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 ABSTRACT 
In this paper we address the issue of continuous keyword queries on multiple textual streams and explore techniques 
for extracting useful information from them. The paper represents, to our best knowledge, the first approach that 
performs keyword search on a multiplicity of textual streams. The scenario that we consider is quite intuitive; let's 
assume that a research or financial analyst is searching for information on a topic, continuously polling data from 
multiple (and possibly heterogeneous) text streams, such as RSS feeds, blogs, etc. The topic of interest can be 
described with the aid of several keywords. Current filtering approaches would just identify single text streams 
containing some of the keywords. However, it would be more flexible and powerful to search across multiple 
streams, which may collectively answer the analyst's question. We present such model that takes in consideration the 
continuous flow of text in streams and uses efficient pipelined algorithms such that results are output as soon as they 
are available. The proposed model is evaluated analytically and experimentally, where the ENRON dataset and a 
variety of blog datasets are used for our experiments. 
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 1. INTRODUCTION 
Nowadays data is omni-present as virtually everyone has access to the Internet; however knowledge is still very 
sparse. While great amounts of information are constantly provided by multiple sources, individuals and 
corporations are now facing a new challenge; that of ‘distilling’ the useful information.  
 
This work explores techniques for extracting useful information from a collection of text streams. The paper 
represents, to our best knowledge, the first approach that performs keyword search on a multiplicity of textual 
streams. The scenario that we consider is quite intuitive; let’s assume that a research or financial analyst is searching 
for information on a topic, continuously polling data from multiple (and possibly heterogeneous) text streams, such 
as RSS feeds, blogs, etc. The topic of interest can be described with the aid of several keywords. Current filtering 
approaches would just identify single text streams containing some of the keywords. However, it would be more 
flexible and powerful to search across multiple streams, which may collectively answer the analyst’s question. 
Clearly, in order to collect meaningful results, the textual streams that may contain the desired answer need also be 
correlated (e.g., refer to same class of events, as specified by the query). The advantage of the above approach is that 
portions of the posed query may appear on different streams, which are aggregated to form the desired answer set. 
 
Our methodology shares apparent commonalities with two other areas. The first one is keyword search on databases 
and the second is subscription/alert services (e.g., Google Alerts). We briefly elaborate on the differences with 
respect to these areas. 

 Keyword search on databases provides support for discovery of associations between the query keywords in a 
structured or semi-structured database; the keywords of the query do not have to be present in the same document, 
but can reside at different documents. However, the data sources are inherently static or updated in a batch fashion, 
and there is no notion of streaming and evolving textual data. The posed queries address only a specific time 
snapshot of the database. So, keyword search techniques are not designed to efficiently consider the incremental 
data additions and removals of streaming data, or even to progressively update correlations between the modified 
data sources. 

Alert systems over text sources, on the other hand, can provide support for streaming sources. The result in this case 
is any instance of a stream that contains all query keywords within a specified time span. However, each stream is 
typically processed separately and the execution is equivalent to independently posing the continuous query on each 



of the streams. Notice that inter-correlations between different sources are ignored, and all keywords of the query 
are expected to reside on the same stream. However, considering the associations between the textual sources is very 
important, not only for limiting the false hits of a keyword search algorithm (this will be explained more below), but 
also for allowing extended search capabilities, where fragments of the posed query can exist within different text 
streams.  
 
Our work bridges the above two technologies, by facilitating keyword search over a time span on multiple textual 
streams, taking their correlations into account. In particular, we solve the problem of answering a keyword query on 
a collection of text streams, where a result is defined as a combination of events from a set of correlated streams  
such that these events collectively contain all the query keywords. Our methodology is illustrated in Figure 1. The 
proposed system allows the inclusion of the inherent temporal dimension into the problem, enabling the execution of 
more complex keyword queries with temporal constraints, where the keywords don’t have to reside in the same 
stream, but can be distributed over different streams.  

 
Figure 1: Overview of the proposed methodology. 

 
 
In order to avoid multiple spurious matching between streams of data that are unrelated to each other, we also 
impose the additional constraint for the results to exist within “sufficiently” correlated streams of data. For instance, 
given the query {arbitrating, contract, problem} and two text streams that monitor email threads, if email stream A 
mentions the words ‘arbitrating’ and ‘problem’ and emails thread B mentions ‘contract’, but stream B is unrelated to 
A (different participants and topic), then the combination of streams A and B is not a good answer to the query. In 
the course of the paper we explain how to define the stream association within a time window, and how to 
incrementally update their score as new text data are added or removed.  
 
Applications of the above framework are quite extensive: 
 

1. Subscription services, alert and recommendation systems that inform users of streams containing individual 
preferences. 

2. Intelligent monitoring of a server’s text content, either for the purposes of enforcing filtering mechanisms, 
or for categorizing and classifying the textual content more accurately. 

3. More efficient collection, filtering and understanding of the diverse news feeds (closed captioning, CNN 
headlines, etc) for media people (e.g. journalists). 

4. Better understanding and analysis of social or streaming networks, through correlation analysis of the 
textual chains of messages (e.g. chat messages, email logs, blogs). 

5. Crime prevention through more efficient monitoring of unencrypted (or lightly encrypted) Internet text 
channels by law enforcement or government entities. 

 
In our work, we present algorithms that can efficiently query a multiplicity of text streams given a set of keywords. 
Matches are identified within a specified time window and are presented in real-time, by assembling together 
relevant pieces of information from multiple associated streams. The high-performance of the algorithms is due to 
their incremental nature. Given specified user preferences, the algorithms perform a minimal amount of computation 
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for each new stream event (new piece of data transmitted through a stream) in order to examine for a potential new 
result. In our solution, we segregate the problem of maintaining the association degrees between the text streams, 
from the problem of assembling and producing the results in a pipelined manner. Additionally, we identify and 
compare alternative strategies which are preferable for different problem settings. The contributions of this paper are 
the following: 
 

1. We formally define the problem of keyword search across multiple text streams. We also identify the key 
user-defined parameters to calibrate the results. 

2. We present efficient algorithms that can assemble, process and output query results in real-time, i.e., as 
they become available.  

3. We study alternative techniques to measure associations between text streams. Efficient algorithms to 
maintain these associations are presented and evaluated. 

4. To evaluate the quality of the results, as well as the performance of the proposed algorithms, we conduct a 
case study using the publicly available ENRON email [29] and Splog Blog [35] datasets, as our 
experimental testbed. We adapt the email dataset in our system prototype, by viewing email threads as 
continuous text streams. Comprehensive experimentation on the said datasets demonstrates the feasibility 
of our approach. 

 
The paper is organized as follows: In Section 2, related work is presented. Section 3 introduces formal notation and 
description of the problem. Section 4 continues with the challenges and an overview of our approach. Our 
algorithms are presented in Sections 5 and 6. Experiments are covered in Section 7. We conclude in Section 8. 

 2. RELATED WORK 
There has been a great corpus of work [2, 7, 17, 20, 21, 28] on keyword proximity search on static databases. These 
works follow various techniques to overcome the NP-completeness of the Group Steiner problem, to which the 
keyword proximity search problems can be reduced.  
 
Goldman et al. [17] use pre-computation to minimize the runtime cost. BANKS [7] views the database as a graph 
and proposes algorithms to approximate the Group Steiner Tree problem. [2, 20, 21] perform keyword search on 
relational databases and exploit the schema properties to achieve efficient execution. ObjectRank [6], which returns 
single objects and not associations between objects as the above work, ranks the results of keyword queries using the 
authority flow factor. However, all this work assumes that the data is static and the time dimension of the problem is 
not taken into account. Markowetz, et al. [31], extend the work of [21] to streaming relational data, and present 
pipelined relational execution plans. In contrast, our work is on text streams. 
 
Top-k ranked query works [5, 14, 38] compute efficiently the top results given ranked lists of attribute values for the 
set of objects, whereas top-k ranked join queries Ilyas et al. [24] compute the top results of a join given a ranking 
function. Different to our problem, the set of objects is static and there is no notion of time. Subscription systems 
[37, 13, 12] answer continuous user queries by examining documents in separation, in contrast with our work where 
we combine information from various streams to construct a result. 
 
The area of query processing in streams has received much attention [1, 4, 3, 8, 9, 10, 39]. These works consider 
traditional queries with emphasis on the efficient aggregation, load balancing and stream dissemination. In contrast, 
our work focuses primarily on the stream analytic part, providing estimations on query-specific associations between 
the streams. Another related field of research deals with the join of streaming data [11, 16, 18, 27], which involves 
only exact matches between multiple streams within a time window.  Such applications do not contain the notion of 
a ‘query’. In our setting a query can be comprised of a set of keywords, each one appearing on a different stream. 
Methods for discovering correlated bursty patterns and their bursty periods across text streams are found in [36]. 
Other work related with textual streams can be found in [15,26], which primarily address the modeling of a single 
textual stream, to support applications such as burst detection. There has been work on other streams topics such as 
data mining streams, to detect complex predicate patterns and find frequent item-sets adaptively over the stream [19, 
23]; and in effectively processing continuous XPath queries over XML streams [30, 32]. But again our work is 
directed to the specific area of text streams. 
 



Therefore to the best of our knowledge, none of the previous related research addresses the streaming keyword 
search problem. Although some of the approaches (like database keyword search) could be adapted to provide 
support for a streaming scenario, the expected performance is bound to be very far from real-time. We have 
presented a preliminary problem description in a previous poster [22]. 
 
Below, we will start the dissection of the problem; first we introduce the necessary definitions and notation that will 
be used throughout the paper. Table 1 summarizes this notation. 
 
    S Text Stream 

S Set of streams 
S.description Stream S description 
S.participants Stream S participants 
S.events Stream S events 
e Event 
e.t Event e timestamp 
e.content Event e content 
a(Sx,Sy) Association weight of streams Sx and Sy 
rp Participants correlation 
rc Content correlation 
ξp Constant for significance of rp 
ξc Constant for significance of rc 
G(S,E) Undirected text stream graph of S 
Nkw Number of non-stop keywords in an association  

window 
x Vector of all keyword(Nkw) presence (0 for 

 absence, 1 for presence) for S 
µx Average value of Sx 
σx Standard deviation for Sx 
px Pressure of Sx 
q Continuous keyword query 
q.keywords, Query q keywords 
q.matchingWindow Query q user define matching window length 
q.associationThreshold Query q user define association threshold 
T Event tree 

Table 1: Notation Used. 

 

3.  NOTATION AND DESCRIPTION OF THE PROBLEM 
Definition 1 [Text Stream] A text stream S:=(S.description, S.participants,S.events) consists of a description, an 
(optional) list of participants and a continuous and asynchronous sequence of events S.events:=(e1,,e2,…) of the form 
e:=(e.t, e.content), where timestamp e.t denotes the time occurrence of an event and content e.content is a text string 
associated with the event. Therefore, a stream S∈A* × (R× A*)N, A = {a,b,..z}* ,

 and an instance of it is 
Si:=(Si.description, Si.participants,((Si.ei1.t, Si.ei1.content), (Si.ei2.t, S.ei2.content),…)), where the notation eij  describes 
the event j of stream Si . The subscript i may be omitted during the course of the paper when the stream reference is 
not ambiguous in the related context.  � 
 
The description S.description is a text string providing a concise explanation of the stream content (e.g., the 
description element of the channel in RSS [34]. For example for a news feed from CNN, this field can hold the 
value: “CNN news”, while an event e can contain the title of a news event. The participants’ field is empty in the 
case of a news stream, however can be utilized when transmitting chat data (e.g. chat session) or email data. In the 
case of chat data an event is a single message of a participant of the chat session. Timestamp is the time the message 
was submitted and content is the text of the message. (Content could also include the sender of the message, but this 
complicates things since the list of participants of a stream is stored separately as we explain later.) The above 



notation only attempts to provide a high level abstraction of the problem, without going into details of the actual 
structural data organization into XML, which is not within the scope of this work. 
 
We assume that there exists a set S={S1,…,Sp} of p text streams. So for example, p chat sessions occur concurrently 
or p RSS feeds are transmitted online. The association weight a(Sx,Sy) between two text streams Sx, Sy denotes how 
relevant these text streams are. The definition of this relevance depends on the particular application. For example, 
given stream of emails or chat sessions we can weigh into the computation factors such as common participants or 
words between two streams, and formally define it as provided in following equation: 
 

a(Sx,Sy) = ξp⋅rp(Sx,Sy) +  ξc⋅rc(Sx,Sy)       (1) 
 
where rp and rc describe the degree of correlation between stream participants and stream content, respectively. ξc, 
ξp are constants that capture the relative significance that the user is willing to provide to either of the two 
correlations. The constant ξc can be equal to zero, in the case where no participants are involved. Notice that higher 
association weight a(Sx,Sy) denotes stronger relevance between Sx, Sy. While for the remainder of the paper we focus 
on the specific definition of association, this does not limit the generality of our approach, since alternate definitions 
of correlation [25] or similarity, could also be adapted without significant modifications. 
 
Given a set S of text streams and the association weights between them, we construct the undirected text stream 
graph G(S,E) by creating a node for each text stream in S and an edge with weight a(Sx,Sy) between each pair Sx, Sy 
of text stream nodes with nonzero association weight a(Sx,Sy). 
 
One way to compute the content or the participants’ correlation between two streams is using the Jaccard 
coefficient. For instance, the participants’ correlation is: 
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An alternative way to compute the content correlation, which we used in our experiments, is viewing each text 
stream as a set of words (using a thesaurus to handle stemming and synonymy). Then the content correlation rc(Sx,Sy) 
measures the degree of association between the sets of words in Sx and Sy. We measure the degree of content 
similarity between two streams Sx, Sy using Pearson’s correlation. The derivation of the correlation, however, can be 
simplified given the binary representation of the feature data. We provide the new simplified formula subsequently. 
 

Words S94332 S78992 S13920 Words S94332 S78992 S13920 

Dabhol 1 1 0 Firm 0 0 1 

Arbitrating 0 1 0 Obligations 0 0 1 

Details 1 0 0 Krishna 1 0 0 

Give 1 0 0 Extraordinary 0 1 0 

Terminating 1 0 0 Unlikely 0 1 0 

India 0 1 0 PPA 1 0 0 

Contract 0 1 1 Lose 0 1 0 

Performance 0 0 1 Protection 1 1 0 

… … … … … … … … 

Table 2: Words to streams matching matrix. 

Let’s assume that we have encountered Nkw words (not including stop-words such as “in”, “and”, etc) within the 
association window (user specified window of interest, for the purpose of computing the association weights) with 



temporal length |associationWindow|. Using tabular notation we can express the textual content of each stream by 
assigning one row per word and one column per stream (as shown in Table 2 for Example 1). Presence of a word on 
a stream is indicated by one and absence by zero. Therefore, the content of stream Sx is transcribed into a vector (a 
column in Table 2) x = [x1 x2 … xNkw]

T
, xi ∈{0,1}. Now we can express the content correlation rc between two 

streams Sx, Sy as: 
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which leads to the right-hand expression after elementary calculations. µx and σx are the average value and the 
standard deviation for Sx respectively. Since we have transformed our streams into binary content we can derive a 
simpler version of the stream correlation. The variance of a binary vector can be expressed in a simpler form using 
only the sum of the binary vector: 
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We call the notation px the stream pressure of Sx, as it indicates how strong is the presence of stream Sx in the 
universe of words Nkw within the examined window. Using the above notation the expression of the content 
correlation is simplified to: 
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We observe that essentially the content correlation depends on three parameters: (i) the total number of discrete 
words within the examined window, (ii) the number of discrete words of each stream (px×Nkw and py×Nkw) and (iii) 
the number of common words (pxy×Nkw) between streams.  
 
Example 1: Figure 2 depicts a real timeline snapshot of the ENRON email database (used in our experiments), 
which captures a small subset of email events. As explained in Section 7, a stream corresponds to an email session 
(sequence of forward and reply emails). For the streams of Figure 2 we can create the matrix notation of Table 2 that 
can assist in computing the stream correlations. 
 



 
Figure 2: Snapshot from the ENRON emails stream. 

 
Table 2 shows a matching matrix between keywords and streams. Using tabular notation the textual content of each 
stream is expressed by assigning one row per word and one column per stream. Presence of a word on a stream is 
indicated by one and absence by zero. Therefore, the content of stream Sx is transcribed into a vector (a column in 
Table 2) 
 
The total number of words within the user specified association window is Nkw=50. Using Equation 2 and Table 2 
we can easily compute the correlation between the two text streams [94332] and [78992]: 
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Similarly we derive the remaining two correlations: 0.18),(,0.84),( 13920789921392094332 =−= SSrSSr cc � 
 
Definition 2 [Continuous Keyword Query] A continuous keyword query (simply called query henceforth) 
q:=(q.keywords, q.matchingWindow, q.associationThreshold) consists of a set of keywords 
q.keywords:=(kw1,…,kwm)∈(A*)N, a user specified time window length q.matchingWindow, and a user specified 
number q.associationThreshold. 

Threshold value q.associationThreshold specifies when an association between two streams becomes insignificant, 
that is, we ignore associations weaker than q.associationThreshold. A domain expert decides the values of 
q.associationThreshold and q.matchingWindow based on the needs and characteristics of the domain. Another 
alternative is for the user to provide examples of streams that are considered correlated, given which the algorithm 
can learn what is considered as meaningful association threshold. 

The answer of a query q on a set S of text streams is a sequence of all event trees T. An event tree T is a tree where 
every node is a pair of  〈stream S∈∈∈∈S, a subset of S.events〉. Intuitively, T is defined as a set of streams (each in a node 
of T) along with a subset of query-relevant events from each stream. If we ignore the second piece of information in 
the nodes of T (a subset of S.events), then T is a subtree of G. For example T could be S1(e13,e15)-S4(e41,e43). Each 
event tree T has the following properties: 
 
1. T (specifically, the events in T) contains all keywords in q.keywords, and 
2. T is minimal, that is, we cannot remove any leaf (an event of a leaf stream or a leaf stream altogether) of T and 

still have all keywords contained, that is, there is no leaf event e∈T such that keywords(e)⊂keywords(T-e), and 

SessionID=9433

eventID=214867 

From: Kohli, Sandeep To: Kaminski, 
Vince J  “…Dabhol, and will give you the 
details upon return. Terminating the PPA 
and arbitrating  would…” 

eventID=214868 

From: Kaminski, Vince J  To: 
Kohli, Sandeep   
“…Any resolution to 
Krishna's protection problem 
yet?” 

7:53 pm, June 27, 2001 
2:44 pm, June 28, 

SessionID=7899

eventID=421551  

From: Rieker, Paula To: Skilling, Jeff  
“…India - Extraordinary contractual 
protection. Unlikely to lose $ from 
Dabhol, more likely to gain.” 

12 pm, June 28, 2001 

eventID=311096  

From: Jamal, Nazam To: Wieber, 
Chris  “…they almost have contracts 
that have ‘Firm Performance 
Obligations’ and that are well 
confined from...” 

12:30 pm, June 28, 2001 

SessionID=1392



3. the events in T occur within a window of time length q.matchingWindow, that is, T.end-
T.start≤q.matchingWindow, and 

4. T is the maximum spanning tree1 on the subgraph GT of G that only contains the nodes/streams of T, and 
5. score(T)≥q.associationThreshold. � 
 
The fourth property is used to ensure that the strongest connections between the text streams of a result are used to 
construct the event tree. For example, consider an event tree T consisting of the three streams. Then, T can only be 
S3-S1-S2, but not S1-S3-S2 or S1-S2-S3, where the particular events for each stream are omitted for conciseness. The 
reason is that a(S1,S2)  and a(S1,S3) are the two largest association weights.  
 

Example 1 (cont’d): The strong negative correlation ),( 1392094332 SSrc in our setting indicates the presence of 
many words in either stream, but existence of very few common words between the pair of streams. Notice the 
importance of the correlation computation between the streams, since it allows us to effectively filter the non-
relevant answers sets. 
Now, given a query “arbitrating problem”, the event tree S94332(e214867,e214868) is output, whereas for the query 
“arbitrating contract problem” the event tree S94332(e214867,e214868)-S78992(e421551) is output. Sessions S94332 and S78992 

(which conceptually correspond to different streams of events) are associated due to common words like “Dabhol” 
and “Protection”. Clearly, the above event trees convey useful information; the first shows how arbitration problems 
have arisen with Krishna, and is captured by keywords existing on the same stream but on different events (emails) 
on the timeline. In the second event tree the various pieces of information are not only fragmented among different 
documents but also among different streams. Note that the event tree S94332(e214867,e214868)-S13920(e311096 ) is not 
output, because streams S94332 and S13920 are not sufficiently associated as they share no (or few) common words.  � 
 
A salient requirement of the problem is that results should be output as they occur, which rules out any batch 
processing approaches, as we discuss in Section 4. Further, notice that our problem defines two different time 
windows: The association window (associationWindow) is used to define the association weights between streams, 
and the query matching window (matchingWindow) determines the maximum time span of the result-event trees. It 
is possible that both windows be assigned the same length depending on the application requirements. For the 
remaining of the paper, we will use the term “stream” instead of “text stream” for reasons of compactness. 

 4. CHALLENGES AND OVERVIEW OF OUR APPROACH 
Given the previous work in keyword proximity search [17, 7, 2, 21], a direct approach of answering a continuous 
keyword query q, is to repeatedly apply a keyword proximity algorithm for each new event.  
In particular, one could execute the following algorithm for every new event of the text stream set S;  
• First, construct a document D(S) for each text stream S that contains S.description concatenated with the 

contents of all events of S with timestamp not older than 
tnow-q.matchingWindow2.  

• Second, compute the text stream graph G for the association window [t now-associationWindow,tnow].   

• Third, construct the document graph GD by replacing each node S of G with D(S).  

• Finally, execute a keyword proximity search algorithm on GD to compute all event trees.  

The described algorithm is very expensive and inefficient because for every new event, all structures need to be 
initialized and recomputed from scratch. In particular, for each new event an expensive join to find all event trees 
has to be computed. This returns all combinations of text streams that contain all keywords and are also minimal. In 
addition to that, the weights of the text stream graph G are recomputed for each event. An alternative solution would 
be to execute this algorithm periodically (e.g., every 10 min). This approach, however, compromises the 
responsiveness of the system, which deviates significantly from the desired real-time.  
 

                                                 
1  The opposite of a minimum spanning tree, since higher edge weights denote higher association in our problem. 
2  To be more formal, we should create a node for each event and connect nodes/events of the same stream with an edge with 

infinite weight. 



In Section 5 we present an incremental algorithm that tackles the first inefficiency. In essence, we propose an 
algorithm that performs a join incrementally. This is different from previous pipelined join methods (e.g., [24]) 
which perform joins on a static database instance, since in our case the database instance changes over time (see 
Section 2 for details). We also present an analysis of the algorithm and discuss the advantages of many single 
queries instances instead of a single multiple query instance, as well as the trade time complexity for timeliness in 
the algorithm. In Section 6 we address the second issue, by presenting an algorithm that incrementally maintains the 
weights of the text stream graph G.  

 5. INCREMENTAL COMPUTATION OF EVENT TREES 
In Definition 2, matchingWindow is a property of the query q. However, to simplify the explanation of the tree 
algorithm as well as the complexity analysis we introduce an equivalent dynamically-changing threshold L, which 
specifies time in terms of number of query-related events.  
 
A query-related event is an event that contains at least one of the query keywords. That is, a query-related event eQR 
has the following property: q.keywords ∩ eQR.content ≠ ∅. Therefore, it characterizes events containing at least one 
of the query keywords. For example, if q.matchingWindow=1 hour and in the last hour 15 query-related events have 
arrived, then L=15. In order to simplify the analysis of the algorithm complexity we adapt the use of L as a measure 
of the window length.  
 
The key idea of the algorithm is to maintain a forest C of query-related events (i.e., events that contain some query 
keyword), where each path from a root to a leaf represents a combination of events ordered by ascending 
timestamps. Each level of C corresponds to a single event e and each node of this level determines if e is considered 
in the corresponding root-to-leaf path. Each such path becomes a candidate result as we explain below. 
 
In particular, each node on the i-th level of C 3 can either be a special node called null node or refer to the (L-i)-th 
latest event. For each new event e that contains any of the keywords q.keywords of q, we add a new level of leaves 
at the bottom of C. The candidate results (event trees) of q are all paths from a root to a leaf in C. 
 
Intuitively, each such path in C represents a combination of events across a single or multiple text streams that is 
minimal (removing an event from the path removes a query keyword from it) and also different from all other paths. 
Hence, if such a path contains all keywords then it satisfies all properties of Definition 2 but the last two. 
To ensure the fourth property we compute the maximum spanning tree for the graph GT containing the text streams 
in the path. Then the score of T is computed by Equation 3. 
 
Example 2: Consider query q with q.keywords:= (Contract, Arbitrating), L=3, q.matchingWindow=1, and three 
text streams S1, S2, S3 with the following time-interleaved sequence of events (only the query-related events are 
shown): 
e1: in stream S1, e1.content = “The contract will be ready by…” 
e2: in stream S2, e2.content = “A very important contract” 
e3: in stream S3, e3.content = “terminating the PPA and arbitrating…” 
e4: in stream S1, e4.content = “… move the contract date…” 
e5: in stream S2, e5.content = “They prepared a contract...”  
 
Also assume for simplicity that the association weights between S1, S2, S3 are fixed to a(S1,S2)=1.5, a(S1,S3)=0.5, 
a(S2,S3)=1.2. 
 
Figure 5 shows snapshots of the forest C after e3, e4 and e5. Solid-line circles denote leaf nodes that correspond to a 
result, and dotted-line circles are the nodes that do not output a result, because the score of the event tree is less than 
q.associationThreshold. Furthermore, we cross out leaf nodes that are pruned due to the condition of line 8 of  
Figure 3. One can observe that only the 2L-1=4 leftmost leaf nodes are expanded, and also only L levels are stored at 
any time. Also, we note that in this example the maximum spanning trees computed in Figure 4 are simply single 
edges since only two stream nodes are in graph GT for any candidate result.�  

                                                 
3   more formally, on the i-the level of a tree in C 
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Figure 3: Tree Algorithm. 

13a. for every q i  in q1,…,q n do  
13b.    T := getResult( p,q i ) 

Figure 4: Event tree computation algorithm. 

getResult(input: path  p , query  q ) 
1. If events in p do not contain all keywords in q.keywords then 
2.     return null 
3. Construct subgraph GT of G that contains all event-nodes in p 
4. Compute maximum spanning tree V of text streams of GT 

5. Construct event tree T from V by replacing each  
     text stream S by its events in p 
6. If score(T)•q.associationThreshold then 
7.     return T 

2a. compute all minimal combinations of events in p ath 
     p that contain all keywords in q.keywords 
2b. for each such combination construct a new path p• 
    from p by replacing the unnecessary events by null  
2c. for each path p•  do /*this loop ends at the end of  
 getResults*/   
 

TreeAlgorithm(input: query q, threshold  L ) 
/*We assume that forest C of events is in steady st ate, that is, it has 
depth L*/ 
1. x:=0 /*x is number of pruned nodes at each step*/ 
2. For each new event e do { 
3.   Remove from C all roots /*that is, all instances of the oldest  

event in C*/ 
4.   For each of the 2

L-1
-pl  leftmost leaves in C do 

5.      Add two children: null  and e         /*a pointer to e is stored*/ 
6.   pl:=0 /*pl is number of pruned leaves*/ 
7.    For each non-null leaf node u created in Line 4 do 
8.    If keywords(e) ⊆keywords(L-1 ancestors of u)  then 

/* keywords(e)=q.keywords•e.content */  { 
9.       prune (u) 
10.      pl:=pl+1 
     } 
11.  For each non-pruned and non-null leaf u created in line 4 do { 
12.   Let p be the path starting at a root of C and 
       ending at u  
13.    T := getResult( p,q ) 
     } 
   } 



 
Figure 5: Snapshots of forest C in Tree algorithm. 

 
 
The tree algorithm is described in Figures 3 and 4 where we assume the algorithm is in its steady state, that is, at 
least L query-related events have been processed. Hence, we do not show the special initializing conditions to handle 
the first L events of the streams. Consequently, C always has L levels.  
 
Notice how in Line 4 of Figure 3 we only “expand” 2L-1-pl leaf nodes. We subtract pl, which is the number of leaves 
pruned in the previous step, since we do not expand pruned leaves. The rationale behind 2L-1 is that at most 2L leaves 
are needed, which is formally  proven later in Theorem 1. 
 
The pruning condition of Line 8 eliminates paths that provably cannot lead to a minimal result in the current or any 
future step (i.e., future event). Being more precise, if the current event does not add any keyword to the path of 
length L (that is, the current event plus the L-1 ancestors), then no minimal result can be generated from this path. 

 5.1 Analysis of Tree Algorithm 
Before commencing the algorithm analysis, it is important to point out that the utilized parameter L, takes very small 
values in practice (3 to 12 as we show in detail in Table 4 in Section 7) and hence the strong dependence of the 
algorithm on L does not prohibit its use in practice. For example, the event trees of Example 2 have been produced 
with L=3. 
 
Theorem 1: The maximum number of leaf nodes in the forest C of TreeAlgorithm that are needed to compute all 
query results is 2L. 
Proof: Definition 2 requires for a results event tree T to satisfy T.end-T.start≤q.matchingWindow. L is a translation 
of q.matchingWindow from the time domain to the number of consecutive query-related events. Hence, equivalently, 
Definition 2 requires the first and last events of T to be contained in L consecutive query-related events. Given L 
consecutive events, there are 2L combinations of subsets of them, and each such subset can potentially lead to a 
result. Each such subset of events corresponds to a root-to-leaf path in the forest C, and hence to a distinct leaf 
node.�  
Space complexity  
The space complexity of the tree algorithm is O(2L), which is the space required to store a binary tree (forest in our 
case) with 2L leaves (and height L). Notice that each node of C is just an event identifier and not a copy of the event 
information. Finally, we should note that due to the pruning (Lines 8-9 of Figure 4) the expected average space 
requirements are in practice significantly smaller (see Figure 5(c)).  

Time complexity  
The algorithm has three actions taking place for each query-related event. 
a. Addition of new leaves (lines 4-5) with complexity O(2L-1) 

b. Examination of pruning condition (lines 7-9), which also has complexity O(L⋅2L-1), if we assume that given two 
sets of keywords containment can be decided in constant time. This is a reasonable assumption since the 
number of query-related keywords of an event is typically expected to be very small (1-2). 

e1 ∅ 

e2 ∅ 

e3 ∅ e3 ∅ 

e2 ∅ 

e3 ∅ e3 ∅ 

e4 ∅ e4 ∅ e4 ∅ e4 ∅ 

∅ e3 

e4 ∅ e4 ∅ 

e5 ∅ e5 ∅ e5 ∅ e5 ∅ 

(a) (b) (c) 



c. Validation of results (Lines 11-14) takes time O(L⋅2L-1) since for each candidate result, the maximum spanning 
tree requires linear time (Prim’s algorithm [33]) on the size of the event tree. 

Therefore, the total time complexity is O(L⋅2L-1) per query-relevant event. From the above discussion it is 
straightforward to deduce that queries containing frequent keywords (and consequently more query-related events) 
will require more processing per ‘time-unit’. 

 5.2 Multiple Queries 
The Tree algorithm in Figures 3 and 4 computes the results of a single keyword query. In this section we discuss the 
handling of multiple simultaneous continuous queries. First, we briefly present a natural extension of the Tree 
algorithm to handle multiple queries. Then, we explain why this approach is usually inefficient compared to 
executing multiple simultaneous instances of the Tree algorithm, one for each keyword query. 
 
Suppose there are n continuous keyword queries q1,…,qn. Let Q be a query that specifies all keywords in q1,…,qn, 
i.e., 
Q.keywords = ∪i(qi.keywords) 
and has the maximum matchingWindow of all queries, i.e., 
Q.matchingWindow = maxi(qi.matchingWindow). 
 
Then, the Multi-Query Tree algorithm consists of the execution of the Tree algorithm for query Q, with the 
following modifications:  
Replace Line 13 of Figure 3 with the lines at Figure 3a. 

 
Also, add the following between Lines 2 and 3 of the getResult method of Figure 4 (see Figure 4a) 
It can be shown that the above algorithm is complete. 

 
Theorem 2: The Multi-Query Tree algorithm generates all results (event-trees) for each query qi. �  
 
The advantage of the Multi-Query Tree algorithm is that a single forest C is used to answer all queries, instead of n 
separate forests C1,…,Cn. However, by using a ‘long’ query Q (i.e., with many keywords) instead of many “shorter” 
queries qi, the depth L of the forest C is more extended. The Multi-Query Tree algorithm can only perform better 
than multiple instances of the Tree algorithm if there is large overlap among the keywords of the queries q1,…,qn, 
that is, the size of Q.keywords is relatively small. 
 
 

 Time  Space 

n instances of Tree 
algorithm 

n⋅L⋅2L-1 per query-relevant 
event 

n⋅2L 

Multi-Query Tree 
algorithm 

l2⋅L⋅2l⋅L-1 per query-relevant 
event 

2l⋅L 

Table 3: Complexities of approaches for multiple queries. 

 
The dependence of space and time complexities on the parameter L, can lead to significant performance degradation 
for large values of L (unusual in practice as shown above). In particular, when L increases by a factor of l (L′ = l ⋅L), 
the time and space complexities of the two approaches are shown in Table 3. Note that in the time cell of the Multi-
Query Tree algorithm we multiply by l because the number of query-related events (the costs in Section 10.1 are per 
query-related event) in the Multi-Query Tree algorithm is larger by a factor of l.  
The Multi-Query Tree algorithm can only perform better than multiple instances of the Tree algorithm if there is 
large overlap among the keywords of the queries q1,…,qn, that is, the size of Q.keywords is relatively small. In that 
case the l factor described above is very small. 



 5.4 Trade Complexity for Timeliness in Tree Algorithm 
If the real-time result creation requirement can be relaxed, the complexity can be greatly reduced. We only sketch 
the grouping version of the Tree algorithm due to space considerations. To do so, we partition the streams into 
groups of b consecutive query-related events. For example, if b=2, the stream e1,e2,e3,e4 is split into the stream of 
groups g1,g2, where g1={e1,e2} and g2={e3,e4}. For each group we store the query keywords it contains along with 
the pairwise shortest distances (in terms of query-related events) between them. Then, a modification of the Tree 
algorithm is executed on the stream of groups.  
 
The key difference is that for every candidate group tree (defined similarly to event tree) result, we have to extract 
the set of corresponding event trees (a group tree can create multiple event trees). Within a group, a hash map is 
used to efficiently map query keywords to events. The complexity of this method is L/b⋅2L/b-1 and in practice can 
become as inexpensive as needed by choosing a large b. The drawback of this method is that the output of an event 
tree result can be delayed for up to the length of a group. Hence, the choice of b balances the needs of timely results 
and fast execution. 
 
6. COMPUTATION OF ASSOCIATION WEIGHTS IN TEXT STREAMS 
The getResult method of Figure 4 requires the weights a(Si,Sj) between each pair Si, Sj of text stream nodes of the 
path p. These weights typically change over time. For example, according to Equation 1 for chat streams, for every 
new event all two components (participants’ correlation, content correlation) may change. Note that in the 
description of a email events in Section 3, the participants are part of the stream description. However, they could 
also be part of individual events. We consider, and experimentally evaluate in Section 7, lazy and an incremental 
update strategies for computing the edge weights.  

 6.1 Lazy Strategy 
One can follow a “lazy” approach and only compute the weights when needed, that is, when a minimal event tree 
has been constructed and we need to compute its score in order to decide if it will be output or not (Line 3 in the 
getResult method of Figure 4). Hence, in this strategy not all weights of the text stream graph G are maintained. The 
advantage of this technique is that we do not compute any “useless” weights, that is, any weights that will never be 
involved in a candidate result.  
 
The disadvantages of the lazy strategy are the following: first, the ‘from-scratch’ computation of the pairwise 
weights can be expensive even if a few streams are involved in a candidate result, because all events of these 
streams within the association window have to be considered. 
 
Second, the lazy execution is unaware of the events occurring that do not lead to a candidate result, and may lead to 
a weight computation of an edge that is guaranteed to have unchanged weight. For example, consider two 
consecutive candidate results r1, r2, both involving the edge 〈Si,Sj〉. If the events occurring between r1 and r2 do not 
affect a(Si,Sj) (see below), then the recomputation of a(Si,Sj) was wasteful. 
 
Clearly, the type of events that affect an edge weight a(Si,Sj) depend on the weight computation formula. Let us 
consider the weight formula of Equation 1 and focus on its most expensive portion, which is the content correlation 
component computed by Equation 2. Then, a new event eN∈Si does not affect any edge weight, if for 
every keyword eN.kwt it holds that: eN.kwt ∩eij.kwu ≠∅, for every event eij   and event keyword eij.kwu with eij..t ≥ tnow 
- q.associationWindow. Therefore, the edge weights do not change if all words of event eN already exist in the 
current association window. 

 6.2 Incremental Strategy  
We now present an algorithm that incrementally maintains the complete stream graph G for each new event e. In 
this case, we need to consider all events (and not only the query-related, as was the case for the Tree algorithm of 
5.1), since the association between two streams depends on the total set of encountered keywords and not only on 
the query keywords.  
 



Considering the content correlation of Equation 2, Figure 6 presents an algorithm for its incremental maintenance. In 
order to facilitate incremental computation, the algorithm records the pressure px for every stream Sx, as well as the 
pressure between pairs of streams px,y , Sx≠ Sy. 
 
 

 
Figure 6: Incremental maintenance of stream graph. 

 
We use the following notation. Suppose an event e of stream Sx just arrived. We refer to the association window just 
before (resp. after) e as previous (resp. current) association window. Let us denote as px

prev the pressure of stream Sx 

during the previous association window, px
expired the number of expired keywords of Sx (i.e., keywords that appeared 

in the previous but not in the current association window), and px
new the number of the newly added keywords (i.e., 

keywords that just appeared in an event of Sx for the first time in the current association window). Similar notation is 
used for the number of keywords in the totality of streams (Nkw

prev, Nkw
expired, Nkw

new). Then, if we assume for 
presentation simplicity that the total number of words in the association window is constant (if it changes, the 
formula is modified to include the new and previous total number of words), the pressure within the current window 
for stream Sx is: 

px = px
prev -px

expired +px
new 

 

A similar expression can also be computed for the common pressure between streams Sx and Sy.. 
 

pxy = pxy
prev -pxy

expired +pxy
new 

 

Assuming that there are no inherently imposed space restrictions, one can optimize performance by allocating one 
counter for each encountered word within the association window for each stream. This assumption is realistic when 
one is interested in short term stream correlations, where the association window does not have a considerable 
temporal duration. 
 
We notice that we can compute an upper bound on the content correlation between streams Sx, Sy utilizing only the 
pressures px, py of the streams (without having to resort to computing the more expensive common pressure pxy). It 
holds that for any binary streams Sx=[x 1, x2,… ] and Sy=[y1, y2,… ]: 
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Therefore:  

IncrementalStreamGraphMaintain(event e of stream Sx) 
1. Let NW be the set of new words in e with size N kw⋅px

new
 /*words that have 

 not already appeared in Sx during the association window*/ 
2. Let EW of the set of expired words from Sx  with size N kw⋅px

expired   /*words 
That appeared in Sx during the previous association window but do  
not appear during the current association window*/ 

3. If NW and EW are empty then return /*do nothing*/ 
4. p s= p s

prev
 - px

expired + px

new 

5. For each stream Sy <>S x do { 
6.   If UpperBound ( r c(S x,S y) ) < q.associationThreshold 
       then continue /*prune and go to next stream Sy*/ 
7.   Let NW •  be the set of new words in N W for  S y with size Nkw⋅pxy

new   

/*words in N W that also appear in Sy during the current association  
window*/ 

8.   Let EW •  be the set of words in EW also in Sy with size Nkw⋅pxy

expired 

/*words in EW that appear in Sy during the current association  
window*/ 

9.   p xy = pxy

prev

  - p xy

expired 
+ p xy

new
  

10.  Compute r c(S x,S y)  using Equation 2 /*Notice that p y does not change */ 
    } 
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From Equation 2, we have:  
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When UpperBound(rc(Sx,Sy)) < q.associationThreshold,4 a candidate result can be eliminated from examination 
(Line 7 in Figure 6) because it definitely does not satisfy the stream association requirements set by the user. 
From a system management point of view, the algorithm of Figure 6 makes use of a sliding inverted index which 
stores for each keyword the list of streams that the keyword has appeared, within the current association window. 
The sliding inverted index can efficiently maintain the following information for each new event e of stream Sx: 
 
• the set NW of words that have not already appeared in S during the current association window 

• the set NW′ of words in NW that do not appear in another stream Sy during the current association window 

• the set EW of words that appeared in Sx during the previous association window but do not appear during the 
current association window 

• the set EW′ of words in EW that appear in another stream Sy during the current association window 

 

Our current implementation of a sliding inverted index is rudimentary but fully functional and is based on the use of 
counters that maintain the time of occurrences of each keyword in every stream, in order to discover the currently 
active set of keywords. More spartan alternatives for the implementation of the inverted index are also being 
considered, however the experimental results of Section 7.1, are based on the basic implementation with counters. 
 

Notice, that we assume that the association window for a stream only changes when an event from this stream 
occurs. This is why py does not change in Figure 6. We experimentally evaluate the incremental algorithm in Section 
7.2. 

 7. EXPERIMENTS 
In our experiments we used the Enron email (see [29] for a description) and Splog Blog datasets.  
 
Enron:  After cleaning the data we ended up with 217,087 distinct emails, which we partition into 147,917 email 
threads as follows. Two emails u, v belong to the same thread if all of the following apply:  
• There is at least one common participant (sender or recipient) between u and v. 

• The subjects of u, v are the same modulo “Re:”, “Fw:” prefix 

• The timestamps of u, v differ by at most 3 months. 

The emails of the dataset correspond to events in our framework, where the timestamp is the email timestamp and 
the content is the combination of the subject and email body. This arrangement creates a correspondence between an 
email thread and a text stream.  
 
Splog: The original Splog Blog dataset [35] contains 3000 blogs. In our framework every entry on the blogs 
corresponds to an event, and its author and time correspond to the event’s participant and timestamp respectively.  
The blog description, if any, would correspond to the stream description and the blog itself would be a text stream.  
 
We conduct two sets of experiments. The first evaluates the Tree algorithm (described in Section 5.1), while the 
second compares the approaches for the maintenance of the stream graph: (i) the incremental maintenance, (ii) the 
lazy maintenance of the edge weights. The Splog Blog Dataset contains many artificial and automatically generated 

                                                 
4  If the participants’ correlation is computed first (which is simpler) then a tighter bound can be used. 



blogs, which makes the correlation computation between such blogs not useful or meaningful. Hence, we only use 
this dataset in the first set of experiments (Section 7.1), and assume that blogs are equally correlated. 
 
7.1 Tree algorithm 

In order to evaluate the performance of the Tree algorithm, we separate the execution of the algorithm from the edge 
weights calculation. (The latter is the focus of Section 7.2.) That is, the times reported in this section do not include 
the time for the graph maintenance, which for this experiment are already pre-computed. Additionally, since the 
Tree algorithm is executed for each query-related event (i.e., an event that contains at least one of the query 
keywords), we measure the execution time per query-related event. This metric can also provide a practical system 
calibration tool, for predicting the system performance under specific word distributions.  For example, given a set 
of streams with a known (or predicted) average rates of query-related events, a system analysts can easily estimate 
whether the Tree algorithm will provide real-time responses for a given L (L is defined in Section 5.1) and number 
of query keywords.  

Varying number of streams 

Figure 7 report the average execution time in minutes, for different number of streams, two keywords and L=5. The 
graph suggests that the execution time remains more or less the same for different number of streams. This is 
expected since the time is dependant on the processing of query-events and although more streams will contribute 
with more query-events, their time is averaged which makes the results 

similar.
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Figure 7: Average execution times per query-related event for varying number of streams for Enron Dataset. 

Varying L 
Before measuring the performance for varying L, we discuss what are typical values of L. Table 4 shows the average 
number of query-events (emails) and time span for various values of L, two-keyword and three-keyword queries.  
The last column (total #results) shows the total number of result event trees for the given query and L across the 
whole stream. The results show that very small values of L query-related events typically cover a long time-span 
(hours or even days). This observation is important for maintaining the real-time profile of the algorithm.  
 
 



keyword 1 keyword 2 keyword 3 L time (hr) #query-
events 

Total 
#results 

opportunities pipeline  6 90.66 833 7164 

opportunities pipeline  9 135.99 1249 8028 

opportunities pipeline partnership 6 77.82 886 3584 

opportunities pipeline partnership 9 116.73 1328 5446 

settlement pay  6 18.42 920 10080 

settlement pay  9 27.63 1380 12960 

settlement pay India 6 19.02 889 203 

settlement pay India 9 28.53 1334 319 

Table 4: Relation of L to number of events and time span for Enron dataset. 

 
In our first experiment we measure the query execution time per query-related event. Figure 8 shows the execution 
time in msec for four sample queries along with the keyword frequencies in the Enron and Splog Blog Datasets (i.e., 
number of events that contain them). Queries {EIA, estimate} and {breaker, PMT} were ran against the Enron 
dataset. The other queries, {summer, yoga} and {chinese, proverb} correspond to the Splog dataset. 
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Figure 8: Execution time per query-related event for four sample queries and varying L for the two datasets. 

 
We utilize two keywords per query and test the performance of the system on 50 continuous keyword queries. In 
Figures 9 and 10 we report the average execution time over all queries, in order to remove the bias of either very 
short or very large queries (containing either very infrequent or very frequent words). Clearly, the system can return 
results in time less than a second, even for large values of L (L=16), which can typically corresponds to hundreds or 
thousands of events and cover an extensive query time range.
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Figure 9: Average execution times per query-related event for varying L for Enron Dataset. 
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Figure 10: Average execution times per query-related event for varying L for Splog Blog Dataset. 

Varying number of keywords 
Next, we measure the effect of query keyword cardinality on the execution time. Figures 11 and 12 depicts the 
average execution time over 50 continuous keyword queries for three different values of L (L=5, 10, 15). These 
times are per query-related event, with rate naturally increasing with increasing number of keywords. The reason of 
prolonged execution time per query-related event is because the pruning condition of Line 8 in Figure 5 is becoming 
more expensive with the additional keywords. Nonetheless, the response time is still typically kept below 1 sec.  
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Figure 11: Average execution times per query-related event for varying number of keywords and L values for 

Enron Dataset. 

 
 
Multi-Query Tree Algorithm 
Figure 13 compares the Tree algorithm’s average execution time of an instance of the multi-query versus two 
instances of a single-query. We use L=5 and varied the number of keywords per query, as well as the overlap of 
keywords in the multiple-query instance. As expected from our analysis in Section 5.2, the execution time for the 



multiple-query instance is worse than two instances of a single-query when there are no keywords in common, but 
improves when there are common terms in the queries.  
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Figure 13: Average execution times per query-related event for varying number of queries and keywords for 

Enron Dataset 

7.2.1 Stream graph maintenance 
The final experiment compares the performance of the algorithms that compute the association degree between the 
text streams. The lazy and the incremental stream graph maintenance methods (Sections 6.1 and 6.2) compute the 
content correlation between the streams as defined by Equation 2. Figure 14 juxtaposes the results of these two 
methods for 10 queries (each being comprised of 2 keywords). The x-axis displays the average processing time for 
each event (here we count all events and not only query-related ones).  
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Figure 14: Comparison of stream graph maintenance techniques for Enron dataset. 



 
We observe that the incremental technique depicts a computational advantage of about 20%. For multiple 
simultaneous continuous queries this improvement is even larger because the rate of query-related events increases. 
In particular, the incremental algorithm is executed once for each event whereas the lazy only when a candidate 
event tree is evaluated (in Line 3 of Figure 4). Hence, in the presence of multiple simultaneous continuous queries, 
the cost of lazy maintenance increases, whereas for incremental evaluation it remains constant.  

 8. CONCLUSIONS AND FUTURE WORK 
We presented the problem of continuous keyword search on multiple text streams, which bridges the independently 
well-studied problems of keyword search on databases and alert services on single streams. We define a result as a 
tree of events from multiple associated streams, where the association is determined by the commonality of two 
streams, although other metrics are also possible.  
 
We present an incremental algorithm for computing the answer set of a continuous keyword query. This algorithm 
performs a minimal amount of operations for each event, in essence accomplishing a streaming incremental join that 
utilizes partial results. We also presented and experimentally compared alternative techniques to maintain the stream 
graph, which stores the association weights between the streams. 
 
As future work, we plan to investigate more complex association semantics between the streams. For example, how 
could one use an ontology or application specific knowledge? Additional questions of interest are how the system 
can automatically learn suitable values of L, given the approximate rate of results that we want to get for a query. 
For instance, in a data monitoring application, human experts may only be able to process 10 results per minute; 
therefore there is no need for the system to flood them with additional results that are going to be simply ignored. 
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