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Abstract

DISCOVER operates on relational databases and
facilitates information discovery on them by al-
lowing its user to issue keyword queries without
any knowledge of the database schema or of SQL.
DISCOVER returns qualified joining networks of
tuples, that is, sets of tuples that are associated be-
cause they join on their primary and foreign keys
and collectively contain all the keywords of the
query. DISCOVER proceeds in two steps. First
the Candidate Network Generator generates all
candidate networks of relations, that is, join ex-
pressions that generate the joining networks of tu-
ples. Then the Plan Generator builds plans for
the efficient evaluation of the set of candidate net-
works, exploiting the opportunities to reuse com-
mon subexpressions of the candidate networks.

We prove that DISCOVER finds without redun-
dancy all relevant candidate networks, whose size
can be data bound, by exploiting the structure of
the schema. We prove that the selection of the
optimal execution plan (way to reuse common
subexpressions) is NP-complete. We provide a
greedy algorithm and we show that it provides
near-optimal plan execution time cost. Our ex-
perimentation also provides hints on tuning the
greedy algorithm.

1 Introduction

Keyword search is the most popular information discov-
ery method because the user does not need to know either
a query language or the underlying structure of the data.
The search engines available today provide keyword search
on top of sets of documents. When a set of keywords is
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provided by the user, the search engine returns all docu-
ments that are associated with these keywords. Typically,
two keywords and a document are associated when the key-
words are contained in the document and their degree of
associativity is often their distance from each other.

In addition to documents, a huge amount of information
is stored in relational databases, but information discov-
ery on relational databases is not well supported. The user
of a relational database needs to know the schema of the
database, SQL or some QBE-like interface, and the roles
of the various entities and terms used in the query. The
user of DISCOVER does not need knowledge of any of the
above. Instead, DISCOVER enables information discovery
by providing a straightforward keyword search interface to
the database.

For example, consider the TPC-H schema shown in Fig-
ure 1 and the instance in Figure 2. The arrows in Figure 1
point in the direction of the primary to foreign key (one-
to-many) relationships between tables. Consider a user
searching for information on the association of the key-
words “Smith” and “Miller”. DISCOVER provides a sim-
ple interface where the user simply types the keywords – as
he would do on a search engine. According to DISCOVER,
an association exists between two keywords if they are con-
tained in two associated tuples, i.e., two tuples that join
through foreign key to primary key relationships, which
potentially involve more tuples. This form of association is
particularly useful and challenging. (We comment on other
association criteria at the end.) DISCOVER does not re-
quire from the user to know the relations and the attributes
where the keywords are found.

The solution to the query are the two minimal joining
sequences that contain the keywords “Smith” and “Miller”,
namely o1 �� c1 �� o2 and o1 �� c1 �� n1 �� c2 �� o3. They
are minimal in the sense that no tuple can be excluded and
still have a sequence that contains the keywords. We use
the notation a �� b to denote that tuple a joins with tuple b
on their primary key to foreign key relationship. The first
joining sequence shows that both “Smith” and “Miller” are
clerks that have served customer Brad Lou, whereas the
second merely says that the clerks have served customers
Brad Lou and George Walters respectively, who both come
from the USA. Intuitively, the first joining sequence is more
useful than the second because it shows a closer association



Figure 1: The TPC-H schema (copied from www.tpc.org)

Figure 2: Sample TPC-H database instance

between “Smith” and “Miller”. Based on the generaliza-
tion of this intuition we rank join sequences according to
the number of joins they involve. DISCOVER outputs the
shorter sequences first.

When more than two keywords are involved, a mini-
mal joining sequence may not be sufficient to represent a
solution. Hence we introduce minimal joining networks,
that are trees of tuples where any two adjacent tuples join
through a primary key to foreign key relationship.

A high level representation of the architecture DIS-
COVER uses to find the joining networks is shown in Fig-
ure 3. First, the user gives a set of keywords k1, . . . ,km to
the system. These keywords are looked up in the master in-
dex, which returns the tuple sets Rk1

i , . . . ,Rkm
i for each rela-

tion Ri. Every tuple of R
kj
i contains keyword k j as part of an

attribute value. Then DISCOVER calculates all candidate
networks, i.e., join expressions on foreign to primary key
relationships of relations or tuple sets, as shown in Figure 3.
The set of candidate networks is guaranteed to produce all
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Figure 3: Architecture of DISCOVER

the minimal joining networks.
Then DISCOVER evaluates the candidate networks.

Due to the nature of the problem, the candidate networks
share join expressions. This offers an opportunity to build
a set of intermediate results and use them in the computa-
tion of multiple candidate networks. The Plan Generator
produces an execution plan that calculates and uses inter-
mediate results in evaluating the candidate networks. Fi-
nally an SQL statement is produced for each line of the ex-
ecution plan and these statements are passed to the DBMS.
The DBMS returns the joining networks of tuples that are
the solutions to the problem.

Notice that the candidate networks may have a number
of joins that is only bound by the dataset as it is explained
later. In these cases the user supplies a maximum number
T of joins and DISCOVER incrementally outputs all can-
didate networks up to size T .

The challenges involved in the above process and the
contributions of this paper are the following:
• We formalize keyword search on relational databases

and provide intuitive semantics.
• We propose a modular architecture and have imple-

mented DISCOVER based on it.
• We present an efficient candidate network generation

algorithm. The naive approach would be to gen-
erate all join expressions up to size T that contain
all keywords and then evaluate them. However, we
prune out many of them by exploiting the properties
of the schema of the database and the information re-
turned by the master index. For example in the key-
word query “Smith, Miller”, the candidate network
ORDERSSmith �� CUSTOMER{} �� ORDERSMiller ��
LINEIT EM{} is pruned out because LINEIT EM{}



has no keywords and since it is in the end of the join-
ing sequence’s chain, it cannot help in joining any
tuple that could lead to a keyword. For more com-
plex reasons, pertaining to the structure of the pri-
mary key to foreign key relationships as discussed
later, candidate networks such as ORDERSSmith ��
LINEIT EM{} �� ORDERSMiller are also excluded.
• We prove that the candidate network generation al-

gorithm creates a complete and non-redundant set of
candidate networks, where “complete” means that the
set of candidate networks produces all minimal join-
ing networks of tuples (up to a given size T ) and “non-
redundant” means that if any candidate network of the
set is excluded then there are database instances where
there are minimal joining networks of tuples that are
not discovered. It is also shown that the results of the
candidate networks are always minimal joining net-
works of tuples.
• We specify when the maximum size of the candi-

date networks is bound by the size of the database
schema and when it is bound only by the size of the
database instance. For the former case, we provide
theorems that specify the maximum size Tmax of the
minimal joining networks of tuples, as a function of
the database schema.
• We propose a cost model. The Plan Generator module

uses intermediate results to minimize the total cost of
the evaluation of all candidate networks. We show that
the problem of selecting the optimal set of intermedi-
ate results is NP-complete on the size of the candidate
networks. We then present a tunable greedy algorithm
that discovers near-optimal plans, without suffering
from the unacceptable optimization time cost incurred
by the optimal planning algorithm.
• DISCOVER has been implemented on top of Oracle

8i. We present a detailed experimental evaluation of
the modules of DISCOVER and of the overall sys-
tem. It is shown that a large percentage of the gen-
erated candidate networks are pruned. Furthermore,
we show how to tune the greedy algorithm to achieve
the best possible performance and we show that the
overall performance beats by far the performance of
the obvious straightforward approaches.

In Section 2 we compare DISCOVER to other related
efforts. Sections 4 and 5 present the Candidate Network
Generator and the Plan Generator module respectively. In
Section 6 we evaluate experimentally the performance of
DISCOVER. Finally, in Section 7 we conclude and discuss
future extensions and improvements of DISCOVER.

2 Related Work
A framework for keyword search on databases when the
schema is not known to the user is presented in [MV00b,
MV00a]. An extension of SQL called Reflective SQL
(RSQL) is introduced, which treats data and queries uni-
formly. The main limitation of this work is that all key-
words must be contained in the same tuple. That is, the re-

lationships between tuples from different relations are not
taken into consideration.

In [GSVGM98] and [BNH+02], a database is viewed
as a graph with objects/tuples as nodes and relationships
as edges. Relationships are defined based on the proper-
ties of each application. For example an edge may denote
a primary to foreign key relationship. In [GSVGM98], the
user query specifies two sets of objects, the Find and the
Near objects. These objects may be generated from two
corresponding sets of keywords. The system ranks the ob-
jects in Find according to their distance from the objects in
Near. An algorithm is presented that efficiently calculates
these distances by building hub indices. In [BNH+02], an-
swers to keyword queries are provided by searching for
Steiner trees [Ple81] that contain all keywords. Heuris-
tics are used to approximate the Steiner tree problem. A
drawback of these approaches is that a graph of the tuples
must be created and maintained for the database. Further-
more, the important structural information provided by the
database schema is ignored and their algorithms work on
huge data graphs. In contrast, DISCOVER is tuned to key-
word search on relational databases and uses the properties
of the schema of the database. Its key algorithms work
on the schema graph, which is much smaller than the data
graph, and does not need to keep any extra data represen-
tations. It exploits the properties of the database schema
to produce the minimum number of SQL queries needed
to answer to the keyword query. Furthermore, DISCOVER
operates directly on the databases, so it does not have a
main memory space limitation.

The work of the Candidate Network Generator reminds
of algorithms for answering queries on universal relations
[Ull82]. However there are many important differences be-
tween universal relations and DISCOVER: First, there is
the obvious difference that the user of a Universal Relation
(UR) needs to know the attributes where the keywords are,
in contrast to the user of DISCOVER. Second, DISCOVER
creates efficient queries that find all connections between
the tuples that contain the keywords. In doing so, DIS-
COVER, unlike the UR, has to find connections whose size
may not be schema bound and many of them are pruned
by DISCOVER’s Candidate Network Generator. Finally,
in addition to finding the useful connections, DISCOVER
exploits the fact that the connections are “correlated”, in
the sense that they share join expressions. This leads to a
special query optimization algorithm, which is tuned to the
specifics of our problem.

DBXplorer [ACD02] describes a multi-step system to
answer keyword queries in relational databases and frees
the user from the first limitation of the universal relations.
However it does not consider solutions that include two tu-
ples from the same relation. Furthermore they only con-
sider exact matches, where a keyword must match exactly
an attribute value and they do not exploit the reusability
opportunities of the join trees, which is a simplified notion
close to the candidate networks of DISCOVER.

Oracle 9i Text ([Ora01]) and IBM DB2 Text Informa-



tion Extender ([DB201]) use standard SQL to create full
text indices on text attributes of relations. Microsoft SQL
Server 2000 ([MSD01]) also provides tools to generate full
text indices, which are stored in files outside the database.
In all three systems, the user creates full text indices on
single attributes and then performs keyword queries, which
return the tuples that contain a keyword. Furthermore, key-
word proximity queries are supported within a single at-
tribute of a tuple, but not across different attributes or tu-
ples. As we discuss, generalizing keyword search to work
across tuples is very challenging and the issues are different
from the text indexing issues that those systems address.

One of the criteria that we use to decide that a join ex-
pression J is not a candidate network is whether the joining
networks of tuples produced by J contain more than one oc-
currences of the same tuple. Our approach for deciding this
property can be viewed as a special case of the chase tech-
nique with inclusion dependencies presented in [AHV95].
Our algorithm is simpler, faster and decidable, since it fo-
cuses on primary to foreign key relationships.

Keyword search has been well studied for document
databases ([Sal89]). For example [BP98] presents the
Google search engine. [ACGM+01] offers an overview
of current Web search engine design. It also introduces a
generic search engine architecture and covers crawling and
indexing issues. In [TWW+00], algorithms , data struc-
tures, and software are presented that approach the speed
of keyword-based document search engines for queries
on structural databases like parse trees, molecular dia-
grams and XML documents. [FKM99] tackles the keyword
search problem in XML databases. They propose an exten-
sion to XML query languages that enables keyword search
at the granularity of XML elements, which helps novice
users formulate queries, but do not consider keyword prox-
imity search.

The use of common subexpressions by the Plan Gener-
ator is a form of multi-query optimization [Sel88, Fin82,
RSSB00]. However the candidate networks in DISCOVER
have special properties that allow us to develop a more
straightforward and efficient algorithm. The first property
is that the candidate networks have small relations [Ull82]
as leaves, which dramatically prunes the space of useful
common subexpressions when applying the Wong-Yusefi
algorithm [Ull82]. Second, the candidate networks are not
random queries, but share common subexpressions by the
nature of their generation as we see in Section 4. The tech-
niques of [Fin82] cannot be applied to DISCOVER since
they concentrate on finding common subexpressions as a
post-phase to query optimization and DISCOVER does not
have access to the DBMS optimizer.

3 Framework

3.1 Data Model and Keyword Queries

We consider a database that has n relations R1, . . . ,Rn. Each
relation Ri has mi attributes ai

1, . . . ,a
i
mi

. The schema graph
G is a directed graph that captures the primary key to for-

eign key relationships in the database schema. It has a node
Ri for each relation Ri of the database and an edge Ri→ R j
for each primary key to foreign key relationship from a
set of attributes (ai

b1
, . . . ,ai

bl
) of Ri to a set of attributes

(a j
b1

, . . . ,a j
bl
) of R j, where ai

bk
≡ a j

bk
for k = 1, . . . , l. We

define the graph Gu to be the undirected version of G.
For notational simplicity, we assume that the attributes

of a primary to foreign key relationship have the same name
and that there are no self loops or parallel edges in the
schema graph. So an edge Ri→ R j uniquely identifies the
corresponding primary and foreign key attributes. We also
assume that no set of attributes of any relation is both a pri-
mary key and a foreign key for two other relations, which is
a reasonable assumption for any realistic database schema
design. The generalization of the problem and the solution
when these assumptions do not hold is trivial.

We denote the primary key of a tuple t ∈ R as p(t) and
its foreign key that references relation S as f S(t).

Definition 1 (Joining network of tuples) A joining net-
work of tuples j is a tree of tuples where for each pair of
adjacent tuples ti, t j ∈ j, where ti ∈ Ri, t j ∈ R j, there is an
edge (Ri,R j) in Gu and (t i �� t j) ∈ (Ri �� R j).

The size of a joining network is the number of joins that it
involves, which is one less than the tree’s size. An exam-
ple of a joining network of tuples in Figure 2 is

c1

n1o2o1
,

which can be written in line notation as c1[o1,o2,n1] or
o1[c1[o2,n1]]. Its size is 3.

A joining sequence of tuples is a special case of a join-
ing network of tuples, where each internal node of the tree
has exactly two adjacent nodes. An example of a joining
sequence of tuples in Figure 2 is c1[o1,o2], also denoted as
o1 �� c1 �� o2.

Definition 2 (Keyword Query) A keyword query is a set
of keywords k1, . . . ,km. The result of the keyword query is
the set of all possible joining networks of tuples that are
both:
• Total: every keyword is contained in at least one tuple

of the joining network.
• Minimal: we can not remove any tuple from the join-

ing network and still have a total joining network of
tuples.

We call such joining networks Minimal Total Joining Net-
works of Tuples (MTJNT) of the keywords k1, . . . ,km or
simply MTJNT’s when the corresponding set of keywords
is obvious from the context.

It is obvious from the definition that the result of a keyword
query is unique. A keyword query may also be given the
maximum size T of the result MT JNT ’s.

The answers to keyword queries with two keywords are
always joining sequences of tuples. On the other hand,
when we have more than two keywords then the answer
most often cannot be expressed as a joining sequence, so
we need a joining network. Consider for example the key-
word query “Smith, Miller, USA”. The best (smallest) an-
swer to this query is MT JNT c1[o1,o2,n1].
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Figure 4: A many-to-many relationship

If there is a many-to-many relationship between two re-
lations of a database, then the MT JNT ’s could have an ar-
bitrarily big size, which is only data bound. Figure 4 shows
an extreme case where there is a many-to-many relation-
ship between two relations R,S. There is a foreign to pri-
mary key relationship from Q to R and from Q to S on the
homonymous attributes. Suppose that attribute values c 1
and dn contain the two keywords of a query. The MT JNT
r1 �� q1 �� s1 �� q2 �� r2 �� . . . �� rk �� q2k−1 �� sk �� q2k ��
. . . �� rn �� q2n−1 �� sn uses all tuples from all three rela-
tions, as shown by the arrows in Figure 4. So we see that
the size of the joining sequence can only be bound by the
dataset when there are many-to-many relationships.

Keep in mind that a keyword may be in more than one
tuples of the same relation or in different relations. An ex-
ample of the first case is the “Miller” keyword that appears
in two tuples (o2 and o3) of the ORDERS relation. For
the second case, consider the keyword query “John, USA”,
where the keyword “John” is contained in both tuples o 1
and c3. Two joining sequences for this keyword query are
c3 �� n1 and o1 �� c1 �� n1. Notice that the joining sequences
in the result in this case are heterogeneous.

3.2 Architecture

In this section we walk through the components of DIS-
COVER (see Figure 3) and formally define the structure of
their inputs and outputs. The Master Index inputs a set of
keywords k1, . . . ,km and outputs a set of basic tuple sets

R̄
k j
i for i = 1, . . . ,n and j = 1, . . . ,m. The basic tuple set

R̄
k j
i consists of all tuples of relation Ri that contain the key-

word k j. The master index has been implemented using the
Oracle8i interMedia Text 8.1.5 extension, which builds full
text indices on single attributes of relations. Then the mas-
ter index inspects the index of each attribute and combines
the results. 1

Then the Tuple Set Post-Processor takes the basic tu-
ple sets and produces tuple sets RK

i for all subsets K of

1We are currently building from scratch a more efficient master index
using an inverted index that has one entry for each keyword k and the
entry has references to all tuples that contain k. However, the master index
choice does not affect the key challenges and tradeoffs discussed in this
paper.

{k1, . . . ,km}, where

RK
i = {t|t ∈ Ri∧∀k ∈ K, t contains k∧

∀k ∈ {k1, . . . ,km}−K, t does not contain k} (1)

i.e., RK
i contains the tuples of Ri that contain all keywords

of K and no other keywords.
The tuple sets are obtained from the basic tuple sets us-

ing the following formula.

RK
i =

⋂

k∈K

R̄k
i −

⋃

k∈{k1,...,km}−K

R̄k
i (2)

The non-empty tuple sets along with the schema graph
of the database are passed to the Candidate Network
Generator. For brevity reasons that become clear below,
we will call the database relations, which appear in the
schema graph, free tuple sets. They are denoted as R{}.

Definition 3 (Joining Network of Tuple Sets) A joining
network of tuple sets J is a tree of tuple sets where for each
pair of adjacent tuple sets RK

i ,RM
j in J there is an an edge

(Ri,R j) in Gu.

For example a joining network of tuple sets for
the database of Figures 1, 2 is CUSTOMER{}
[ORDERSSmith,ORDERSMiller, NATION{}]. A joining se-
quence of tuple sets is a special case of joining networks of
tuples, where each intermediate node of the tree has exactly
two adjacent nodes and it is denoted as T S1 �� . . . �� TSl .
We say that a joining network of tuples j belongs to a
joining network of tuple sets J ( j ∈ J) if there is a tree
isomorphism mapping h from the tuples of j to the tuple
sets of J, such that for each tuple t ∈ j, t ∈ h(t). For ex-
ample, in the instance of 2, c1[o1,o2,n1] ∈CUSTOMER{}

[ORDERSSmith,ORDERSMiller, NATION{}].
DISCOVER does not generate any joining networks

of tuple sets that are redundant or cannot produce any
MTJNT’s. We call the joining networks of tuple sets gen-
erated by DISCOVER candidate networks.

Definition 4 (Candidate Network) Given a set of key-
words k1, . . . ,km, a candidate network C is a joining net-
work of tuple sets, such that there is an instance I of the
database that has a MT JNT M ∈ C and no tuple t ∈ M
that maps to a free tuple set F ∈C contains any keywords.

We need the last condition to make sure that no
keywords are accidentally added to M. Such a MTJNT
will also belong to a candidate network that has a
non-empty tuple set instead of F, so C is redun-
dant. For example, consider the database instance
of Figure 2 and the keyword query “Smith, Miller”.
J = ORDERSSmith �� CUSTOMER{} �� ORDERS{} is not
a candidate network even though the MTJNT o1 �� c1 ��
o2 belongs to J. J is subsumed by ORDERSSmith ��
CUSTOMER{} �� ORDERSMiller.

There are many joining networks of tuple sets that are
not candidate networks. For example, the network J =
ORDERSSmith �� LINEIT EM{} �� ORDERSMiller is not a



candidate network because there is no joining network of
tuples j = oS �� l �� oM where j ∈ J and oS �≡ oM. We will
analyze the conditions that promote a network into a can-
didate network in Section 4.

Each candidate network of size N will produce zero or
more MT JNT ’s of size N. The result of the keyword search
is the union of the MT JNT ’s produced by all possible can-
didate networks.

The set of candidate networks is passed to the Plan
Generator, which optimizes the evaluation of the candidate
networks.

Definition 5 (Execution Plan) Given a set C1, . . . ,Cr of
candidate networks, an execution plan is a list A1, . . . ,As
of assignments of the form Hi← Bi1 �� . . . �� Bit where:
• Each Bi j is either a tuple set or an intermediate result

defined in a previous assignment. The latter requires
that there is an index k < i, such that Hk ≡ Bij .
• For each candidate network C there is an assignment

Ai, that computes C.

For example, an execution plan for the keyword query
shown in Figure 3 is

T1← ORDERSSmith �� CUSTOMER{},
C1← T1 �� ORDERSMiller,
C2← T1 �� NAT ION{} ��CUSTOMER{} �� ORDERSMiller

where T1 is an intermediate result. The number of joins of
this plan is 5, whereas the number of joins to evaluate the
two candidate networks without building any intermediate
results would be 6. As the number of candidate networks
increases the difference in the number of joins increases
dramatically.

Finally the execution plan is passed to the Plan
Execution module, which translates the assigments of the
plan to SQL statements. The assignments that build inter-
mediate results are translated to “CREATE TABLE” state-
ments and the candidate network evaluation assigmnents to
“SELECT-FROM-WHERE” statements. The union of the
results of these “SELECT-FROM-WHERE” statements is
the result of the keyword search and it is returned to the
user. The smaller MTJNT’s are returned first.

4 Candidate Network Generation
The Candidate Network Generator inputs the set of key-
words k1, . . . ,km, the non-empty tuple sets RK

i and the max-
imum candidate networks’ size T and outputs a complete
and non-redundant set of candidate networks. The key
challenge is to avoid the generation of redundant joining
networks of tuple sets. The solution to this problem re-
quires an analysis of the conditions that force a joining net-
work of tuples to be non-minimal - the condition for the
totality of the network is straightforward. Then the can-
didate networks generation algorithm is presented and we
present theorems that show that it is (i) complete, ie., ev-
ery MT JNT is produced by a candidate network output by
the algorithm, and (ii) it does not produce any redundant

candidate networks. Finally we give an example of the al-
gorithm’s execution steps.

We must ensure that the joining networks of tuples that
belong to a candidate network are total and minimal. The
condition that a joining network of tuple sets J must satisfy
in order to ensure totality of the produced joining networks
of tuples j ∈ J is to contain all keywords. That is,

∀k ∈ {k1, . . . ,km},∃RK
i ∈ J,k ∈ K (3)

For example ORDERSSmith �� CUSTOMER{} ��
ORDERS{} is not total with respect to the keyword
query “Smith, Miller”. Equation 3 does not ensure min-
imality. There are two cases when a joining network of
tuples j is not minimal.

1. A joining network of tuples j is not minimal if it
has a tuple with no keywords as a leaf. In this
case we can simply remove this leaf. We carry
this condition to joining networks of tuple sets by
not allowing free tuple sets as leaves. For example
ORDERSSmith �� CUSTOMER{} �� ORDERSMiller ��
CUSTOMER{} is rejected since it has the free tuple
set CUSTOMER{} as a leaf.

2. j is not minimal if it contains the same tuple t twice.
In this case we can collapse the two occurrences of t.
We carry this condition to joining networks of tuple
sets by detecting networks that are bound to produce
non-minimal joining networks of tuples, regardless of
the database instance. According to this condition,
the joining network of tuple sets J = ORDERSSmith ��
LINEIT EM{} �� ORDERSMiller is ruled out because
the structure of J ensures that all the produced joining
networks of tuples j = oS �� l �� oM will contain the
same tuple twice. To see this suppose that oS has pri-
mary key p(oS). It is joined with l, so l has foreign
key fORDERS(l) = p(oS). l will also join with oM ∈
ORDERSMiller. So, it is p(oM) = fORDERS(l) = p(oS).
Hence oM ≡ oS ≡ oM,S and j cannot be minimal.

Theorem 1 presents a criterion that determines when the
joining networks of tuples produced by a joining network
of tuple sets J have more than one occurrences of a tuple.

Theorem 1 A joining network of tuples j produced by a
joining network of tuple sets J has more than one occur-
rences of the same tuple for every instance of the database
if and only if J contains a subgraph of the form RK—SL—
RM, where R,S are relations and there is an edge R→ S in
the schema graph.

Hence, we conclude to the following criterion.

Criterion 1 (Pruning Condition) A candidate network
does not contain a subtree of the form RK—SL—RM, where
R and S are relations and the schema graph has an edge
R→ S.



Algorithm Candidate Networks Generator

Input: tuple set graph GTS, T , k1, . . . ,km
Output: set of candidate networks with size up to T
{

Q: queue of joining networks of tuple sets

Pick a keyword kt ∈ {k1, . . . ,km}
for each tuple set RK

i where i = 1, . . . ,n and kt ∈ K do

Add joining networks of tuple sets RK
i to Q

while Q not empty do {
Get head C from Q
if C satisfies the pruning condition then ignore C
else if C satisfies the acceptance conditions then output C
/*There is no reason to extend accepted joining networks of tuple sets*/

else

for each tuple set RK
i adjacent in GTS (ignoring edge direction) to a node of C

if (K = {} OR � ∃RM
j ∈ (C∪RK

i ),M �= {}∧ keywords(C∪RK
i ) = keywords((C∪RK

i )−RM
j ))

/*Expansion rule*/

and (size of C < T) then {
if RK

i is adjacent to RM
j in C = RM

j [. . .] then C← RK
i [RM

j [. . .]]
Put C in Q

}
else ignore RK

i
} }

Figure 5: Algorithm for generating the candidate networks

4.1 Candidate Networks Generation Algorithm

The candidate network generation algorithm is shown in
Figure 5. First, we create the tuple set graph GT S. A
node RK

i is created for each non-empty tuple set RK
i , in-

cluding the free tuple sets. An edge RK
i → RM

j is added
if the schema graph G has an edge Ri → R j. The algo-
rithm is based on a breadth-first traversal of GT S. We keep a
queue Q of “active” joining networks of tuple sets. In each
round we pick from Q an active joining network of tuple
sets J and either (i) discard J because of the pruning condi-
tion (Criterion 1) or (ii) output J as a candidate network or
(iii) expand J into larger joining networks of tuple sets (and
place them in Q). We start the traversal from all tuple sets
that contain a randomly selected keyword kt ∈ {k1, . . . ,km}.

An active joining network of tuple sets C is expanded
according to the following expansion rule: A new active
joining network of tuple sets is generated for each tuple
set RK

i , adjacent to C in GT S, if either RK
i is a free tuple

set (K = {}) or after the addition of RK
i to C every non-

free tuple set of C (including RK
i ) contributes at least one

keyword that no other non-free tuple set contributes, i.e.,

� ∃RM
j ∈ (C∪RK

i ),M �= {}∧
keywords(C∪RK

i ) = keywords((C∪RK
i )−RM

j )

where keywords(J) returns the union of keywords in the
tuple sets of the joining network of tuple sets J, i.e.,
keywords(J) =

⋃
RK

i ∈J K. A free tuple set may be visited
more than once. Each non-free tuple set is used at most
once in each candidate network. The reason is that, for all
database instances, the result of a joining network of tuple
sets J with two occurrences of the same non-free tuple set

RK
i is subsumed by the result of a joining network of tuple

sets J′, generated by the algorithm, that is identical to J but

has R{}i instead of the second occurrence of RK
i .

In addition, the implementation never places in Q a join-
ing network of tuples sets J that has more than m leaves,
where m is the number of keywords in the query. For ex-
ample, if the keywords are two then only joining sequences
are placed in Q. Indeed, even if this rule were excluded
the output of the algorithm would be the same, since such a
network J can neither meet the acceptance conditions listed
next nor be expanded into a network J ′ that meets the ac-
ceptance conditions. Nevertheless, the rule leads to cleaner
traces and better running time.

The algorithm outputs a joining network of tuple sets J
if it satisfies the following acceptance conditions:
• The tuple sets of J contain all keywords, i.e.,

keywords(J) = {k1, . . . ,km}.
• J does not contain any free tuple sets as leaves.

An important property of the algorithm is that it outputs
the candidate networks with increasing size. That is, the
smaller candidate networks, which are the better solutions
to the keyword search problem, are output first.

Theorems 2 and 3 prove the completeness and the min-
imality of the results of the algorithm.

Theorem 2 (Completeness) Every solution of size T to
the keyword query is produced by a candidate network of
size T , output by the candidate network generator.

Theorem 3 (No Redundancy) For each candidate net-
work C output by the algorithm, given the tuple set graph



PART (P{}) ORDERS (O{})PARTSUPP (PS{}) LINEITEM (L{})

CUSTOMER (C{})
ORDERSMiller (OMiller)

ORDERSSmith (OSmith)

NATION (N{})

SUPPLIER (S{})

REGION (R{})

Figure 6: Tuple set graph

# Queue/from/candidate networks output

1a OSmith

2a OSmith �� L{}/1a
b OSmith �� C{}/1a
3a OSmith �� L{} �� O{}(pruned)/2a
b OSmith �� L{} �� OMiller(pruned)/2a
c OSmith �� L{} �� PS{}/2a
d OSmith �� C{} �� O{}/2b
e OSmith �� C{} �� OMiller/2b
f OSmith �� C{} �� N{}/2b
4a OSmith �� L{} �� PS{} �� P{}/3c/ OSmith �� C{} �� OMiller

b OSmith �� L{} �� PS{} �� L{}/3c
c OSmith �� C{} �� O{} �� C{}(pruned)/3d
d OSmith �� C{} �� N{} �� C{}/3f

. . .

5a OSmith �� L{} �� PS{} �� P{} �� PS{}(pruned)/4a
b OSmith �� L{} �� PS{} �� L{} �� OMiller/4b
c OSmith �� C{} �� N{} �� C{} �� OMiller /4d
d OSmith �� C{} �� N{} �� C{} �� O{}/4d
e OSmith �� C{} �� N{} �� C{} �� N{}(pruned)/4d

. . .

6a OSmith �� C{} �� N{} �� C{} �� O{} �� C{}(pruned)/5d/
OSmith �� C{} �� N{} �� C{} �� OMiller

. . ./ /OSmith �� L{} �� PS{} �� L{} �� OMiller

7 . . .

Figure 7: Example

GT S
2, there is an instance I of the database that produces

the same tuple set graph GT S, contains a MTJNT j ∈C and
j does not belong to any other candidate network.

Example. We present the execution of the candidate net-
work generator algorithm for the keyword query “Smith,
Miller” on the TPC-H schema and the database instance in
Figure 2, for T = 5. That is, we consider candidate net-
works having at most 5 joins. The tuple set graph is shown
in Figure 6.

Suppose we pick “Smith” as the kt of the algorithm.
Hence we put ORDERSSmith into the queue. The state of
the queue and the candidate networks output in each itera-
tion are shown in Figure 7. We use the obvious abbreviated
names for the relations. Since the query has only two key-
words, only joining sequences are generated and eventually
output.
Maximum size of candidate networks. Depending on
the form of the database schema, the maximum size Tmax

2Notice that the candidate network generator does not examine the
tuples of a specific tuple set, but only whether it is empty or not.

of the candidate networks may be bounded or unbounded
by the database schema.

Theorem 4 Tmax is unbounded if and only if G has one of
the following properties:
• There is a node of G that has at least two incoming

edges.
• G has a directed cycle.

5 Evaluation of Candidate Networks
The Plan Generator module of DISCOVER inputs a set of
candidate networks and creates an execution plan to eval-
uate them as defined in Section 3.2. The key optimiza-
tion opportunity is that typically the candidate networks
share join subexpressions. Efficient execution plans store
the common join expressions as intermediate results and
reuse them in evaluating the candidate networks. For ex-
ample, in Figure 3 we calculate and store the join expres-
sion ORDERSSmith �� CUSTOMER{}. CUSTOMER{} ��
ORDERSMiller is also a common join expression but it will
not help to store both, as we explain below.

The space of execution plans that can be generated for
a set of candidate networks is huge. We prune it by the
following two assumptions: First, we define every non-free
tuple set to be a small relation, since its tuples are restricted
to contain specific keywords. The result of a join that in-
volves a small relation is also a small relation. Those as-
sumptions lead to the conclusion that every join expression
of the plan must contain a small relation and, hence, all
intermediate results are small. Note that both the assump-
tions and the conclusion follow directly the Wong-Yousefi
algorithm ([Ull82]) of INGRES. Indeed, in practice, the in-
termediate results are sufficiently small to be stored in main
memory as we discuss in Section 6.

Second, the plan generator only considers plans
where the right hand side of the assignments
Hi ← Bi1 �� . . . �� Bit of Definition 5 in Section 3.2
are joins of exactly two arguments, i.e., t = 2. This policy
is based on the assumption that the cost of calculating
and storing the results of both A �� B and A �� B �� C is
essentially the same with the cost for just calculating and
storing the result of A �� B �� C, if the DBMS optimizer
selects to first calculate A �� B and then the result of
A �� B �� C. Hence we can store and possibly reuse later
A �� B “for free”.

This assumption is very precise when there are indices
on the primary and foreign key attributes. Then the joins
(and, in particular, the most expensive ones) are executed
in a series of index-based 2-way joins. The assumption
always held for the Oracle 8i DBMS that we used in our
TPC-H-based experimentation. (The assumption deviates
from reality when there are no indices and the database
chooses multi-way merge-sort joins.)

In summary, the plan generator considers and evaluates
the space of plans where the joins have exactly two argu-
ments. Note that once a plan P is selected from the re-
stricted space we outlined, the plan generator eliminates



non-reused intermediate results by inlining their definition
into the single point where they are used. That is, given two
assignments

T ← A �� B

T ′ ← T �� C

if T is not used at any other place than the computation of
T ′, the two assignments will be merged into

T ′ ← A �� B �� C

Cost Model. The theoretical study of the complexity of
selecting the optimal execution plan is based on a simple
cost model of execution plans: We assign a cost of 1 to
each join. We use this theoretical cost model in proving that
the selection of the optimal execution plan is NP-complete
(Theorem 5). It is easy to see that the problem is also NP-
hard for the actual cost model of DISCOVER.

The actual cost model of DISCOVER exploits the fact
that we can get the sizes of the non-free tuple sets from the
master index. We also assume that we know the selectivity
of the primary to foreign key joins, which can be calculated
from the sizes of the relations. The actual cost model de-
fines the cost of a join to be the size of its result in number
of tuples. (The cost model can easily be modified to work
for the size in bytes instead of the number of tuples.) The
cost of the execution plan is the sum of the costs of its joins.
Notice that since there are indices on the primary and for-
eign keys, the cost of a join is proportional to the size of its
result, since the joins will typically be index-based joins.

The problem of deciding which intermediate results to
build and store can be formalized as follows:

Problem 1 (Choice of intermediate results) Given a set
of candidate networks, find the intermediate results that
should be built, so that the overall cost of building these
results and evaluating the candidate networks is minimum.

Theorem 5 shows that Problem 1 is NP-complete on the
size of the candidate networks with respect to the theoreti-
cal cost model defined above.

Theorem 5 Problem 1 is NP-complete.

5.1 Greedy algorithm

Figure 8 shows a greedy algorithm that produces a near-
optimal execution plan, with respect to the actual cost
model defined above, for a set of candidate networks by
choosing in each step the join m between two tuple sets or
intermediate results that maximizes the quantity f requencya

logb(size) ,

where f requency is the number of occurences of m in the
candidate networks, size is the estimated number of tuples
of m and a,b are constants. The f requencya term of the
quantity maximizes the reusability of the intermediate re-
sults, while the logb(size) term minimizes the size of the
intermediate results that are computed first. We have exper-
imented with multiple combinations of values for a and b
and found that the optimal solution is closer approximated

Algorithm Select list of intermediate results

Input: set S of candidate networks of size≤ T
Output: list L of intermediate results to build
{
while not all candidate networks in S have

been added to L do {
Let Z be the set of all small join

subexpressions of 1 join contained in

at least one candidate network in S;
Add the intermediate result m with the

maximimum
f requencya

logb(size) value in Z to L;

Rewrite all candidate networks in S to use
m where possible;

}
}

Figure 8: Greedy algorithm for selecting a list of interme-
diate results to build

for {a,b}= {1,0}, when the size of the candidate networks
(and the reusability) increases.

We perform a worst case time analysis of the greedy al-
gorithm. The while loop is executed at most |S| ·T times if
every join has a frequency of 1, where |S| is the number of
candidate networks. The calculation of Z takes time |S| ·T .
We assume that we traverse a candidate network of size T1
in time O(T1). In each step, we keep a hash table H with
each intermediate result in Z and its frequency. Hence we
check if an intermediate result is already in H and increase
its frequency in O(1). Finding the intermediate result in H
that maximizes f requencya

logb(size) takes time |S| ·T . The rewriting

step also takes time |S| ·T . Hence the total execution time
takes in the worst case time O((|S| ·T )2).

The greedy algorithm may output a non optimal list of
intermediate results. However, in special cases the greedy
is guaranteed to produce the optimal plan. One such case
is described by the theorem below:

Theorem 6 The greedy algorithm for (a,b) = (1,0) is op-
timal for m = 2 keywords, when each of them is contained
in exactly one relation.

6 Experiments
We evaluate the algorithms of DISCOVER with detailed
performance evaluation on a TPC-H database. First we
measure the pruning efficiency of the candidate network
generator. In particular, we measured how many joining
networks of tuple sets are ruled out based on the pruning
conditions of the candidate network generator. Then we
compare the plans produced by the greedy to the ones pro-
duced by the optimal, where the optimal execution plan is
computed using an exhaustive algorithm. We also com-
pare the speedup in runtime performance for generating
and executing the execution plan using the greedy and the
optimal algorithm compared to the naive method, where
no intermediate results are built. Finally, we compare the
overall execution times of DISCOVER for some typical



#keyw JNTS K JNTS L CNs neTS’s
2 25 5.355 4.485 2.96
3 55.22 13.86 9.27 4.35
4 85.69 33.88 24.03 5.91
5 101 37.3 26 7.12

(a) Fix maximum candidate networks’ size to 3
MaxCNsize JNTS K JNTS L CNs neTS’s
1 0.95 0.95 0.95 2.96
2 3.72 2.36 2.12 2.96
3 29.22 4.74 3.7 2.96
4 422.88 10.36 6.4 2.96
5 6941 24.75 11.45 2.96

(b) Fix number of keywords to 2
MaxCNsize JNTS K JNTS L CNs neTS’s
1 0.59 0.59 0.59 4.35
2 5.01 3.91 3.35 4.35
3 55.22 13.86 9.27 4.35
4 639.61 50.49 29.51 4.35
5 7532 223 103.66 4.35

(c) Fix number of keywords to 3

Figure 9: Evaluation of the candidate network generator

keyword queries to the naive method and to the optimal
method.

We use the TPC-H database to conduct the experiments.
The size of the database is 100MB. We use Oracle 9i,
running on a Xeon 2.2GHz PC with 1GB of RAM. DIS-
COVER has been implemented in Java and connects to the
DBMS through JDBC. The master index is implemented
using the full-text Oracle9i interMedia Text extension. The
basic tuple set of relation R for keyword k is produced by
merging the tuples returned by the full-text index on each
attribute of R. We found out that each keyword is contained
on the average in 3.5 relations, that is, 3.5 non-empty basic
tuple sets are created for each keyword.

The tuple sets and the intermediate results are stored in
tables in the KEEP buffer pool of Oracle 9i, which retains
objects in memory, thus avoiding I/O operations. We dedi-
cated 70MB to the KEEP buffer pool. The display time is
not included in the measured execution time.

The naive method does not produce any intermediate re-
sults – it simply executes each candidate network. The ex-
ecution times for both the naive method and DISCOVER’s
evaluation method, which builds and reuses intermediate
results, depend on the status of the cache of the DBMS.
In order to eliminate this factor we warm-up the cache
before executing the experiments. The warm-up is done
by executing the SQL queries corresponding to the candi-
date networks produced by the candidate network genera-
tor. Hence, we are certain that the warm-up does not favor
DISCOVER more than the naive method.
Evaluation of the candidate network generator. This ex-
periment measures the pruning capabilities of the candi-
date network generator. We use the TPC-H schema but we
do not use the TPC-H dataset in this experiment, because
we want to control the distribution of the number of occur-
rences of each keyword. So, we randomly put the keywords
of the keyword query in the relations. Each keyword is

#keyw Cost(O)
Cost(G)

2 1
3 0.96
4 0.96
5 0.97

MaxCN Cost(O)
Cost(G)

1 1
2 1
3 0.96
4 0.93
5 0.90

(a) Fix CN size to 3 (b) Fix # keywords to 3

Figure 10: Evaluation of the Plans of the Greedy Algorithm

contained in a relation R with probability a · log(size(R)),
where size(R) is the number of tuples in R as defined in
the TPC-H specifications for scale factor SF=1. We se-
lected a = 1

10·log2(6,000,000) . This means that the probabil-
ity that a keyword is contained in the LINEIT EM relation,
which is the largest one, is 1

10 , since size(LINEIT EM) =
6,000,000. This probability is about 1

100 for the REGION
relation, which is the smallest one. We measure three num-
bers of joining networks of tuple sets for each execution of
the experiment.

1. JNT S K is the number of joining networks of tuple
sets of size up to T that have the following properties:
• They contain all keywords of the keyword query,

i.e., they are total.

• No non-free tuple set can be replaced by a free
tuple set and still have all keywords in the join-
ing network of tuple sets.

2. JNT S L is the number of joining networks of tuple
sets that have only non-free tuple sets as leaves in ad-
dition to the above properties.

3. CNs is the number of candidate networks generated
by DISCOVER. Those candidate networks have one
more property in addition to the above properties; they
do not produce joining networks of tuples with more
than one occurrences of the same tuple (Criterion 1).

We also measure the number of non-empty basic tuple sets
(neTS’s) generated in each execution. Figure 9 shows the
average results of the experiment for 1000 executions. No-
tice that the ratio CNs

JNT S L decreases as the maximum size
of the output candidate networks increases, i.e., Criterion 1
prunes more when the candidate networks are larger. The
reason is that the trigger of Criterion 1 has more places to
happen in a large candidate network.
Quality of Greedy. The quality of the plans produced by
the greedy algorithm are very close to the quality of the
plans produced by the optimal. We use the same settings
with the above experiment. In Figure 10 we show how well
the plans produced by the greedy algorithm perform on the
average, compared to the optimal plans for (a = 1,b = 0)
for 50 executions. In about 70% of the cases the generated
plans turn out to be identical and in the cases where they
are different, the differences are fairly small.
Evaluation of Plan Generator. In this experiment
we measure the speedup that DISCOVER’s plan genera-
tor induces. In particular, we compare the time spent in
DISCOVER’s Plan Generator and Plan Execution modules
against the baseline provided by the naive method. We



also compare the optimal method against the baseline of
the naive method. In detail, the measured methods are:

1. DISCOVER’s method. We calculate the execution
plan using the greedy algorithm for three different
combinations of values for a,b. In particular, {a,b} ∈
{(1,0),(0,1),(1,0.3)}. Recall that a and b are the
weights we assign to the reusability and the size of
the intermediate results respectively.

2. Naive method. We evaluate the candidate networks
without using any intermediate results.

3. Optimal method. We calculate the optimal execution
plan using an exhaustive algorithm.

In each execution of the experiment we randomly select m
keywords from the set of words that are contained in the
TPC-H database. Then DISCOVER uses the master in-
dex to generate the tuple sets and the candidate network
generator calculates the candidate networks of size up to
T . The execution continues separately for each of the ex-
ecution methods. We executed the experiment 200 times
and measured the average speedup Time(Naive)

Time(other method) , which
indicates that DISCOVER’s methods (or the optimal) are

Time(Naive)
Time(other method) times faster than the naive.

The results are shown in Figure 11. The optimal method
is always worse than the naive due to the great time over-
head in discovering the optimal execution plan. Notice in
Figure 11 (a) that the speedup decreases when the num-
ber of keywords is greater than 4, because there are more
distinct tuple sets in the candidate networks and hence the
reusability opportunities decrease since the candidate net-
works’ size is fixed to 3. Also notice in Figure 11 (b)
how the greedy algorithm with {a,b} = {0,1} performs
better than the one with {a,b} = {1,0} when the sizes of
the candidate networks are smaller than 4. This happens
because the reusability opportunities increase as the size of
the candidate networks increases, so the f requency factor
of the greedy algorithm becomes dominant. In general, the
(a = 1,b = 0) and (a = 1,b = 0.3) options perform better as
the difference between the size of the candidate networks
and the number of keywords increases, since this creates
more opportunities for reusability.
Execution times. Finally, we measure the average abso-
lute execution times to answer a keyword query using the
three methods described above. The execution times in
this experiment include the time to generate the candidate
networks using DISCOVER’s candidate network generator,
but not the time to build the tuple sets, which takes from 2
to 4 seconds and could be considerably reduced by using a
more efficient master index implementation [ACD02]. The
TPC-H dataset is not suitable for this experiment, because
it has less than 500 distinct keywords, which are repeated
thousands of times. Hence, we inserted into the 100MB
TPC-H database, 100 new tuples to each relation. These
tuples contain 50 new keywords and each keyword is con-
tained in exactly 50 tuples in two different relations (two
non-empty basic tuple sets are created for each keyword).
In each execution, the keyword query consists of two ran-
domly selected keywords from the 50 new keywords. Fig-
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Figure 11: Speedup when using intermediate results

ure 12 shows the average execution times for the three
methods for 100 executions. Again, notice the superior-
ity of the (a = 1,b = 0) and (a = 1,b = 0.3) methods when
the size of the candidate networks increases, which happen
also to be the toughest cases from a performance point of
view. The a = 1 parameter leads the greedy to exploit the
opportunities for reusing intermediate results.

7 Conclusion and Future Work

As the amount of information stored in databases increases,
so does the need for efficient information discovery. Key-
word search enables information discovery without requir-
ing from the user to know the schema of the database, SQL
or some QBE-like interface, and the roles of the various en-
tities and terms used in the query. in databases that do not
require knowledge of the database schema or of a querying
language. We presented DISCOVER, a system that per-
forms keyword search in relational databases. It proceeds
in three step. First it generates the smallest set of candi-
date networks that guarantee that all MT JNT ’s will be pro-
duced. Then the greedy algorithm creates a near-optimal
execution plan to evaluate the set of candidate networks.
Finally, the execution plan is executed by the DBMS.

In this work, we defined two keywords to be associated
if they are contained in two tuples connected through pri-
mary to foreign key relationships. This is an intuitive and
challenging association criterion as we have shown. In the
future, we plan to extend DISCOVER to handle more as-
sociation criteria such as: First, the keywords may be part
of the metadata of the database. For example the keyword
query “customer, Lou” would return tuple c 1 in Figure 2.
Second, we could define two keywords, which are con-
tained in the same attribute of two tuples of a relation, to
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Figure 12: Execution times

be associated. For example, the tuples o1,o2 are a solution
to the keyword query “Smith, Miller”, by this criterion.

We plan to apply new optimization techniques to DIS-
COVER. For example we plan to apply dynamic optimiza-
tion techniques in the evaluation of the candidate networks.
Currently, DISCOVER uses static optimization methods.
That is, the whole execution plan is generated before its
evaluation begins. Furthermore, we plan to experiment
with new cost models that access the DBMS’s optimizer.
We are also building from scratch a more efficient master
index.

Finally, we are working on building polynomial time al-
gorithms that generate an optimal execution plan for special
cases of database schemas.
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