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Abstract Applying text classification to find social media posts relevant to a
topic of interest is the focus of a substantial amount of research. A key challenge
is how to select a good training set of posts to label. This problem has tradition-
ally been solved using active learning. However, this assumes access to all posts of
the collection, which is not realistic in many cases, as social networks impose con-
straints on the number of posts that can be retrieved through their search APIs. To
address this problem, which we refer as the training post retrieval over constrained
search interfaces problem, we propose several keyword selection algorithms that,
given a topic, generate an effective set of keyword queries to submit to the search
API. The returned posts are labeled and used as a training dataset to train post
classifiers. Our experiments compare our proposed keyword selection algorithms
to several baselines across various topics from three sources. The results show that
the proposed methods generate superior training sets, which is measured by the
balanced accuracy of the trained classifiers.
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1 Introduction

Text classification in social media is an area of active research. Examples of its
application include analyzing the demographics of health-related discussions [24],
inferring event attendance from non-geotagged posts [7], and detecting posts pro-
moting extremist ideologies [1]. Training a text classification model requires a large
and high-quality training set of labeled posts, where by “high quality” we gener-
ally mean that the posts should have a good coverage of the various classes, and
even coverage of the various post variants within a class.

Labeling posts is generally the hardest and most expensive step in text classi-
fication applications. There has been much work on active learning, which studies
how to select a good set of posts to label to achieve high training set quality.
Active learning techniques assume that we have access to all documents (posts)
in a collection, and iteratively select some of them to label next. However, this is
not a realistic assumption in many applications, where posts’ access is conducted
via a constrained application programming interface (API).

In this paper, we study the training post retrieval over constrained search in-
terfaces problem, which attempts to generate a high-quality posts training set,
given a user-defined topic and a labeling budget. The topic is described by a few
keywords that the user provides, for example for the topic “suicide” the user may
provide keywords “suicide,” “depressed,” and “kill.”

As an example application of the training post retrieval over constrained search
interfaces problem, consider trying to create a personal classifier for each user to
filter social media posts. A user could provide a few initial keywords of interest
and then the method would use these keywords to return posts for labeling. This
labeling can be implicit, e.g. via clickthrough. Labeled posts can then be used
to train a classifier and use it to filter further posts. Note that the initial set of
keywords provided by the user are just a rough description of their latent interest
profile, that is, we cannot just assume that every post that contains these keywords
is relevant or that posts without these keywords are irrelevant.

The training post retrieval over constrained search interfaces problem presents
several challenges. The first challenge is the constrained search interface. In con-
trast to active learning, a method that addresses this problem does not have access
to all of the available data. Instead, it must make API search queries that retrieve a
limited number of posts, thus selecting the keywords that retrieve the most useful
results is of key importance. Another challenge is that if we use keyword queries
to generate our training set we incur coverage bias as we only get positive and
negative (for binary classifiers) examples that match these queries. This problem
is generally not present with active learning, where a post is picked based on how
hard it is for the current classifier to classify it and not based on keywords. A third
challenge is that the user-provided keywords are not perfect; there is no guarantee
that any keyword provided will give 100% relevant results when used to query an
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API. For example, the keyword “vote” provided by a user interested in US politics
may retrieve posts relevant to US politics, but may also retrieve posts relevant to
voting in another country, voting on posts and/or comments on Reddit, etc.

A successful keyword selection algorithm (KSA) must overcome these chal-
lenges. We propose several KSAs, with the most effective being the Top Positives
Random Negatives Keyword Selection Algorithm (TPRN-KSA), which progres-
sively creates keyword queries to retrieve posts, which are labelled and added to
the training set. TPRN-KSA tries to achieve two goals: (a) balance, i.e. the num-
ber of positives and the number of negatives in the training dataset should be as
close to equal as possible; and (b) diversity, meaning it should cover a wide range
of posts within each class to properly model the data with respect to the topic of
interest. We show how an algorithm has to have diversity in both the positive and
the negative posts to achieve good performance.

In summary, TPRN-KSA has the following steps: First, for each input keyword
it retrieves a small set of posts, which are labeled to estimate the percentage
of positives for the keyword. Based on these estimations, a second portion of
the budget is spent to retrieve and label more posts from the most promising
(higher rate of positives) of these keywords. Finally, to address the problem of
bias especially in the negative class, TPRN-KSA spends a third portion of the
budget to retrieve and label a set of random posts from the API, which replace
some of the biased negative posts that were retrieved during the first two steps. We
carefully compute the budget for each step of the algorithm and for each keyword
query to achieve the goals of balance and diversity.

A key finding in this work is that achieving diversity of the negative posts in
the training set is more important that the diversity of the positive posts. Another
finding is that it is not enough to add some random negative posts to the training
set, but we have to also remove many or all of the biased negative posts. This
may sound a little counterintuitive as more training data should be better than
less. Detailed experimental evaluation shows that training a text classifier with
the training set generated by TPRN-KSA outperforms state-of-the-art baseline
keyword selection methods. The summary of our contributions is as follows:

– We formulate the training post retrieval over constrained search interfaces
problem.

– We propose a suite of principled keyword selection algorithms, including TPRN-
KSA, to solve the training post retrieval over constrained search interfaces
problem.

– We perform comprehensive experiments on three real datasets, which show
that our proposed algorithms outperform existing baselines.

– We study the underlying reasons why the training set generated by our methods
is of higher quality than the baselines. We measure the training set’s balance,
and the diversity of the labeled posts in both the positive and negative classes.
We show how these quantities affect the quality of the training set, that is,
how they are correlated to the classifier’s performance.

The remainder of the paper is organized as follows: Sect. 2 discusses prior
work. Sect. 3 defines the training post retrieval over constrained search interfaces
problem. Sect. 4.1 introduces two baseline KSAs and discusses their limitations.
Sect. 4.2 describes our initial TP-KSA method, which addresses one of the short-
comings of the baseline KSAs. Sect. 4.3 presents TPRN-KSA, which further refines
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TP-KSA to also achieve diversity among the negative posts and also balance be-
tween positives and negatives. Sect. 5 explains the experimental evaluation of our
proposed method and presents the results of our experiments. We conclude in
Sect. 6.

2 Related Work

Applying information retrieval techniques to analyze social media posts has been
employed in several applications. Shen et al. developed a method to retrieve dis-
aster event data from Twitter and other social media platforms based on event-
specific hashtags [27]. Balsamo et al. proposed an information retrieval algorithm
to mine data from users on Reddit by identifying subreddits relevant to opioid
abuse [2]. Rao et al. proposed a neural network model specifically designed for
ranking short social media posts, e.g. tweets [22]. Our proposed method differs
from these in two ways. First, its goal is to retrieve a dataset of both positive and
negative posts for training a text classifier rather than only posts relevant to some
topic. However, the pipeline consisting of our method and a classifier could be con-
sidered an information retrieval framework in itself. Second, our proposed method
is task-agnostic, i.e. it is not specifically made for any one topic or platform. We
show in our experiments that our method works well across several topics and
sources.

Previous work has examined collecting text data from a constrained interface
using a classifier. Ruiz et al. studied how to maximize the number of relevant re-
trieved items using a rule-based classifier [25]. Li et al. proposed a data platform
to continuously monitor the Twitter streaming API for tweets relevant to some
topic using a classifier trained to detect such tweets [15]. These works are com-
plementary to ours, as their frameworks are built around a trained text classifier
which is then leveraged to gather relevant documents, whereas our work studies
how to build such a classifier.

Several papers have used sets of “seed” words, phrases, or documents to find
matching documents. Li et al. used seed words related to some topic and a dataset
of unlabeled documents to perform dataless text classification [12]. Wang et al.
proposed a technique to identify more relevant search keywords starting from an
initial set of keywords for retrieving social media posts related to some topic [30].
Sadri et al. proposed a system that adapts to changes in a topic on Twitter over
time by iteratively selecting phrases to track [26]. Proskurnia et al. developed a
framework to extract patterns from reference documents to identify microposts
related to a specific topic [21]. Li et al. developed a model for estimating the
relevance between a document and a set of seed words relevant to a category
using pre-trained word embeddings [13]. A limitation of relying on query keywords
is that they can be a poor representation of information need [6]; we show in
our experiments that our proposed method has better performance than other
keyword-based methods.

Pool-based active learning uses a classifier to iteratively determine which sam-
ples from among a large dataset, e.g. a corpus of documents, are the most infor-
mative and asks a human labeler to assign a class label to them. Goudjil et al.
proposed an active learning method for text classification that uses a set of SVM
classifiers to determine the average posterior probability of each document within
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subsets of the unlabeled data [9]. Zhang et al. argued that active learning with
a convolutional neural network (CNN) text classifier should focus on documents
that have the most effect on the word embedding space in contrast to traditional
methods such as classifier uncertainty [31]. Pool-based active learning is inappli-
cable to the problem we address in this paper, as the constrained search interface
prevents the full dataset from being evaluated for informativeness.

Stream-based active learning involves evaluating data points (e.g. social media
posts) one at a time and deciding whether to use a classifier or a human labeler
to assign a class label to each one. Smailovic et al. used an SVM classifier initially
trained on a Twitter sentiment dataset to perform active learning on financial-
related tweets [28]. Pohl et al. proposed a stream-based active learning method
to train a classifier to detect social media posts related to crises while limiting
the number of queries to human labelers [20]. Zhang et al. proposed a method to
address the issue of imbalanced data in determining whether to query the human
labeler by exploiting samples’ second-order information [32]. This work is notably
similar to ours, but one shortcoming of this method, as well as stream-based active
learning methods in general, is that it relies on streaming data, e.g. Twitter’s
streaming API, and thus has little control over the number of relevant posts being
evaluated during the active learning process.

Positive-unlabeled (PU) learning trains a binary classifier with a dataset con-
sisting of positive-labeled samples and additional unlabeled samples, which may
be positive or negative. Li and Liu applied PU learning to text classification by
combining the Rocchio method with an SVM [16]. Li et al. used PU learning to
identify fake reviews on the Chinese business review website Dianping [14]. PU
learning is complementary to our work, as a dataset generated by a KSA can be
supplemented with additional unlabeled posts to train a classifier with PU learning
instead of using traditional machine learning. However, we also note that many PU
learning methods rely on the assumption that the positives are selected randomly
[8], which is not applicable in this scenario.

3 Problem Definition

In this section, we define the training post retrieval over constrained search inter-
faces problem. Given the following inputs

– List of keywords K relevant to a latent topic t
– Supervisor S, a human who labels each post as relevant or not relevant to t
– Labeling budget m, the number of posts that we submit to S for labeling

a Keyword Selection Algorithm (KSA) selects n pairs of (keyword query qi, number
of results ri), P = {(q1, r1), · · · , (qn, rn)}, to submit to the social media API,
where r1 + · · ·+ rn = m, as shown in Fig. 1. Let s1, s2, · · · , sn be the sets of posts
returned by the n queries, respectively. The obtained training set is T = s1∪· · ·∪sn,
which is labeled by S and then used to train classifier c. The goal is to pick the
P that maximizes the performance of c. Picking the best classification method is
outside the scope of this paper; we use standard SVM and CNN [10] text classifiers
in our experiments.

Note that n is not an input; rather it is dictated by the KSA, e.g. the algorithm
may use each keyword in K to perform a query or may derive another list of



6 Ryan Rivas, Vagelis Hristidis

Fig. 1 Process of addressing the training post retrieval over constrained search interfaces
problem.

keywords K′ from K (e.g. a subset of K) that may be used to perform queries.
P may also contain a special keyword query qi = ∅ to mean that we obtain a
random sample of posts. This does not come from a keyword in K, but is instead
used by some of our methods. Support exists for retrieving random posts in a real-
world setting, e.g. via the Reddit API’s /random endpoint, but non-random sources
of posts such as the Reddit API’s /new endpoint may also suffice. Functionality
similar to /new may be the only option for APIs on other social media. In general,
the labeling budget m is not a constraint on the number of posts retrieved from an
API, but rather the number of posts presented to the human labeler, as retrieving
a large number of posts is trivial for most APIs. However, many of the KSAs
evaluated in this study, including our proposed methods, retrieve only m posts.

Example: Consider a simple KSA that retrieves m
|K| posts for each keyword

in K. A user interested in posts discussing suicide provides K = {“suicide”, “de-
pressed”, “kill”} and m = 600 to the KSA, which selects P = {(“suicide”, 200),
(“depressed”, 200), (“kill”, 200)}. Then, for each (qi, ri) ∈ P , the KSA retrieves a
set of posts si where |si| = ri and each post in si contains qi. Next, the KSA
presents the final set of posts T = s1 ∪ s2 ∪ s3 to the user for labeling. The KSA
then returns the labeled dataset, which is used to train a text classifier.

4 Methods

4.1 Baseline Keyword Selection Algorithms

In this section, we describe two simple baseline KSAs for comparison to our pro-
posed method.

All-Keywords KSA. As described in the example above, this KSA uses every
keyword in K along with a labeling budget m and supervisor S. For each keyword
k, it retrieves m

|K| posts that contain k from a keyword search API and queries
S for their class labels. After all of the keywords’ posts have been retrieved and
labeled, it returns the labeled dataset. We expect the diversity of the negatives in
this dataset to be low because every negative contains a keyword in K.

50-50 KSA. This KSA attempts to add diversity in the form of randomly
retrieved posts. Like All-Keywords, it uses every keyword in K. However, in-
stead of retrieving m

|K| posts for each keyword k, it retrieves m
2|K| posts that

contain k for each keyword k and m
2 random posts. For example, given K =

{“suicide”, “depressed”, “kill”} and m = 600, 50-50 selects P = {(“suicide”, 100),
(“depressed”, 100), (“kill”, 100), (∅, 300)} (recall that the special keyword query ∅
retrieves random posts from an API).
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Limitations. As previously mentioned, All-Keywords lacks diversity in its nega-
tives. 50-50 attempts to address this by adding random posts, but both methods
are highly dependent on the relevance of the keywords in K to achieve good bal-
ance. With All-Keywords, half of the posts retrieved by using keywords to query
the API must be relevant, but with 50-50, all (or nearly all) of them should be
relevant. As it is difficult to guarantee the relevance of a keyword, these KSAs
often generate datasets that have poor balance.

4.2 KSA with Balance

In this section, we describe our initial Top Positives Keyword Selection Algorithm
(TP-KSA). The goal of this method is to address the balance issue due to depen-
dence on keyword relevance experienced in All-Keywords and 50-50. Specifically,
TP-KSA selects the most descriptive keywords in K, that is, keywords whose
posts have a relatively high ratio of positives. It then splits its budget equally
across these keywords. We also present a variant, TPP-KSA, which retrieves posts
proportionally to the rate of positives for each keyword. Table 1 summarizes the
notation used by our methods.

Table 1 Notation used by our methods

Notation Description

K Initial list of keywords.
m Labeling budget, i.e. the number of posts to present to S for labeling.
S Supervisor; a human labeler to whom retrieved posts are presented for labeling.
X List of posts to which retrieved posts are added.
y List of class labels, where yi is the class label for Xi.
p List of percent positive, where pi is the percentage of positives for keyword Ki.
K′ List of keywords from K retained after determining which ones to remove.
p′ List of percent positive, where p′i is the percentage of positives for keyword K′i.
b Budget allocated equally to each keyword in K′ (Eqn. 1).
Xk List of posts retrieved by querying API with keyword k.
yk List of class labels; yki is the class label for post Xki as determined by S.
s Number of sample posts to retrieve for each keyword in K (Eqn. 2).
pk The percentage of positive posts for keyword k.
bi Budget allocated proportionally to keyword K′i (Eqn. 3).

4.2.1 Top Positives KSA (TP-KSA)

This method determines which keywords in K to retain according to their relevance
as determined by the ratio of positive posts that they retrieve. The algorithm
first expends some of its budget m to call the SampleKeyWordPosts subroutine to
retrieve and label a small sample of posts from each keyword in K. It then calls
the SelectKeywords subroutine to determine which keywords to retain. Next, the
algorithm evenly distributes the remainder of labeling budget m, which is m minus
the total number of sample posts retrieved |X|, among the retained keywords in
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K′. The budget b allocated to each remaining keyword is defined in Eqn. 1.

b =

⌊
m− |X|
|K′|

⌋
(1)

Then, for each keyword k in K′, retrieve b posts that contain k from a keyword
search API, ask supervisor S to label each post retrieved, and add the posts and
labels to the final dataset. When this process is complete, the algorithm returns the
final labeled dataset. The complete TP-KSA method is described in Algorithm 1.

Algorithm 1 TP-KSA(list of keywords K, labeling budget m, supervisor S)

1: X, y, p := SampleKeywordPosts(K,m, S)
2: K′, p′ := SelectKeywords(K, p)

3: b :=
⌊
m−|X|
|K′|

⌋
4: for all keywords k in K′ do
5: Xk := b posts returned by querying API with keyword k
6: yk := labels from S corresponding to posts in Xk

7: Add each post in Xk to X
8: Add each label in yk to y
9: end for

10: return X, y

Initial sampling. Keywords given to our method are first evaluated for relevance.
For each keyword k in a list of keywords K, we query a keyword search API for
a sample of posts that contain k but not contain any of the keywords previously
sampled. We note that this creates the possibility that the sample posts for a
keyword Ki may also contain one or more keywords Kj , where j > i. However, we
do not exclude these posts from our sampling as this would decrease the likelihood
of retrieving a positive (intuitively, posts with more than one keyword are more
likely to be positive). The number of posts s in the sample is determined by the
labeling budget m as shown in Eqn. 2. For m > 150|K|, this formula allocates a
budget of b0.2mc for all samples, which is distributed evenly between all keywords
in K. For m ≤ 150|K|, we set a minimum sample size of 30, which is considered the
minimum sample size in statistics as a “rule of thumb.” In the unlikely case where
m < 30|K|, the sample size would exceed m, so we only sample keywords until the
total number of posts sampled is 0.8m. This threshold guarantees that the entire
budget m will not be spent on sampling. These values (the total sampling budget
b0.2mc, the minimum sample size 30, and the maximum sampling size 0.8m) were
arbitrarily selected, but our experiments show that using our proposed method
with these values achieves good results for this problem.

s = max

(
30,

⌊
0.2m

|K|

⌋)
(2)

We then use supervisor S to determine whether each post in the sample is pos-
itive (relevant) or negative (not relevant). With these labels, we determine the
percentage of positives for each keyword. The posts in each sample and their cor-
responding labels are added to the final dataset. The process of sampling keywords
and determining their relevance is shown by Algorithm 2.
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Algorithm 2 SampleKeywordPosts(list of keywords K, labeling budget m, su-
pervisor S)

1: s := max
(

30,
⌊

m
5|K|

⌋)
2: X, y, p := empty lists
3: for all keywords k in K do
4: if s + |X| > 0.8m then
5: break
6: end if
7: Xk := s posts returned by querying API with keyword k, excluding posts that contain

any previous k
8: yk := labels from S corresponding to posts in Xk

9: pk := percentage of positive-labeled posts in Xk

10: Add each post in Xk to X
11: Add each label in yk to y
12: Add pk to p
13: end for
14: return X, y, p

Keyword selection. Using the percentage of positive posts for each keyword, we can
then determine which keywords to retain. To accomplish this, we use a method
inspired by the elbow method used in clustering to determine the appropriate
number of clusters in a dataset. The elbow method considers some measure, e.g.
the average distance between members of a cluster [29], as a function of the number
of clusters k, then chooses the k corresponding to the “elbow of the curve,” i.e.
the point at which the curve visibly flattens with respect to the horizontal axis,
with the intuition that higher values of k offer little marginal gain. Our method
takes inspiration from this approach by finding the “elbow” of a curve defined by
a list of keywords and their corresponding percentages of positive posts.

Given a list of keywords K and a list of percentages p, where pi is the percentage
of positive posts in a sample of posts containing keyword Ki, this method first sorts
K and p according to the values of p in descending order. Next, the method plots
(i, pi) for each i and calculates the distance between each of these points and a
line drawn between the first and last point, noting the index j corresponding the
the point with the greatest distance under the line. The method then retains only
keywords in K with a corresponding percentage of positives pi > pj , i.e. all Ki

with i < j. In cases where j = 1, which indicates that all keywords except the first
one and the last one are on or above the line, the method retains every keyword
in K except the last one.

As an example, consider K = {Keyword 1, Keyword 2, Keyword 3, Keyword 4,
Keyword 5} and p = {0.8, 0.75, 0.4, 0.2, 0.16}. As shown in Fig. 2 (left), we plot
(i, pi) for each Ki in K and draw the red dotted line from the point corresponding
to Keyword 1 to the point corresponding to Keyword 5 (i.e. (1, 0.8) to (5, 0.16)).
We then calculate the distance from each of these points to the red dotted line and
find that (4, 0.2) corresponding to Keyword 4 has the greatest distance below the
line (highlighted by the blue line perpendicular to the red dotted line). We thus
retain only keywords before Keyword 4.

This method of keyword selection is shown by Algorithm 3. The algorithm sorts
K and p in descending order according to p, then finds the j that maximizes the
distance function. The distance function calculates the distance between a point
(i, pi) and the line that intersects (1, p1) and (|K|, p|K|) such that points below
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Fig. 2 TP-KSA keyword selection. Left: Keyword 4 has the greatest distance under the curve,
thus the first 3 keywords are retained. Right: No keyword is under the curve, so all but the
last are retained.

the line have a positive distance, points above the line have a negative distance,
and points on the line have a distance of 0. Next, the algorithm sets j = |K| if no
point was below the line (signified by j = 1). The algorithm returns K′ and p′,
which contain all Ki and pi with a pi higher than pj . Note that the value p′ (the
percentages of positive posts corresponding to each keyword in K′) is not used by
TP-KSA, but is instead used in the variant methods described in Sects. 4.2.2 and
4.3.2.

Algorithm 3 SelectKeywords(list of keywords K, list of percentages p)

1: Sort K and p by descending order of the values in p

2: j := argmax
i∈{1,2,...,|K|}

(p|K|−p1)(i−1)+pi(1−|K|)+p1(|K|−1)√
(p|K|−p1)2+(1−|K|)2

3: if j = 1 then
4: j := |K|
5: end if
6: K′ := {Ki ∀ i ∈ {1, 2, . . . , j − 1}}
7: p′ := {pi ∀ i ∈ {1, 2, . . . , j − 1}}
8: return K′, p′

Example: Given K = {“suicide”, “depressed”, “kill”} and m = 600, TP-KSA
first samples each keyword with s = 40 via the SampleKeywordPosts subrou-
tine and determines that “suicide” is 60% positive, “depressed” is 45% positive,
and “kill” is 10% positive (i.e. p = {0.6, 0.45, 0.1}). TP-KSA then continues with
the SelectKeywords subroutine and determines j = 3 corresponding to the key-
word “kill” as shown in Fig. 2 (right). Thus K′ = {“suicide”, “depressed”} and
each keyword in K′ is allocated a budget b = 240, so P = {(“suicide”, 40),
(“depressed -suicide”, 40), (“kill -suicide -depressed”, 40), (“suicide”, 240), (“de-
pressed”, 240)}. “ki -kj” denotes a keyword query for posts that contain keyword
ki but do not contain keyword kj .

4.2.2 Top Positive Proportional KSA (TPP-KSA) Variant

We also propose a variant to TP-KSA that aims at retrieving more positive posts
by allocating a proportionally higher budget to keywords with higher percentages
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of positive sample posts instead of allocating the same budget to each keyword in
K′. More specifically, the method uses the list of percentages p′ to determine the
budget bi for a keyword K′i as shown in Eqn. 3.

bi =

⌊
p′i

m− |X|∑|K′|
i=1 p′i

⌋
(3)

For each keyword K′i in K′, we then use this new budget bi to retrieve posts con-
taining K′i similarly to TP-KSA. The TPP-KSA method is shown in Algorithm 4.

Algorithm 4 TPP-KSA(list of keywords K, labeling budget m, supervisor S)

1: X, y, p := SampleKeywordPosts(K,m, S)
2: K′, p′ := SelectKeywords(K, p)
3: for all keywords K′i in K′ do

4: bi :=

⌊
p′i

m−|X|∑|K′|
i=1 p′i

⌋
5: Xk := bi posts returned by querying API with keyword K′i
6: yk := labels from S corresponding to posts in Xk

7: Add each post in Xk to X
8: Add each label in yk to y
9: end for

10: return X, y

4.3 Extend TP-KSA to Add Diversity on the Negative Samples

While TP-KSA increases the diversity in the positive portion of its generated
dataset, the posts in the negative portion each contain at least one keyword. This
bias results in low diversity in that portion of the dataset. TP-KSA also does
not sufficiently address the balance problem that All-Keywords and 50-50 have;
the relevance of the keywords it is given remains the most significant factor in
determining how well-balanced the resulting dataset is. To resolve these issues,
we created TPRN-KSA, which builds upon TP-KSA by (a) discarding negative
posts containing keywords to eliminate the source of bias and replacing them with
randomly selected posts to add diversity to the negative samples, and (b) aiming
for the same number of positives and negatives in the final dataset.

4.3.1 Random Negatives Variant of TP-KSA (TPRN-KSA)

We first assume that, for retrieval purposes, all randomly selected posts are nega-
tive. Then, to balance the positives and negatives (recall that we discard negatives
returned by keyword queries), we need to compute the total number mk of posts
that should be retrieved using keywords versus the number m−mk of posts that
should be retrieved randomly. Hence, we have:

mk · average(p′) = m−mk (4)

where the left side of Eqn. 4 represents the target number of positive posts in the
final dataset, while the right side is the number of negative (random) posts. m
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is our overall labeling budget, average(p′) is the average of all the values in p′,
and mk is the budget for posts containing a keyword. Eqn. 5 shows the derived
formula for mk, which also incorporates a maximum value of 0.8m to ensure we
avoid mk = m, i.e. no budget remains for random posts.

mk =

⌊
min

(
m

1 + average(p′)
, 0.8m

)⌉
(5)

We now describe our TPRN-KSA method. Like TP-KSA, it first calls the
SampleKeyWordPosts and SelectKeywords subroutines. Then, using the list of
percentages of positive posts p′ returned by SelectKeywords, we calculate mk

using Eqn. 5. The algorithm then retrieves and elicits labels for b posts for each
of the keywords in K′ as in TP-KSA, but with a value of b that incorporates mk:

b =

⌊
mk − |X|
|K′|

⌋
(6)

Next, the posts with negative labels are removed, and replaced with m − mk

random posts retrieved from a keyword search API. While these random posts
were assumed to be negative in our derivation of mk, there may be positives among
them in practice, thus they must be labeled by supervisor S. After these posts are
labeled, they are added to the final dataset. TPRN-KSA is further described in
Algorithm 5. It is also important to note that TPRN-KSA returns fewer than m
labeled posts. However, we show in our experiments that despite generating dataset
that is smaller compared to TP-KSA and the baselines, TPRN-KSA generates a
dataset that leads to better classifier performance than those methods.

Algorithm 5 TPRN-KSA(list of keywords K, labeling budget m, supervisor S)

1: X, y, p := SampleKeywordPosts(K,m, S)
2: K′, p′ := SelectKeywords(K, p)

3: mk :=
⌊
min( m

1+average(p′) , 0.8m)
⌉

4: b :=
⌊
mk−|X|
|K′|

⌋
5: for all keywords k in K′ do
6: Xk := b posts returned by querying API with keyword k
7: yk := labels from S corresponding to posts in Xk

8: Add each post in Xk to X
9: Add each label in yk to y

10: end for
11: Remove all negative labels from y and remove their corresponding posts from X
12: X∅ := m−mk posts returned by querying API with ∅
13: y∅ := labels from S corresponding to posts in X∅
14: Add each post in X∅ to X
15: Add each label in y∅ to y
16: return X, y

Example: Given K = {“suicide”, “depressed”, “kill”} and m = 600, TPRN-
KSA first determines K′ and p′. Then, it calculates mk = 393 and each keyword in
K′ is allocated b = 136 to retrieve additional posts with those keywords. Of all the
retrieved posts (including those retrieved by SampleKeywordPosts), 180 are posi-
tive. The remaining 213 posts are removed from X and their corresponding class
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labels are removed from y. TPRN-KSA then retrieves m−mk = 207 random posts
for a total dataset size of 387 and P = {(“suicide”, 40), (“depressed -suicide”, 40),
(“kill -suicide -depressed”, 40), (“suicide”, 136), (“depressed”, 136), (∅, 207)}.

4.3.2 TPPRN-KSA: Add Random Negatives to TPP-KSA

Our experiments also include a variant that combines both the TPP-KSA and
TPRN-KSA variants called TPPRN-KSA. As with TPRN-KSA, this method cal-
culates a labeling budget mk for posts with a keyword. It then proportionally
allocates budgets to each keyword in K′ as in TPP-KSA, but uses mk instead
of m when calculating these budgets. For brevity, we do not include the pseu-
docode of this variant, but it is composed of lines 1-3 of Algorithm 5, then lines
3-9 of Algorithm 4 (with mk replacing m in line 4), followed by lines 11-16 of
Algorithm 5.

5 Experiments

In this section, we describe our experimental evaluation of our proposed method
compared to several baselines.

5.1 Data

We use data from three sources in our experiments. In each experiment, posts from
one of 15 message boards (DailyStrength) or one of 20 subreddits (Reddit), or news
headlines from one of 35 categories (The Huffington Post) are labeled positive; all
other posts/headlines in our collected data from that source are labeled negative.
We discuss further details on our data collection and datasets in the Appendix.
Note that while the datasets for our experiments have been downloaded in advance,
this is not a requirement of our proposed method. We use these datasets in our
experiments to simulate keyword search APIs from which posts are retrieved.

5.2 Baselines

We compare our proposed method to five baselines. As described in our problem
definition, these methods take a list of keywords K, a labeling budget m, and a
supervisor S as input. For brevity, we use “posts” here and in the remainder of
the paper to refer to both posts from DailyStrength or Reddit, and news headlines
and their article summaries from the Huffington Post.

– All-Keywords: As described in Sect. 4.1.
– 50-50: As described in Sect. 4.1.
– Double Ranking: This method uses the Double Ranking method proposed by

Wang et al. [30]. The keywords in K are first used to retrieve and label sample
posts with Algorithm 2. The posts are then split according to their labels into
Xpos and Xneg. These two datasets, along with K and a list of stopwords
defined by Gensim [23], are passed to the Double Ranking algorithm, which
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runs for two iterations to produce a new list of keywords K′, where |K′| = |K|.
These keywords are used to retrieve and label additional posts as in lines 3-10
of Algorithm 1. An important distinction with this method is that it retrieves
much more than m posts, as the Double Ranking algorithm retrieves 3001 posts
per keyword in each iteration. However, only m posts are presented to S for
labeling and added to the final dataset.

– Active Learning: This method uses pool-based active learning with entropy
as an uncertainty measure. The initial dataset is made by iteratively querying
each of the keywords in K ∪ ∅ for one post one at a time until the dataset has
at least one post of each label. Then, using a pool of 100,000 posts, each step
of the active learning process presents the m

10 posts in the pool with the highest
entropy to S for labeling and adds them to the dataset until the dataset has
m labeled posts.

– Random: Retrieve m by querying an API with ∅ (i.e. retrieve m random
posts) and present them to S for labeling, then return the labeled dataset.

– Ideal: Retrieve m
2 positive posts and m

2 negative posts from an API. As this
method is capable of retrieving posts based on their label, it cannot be applied
to a real-world setting. Instead, it serves as an approximate upper limit for
comparison to the other methods.

5.3 Experiment Setup

Each experiment takes the following input:

– A KSA M
– A dataset D consisting of positives from one message board, subreddit or topic,

and negatives from the remaining data from the same source
– A labeling budget m
– A number of keywords n (in all of our experiments, n = 5)

Each experiment is run as follows:

1. Remove a random sample from D of size 0.2|D| for use as test data.
2. Determine the top n words according to their information gain according to

the data and labels in D; these words will be used as a list of keywords K.
3. Create a simulated keyword search API A using the data from D.
4. Run M with m and K as input. The supervisor S required by M will be

simulated by the dataset’s existing labels.
5. Train a text classifier C using the labeled data from M .
6. Use C to classify the test data (see Step 1) and record the results.

We then combine all of the results for one source and one method and report
the average balanced accuracy [5], e.g. the average balanced accuracy across all
subreddit datasets in the Reddit data for TP-KSA, for m = 100, 200, · · · , 1000.
This metric was chosen because accuracy can be misleadingly high when applied to
the results produced from our test datasets, which are highly imbalanced toward
the negative class.

These experiments are performed with both a CNN text classifier and a linear
SVM with TF-IDF vectorization. Our CNN classifier splits the labeled data into

1 This value was used by the experiments in [30].
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training (80% of the data) and validation (20% of the data) datasets, performs
50 training epochs with a batch size of 100, uses window sizes of 3, 4, and 5 with
100 filters each, and uses 300-dimension fastText [4] embeddings pre-trained on
Wikipedia. As we are using pre-trained embeddings, the posts selected by each
KSA in our experiments do not affect the embedding space.

Our SVM experiments use the implementation in Scikit-learn [19] with 1000
features representing n-grams of sizes 1-3 with a minimum document frequency of
3% and stop words removed. All other parameters are set to their default values in
Scikit-learn. Additionally, our SVM experiments are performed with 5-fold cross-
validation (i.e. D is split into 5 disjoint subsets, the experiment process described
above is performed 5 times with one of the subsets used as the test data, and the
results are averaged).

5.4 Results – Balanced Accuracy

We split our experimental evaluation into three steps. We first compared the bal-
anced accuracy of classifiers built from training data generated by each of the
four variants of our proposed method. We then compared the best of these to the
baselines. Finally, using the results of these experiments, we observe the effect of
balance and diversity on classifier performance and report our findings in Sect. 5.5.

Comparison to Baselines. We first compared the 4 variants of our proposed method
(see Appendix) and selected TPRN-KSA for comparison to the baseline methods.
The results of the experiments with TPRN-KSA and the baselines are shown in
Fig. 3. From these results we see that TPRN-KSA has higher balanced accuracy
than all real-world baselines in all three sources with both SVM and CNN. The only
method with higher balanced accuracy is the Ideal baseline, which has the benefit
of being able to retrieve posts by their class label. All-Keywords, 50-50, Double
Ranking, and Active Learning have similar balanced accuracy. Among these four
baselines, All-Keywords tends to perform the best, while Active Learning tends to
perform the worst. Unsurprisingly, the Random method has the lowest balanced
accuracy. In the following section, we will further analyze the performance of these
methods within the context of balance and diversity.

5.5 Results – Effect of Balance and Diversity on Classifier Performance

Recall that we previously stated that a classifier training dataset must achieve both
balance and diversity to maximize classifier performance. More precisely, given a
binary classifier trained on a training dataset T , the classifier’s balanced accuracy
on a test dataset should positively correlate to a combination of the balance and
diversity of T . To determine this correlation, we must first quantify balance and
diversity. To do so, we will use 3 additional metrics:

– Percent Positive. The ratio of positive posts in T .
– KLpos and KLneg. The Kullback-Leibler divergence [11] of the positives (or

negatives) in T from an equal number of positives (or negatives) taken from D.
A bag-of-words model is used to represent each thread in these calculations.
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Fig. 3 Balanced accuracy of TPRN-KSA vs. baselines using SVM (top) and CNN (bottom).
Left: DailyStrength. Middle: The Huffington Post. Right: Reddit.

The divergence of part of T from a random sample with the same label acts as
a measure of diversity in T , where lower values correspond to more diversity
in that part of T .

Unless otherwise specified, our discussion of these metrics focuses on the SVM
experiments, as the use of cross-validation makes these results more reliable. We
report the averages of these metrics for each source in Fig. 4 for SVM as determined
by the results of our experiments in Sect. 5.4. Note that with the exception of
Active Learning, which incorporates a classifier into its selection of posts, these
results differ from the CNN results only due to the use of cross-validation in the
SVM experiments. We further discuss the CNN results in the Appendix.

When comparing the percent positive of the datasets generated by each method
we see that TPRN-KSA is the closest to 50% positive with data from DailyStrength
and The Huffington Post. With the Reddit data, the Double Ranking method is
closer for some values of m and All-Keywords is above, but also close to, 50%
positive. The percent positive of the Random method is very low, which is likely
the most substantial contributing factor to its low balanced accuracy.

We also observed that each method’s percent positive relative to other methods
is generally opposite the same method’s relative KLpos, i.e. if method a has a
higher percent positive than method b, then method a will tend to have a lower
KLpos than method b. Notably, two exceptions to this are TPRN-KSA and Double
Ranking, which tend to have slightly higher KLpos than All-Keywords and 50-
50, respectively. This may be due to Double Ranking’s retrieved positive posts
becoming more topical (and thus less diverse) due to the refined keywords it uses,
while the TP-KSA methods’ use of a subset of K sacrifices some of the positive
diversity provided by All-Keywords for better balance. The KLpos for the Random
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Fig. 4 Percent Positive (top), KLpos (center), and KLneg (bottom) as determined in the
SVM experiments. Left: DailyStrength. Middle: The Huffington Post. Right: Reddit.

method is high due to its aforementioned low percentage of positive posts; with
the DailyStrength dataset, the Random method’s KLpos is not given for m < 300
as there were an insufficient number of positives to calculate a meaningful result
with these values of m.

The KLneg of each generated dataset tends to be directly proportional to that
dataset’s percent positive because a higher number of positive posts means the
dataset has fewer negatives and thus less opportunity for diversity. TPRN-KSA
also follows this trend for smaller values of m, but its KLneg falls below one or more
other methods as m increases, particularly with the Reddit data. This suggests that
the benefit conferred by TPRN-KSA’s use of random negatives is more pronounced
as m increases. We also observed that 50-50 tends to have slightly lower KLneg than
Active Learning, which may be explained by the fact that the negatives retrieved
by 50-50 are random, while those retrieved by Active Learning are instead selected
according to their entropy.

Next, we combine these three metrics and study their correlation to classifier
performance. We first normalize them and then take the harmonic mean. The
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intuition behind using their harmonic mean is that we want to show that a classifier
tends to perform well when all three of these metrics are high, but performs worse
when one or more is low. Because the harmonic mean gives more weight to smaller
values, it tends to be lower when one value is low compared to the arithmetic or
geometric means. The normalized balance is B = 1−2|0.5−p| where p is the percent
positive and has range [0, 1]. The normalized diversity, which is defined separately
for the positive and negative portions of a generated dataset, is Dx = e−KLx ,
where x is either “pos” or “neg,” and has range [0, 1]. The harmonic mean of these
three values is then defined as follows:

H =

(
B−1 + D−1

pos + D−1
neg

3

)−1

(7)

Using this definition, we calculated each experiment’s H and compared it to the
same experiment’s classifier balanced accuracy to study their correlation.

Balanced Accuracy vs. Balance and Diversity: We plotted the results of each
of our previous experiments for each source in two dimensions. Each experiment is
represented by coordinates (H,A), where H is the harmonic mean of the balance,
the diversity of the positives, and the diversity of the negatives of the training
dataset generated in that experiment and A is the balanced accuracy the trained
classifier achieved on the test data in that experiment. Experiments where the
harmonic mean is undefined are excluded from our analysis. We show the plotted
SVM experiments in Fig. 5. We also show the Pearson correlation coefficient [18] of
balanced accuracy and the harmonic mean of balance and diversity for each source
in Table 2. All three sources show that a classifier’s balanced accuracy is strongly
correlated with the balance and diversity of the dataset that was used to train the
classifier. However, we also note that these correlations vary substantially between
sources and classifiers; this suggests that while balance and diversity clearly play
a significant role in classifier performance, it may be affected by other factors as
well.

Fig. 5 Correlations between balanced accuracy and the harmonic mean of balance and diver-
sity with SVM. Left: DailyStrength. Middle: The Huffington Post. Right: Reddit.

Limitations: Despite the performance of TPRN-KSA, it has several limitations.
First, its sampling of posts to determine the percentage of positives for each key-
word (Algorithm 2) does not account for the fact that a keyword may appear in
a post that was sampled using another keyword. Accounting for this could reduce
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Table 2 Correlation of classifier balanced accuracy and the harmonic mean of balance and
diversity of classifier training data

Source n r (SVM) p (SVM) r (CNN) p (CNN)

DailyStrength 1500 0.8629 < 0.001 0.8223 < 0.001
The Huffington Post 3500 0.6610 < 0.001 0.7715 < 0.001
Reddit 2000 0.7411 < 0.001 0.6807 < 0.001

the amount of the budget used for sampling. Another issue with the sampling of
posts is its use of arbitrary values; specifically, reserving 20% of m for sampling,
applying the “rule of 30” for determining minimum sample sizes, and imposing
a maximum sample size of 0.8m for small values of m. However, the results of
additional experiments in the Appendix suggest that the choice of these values
within reasonable ranges generally do not have a significant impact on classifier
performance. Finally, TPRN-KSA’s keyword selection (Algorithm 3) is inspired
by the elbow method, which is a generally unreliable means of determining the
number of clusters in a dataset. A more principled approach to this method may
lead to better results.

6 Conclusions

We proposed the training post retrieval over constrained search interfaces problem.
We also proposed a method to address this problem, TPRN-KSA. This method is
built on the assumption that balance and diversity in a training dataset positively
affect the balanced accuracy of a classifier trained with the data. TPRN-KSA
outperformed all other variant methods and several baselines in our experiments.
For m = 1000, TPRN-KSA has an improvement of 13.96%, 8.95%, and 7.91%
with SVM and 11.90%, 8.94%, and 4.92% with CNN over the best baseline for
DailyStrength, The Huffington Post, and Reddit, respectively. We followed up
these experiments with an analysis on the correlation between classifier balanced
accuracy and the harmonic mean of the balance and diversity of training data.
We found that they were positively correlated, supporting our initial assumption.
Future work may address the limitations in TPRN-KSA as discussed above by im-
proving the sampling behavior and proposing new methods for keyword selection,
e.g. by incorporating other metrics.
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