized. The UsedCars database was downloaded from 
Yahoo! Auto and contains 15,191 car tuples with 41 
attributes/facets. From the IMDB dataset, we extracted a total of 
37,324 movies. We only leveraged the movie, actors, directors, 
ratings and genre data. Note that actors, directors and genres are 
set-valued attributes, i.e. each attribute can have multiple values 
for a given movie. 

6.1.2 Experimental Methodology 
For each dataset, IMDB and UsedCars, we select a number of 
keyword queries (see Table 1) whose results from the initial result 
set 𝑅𝑅, and a random result tuple as the target for navigation for 
each query. Next, we measure the number of navigation actions 
(REFINE/EXPAND actions, facet conditions displayed and 
results viewed) incurred before reaching the target tuple as the 
navigation cost for the query. In our system, the target tuple can 

be reached by multiple navigations. For example, tuple 𝐶𝐶4 in the 
result set of Figure 3 can be reached by REFINEing by any one of 
the two conditions in Figure 3b. 

Table 1. Sample Queries 
Query #Results # of Facet 

Conditions 
Query #Results # of Facet 

Conditions 
UsedCars Dataset IMDB Dataset 

honda 789 234 baldwin 112 1545 
toyota 1470 366 oscar 189 2141 
dallas 2932 990 love 415 2989 
miami 211 230 American 111 1096 
coupe 599 334 history 272 2716 
sedan 1693 524 white 284 3058 
2000 896 641 black 221 2327 
2004 3711 1124 time 145 907 
black 2391 972 john 2007 391 4545 
gold 709 508 action 2007 272 2601 

Since, the user’s navigation cannot be known in advance, we 
consider an evaluation approach that considers both these 
navigation paths. To account for uncertainty in user navigation, 
we use a guided randomized simulation of user navigation. In this 
simulation, we randomly select one of the facet conditions 
𝑐𝑐 ∈ 𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) for navigation. The probability that the agent selects a 
condition 𝑐𝑐 is proportional to 𝑃𝑃(𝑐𝑐), the probability that the user 
would know or likes the facet condition 𝑐𝑐. The simulation is 
guided in the sense that it only follows the paths that lead to the 
target result. For example, if the agent encounters the two 
suggestions in Figure 3b and the target is tuple 𝐶𝐶3, the simulation 
would choose either 𝑀𝑀𝑜𝑜𝑀𝑀𝑌𝑌 = 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 or EXPAND. The 
probability of choosing EXPAND is ∏ (1 − 𝑃𝑃(𝑐𝑐))𝑐𝑐∈𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) , where 
𝐶𝐶𝑆𝑆�𝑅𝑅𝑄𝑄� are the suggested conditions. We execute the navigation 
for each query 1000 times using this simulation technique and 
average the cost over the individual navigations. We also report 
the average number of times each navigation action is executed. 
The navigation cost is sensitive to the constant 𝐵𝐵 according to the 
cost function in Equation 1. Varying this constant changes the set 
𝐶𝐶𝑆𝑆(𝑅𝑅𝑄𝑄) for UniformSuggestions, but not for 
ApproximateSetCover, since it does not consider 𝐵𝐵. Intuitively, 𝐵𝐵 
denotes the patience of the user towards suggestions generated by 
the system. If the user sees a small number of conditions she 
would have to execute more REFINE actions to reach the result. 
Thus by setting 𝐵𝐵 to a large value the user should typically see 
more suggestions per REFINE and vice versa.  
We experiment with different values of 𝐵𝐵 and observe the effect 
on the overall navigation cost for the UsedCars query workload in 
Table 1. We also compare the number of suggested conditions 
generated (on average) and the number of REFINE actions. We 
compare our approach with the current state of the art INDG 
algorithm [17]. This algorithm constructs a decision tree that 
partitions the result set 𝑅𝑅𝑄𝑄  by a facet (attribute) at each level. The 
aim is to minimize the average depth of the tree in reaching the 
results. The user is presented with all the facet conditions on the 
attribute that forms the root of the decision tree. Since INDG 
generates suggestions from a single attribute, the simulation for 
this algorithm differs from above as follows: at each step, the 
agent chooses to EXPAND or REFINE by one of the suggestions 
of an attribute 𝐴𝐴𝐶𝐶  with probability 𝑃𝑃𝐴𝐴(𝐴𝐴𝐶𝐶) and EXPAND action 
reveals all the facet conditions for a different attribute. 



6.2 Experiments with Navigation Cost 
The average navigation costs for the INDG, 
ApproximateSetCover and UniformSuggestions algorithms for the 
UsedCars queries in Table 1 are shown in Figure 6a. As seen in 
the graph, our approach leads to significant savings in navigating 
cost. Figure 6b shows some of the individual components of the 
total cost for Figure 6a, that is, the average number of REFINE 
actions, average number of EXPAND actions. Also shown (top of 
the bars) are the average numbers of suggestions per navigation 
step. As expected, the INDG algorithm has very few REFINE and 
EXPAND actions, but reveals a large number of facet conditions, 
resulting in high overall cost. The INDG algorithm ignores the 
cost of inspecting labels and therefore produces a large number of 
suggestions at each navigation step. 
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(UsedCars Dataset) 
The average cost incurred by UniformSuggestions algorithm is 
less compared to ApproximateSetCover. ApproximateSetCover 
has a higher number of REFINE and EXPAND actions as 

compared to UniformSuggestions, even though the average 
number of suggestions at each navigation step is comparable. In 
each iteration, the greedy ApproximateSetCover algorithm selects 
a small set of facet conditions with a high value of 𝑃𝑃(𝑐𝑐) that also 
cover a large number of results. These suggested conditions 
therefore, have a low selectivity and tend to have a high degree of 
overlap (Figure 7), thereby reducing the effectiveness of REFINE 
actions. Thus, the user has to perform many REFINE actions in 
order to reach the target results. Figure 8 shows the effect of 
increasing 𝐵𝐵, the cost of executing REFINE. As expected, the 
average overall cost increases. The UniformSuggestions adapts to 
a changing value of 𝐵𝐵, whereas the ApproximateSetCover and 
INDG do not. Therefore the cost of UniformSuggestions increases 
at a slower rate than the other two algorithms. This is primarily 
because, for a higher 𝐵𝐵, UniformSuggestions generates more 
suggestions per REFINE/EXPAND. 
The results of IMDB workload queries in Table 1 are shown in 
Figure 9. As in the UsedCars workload, the UniformSuggestions 
outperforms ApproximateSetCover. Also, the observations for the 
number of EXPAND and REFINE actions and the number of 
suggested conditions generated is also similar to those for the 
UsedCars dataset. However, the navigation cost with the 
UniformSuggestions algorithm is much lower than 
ApproximateSetCover. A movie in the IMDB dataset can be 
classified into a large number of facet conditions. For example, 
each movie can have multiple actors or directors or genres. 
Therefore executing an EXPAND action reveals a very large 
number of facet conditions (the number on top of bars in Figure 
9b), thereby significantly increasing the navigation cost. 

6.3 Execution Time Evaluation 
This experiment aims to show that UniformSuggestions is fast 
enough to be used in real-time. The average execution time of 
UniformSuggestions per REFINE action for the queries in Table 1 
(UsedCars dataset) is shown in Figure 10. The execution time for 
this heuristic depends primarily on the number of facet conditions 
in the result set 𝑅𝑅𝑄𝑄 . As the number of facet conditions decreases, 
as is the case towards the end of navigation, the performance of 
UniformSuggestions improves dramatically. In the interest of 
space, we omit reporting these values, as well as the results for 
ApproximateSetCover which, given its simplicity, is much faster. 

7. USER EVALUATION 
In this section, we present the results of a user study we conducted 
to compare the user experience with FACeTOR and other state of 
the art interfaces. We measure (a) the actual time it took users to 

Figure 6. For the UsedCars Dataset: (a) Average Navigation Cost, and (b) Average Number of REFINE and EXPAND Actions, and 
Average Number of Suggested Conditions per Navigation Step (numbers on top of the bars), for 𝑩𝑩 = 𝟏𝟏 
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navigate using different interfaces, (b) how realistic is our cost 
model, by studying the relationship of the actual time (actual cost) 
with the estimated cost and (c) the users perception of the faceted 
interfaces through a questionnaire. By comparing the actual 
navigation time to the users’ perception, we study if lower actual 
time corresponds to more intuitive (cognitively easier) interfaces. 
We constructed 8 randomly created result sets of 1000 tuples from 
the UsedCars dataset and for each one we created a task that 
involves locating a set of target tuples (cars), which satisfy a set 
of attribute/value conditions. For each one of the 8 result sets, we 
showed the requested conditions to the users and asked them to 
locate the target tuples using three interfaces: (a) FACeTOR, (b) 
Amazon-Style, which suggests at most 5 facet conditions with the 
highest cardinality for each attribute, and (c) One-attribute-at-a-
time INDG [17], where an attribute is selected at each step and all 
its conditions are displayed. We deployed our system on Amazon 
Mechanical Turk [2] task and collected a total of 37 responses. 
Actual Time Figure 11 shows the actual time as well the average 
time taken by users to navigate each of the eight result sets using 
the three interfaces. As shown, FACeTOR speeds up the 
navigation by 18% and 37% over Amazon-Style and INDG 
respectively, even for relatively small result sets of 1000 tuples 
(Figure 12). This is primarily because users spend less time in 
reading suggested conditions and deciding which one to follow 
next, as evidenced by Figure 12. FACeTOR shows 36% fewer 
suggestions than Amazon-style and 57% fewer suggestions than 
INDG, while it requires the same number of REFINE and 
EXPAND actions (on average) to reach the target tuples. This is 
an indication of high quality suggestions provided by FACeTOR. 
Estimated Cost Figure 13 displays the data points of actual time 
vs. estimated cost, as computed by Equation 1, for the eight result 
sets for the three interfaces. Based on these data points, Figure 13 
also shows the trend line between actual time and estimated 
navigation cost for each interface. We observe that the actual time 
is linearly proportional to the estimated navigation cost for all 
three interfaces, which shows that our cost model is realistic. 
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Users Perception The study also included a questionnaire where 
we elicited the users’ opinion on various aspects of the three 
interfaces, including the ease of use, size and intuitiveness of 
suggested conditions and preferred choice of interface. The results 
of this survey are shown in Figure 14. 92% of users said that they 
thought the suggestions presented by FACeTOR at each step 
made the task of locating the target tuples easier (Figure 14a), 
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compared to 89% for Amazon-style and 40% for INDG. A large 
majority of users (92%) also said that the suggestions provided by 
FACeTOR had a low “cognitive dissonance” (Figure 14b) in the 
sense that it was very easy (45%) or easy (46%) to decide which 
suggestion to follow. We also asked the users if the number of 
suggestions provided by the interfaces were adequate (Figure 
14c). A significant percentage (30%) said that FACeTOR 
provided too few suggestions at each navigation step, indicating 
that users prefer more choices even if it means an increase in 
absolute navigation cost – a situation that could easily be 
remedied by increasing the value of constant 𝐵𝐵. 

8. RELATED WORK 
Ranking Ranking could be applied in conjunction with a faceted 
interface. [5] uses the unspecified attributes and apply 
Probabilistic Information Retrieval principles to rank the results of 
a database selection query. Various ranking techniques have also 
been proposed for keyword search on structured databases [1,12] 
based on the size and relevance of the results. 
Faceted Search on Structured Data Faceted search employed by 
major e-Commerce websites (Amazon, eBay) typically displays 
all the facet conditions applicable to the current set of query 
results. If too many values are available for a facet, then the most 
popular are displayed, and a “more” button reveals the rest. In 
contrast, our approach displays only a subset of applicable facet 
conditions chosen to minimize the overall navigation cost. English 
et al. [8] was one of the first to introduce faceted search and 
discusses facets from a user interface perspective.  
Our work is closest to [4] and [17], which also use a cost based 
approach for faceted navigation. In particular, FACeTOR adopts 
ideas from both works and addresses their key shortcomings. In 
both these works, the navigation algorithm selects one attribute 
(or possibly multiple attributes [17]) and displays all the values of 
these attributes to the user. Alternatively, a text box could be 
displayed [17], but we believe that this is impractical, given all 
known values would have been in the original query. Our 
approach differs from these works, because we display a mix of 
facet conditions from several attributes, that is, our algorithm 
operates at the attribute value level and not the attribute level. 
Keyword-Based Faceted Search and Query Refinement The 
GrowBag project [7] and Sarkas et. al [18] suggest additional 
search terms based on the co-occurrence patterns of these terms in 
the query result. The GrowBag algorithm [7] computes higher 
order co-occurrences of terms in the document collection and 
suggests terms appearing in the neighborhood of each search term 
as refinement suggestions whereas [18] suggests terms that co-
occur with search terms and narrow down the result-set to 
interesting subsets using the surprise metric. Our work is also 
related to query refinement systems [15,19]. [19] recommends 
new terms for refinement such that the recall of the resulting 
query is maximized, whereas [15] uses relevance judgment 
feedback on the results to refine the query. Our approach also 
suggests facet conditions to refine the query, but we use 
navigation cost as metric. Our navigation model is similar to 
BioNav [13], which uses the ontological annotations of PubMed 
publications to create a navigation tree. A key difference is that in 
BioNav, there is a given concept hierarchy [14], which prunes the 
search space. In contrast, there is not such tree in FACeTOR, 
which makes the selection of a set of faceted conditions harder. 
OLAP A faceted interface can be viewed as an OLAP-style cube 
over the results. [20] generates hierarchical partitions over the 

query results based on a cost model for user navigation and 
display this hierarchy to the users. The interestingness of group-by 
aggregations is used to rank candidate aggregations to display. 

9. CONCLUSIONS 
Faceted navigation is employed to reduce the information-
overload experienced during navigation of query results. The 
effectiveness of these interfaces is limited as they often show too 
many or irrelevant facet conditions. Our system addresses these 
problems by selectively showing a subset of the available facet 
conditions that are selected based on an intuitive cost-based 
navigation model that attempts to minimize the navigation cost by 
hiding uninteresting or ineffective conditions. We provide feasible 
solutions for this problem and demonstrate their effectiveness by a 
thorough experimental evaluation and a user study. 
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