Information Discovery across Multiple Streams

Vagelis Hristidis Oscar Valdivia Michail Vlachos iRhS. Yu
School of Computing and Information Sciences IBM T. J. Watson Dept. of Comp. Science
Florida International University Research Center University of lllinois at
{vagelis, oscar.valdivia}@cis.fiu.edu vlachos@us.ibm.com Chicago

psyu@cs.uic.edu

ABSTRACT

In this paper we address the issue of continuoysade queries on multiple textual streams and engotechniques
for extracting useful information from them. Thepparepresents, to our best knowledge, the firstaach that
performs keyword search on a multiplicity of textsieams. The scenario that we consider is quitétive; let's
assume that a research or financial analyst i€lsieay for information on a topic, continuously pod data from
multiple (and possibly heterogeneous) text streannsh) as RSS feeds, blogs, etc. The topic of istean be
described with the aid of several keywords. Curfitering approaches would just identify singlattetreams
containing some of the keywords. However, it wdoédmore flexible and powerful to search acrossiplalt
streams, which may collectively answer the anaygiestion. We present such model that takes isideration the
continuous flow of text in streams and uses effitf@pelined algorithms such that results are duéistsoon as they
are available. The proposed model is evaluated/fcelly and experimentally, where the ENRON datasel a
variety of blog datasets are used for our experimen

Keywords: streams, keyword search, correlation, continguesies, real-time search

1. INTRODUCTION

Nowadays data is omni-present as virtually everymageaccess to the Internet; however knowledgdlisexy
sparse. While great amounts of information are teonly provided by multiple sources, individualslan
corporations are now facing a new challenge; thatistilling’ the useful information.

This work explores techniques for extracting usaftdrmation from a collection of text streams. Teper
represents, to our best knowledge, the first aprdiaat performs keyword search on a multiplicityextual
streams. The scenario that we consider is quitdtive; let's assume that a research or finanaialyst is searching
for information on a topic, continuously pollingtddrom multiple (and possibly heterogeneous) sésdams, such
as RSS feeds, blogs, etc. The topic of interesbeastescribed with the aid of several keywordsréhirfiltering
approaches would just identify single text streaorgtaining some of the keywords. However, it wantdmore
flexible and powerful to search across multipleains, which magollectivelyanswer the analyst’s question.
Clearly, in order to collect meaningful resultss textual streams that may contain the desired @nseed also be
correlated (e.g., refer to same class of eventspasified by the query). The advantage of the alapproach is that
portions of the posed query may appear on diffesgrams, which are aggregated to form the deainsdrer set.

Our methodology shares apparent commonalities twithother areas. The first one is keyword searctaiabases
and the second is subscription/alert services, (@gpgle Alerts). We briefly elaborate on the diéieces with
respect to these areas.

Keyword search on databases provides supporidoodkery of associations between the query keywiords
structured or semi-structured database; the keysvoirthe query do not have to be present in theesdooument,
but can reside at different documents. Howeverdtta sources are inherently static or updatecbmteh fashion,
and there is no notion of streaming and evolvingu@ data. The posed queries address only a gp&nie
shapshot of the database. So, keyword search tpamare not designed to efficiently consider tioeemental
data additions and removals of streaming datayen & progressively update correlations betweemthdified
data sources.

Alert systems over text sources, on the other heaml provide support for streaming sources. Thatrasthis case
is any instance of a stream that contains all qeyyords within a specified time span. Howevechestream is
typically processed separately and the executiequsvalent to independently posing the continuguesry on each

of the streams. Notice that inter-correlations leetvdifferent sources are ignored, and all keywofdbe query
are expected to reside on the same stream. Howavesidering the associations between the textuakss is very
important, not only for limiting the false hits afkeyword search algorithm (this will be explaimadre below), but
also for allowing extended search capabilities, Hegments of the posed query can exist withfifedint text
streams.

Our work bridges the above two technologies, bilifating keyword search over a time span on migtiextual
streams, taking their correlations into accounparticular, we solve the problem of answering w@d query on
a collection of text streams, where a result isn#ef as a combination of events from a set of ¢ated streams
such that these events collectively contain allghery keywords. Oumethodology is illustrated in Figure 1. The
proposed system allows the inclusion of the inhietemporal dimension into the problem, enablingdkecution of
more complex keyword queries with temporal consteaiwhere the keywords don'’t have to reside irstmae
stream, but can be distributed over different shea

Continuous Keyword Search on Multiple Text Streams

Continuous Query
over time range (.-“)

Text source l - |

Text source 2: |

Documents from multiple streaming sour
Continuous Query over time range Correlations
identified

a: association weight

Figure 1: Overview of the proposed methodology.

a=0.5

In order to avoid multiple spurious matching betwstreams of data that are unrelated to each otleea)so

impose the additional constraint for the resultexist within “sufficiently” correlated streams déta. For instance,
given the query {arbitrating, contract, problemjdamvo text streams that monitor email threadsirifig streamA
mentions the words ‘arbitrating’ and ‘problem’ aghails threadB mentions ‘contract’, but stream B is unrelated to
A (different participants and topic), then the comalion of streamé andB is not a good answer to the query. In
the course of the paper we explain how to defieestream association within a time window, and ow
incrementally update their score as new text datadded or removed.

Applications of the above framework are quite esies:

1. Subscription services, alert and recommendatiotesysthat inform users of streams containing intlisl
preferences.

2. Intelligent monitoring of a server’s text conteaither for the purposes of enforcing filtering maocisms,
or for categorizing and classifying the textual sort more accurately.

3. More efficient collection, filtering and understangl of the diverse news feeds (closed captioningNC
headlines, etc) for media people (e.g. journalists)

4. Better understanding and analysis of social oastirg networks, through correlation analysis of the
textual chains of messages (e.g. chat message# J@gsablogs).

5. Crime prevention through more efficient monitorimigunencrypted (or lightly encrypted) Internet text
channels by law enforcement or government entities.

In our work, we present algorithms that can effitle query a multiplicity of text streams givenet of keywords.
Matches are identified within a specified time womdand are presented in real-time, by assembligetter
relevant pieces of information from multiple assted streams. The high-performance of the algostisndue to
their incremental nature. Given specified userqrazices, the algorithms perform a minimal amourbofiputation

for each new stream event (new piece of data traeshthrough a stream) in order to examine footeptial new
result. In our solution, we segregate the problémaintaining the association degrees betweenetktestreams,
from the problem of assembling and producing tisellts in a pipelined manner. Additionally, we idgnand
compare alternative strategies which are preferabldifferent problem settings. The contributiafghis paper are
the following:

1. We formally define the problem of keyword searctoas multiple text streams. We also identify thg ke
user-defined parameters to calibrate the results.

2. We present efficient algorithms that can assengrle;ess and output query results in real-timeg, a®.
they become available.

3. We study alternative techniques to measure asgmtsadbetween text streams. Efficient algorithms to
maintain these associations are presented andatedlu

4. To evaluate the quality of the results, as wethasperformance of the proposed algorithms, we gona
case study using the publicly available ENRON eif2dl] and Splog Blog [35] datasets, as our
experimental testbed. We adapt the email datasmirisystem prototype, by viewing email threads as
continuous text streams. Comprehensive experimentah the said datasets demonstrates the feagibili
of our approach.

The paper is organized as follows: In Section teel work is presented. Section 3 introduces fbrmtation and
description of the problem. Section 4 continue$lie challenges and an overview of our approach. O
algorithms are presented in Sections 5 and 6. ixpets are covered in Section 7. We conclude ini&@e8.

2. RELATED WORK

There has been a great corpus of work [2, 7, 1,722028] on keyword proximity search on staticati@tses. These
works follow various techniques to overcome the ¢diipleteness of the Group Steiner problem, to wtiieh
keyword proximity search problems can be reduced.

Goldman et al. [17] use pre-computation to minintze runtime cost. BANKS [7] views the database gsaph
and proposes algorithms to approximate the Groam&t Tree problem. [2, 20, 21] perform keywordrekan
relational databases and exploit the schema piiepéct achieve efficient execution. ObjectRank j@ich returns
single objects and not associations between obgectise above work, ranks the results of keywoertiga using the
authority flow factor. However, all this work assesithat the data is static and the time dimensidineoproblem is
not taken into account. Markowetz, et al. [31]eext the work of [21] to streaming relational datad present
pipelined relational execution plans. In contrast, work is on text streams.

Top-k ranked query works [5, 14, 38] compute effitly the top results given ranked lists of attrébualues for the
set of objects, whereas top-k ranked join quetigsslet al. [24] compute the top results of a given a ranking
function. Different to our problem, the set of afifeis static and there is no notion of time. Stipfion systems
[37, 13, 12] answer continuous user queries by @amdocuments in separation, in contrast withwark where
we combine information from various streams to tores a result.

The area of query processing in streams has reteieh attention [1, 4, 3, 8, 9, 10, 39]. Theseks@onsider
traditional queries with emphasis on the efficiaggregation, load balancing and stream dissemmdtioccontrast,
our work focuses primarily on the stream analytctpproviding estimations on query-specific asatiens between
the streams. Another related field of researchsdeih the join of streaming data [11, 16, 18, 2¥hich involves
only exact matches between multiple streams wihime window. Such applications do not contamnbtion of
a ‘query’. In our setting a query can be comprised set of keywords, each one appearing on ardiffestream.
Methods for discovering correlated bursty pattemd their bursty periods across text streams anadfin [36].
Other work related with textual streams can be doir{15,26], which primarily address the modelofga single
textual stream, to support applications such astlilatection. There has been work on other stréapiss such as
data mining streams, to detect complex predicattens and find frequent item-sets adaptively dfierstream [19,
23]; and in effectively processing continuous XPatleries over XML streams [30, 32]. But again oworkis
directed to the specific area of text streams.

Therefore to the best of our knowledge, none ofptleeious related research addresses the stredeymgprd
search problem. Although some of the approachies diatabase keyword search) could be adapted vidpro
support for a streaming scenario, the expectesdpaance is bound to be very far from real-time. Ndge
presented a preliminary problem description inevjmus poster [22].

Below, we will start the dissection of the problédirst we introduce the necessary definitions aathtion that will
be used throughout the paper. Table 1 summariieadbation.

S Text Stream

S Set of streams

Sdescription Stream S description

S.participants Stream S participants

S.events Stream S events

e Event

et Event e timestamp

e.content Event e content

a(s,S) Association weight of streamg&hdsS,

Mo Participants correlation

re Content correlation

& Constant for significance of r

& Constant for significance of r

G(S,E) Undirectedext stream graph @&

Niw Number of non-stop keywords in an association
window

X Vector of all keyword\,,) presence (0O for
absence, 1 for presence) for S

L Average value of,S

O Standard deviation for,S

Px Pressure of S

q Continuous keyword query

g.-keywords, Query q keywords

g.matchingWindow Query g user define matching wintbmgth

g.associationThreshold Query g user define assiocidhreshold

T Event tree

Table 1: Notation Used

3. NOTATION AND DESCRIPTION OF THE PROBLEM

Definition 1 [Text StreafpA text streanB=(Sdescription, S.participants,S.eventensists of alescription,an
(optional) list of participants and a continuousl @synchronous sequence of evéhevents:=(g,e;,...) of the form
e:=(e.t, e.content where timestamp.tdenotes the time occurrence of an event and coaterntenis a text string

associated with the event. Therefore, a str€Lnl" x (Rx A)Y, A ={a,b,..z} and an instance of it is
S:=(S.description, Sparticipants,(($e.t, S.e;.content), (Se..t, S.@.content),...))where the notatiog; describes
the evenj of streant§ . The subscriptmay be omitted during the course of the paper viherstream reference is
not ambiguous in the related context.

The descriptiors.descriptioris a text string providing a concise explanatibthe stream content (e.g., the
description element of the channel in RSS [34]. &@mple for a news feed from CNN, this field cafdithe
value: “CNN news”, while an eveetcan contain the title of a news event. Plagticipants’field is empty in the
case of a news stream, however can be utilized whesmitting chat data (e.g. chat session) or letagé. In the
case of chat data an event is a single messagparfiaipant of the chat session. Timestamp idithe the message
was submitted and content is the text of the mesg&pntent could also include the sender of thesange, but this
complicates things since the list of participarfta stream is stored separately as we explain)atee above

notation only attempts to provide a high leabbtractionof the problem, without going into details of thetual
structural data organization into XML, which is maithin the scope of this work.

We assume that there exists aSH(iS,,...,S} of p text streams. So for exampfechat sessions occur concurrently
or p RSS feeds are transmitted online. Bissociation weight(S,S) between two text strearg S, denotes how
relevant these text streams are. The definitiaihisfrelevance depends on the particular appliocatior example,
given stream of emails or chat sessions we canhwietg the computation factors such as common @gatints or
words between two streams, and formally defins prvided in following equation:

a(S.8) = HEHS.S) + &li(S.S) (1)

wherer, andr. describe the degree of correlation between stigamicipantsand streancontent respectivelys,

& are constants that capture the relative signitieghat the user is willing to provide to eithettod two

correlations. The constafjtcan be equal to zero, in the case where no gaatits are involved. Notice that higher
association weigha(S,S) denotes stronger relevance betw8grs,. While for the remainder of the paper we focus
on the specific definition of association, this soet limit the generality of our approach, siniteraate definitions
of correlation [25] or similarity, could also beagded without significant modifications.

Given a sef of text streams and the association weights betwesm, we construct the undirectedt stream
graphG(S,E) by creating a node for each text strear and an edge with weigh(S,,S) between each pair S5,
of text stream nodes with nonzero association wei(f,S)).

One way to compute the content or the participartg’elation between two streams is using the Jdcca
coefficient. For instance, the participants’ caatign is:

_ S,.participarts n S, .participarts
B S,.participarts 0 S, . participarts -

rp(Sx!Sy)

An alternative way to compute the content correfgtivhich we used in our experiments, is viewinghet@xt
stream as a set of words (using a thesaurus tdéatemming and synonymy). Then the content cdicela,(S,S)
measures the degree of association between thefsetsds inS, andS,. We measure the degree of content
similarity between two strean®;, S, using Pearson’s correlation. The derivation ofabeelation, however, can be
simplified given the binary representation of teatfire data. We provide the new simplified fornmaubsequently.

Words Sos3z2 Srg992 Si3920 Words Sos332 Sr8992 Si3920
Dabhol 1 1 0 Firm 0 0 1
Arbitrating 0 1 0 Obligations 0 0 1
Details 1 0 0 Krishna 1 0 0
Give 1 0 0 Extraordinary 0 1 0
Terminating 1 0 0 Unlikely 0 1 0
India 0 1 0 PPA 1 0 0
Contract 0 1 1 Lose 0 1 0
Performance 0 0 1 Protection 1 1 0

Table 2: Words to streams matching matrix.

Let's assume that we have encounterggwords (not including stop-words such as “in”, “andtc) within the
association windowuser specified window of interest, for the pugpo$ computing the association weights) with

temporal lengthalssociationWindojvUsing tabular notation we can express the téxwaent of each stream by
assigning one row per word and one column permsti@s shown in Table 2 for Example 1). Presen@wébrd on
a stream is indicated by one and absence by zbsyefore, the content of stred@nis transcribed into a vector (a
column in Table 2X = [X1 X ... Yuad . Xi D{0,1}. Now we can express the content correlatiphetween two
streams g S as:

D% =)Y~ 1y) DY I N, = php,
K(S.S,) =- =.=-]

[\ g0,

which leads to the right-hand expression after elgary calculationsy and o, are the average value and the
standard deviation fdg, respectively. Since we have transformed our stsdato binary content we can derive a
simpler version of the stream correlation. Theasaee of a binary vector can be expressed in a smipim using
only the sum of the binary vector:

PACEVALED W RS WD WA P

o - — _o + —i —212 412
. N, P N VO
>x° >x >x (Tx) Txo Xx
_ _ 2 = _ 2 = 13 -0 Q-1
Ne TN TR T N | TN TN
We denote:

px :ZX| /Nkwv py :Zy|/Nkw andpxy :zx|y|/Nkw

We call the notatiop, the streanpressureof S,, as it indicates how strong is the presence efstfS, in the
universe of words), within the examined window. Using the above notathe expression of the content
correlation is simplified to:

pxy - px py
(1- p)p(1-p,) ()

1Se§) = D

We observe that essentially the content correlatEpends on three parameters: (i) the total numbdiscrete
words within the examined window, (ii) the numbédtscrete words of each streapy AN, andp, *Ny,) and (jii)
the number of common wordg¢xN.,) between streams.

Example 1:Figure 2 depicts a real timeline snapshot of tNREN email database (used in our experiments),
which captures a small subset of email events.xfifaed in Section 7, a stream corresponds tavailesession
(sequence of forward and reply emails). For theastrs of Figure 2 we can create the matrix notatforable 2 that
can assist in computing the stream correlations.

eventiD=21486 |, eventiD=21436_|,

From: Kohli, Sandeep To: Kaminski,
Vince J “...Dabhol, and will give you the
details upon return. Terminating the PP,
andarbitrating would...”

From: Kaminski, Vince Jlo:
Kohli, Sandeep

“...Any resolution to
Krishna's protectioproblem
yet?”

[evento=s11006], | [Sessionib=1so]
eventlD=421551 E

From: Jamal, Nazam To: Wieber,

From: Rieker, Paula To: Skilling, Je Chris “...they almost haveontracts
“...India - Extraordinarycontractual that have ‘Firm Performance
protection. Unlikely to lose $ from Obligations’ and that are well
Dabhol, more likely to gain.” confined from...”

Figure 2: Snapshot from the ENRON emails stream.

Table 2 shows a matching matrix between keywordsséreams. Using tabular notation the textual auraéeach
stream is expressed by assigning one row per waddae column per stream. Presence of a word teans is
indicated by one and absence by zero. Therefoeesdhtent of streat§, is transcribed into a vector (a column in
Table 2)

The total number of words within the user specifisdociation window is)=50. Using Equation 2 and Table 2
we can easily compute the correlation betweenwoaéxt streams [94332] and [78992]:

2 126

50 5050
2 12, 2 6
L a-5HLa-=
50(50) 50(50)

rc(S94332' S78992) = =034

Similarly we derive the remaining two correlatio " (Soazszr Stasen) = ~0-84 T (Sraonzr Stasen) =0.18

Definition 2 [Continuous Keyword QuenA continuous keyword quefgimply called query henceforth)
g:=(g.keywords, g.matchingWindow, g.associationThreghmdsists of a set of keywords
q.keywords:=(kvy,...,kvvn)D(A*)N, a user specified time window lengthmatchingWindoywand a user specified
numberg.associationThreshold

Threshold valugj.associationThresholspecifies when an association between two strégmsmes insignificant,
that is, we ignore associations weaker thassociationThreshold\ domain expert decides the values of
g.associationThresholandqg.matchingWindovbased on the needs and characteristics of theidoAwother
alternative is for the user to provide examplestams that are considered correlated, given vithielalgorithm
can learn what is considered as meaningful assoitiireshold.

The answer of a queryon a se6 of text streams is a sequence of all event ffeds event tred is a tree where
every node is a pair ofstreamd1S, a subset 08.events Intuitively, T is defined as a set of streams (each in a node
of T) along with a subset of query-relevant events feah stream. If we ignore the second piece ofrimddion in

the nodes of (a subset 0E.events thenT is a subtree ob. For exampld could beS(e;3,65)-Si(€41,€43). Each

event tre€l has the following properties:

1. T (specifically, the events if)) contains all keywords ig.keywordsand
2. Tis minimal, that is, we cannot remove any leaféaant of a leaf stream or a leaf stream altoggthfer and
still have all keywords contained, that is, thex@d leaf evergdT such thakeywords(e)keywords(T-¢)and

3. the events i occur within a window of time lengtipmatchingWindowthat is, T.end-
T.starkq.matchingWindowand

4. Tis the maximum spanning treen the subgrapB- of G that only contains the nodes/stream3,cdind

5. score(T»g.associationThreshold

The fourth property is used to ensure that thengest connections between the text streams ol#t re used to
construct the event tree. For example, considevant tre€l consisting of the three streams. ThE&wran only be
$-Si-S,, but notS-S-S, or S-S,-S;, where the particular events for each stream anited for conciseness. The
reason is thad(S,S) anda(S,Ss) are the two largest association weights.

Example 1 (cont'd): The strong negative correlati rc(Sg4332’ 313920) in our setting indicates the presence of
many words in either stream, but existence of ¥ewycommon words between the pair of streams. Kdtie
importance of the correlation computation betwdenstreams, since it allows us to effectively fittee non-
relevant answers sets.

Now, given a queryarbitrating problem”, the event tre&€33{€>14863€214869 IS OUtput, whereas for the query
“arbitrating contract problem”the event tre 3341486614869~ 78004 €421557) IS Output. SessiorS,zz.andSygge,
(which conceptually correspond to different streaevents) are associated due to common wordsikéhol”
and “Protection”. Clearly, the above event treasvey useful information; the first shows how ardiiton problems
have arisen with Krishna, and is captured by kegsa@xisting on the same stream but on differemtsv@mails)
on the timeline. In the second event tree the varfgieces of information are not only fragmenteadagndifferent
documents but also among different streams. Natethle event tre€ys334€214867€214869- S1392d €311006) 1S NOL
output, because streaiigzs,andS;sgo0are not sufficiently associated as they shareonée(v) common wordsL]

A salient requirement of the problem is that resshiould be output as they occur, which rules nytiatch
processing approaches, as we discuss in Sectieurther, notice that our problem defines two défgrtime
windows: The association windowgsociationWindoyis used to define the association weights betveteams,
and the query matching windowéatchingWindoydetermines the maximum time span of the resudnttrees. It
is possible that both windows be assigned the sangth depending on the application requiremerus tite
remaining of the paper, we will use the term “stnéénstead of “text stream” for reasons of compass

4. CHALLENGES AND OVERVIEW OF OUR APPROACH

Given the previous work in keyword proximity seaftf, 7, 2, 21], a direct approach of answeringmatiouous
keyword queryg, is to repeatedly apply a keyword proximity alglonit for each new event.
In particular, one could execute the following altfon for every new event of the text streamSet
» First, construct a documeb(S) for each text streaBithat contain$.descriptiorconcatenated with the
contents of all events &with timestamp not older than
thow-g.matchingWindofv

» Second, compute the text stream gr&plor the association windoift,,y-associationWindow,d,].
e Third, construct the document gra@h by replacing each nodgof G with D(S).
» Finally, execute a keyword proximity search alguritonGp to compute all event trees.

The described algorithm is very expensive and icieffit because for every new event, all structues=d to be
initialized and recomputed from scratch. In pattcufor each new event an expensive join to filhéeent trees
has to be computed. This returns all combinatidriexd streams that contain all keywords and ase atinimal. In
addition to that, the weights of the text streaaptnG are recomputed for each event. An alternativetismlwould
be to execute this algorithm periodically (e.gemnv10 min). This approach, however, compromises th
responsiveness of the system, which deviates ggnify from the desired real-time.

! The opposite of a minimum spanning tree, singdr edge weights denote higher association ipmilem.

2 To be more formal, we should create a node foh event and connect nodes/events of the samerstrith an edge with
infinite weight.

In Section 5 we present an incremental algorithat téickles the first inefficiency. In essence, weppse an
algorithm that performs a joincrementally This is different from previous pipelined join theds (e.g., [24])
which perform joins on a static database instasioege in our case the database instance changetiroedgsee
Section 2 for details). We also present an anabyfsise algorithm and discuss the advantages ofymengle
gueries instances instead of a single multiple yirestance, as well as the trade time complexitytifoeliness in
the algorithm. In Section 6 we address the secssuki by presenting an algorithm that incrementafiintains the
weights of the text stream grafh

5. INCREMENTAL COMPUTATION OF EVENT TREES

In Definition 2,matchingWindows a property of the query However, to simplify the explanation of three
algorithmas well as the complexity analysis we introducequivalent dynamically-changing threshaldwhich
specifies time in terms of numberaidery-relatedevents.

A query-related event is an event that contairiszt one of the query keywords. That is, a quelated eventg

has the following propertyy.keywords» eqgr.contentz [. Therefore, it characterizes events containirigast one

of the query keywords. For examplegifmatchingWindow=1 houand in the last hour 15 query-related events have
arrived, therL=15. In order to simplify the analysis of the algoritmomplexity we adapt the uselofis a measure

of the window length.

The key idea of the algorithm is to maintain a & of query-related events (i.e., events that corsame query
keyword), where each path from a root to a leafesgnts a combination of events ordered by ascgndin
timestamps. Each level @f corresponds to a single everdnd each node of this level determinesigf considered
in the corresponding root-to-leaf path. Each suath pecomes a candidate result as we explain below.

In particular, each node on théh level ofC ° can either be a special node cattedl node or refer to th@-i)-th
latest event. For each new everthat contains any of the keyworgs«eywordof g, we add a new level of leaves
at the bottom o€. The candidate results (event trees) afe all paths from a root to a leafGn

Intuitively, each such path i@ represents a combination of events across a simgtaultiple text streams that is
minimal (removing an event from the path removesi@ry keyword from it) and also different from ather paths.
Hence, if such a path contains all keywords theatisfies all properties of Definition 2 but tlaest two.

To ensure the fourth property we compute the mamirspanning tree for the graf containing the text streams
in the path. Then the scoreDfs computed by Equation 3.

Example 2: Consider querg with gkeywords:= (Contract, Arbitrating), L=3, g.matchidjndow=1, andhree
text streams,, S, S with the following time-interleaved sequence oéets (only the query-related events are
shown):

er: in streamS,, e;.content= “The contracwill be ready by...”

& in streamS,, e,.content= “A very important contratt

es: in streamS;, es.content= “terminating the PPA and arbitrating

€4

&

. in streanfS;, e,.content= “... move the contraatate...”
. in streantS,, es.content= “They prepared a contract

Also assume for simplicity that the associationghts betweels,, S, S are fixed toa(S,$)=1.5, a(3,$%)=0.5,
a(s,)=1.2.

Figure 5 shows snapshots of the forest C &f{e, andes. Solid-line circles denote leaf nodes that coroeshpto a
result, and dotted-line circles are the nodesdbatot output a result, because the score of thatdree is less than
g.associationThresholdrurthermore, we cross out leaf nodes that aneqaraue to the condition of line 8 of
Figure 3. One can observe that only 2ié=4 leftmost leaf nodes are expanded, and also ofeyels are stored at
any time. Also, we note that in this example theimam spanning trees computed in Figure 4 are sirsipigle
edges since only two stream nodes are in gépfior any candidate result.

% more formally, on thethe level of a tree i€

TreeAlgorithm(input: query g, threshold L)
/*We assume that forest C of events is in steady st ate, that is, it has
depth L*/
1.x:=0 /*xis number of pruned nodes at each step*/
2. For each new event edo{
3. Remove from C all roots /*that is, all instances of the oldest
eventin CH
For each of the 2" -pl leftmost leaves in Cdo
Add two children: null and e [*a pointer to e is stored*/
pl:=0 [*pl is number of pruned leaves*/
For each non-null leaf node u created in Line 4 do
If keywords(e) /[keywords(L-1 ancestors of u) then
/* keywords(e)=q.keywordsee.content *{
9. prune (u)
10. pl=pl+1

© N~

11. For each non-pruned and non-null leaf u created in line 4 do {
12. Let p be the path starting at a root of Cand

ending at u
13. T := getResult p.g)

}
}

Figure 3: Tree Algorithm.

13a. for every g, in q,,....q,do
13b. T := getResult(p.g ;)

Figure 3a

etResult(input: path p,query q)

. If events in p do not contain all keywords in g.keywords then
return null

. Construct subgraph G, of Gthat contains all event-nodes in

. Compute maximum spanning tree V of text streams of G
. Construct event tree T from V by replacing each

text stream S by its events in p

. If score(T)+qg.associationThreshold then

return T

NoO b wNRPQ

Figure 4: Event tree computation algorithm

2a. compute all minimal combinations of events in p ath
p that contain all keywords in g.keywords
2h. for each such combination construct a new path o
from p by replacing the unnecessary events by null
2c. for each path pe do /*this loop ends at the end of
getResults*/

Figure 4a

€ [€
‘& [T I, e I, e Ja, e 7
e VANV ANEEAN PN N

(a (b) (c)

Figure 5: Snapshots of foresC in Tree algorithm.

The tree algorithm is described in Figures 3 amechdre we assume the algorithm is in its steadg sthat is, at
leastL query-related events have been processed. Herodo wot show the special initializing conditionshandle
the firstL events of the streams. Consequer@lalways had. levels.

Notice how in Line 4 of Figure 3 we only “expar2l”’-pl leaf nodes. We subtragt, which is the number of leaves
pruned in the previous step, since we do not expamded leaves. The rationale behid is that at most'2leaves
are needed, which is formally proven later in Tieao 1.

The pruning condition of Line 8 eliminates pathatthrovably cannot lead to a minimal result in¢herent or any
future step (i.e., future event). Being more precisthe current event does not add any keywotttiegath of
lengthL (that is, the current event plus thel ancestors), then no minimal result can be gerefeden this path.

5.1 Analysis of Tree Algorithm

Before commencing the algorithm analysis, it is @mant to point out that the utilized paramdtetakes very small
values in practice (3 to 12 as we show in detailable 4 in Section 7) and hence the strong depmedef the
algorithm onL does not prohibit its use in practice. For examihle event trees of Example 2 have been produced
with L=3.

Theorem 1 The maximum number of leaf nodes in the forestT@ad#Algorithm that are needed to compute all
query results is'2

Proof. Definition 2 requires for a results event tie® satisfyT.end-T.startq.matchingWindowl is a translation

of g.matchingWindovirom the time domain to the number of consecutjwery-related events. Hence, equivalently,
Definition 2 requires the first and last eventddb be contained ih consecutive query-related events. Giten
consecutive events, there @ecombinations of subsets of them, and each suckesein potentially lead to a
result. Each such subset of events correspondsaot-#o-leaf path in the fore€t, and hence to a distinct leaf

node.

Space complexity

The space complexity of the tree algorithn®i€"), which is the space required to store a bina®y tferest in our
case) with2" leaves (and heiglt). Notice that each node of C is just an eventtiflenand not a copy of the event
information. Finally, we should note that due te gruning (Lines 8-9 of Figure 4) the expected agerspace
requirements are in practice significantly smaltere Figure 5(c)).

Time complexity
The algorithm has three actions taking place fohepiery-related event.
a. Addition of new leaves (lines 4-5) with complexi®(2-?)

b. Examination of pruning condition (lines 7-9), whialso has complexit@ (L2, if we assume that given two
sets of keywords containment can be decided intaohdime. This is a reasonable assumption sinee th
number of query-related keywords of an event iscglfy expected to be very small (1-2).

c. Validation of results (Lines 11-14) takes time Q1) since for each candidate result, the maximum rsipgn
tree requires linear time (Prim’s algorithm [33]) the size of the event tree.

Therefore, the total time complexity@(L2"") per query-relevant event. From the above discossie
straightforward to deduce that queries containiegdent keywords (and consequently more queryeelavents)
will require more processing per ‘time-unit’.

5.2 Multiple Queries

The Tree algorithm in Figures 3 and 4 computesebalts of a single keyword query. In this sectimdiscuss the
handling of multiple simultaneous continuous querkerst, we briefly present a natural extensiothefTree
algorithm to handle multiple queries. Then, we akplwhy this approach is usually inefficient corgzhto
executing multiple simultaneous instances of theeTalgorithm, one for each keyword query.

Suppose there arecontinuous keyword queries,q.,g,- Let Q be a query that specifies all keywordg;in..,q,
ie.,

Q.keywords =1;(qg;.keywords)

and has the maximumatchingWindovef all queries, i.e.,

Q.matchingWindow = maj;.matchingWindow).

Then, theMulti-Query Tree algorithntonsists of the execution of the Tree algorithmgfieeryQ, with the
following modifications:
Replace Line 13 of Figure 3 with the lines at Feg8a.

Also, add the following between Lines 2 and 3 &f ¢fetResult method of Figure 4 (see Figure 4a)
It can be shown that the above algorithm is coreplet

Theorem 2 The Multi-Query Tree algorithm generates all restvent-trees) for each query q

The advantage of the Multi-Query Tree algorithrthist a single forest is used to answer all queries, instead of
separate forests,,...,G,. However, by using a ‘long’ que (i.e., with many keywords) instead of many “shdrte
gueriesy;, the depth of the forestC is more extended. The Multi-Query Tree algorittan only perform better

than multiple instances of the Tree algorithm drthis large overlap among the keywords of theigsey, ...,
that is, the size d.keywordss relatively small.

Time Space

ninstances of Tree niLi2"" per query-relevant n2"

algorithm event
Multi-Query Tree 12L 2" per query-relevant 2'*
algorithm event

Table 3: Complexities of approaches for multiple qaries.

The dependence of space and time complexitieseopatametek, can lead to significant performance degradation
for large values off (unusual in practice as shown above). In particahenL increases by a factor bfL' = | LJ),

the time and space complexities of the two appresene shown in Table 3. Note that in the timeafahe Multi-
Query Tree algorithm we multiply Hybecause the number of query-related events (thts aoSection 10.1 are per
guery-related event) in the Multi-Query Tree alffun is larger by a factor ¢f

The Multi-Query Tree algorithm can only performtieethan multiple instances of the Tree algoritffithére is

large overlap among the keywords of the quegies.,q, that is, the size d.keywordss relatively small. In that
case thé factor described above is very small.

5.4 Trade Complexity for Timeliness in Tree Algorithm

If the real-time result creation requirement candlaxed, the complexity can be greatly reduced.ong sketch
thegrouping versiorof the Tree algorithm due to space consideratibagio so, we partition the streams into
groups ofb consecutive query-related events. For examples2f the streanel,e2,e3,e4 split into the stream of
groupsgl,g2 wheregl={el,e2}andg2={e3,e4} For each group we store the query keywords itatos along with
the pairwise shortest distances (in terms of quelated events) between them. Then, a modificatfdhe Tree
algorithm is executed on the stream of groups.

The key difference is that for every candidate groae (defined similarly to event tree) result, veeve to extract
the set of corresponding event trees (a groupceieecreate multiple event trees). Within a groupash map is

used to efficiently map query keywords to eventse Tomplexity of this method isb2** and in practice can
become as inexpensive as needed by choosing ablaftee drawback of this method is that the outpuaroévent
tree result can be delayed for up to the length gfoup. Hence, the choicelobalances the needs of timely results
and fast execution.

6. COMPUTATION OF ASSOCIATION WEIGHTS IN TEXT STREAMS
ThegetResulmethod of Figure 4 requires the weigh(§,S) between each pair, S5 of text stream nodes of the
pathp. These weights typically change over time. Fomgxa, according to Equation 1 for chat streamsefary
new event all two components (participants’ cotiefg content correlation) may change. Note thahe
description of a email events in Section 3, theigipants are part of the stream description. Hevethey could
also be part of individual events. We consider, exgerimentally evaluate in Section 7, lazy andinanemental
update strategies for computing the edge weights.

6.1 Lazy Strategy

One can follow a “lazy” approach and only comptie weights when needed, that is, when a minimaltevee
has been constructed and we need to compute its scorder to decide if it will be output or nafife 3 in the
getResulmethod of Figure 4). Hence, in this strategy tioivaights of the text stream graghare maintained. The
advantage of this technique is that we do not caenpay “useless” weights, that is, any weights Wilithever be
involved in a candidate result.

The disadvantages of the lazy strategy are theviillg: first, the ‘from-scratch’ computation of thairwise
weights can be expensive even if a few streamsaodved in a candidate result, because all evefitsese
streams within the association window have to besictered.

Second, the lazy execution is unaware of the evaousrring that do not lead to a candidate reanid, may lead to
a weight computation of an edge that is guaranteédve unchanged weight. For example, consider two
consecutive candidate resul{sr,, both involving the edgés,S). If the events occurring betweeyiandr, do not
affecta(S,S) (see below), then the recomputatiora(®,S) was wasteful.

Clearly, the type of events that affect an edgeghiei(S,S) depend on the weight computation formula. Let us
consider the weight formula of Equation 1 and foensts most expensive portion, which is the contemrelation
component computed by Equation 2. Then, a new @D',DS does not affect any edge weight, if for
everykeyword &' kw, it holds that: B.kw, nej.kw, 20, for every eventigand event keyword;ekw, with .t > tnow
- g.associationWindowiT herefore, the edge weights do not change ifatds of evene" already exist in the
current association window.

6.2 Incremental Strategy

We now present an algorithm that incrementally rizais the complete stream gra@Hor each new ever In
this case, we need to consider all events (andmigtthe query-related, as was the case for the @lgorithm of
5.1), since the association between two streamsmdispon the total set of encountered keywords ahdmiy on
the query keywords.

Considering the content correlation of EquatioRigure 6 presents an algorithm for its incrementaintenance. In
order to facilitate incremental computation, thgoaithm records the pressysgfor every streans,, as well as the
pressure between pairs of streggg, S# S,

IncrementalStreamGraphMaintain(event e of stream S,)

1.Let NWbe the set of new words in e with size N W0 *words that have
not already appeared in S, during the association window*/ _

2.Let EWof the set of expired words from S, withsize N /. /*words
That appeared in S, during the previous association window but do
not appear during the current association window?*/

3. If NWand EWare empty then return /*do nothing*/

4. p = p Sprev _ pxexplred+ pxnew

5. For each stream S, <>S, do {

6. If UpperBound (r (S,,S,)) < g.associationThreshold

then continue [*prune and go to next stream S,/

7. LetNW « be the set of new words in N Wfor S with size N, 0, ""
[*words in N Wthat also appear in S, during the current association
window*/

8. LetEW « be the set of words in EWalso in S, with size N, 0, ~"
[*words in EWthat appear in S, during the current association
window?*/ _

9' p ; —) prev) expired) new

10. C(y)mpu{e rc(Sx,é ,) using équation 2 /*Notice that p , does not change *

}

Figure 6: Incremental maintenance of stream graph.

We use the following notation. Suppose an eeaftstreantsS, just arrived. We refer to the association windagt |
before (resp. afteg as previous (resp. current) association window uisedenote ag,”“'the pressure of streaf
during the previous association windgw?*™the number of expired keywords $f(i.e., keywords that appeared
in the previous but not in the current associatiimdow), andp,”"the number of the newly added keywords (i.e.,
keywords that just appeared in an ever,dbr the first time in the current association wemg. Similar notation is
used for the number of keywords in the totalitseams Ki,”", NP N, . Then, if we assume for
presentation simplicity that the total number ofdin the association window is constant (if iaobes, the
formula is modified to include the new and previtatsil number of words), the pressure within therent window

for streamS, is:

prev expired new
- +px

Px=Px " -Px

A similar expression can also be computed for traron pressure between stres@snds .

prev _

Pxy= Pxy

expired +p. new

Pxy Pxy

Assuming that there are no inherently imposed spesteictions, one can optimize performance bycallimg one
counter for each encountered word within the assioei window for each stream. This assumptionadisgc when
one is interested in short term stream correlatiahere the association window does not have aiderable
temporal duration.

We notice that we can compute an upper bound oadhtent correlation between streafsS, utilizing only the
pressures,, p, of the streams (without having to resort to corimmuthe more expensive common pressuye It
holds that for any binary streaBs[X1, %,...] and $=[y1, ¥o,... |:

nyiszx and ny‘SZy‘

Therefore:

2 XY Smin®x, > y)

That is,
pxy < mln(px! py)
From Equation 2, we have:

min(p,, p,) = PP,
JP{1-pp(1-p,)

WhenUpperBoundr(S,S)) < g.associationThreshoftla candidate result can be eliminated from exanainat
(Line 7 in Figure 6) because it definitely does satisfy the stream association requirements sttidyser.
From a system management point of view, the algoriof Figure 6 makes use oskding inverted indexvhich
stores for each keyword the list of streams thatkiyword has appeared, within the current assogiatindow.
The sliding inverted index can efficiently maintdive following information for each new evanof streanS;

UpperBound((S,.S,)) =

» the seNWof words that have not already appearefl during the current association window
» the setNW' of words inNW that do not appear in another stregmuring the current association window

» the setEW of words that appeared 8 during the previous association window but do aygpear during the
current association window

» the seEW of words inEWthat appear in another stre@yduring the current association window

Our current implementation of a sliding invertedem is rudimentary but fully functional and is b the use of
counters that maintain the time of occurrencesaoheéeyword in every stream, in order to discofierdurrently
active set of keywords. More spartan alternatieesdte implementation of the inverted index are &lsing
considered, however the experimental results ofi@e@.1, are based on the basic implementatioh eounters.

Notice, that we assume that the association winfdowa stream only changes when an event from tresus
occurs. This is whyp, does not change in Figure 6. We experimentallyuata the incremental algorithm in Section
7.2.

7. EXPERIMENTS

In our experiments we used the Enron email (sepff2@ description) and Splog Blog datasets.

Enron: After cleaning the data we ended up with 217,08ttt emails, which we partition into 147,917 éma
threads as follows. Two emails vbelong to the same thread if all of the followagply:
* There is at least one common participant (sendezapient) between u and v.

e The subjects ofi, vare the same modulo “Re:”, “Fw:” prefix
* The timestamps af, vdiffer by at most 3 months.

The emails of the dataset correspond to eventariframework, where the timestamp is the email stamp and
the content is the combination of the subject andiebody. This arrangement creates a corresporedagivveen an
email thread and a text stream.

Splog: The original Splog Blog dataset [35] contains 38@ays. In our framework every entry on the blogs
corresponds to an event, and its author and timmegmond to the event's participant and timesta@spectively.
The blog description, if any, would correspondtte stream description and the blog itself woulc liext stream.

We conduct two sets of experiments. The first eat@lsithe Tree algorithm (described in Section 5vhjle the
second compares the approaches for the maintepatioe stream graph: (i) the incremental mainteraf(ig the
lazy maintenance of the edge weights. The Splog Blataset contains many artificial and automatjcgéinerated

* |f the participants’ correlation is computed figahich is simpler) then a tighter bound can bedus

blogs, which makes the correlation computation leetwsuch blogs not useful or meaningful. Henceonlg use
this dataset in the first set of experiments (®&cti.1), and assume that blogs are equally coedklat

7.1 Tree algorithm

In order to evaluate the performance of the Trgeradhm, we separate the execution of the algoriftom the edge
weights calculation. (The latter is the focus oftim 7.2.) That is, the times reported in thistisecdo not include
the time for the graph maintenance, which for éxperiment are already pre-computed. Additionaligce the

Tree algorithm is executed for each query-relateshe(i.e., an event that contains at least ortkefjuery
keywords), we measure the execution tipee query-related eventhis metric can also provide a practical system
calibration tool, for predicting the system perfamae under specific word distributions. For examnpglven a set

of streams with a known (or predicted) averagesrafejuery-related events, a system analysts csily @estimate
whether the Tree algorithm will provide real-tiresponses for a givan(L is defined in Section 5.1) and number
of query keywords.

Varying number of streams

Figure 7 report the average execution timeinutes for different number of streams, two keywords ar8. The
graph suggests that the execution time remains ordess the same for different number of strearhss is
expected since the time is dependant on the priogestquery-events and although more streamsowititribute
with more query-events, their time is averaged whiiakes the results

10
L=5

— 10°
£
E
(0]
£
o
>
<

10

10° 10* 10°

similar.
Figure 7: Average execution times per query-relate@vent for varying number of streams for Enron Dataet.

Varying L
Before measuring the performance for varylingve discuss what are typical valued ofrable 4 shows the average
number of query-events (emails) and time span doious values of L, two-keyword and three-keywoue igs.
The last column (total #results) shows the totahber of result event trees for the given query laagross the
whole stream. The results show that very smalleshflL query-related events typically cover a long timpess
(hours or even days). This observation is importaniaintaining the real-time profile of the algbm.

keyword 1 keyword 2 keyword 3 L time (hr) #query- Total

events #results
opportunities pipeline 6 90.66 833 7164
opportunities pipeline 9 135.99 1249 8028
opportunities pipeline partnership 6 77.82 886 3584
opportunities pipeline partnership 9 116.73 1328 56
settlement pay 6 18.42 920 10080
settlement pay 9 27.63 1380 12960
settlement pay India 6 19.02 889 203
settlement pay India 9 28.53 1334 319

Table 4: Relation of L to number of events and timespan for Enron dataset.

In our first experiment we measure the query exenutme per query-related event. Figure 8 showsetkecution
time inmsecfor four sample queries along with the keywordjérencies in the Enron and Splog Blog Datasets (i.e.
number of events that contain them). Queries {Eigtimate} and {breaker, PMT} were ran against timeda

dataset. The other queries, {summer, yoga} andnfese, proverb} correspond to the Splog dataset.

Query = {breaker’, 'PMT"} (Enron)

freq=211 freq=46

Query = {EIA', 'estimate'} (Enron)

1 ‘
10 freq=224 freq=4792

P

Z '\ Query = {'summer’, 'yoga'} (Splog)
/0 ‘ o

freq=40 freq=30

Time (log msec)
&

Query = {'chinese', 'proverb'} (Splog)

freq=140 freq=50

1 3 5 8 12 16
L

Figure 8: Execution time per query-related event fofour sample queries and varying L for the two dagsets.

We utilize two keywords per query and test the granince of the system on 50 continuous keywordiggielin
Figures 9 and 10 we report theerageexecution time over all queries, in order to remthe bias of either very
short or very large queries (containing either viafyequent or very frequent words). Clearly, tlystem can return
results in time less than a second, even for leagiges of L (=16), which can typically corresponds to hundreds or
thousands of events and cover an extensive quaegyrange.

Time(rsec)

1 3 5 8 12 16
L

Figure 9: Average execution times per query-relate@vent for varying L for Enron Dataset.

10°

107

-
o)—\

Time (msec)
=
OO

1 3 5 8 12 16
L

Figure 10: Average execution times per query-relatkevent for varying L for Splog Blog Dataset.
Varying number of keywords
Next, we measure the effect of query keyword calitinon the execution time. Figures 11 and 12 cisgthe
average execution time over 50 continuous keywaoetigs for three different values of L (L=5, 10).1bhese
times are per query-related event, with rate n#iyuirgcreasing with increasing number of keywort@ibe reason of
prolonged execution time per query-related evebeause the pruning condition of Line 8 in Figbiie becoming
more expensive with the additional keywords. Noaletss, the response time is still typically kedobel sec.

Time(rsec)

3
keywords

Figure 11: Average execution times per query-relattevent for varying number of keywords andL values for
Enron Dataset.

10°g

| I L=5

[| @m L=10

- | O3 L=15 :
1CF :

234.98

Time(msec)

2 3 4 5
keywords

Figure 12: Average execution times per query-related event for varying number of keywords and L values
for Splog Dataset.

Multi-Query Tree Algorithm

Figure 13 compares the Tree algorithm’s averageugian time of an instance of the multi-query versuo
instances of a single-query. We use L=5 and vahedumber of keywords per query, as well as ttexlap of
keywords in the multiple-query instance. As expédtem our analysis in Section 5.2, the executioretfor the

multiple-query instance is worse than two instarafes single-query when there are no keywords mroon, but
improves when there are common terms in the queries

One instance multiple-query (Two queries)
14 # Common keywords in query

Two
B oo | i e ==
12| | 30 None -

Two instances of single-query

10

Time(msec)

2(4) 3(6) 4(8) 5(10) 6(12)
keywords per query (Total # keywords Mult. Query)

Figure 13: Average execution times per query-relatkevent for varying number of queries and keywordgor
Enron Dataset

7.2.1 Stream graph maintenance

The final experiment compares the performance @ftgorithms that compute the association degriedea the
text streams. The lazy and the incremental stre@phgmaintenance methods (Sections 6.1 and 6.2)uenthe
content correlation between the streams as debigdehjuation 2. Figure 14 juxtaposes the resultb@de two
methods for 10 queries (each being comprised @&yavkrds). The x-axis displays the average procggsime for
each event (here we count all events and not ardyygrelated ones).

Sy
\@;‘ 0\\)?,‘ [Incremental
¢ B Lazy Improvement

trading 19.8915% ~
reconciliation B

investment
india

19.8429% B

account
concerns

20.1109% B

attendance 19.795% B
ethnic

Q
—
—

r;f:/gf/ ! 20.4049%]
—
g‘

court
bankruptcy

19.8974% B

excellent
pareto

20.3365% B

fault
pareto

19.8779% B

pipeline
opportunities

19.5751% B

pay 20.1982% B
settlement |2] i

20

(=}
2]
=
o
=
o

Processing time (msec) per event

Figure 14: Comparison of stream graph maintenanceeichniques for Enron dataset.

We observe that the incremental technique depictsygutational advantage of about 20%. For multiple
simultaneous continuous queries this improvemeevén larger because the rate of query-relatedi®uatreases.
In particular, the incremental algorithm is exedubace for each event whereas the lazy only wheandidate
event tree is evaluated (in Line 3 of Figure 4)néks in the presence of multiple simultaneous coiotiis queries,
the cost of lazy maintenance increases, whereasdmmental evaluation it remains constant.

8. CONCLUSIONS AND FUTURE WORK

We presented the problem of continuous keywordckean multiple text streams, which bridges the petelently
well-studied problems of keyword search on database alert services on single streams. We defiesudt as a
tree of events from multiple associated streamgravthe association is determined by the commgraflitwo
streams, although other metrics are also possible.

We present an incremental algorithm for computhmganswer set of a continuous keyword query. Tigisrithm
performs a minimal amount of operations for eadnévin essence accomplishing a streaming increxhgin that
utilizes partial results. We also presented anegergentally compared alternative techniques to tagirthe stream
graph, which stores the association weights betwleestreams.

As future work, we plan to investigate more compssociation semantics between the streams. Forpdeahow
could one use an ontology or application specifioudedge? Additional questions of interest are ltosvsystem
can automatically learn suitable valued.pfiven the approximate rate of results that wetwaget for a query.
For instance, in a data monitoring application, harexperts may only be able to process 10 reseiftmmute;
therefore there is no need for the system to fibednh with additional results that are going to ingpdy ignored.

9. REFERENCES

[1] Arvind Arasu, Brian Babcock, Shivnath Babu, MoAlister, Jennifer Widom: Characterizing
Memory Requirements for Queries over Continuousa[FHteams. PODS 2002

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXptore System For Keyword-Based Search Over
Relational Databases. ICDE, 2002

[3] Ahmed Ayad, Jeffrey F. Naughton: Static Optiatinn of Conjunctive Queries with Sliding Windows
Over Infinite Streams. SIGMOD 2004

[4] Magdalena Balazinska, Hari Balakrishnan, Midit®nebraker: Load Management and High
Availability in the Medusa Distributed Stream Prssieag System. SIGMOD Conference 2004

[5] N. Bruno, L. Gravano, A. Marian. Evaluating temueries over Web-accessible databases. ICDE,
2002

[6] A. Balmin, V. Hristidis, Y. Papakonstantinouuthority-Based Keyword Queries in Databases using
ObjectRank. VLDB, 2004

[71 G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakraband S,Sudarshan: Keyword Searching and Browsing
in Databases using BANKSCDE, 2002

[8] Mitch Chemiack, Hari Balakrishnan, Magdalend&nska, Donald Carney, Ugur Cetintemel, Ying
Xing, Stanley B. Zdonik: Scalable Distributed StreBrocessing. CIDR 2003

[9] Graham Cormode, Minos N. Garofalakis, S. Muttistknan, Rajeev Rastogi: Holistic Aggregates in a
Networked World: Distributed Tracking of Approxirea@uantiles. SIGMOD 2005

[10] Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, Rajeev Rastogi: Sketch-Based Multi-
guery Processing over Data Streams. EDBT 2004

[11] A. Das, J. Gehrke, and M. Riedewald. Approxien@in processing over data streams, SIGMOD, 2003

[12] Cristian Fiorentino, Mariano Cilia, Ludger B, Alejandro P. Buchmann: Building a Configurable
Publish/Subscribe Notification Service. DAIS 2005

[13] Francoise Fabret, Hans-Arno Jacobsen, Frangois Llirbat, Jodo Pereira, Kenneth A. Ross,

Dennis Shasha: Filtering Algorithms and Implementation for Very Fast Publish/Subscribe.
SIGMOD 2001

[14]
[15]

[16]
[17)
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27)
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37)
[38]

[39]

10.

R. Fagin, A. Lotem, M. Naor. Optimal aggregation algorithms for middleware. PODS, 2001

P.C.Fung, X. Yu, P. S. Yu, H. Lu ParameteraHBairsty Events Detection in Text Streams, VLDB
2005

L. Golab and M. T. Ozsu. Processing sliding@aw multi-joins in continuous queries over data
streams. VLDB, 2003

R. Goldman, N. Shivakumar, S. Venkatasubraamni. Garcia-Molina: Proximity Search in
Databases. VLDB, 1998

M. A. Hammad and W. G. Aref. Stream windownjoi racking moving objects in sensor-network
databases, SSDBM, 2003

Lilian Harada, Detection of complex temporaltterns over data streams, Information Systems,
Volume 29, Issue 6, (2004) pp. 439-459

V. Hristidis, L. Gravano, Y. Papakonstantindifficient IR-Style Keyword Search over Relational
Databases. VLDB, 2003

V. Hristidis, Y. Papakonstantinou: DISCOVEReyWword Search in Relational Databases. VLDB,
2002

Vagelis Hristidis, Oscar Valdivia, Michalis &thos, Philip S. Yu: Continuous Keyword Search on
Multiple Text Streams. Poster paper, ACM CIKM 2006

Joong Hyuk Chang and Won Suk Lee, Finding mdgdrequent itemsets adaptively over online
transactional data streams, Information Systemgynde 31, Issue 8, (2006), pp. 849-869

Ihab F. llyas, Walid G. Aref, Ahmed K. Elmagaid: Supporting Top-k Join Queries in Relational
Databases. VLDB 2003

Chris Jermaine: The Computational Complexityf@h-Dimensional Correlation Search. ICDM 2001
J. Kleinberg. Bursty and hierarchical Struetim Streams, SIGKDD 2002
J. Kang, J. Naughton, and S. Viglas. Evalugtiindow joins over unbounded streams, ICDE, 2003

V. Kacholia, S. Pandit, S. Chakrabarti, S. &stan, R. Desai, H. Karambelkar. Bidirectional
Expansion For Keyword Search on Graph DatabaseBBYR2005

B. Klimt and Y. Yang. Introducing the Enronrpass. First Conference on Email and Anti-Spam
(CEAS), 2004

Hyun-Ho Lee, Won-Suk Lee, Selectivity-sengitishared evaluation of multiple continuous XPath
gueries over XML streams. Information Sciencesuvtg 179, Issue 12, (2009), pp. 1984-2001

Alexander Markowetz, Yin Yang, Dimitris Papadi Keyword search on relational data streams.
SIGMOD Conference 2007: 605-616

Jun-Ki Min, Myung-Jae Park, Chin-Wan Chung, REAM: An efficient multi-query evaluation on
streaming XML data, Information Sciences, Volumé& llgdsue 17, (2007), pp. 3519-3538

R.C. Prim. Shortest connection networks andesgeneralizations. Bell Systems Technology Journal
36:1389-1401, 1957

RSS 2.0 Specification. http://blogs.law.hadiadu/tech/rss, 2005
Splog Blog Dataset. http://ebiquity.umbc.eésfurce/html/id/212/Splog-Blog-Dataset, 2007

Xuanhui Wang, ChengXiang Zhai, Xiao Hu, Rich&proat. Mining Correlated Bursty Topic Patterns
from Coordinated Text Streams. KDD 2007

T. W. Yan, and H. Garcia-Molina. The SIFT infaation dissemination system. ACM Trans. Database
Syst. 24, (1999), pp. 529-565

Clement T. Yu, George Philip, Weiyi Meng: Dibuted Top-N Query Processing with Possibly
Uncooperative Local Systems. VLDB 2003

Rui Zhang, Nick Koudas, Beng Chin Ooi, Dive&iivastava: Multiple Aggregations Over Data
Streams. SIGMOD 2005

ACKNOWLEDGMENTS

Partly supported by NSF grants 11S-0811922 anddB34530.

